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Abstract—Decision fusion consists in the combination of the 
outputs of multiple classifiers into a common decision that is 
more precise or stable. In most cases, however, only classical 
fusion techniques are considered. This work compares the 
performance of several state-of-the-art fusion methods on new 
applications of automatic stage classification of several 
neuropsychological tests. The tests were staged into three 
classes: stimulus display, retention interval, and subject 
response. The considered late fusion methods were: alpha 
integration; copulas; Dempster-Shafer combination; 
independent component analysis mixture models; and behavior 
knowledge space. Late fusion was able to improve the 
performance for the task, with alpha integration yielding the 
most stable result. 
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I. INTRODUCTION 

Decision fusion is a kind of data fusion that combines the 
decisions of multiple classifiers into a common decision about 
the analyzed data [1,2]. This is commonly known as “late 
fusion” as opposed to “early fusion”, where features from 
multiple sensors or modalities are combined before 
classification. There are several advantages to the fusion of 
multiple classifiers, such as improved classification 
performance, increased confidence, or enhanced reliability 
[3].  

There have been several works on decision fusion on 
biomedical applications, such as: colonic polyp detection in 
CT colonography [4]; identification of auditory and visual 
perception processes [5]; and automatic sleep staging [6]. 
Most of these applications have considered simple decision 
fusion techniques (e.g., majority voting and score averaging). 
While these techniques are simple and robust, performance 
could potentially be improved with the usage of more 
sophisticated and powerful methods. 

In this paper, we compare the relative performance of 
several state-of-the-art methods of late fusion for automatic 
staging of electroencephalographic signals from patients 
performing several learning and memory tasks. More 
specifically, we consider alpha integration [7-10], copulas 
[11], independent component analysis mixture models [12], 
Dempster-Shafer combination [13], and behavior knowledge 
space [14]. We show the capabilities of late fusion to improve 
the staging performance by fusing several classifiers and 
discuss their relative merits and strengths. 

II. ALPHA INTEGRATION METHOD 

A. Alpha integration for binary classification 

Alpha integration was first proposed for the binary 
classification (detection) problem [7, 8]. Let us assume that 
we have a group of D binary classifiers (detectors) working on 
the detection problem. Each detector will produce a score 𝑠௜, 
𝑖 ൌ 1 … 𝐷, where higher values of 𝑠௜ indicate that the positive 
class is more likely than the negative class. In this context, 
alpha integration performs the optimal integration of these 
scores 𝐬 ൌ ሾ𝑠ଵ … 𝑠஽ሿ் into a single score 𝑠ఈ such that 

 𝑠ఈሺ𝐬ሻ ൌ ൝ቂ∑ 𝑤௜ሺ𝑠௜ሻ
஽
௜ୀଵ

ሺଵିఈሻ/ଶ
ቃ

ଶ/ሺଵିఈሻ
, 𝛼 ് 1

expሾ∑ 𝑤௜ logሺ𝑠௜ሻ
஽
௜ୀଵ ሿ , 𝛼 ൌ 1

  

where 𝛼  and the coefficients 𝐰 ൌ ሾ𝑤ଵ … 𝑤஽ ሿ்  are the 
parameters to be optimized, subject to 𝑤௜ ൒ 0, ∑ 𝑤௜

஽
௜ୀଵ ൌ 1. 

Due to these constraints, 𝑠ఈ is bound between 0 and 1. It can 
be shown that many classical late soft fusion techniques are 
particular cases of alpha integration, such as the average (𝛼 ൌ
െ1  and 𝑤௜ ൌ 1/𝐷∀𝐷 ), the minimum ሺ𝛼 ൌ ∞ሻ  and the 
maximum ሺ𝛼 ൌ െ∞ሻ. In practice, there are many applications 
where the parameters of alpha integration are unknown 
beforehand and have to be estimated from some training data. 
Previous works have presented the derivations required to 
optimize alpha integration with respect to the least mean 
squares (LMSE) and the minimum probability of error (MPE) 
criteria [8].  

B. Alpha integration for multiclass classification 

Alpha integration was recently generalized to multiclass 
classification in a method called separated score integration 
(SSI) [9]. Essentially, SSI performs alpha integration 
separately on the scores corresponding to each class. 

Given 𝐾 classes, indexed by 𝑘 ൌ 1 … 𝐾, and 𝐷 classifiers, 
the 𝑖 th classifier will produce a vector of scores 𝐬௜ ൌ
ሾ𝑠ଵ௜ … 𝑠௄௜ሿ் , 𝑖 ൌ 1 … 𝐷 . We will assume the scores are 
normalized to unit sum, ∑ 𝑠௞௜

௄
௞ୀଵ ൌ 1. The true class identifier 

vector is defined as 𝐲 ൌ ሾ𝑦ଵ … 𝑦௄ሿ், where 

 𝑦௞ ൌ ቄ1 if the true class is 𝑘
0 otherwise

 

Let us define 𝛼௞ and 𝑤௞௜, 𝑖 ൌ 1 … 𝐷, as the parameters to 
integrate the scores corresponding to class 𝑘. Given a set of 
scores 𝐒 ൌ ሾ𝐬ଵ … 𝐬஽ሿ, we can directly apply the integration 
function  to every class 

 𝑠ఈೖ
ሺ𝐫௞ሻ ൌ ቐ ൬∑ 𝑤௞௜ ൉ 𝑠௞௜

భషഀೖ
మ஽

௜ୀଵ ൰

మ
భషഀೖ , 𝛼௞ ് 1

expሺ∑ 𝑤௞௜ ൉ logሺ𝑠௞௜ሻ
஽
௜ୀଵ ሻ ,𝛼௞ ൌ 1

 
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Where 𝑘 ൌ 1 … 𝐾 and 𝐫௞
் is the 𝑘th row of matrix 𝐒. This 

way, the multi class problem with K classes is converted in K 
separate two-class problems. The scores are then normalized 
so that they add up to one: 

 𝑠ఈೖ
௡௢௥௠ ൌ

௦ഀೖ
∑ ௦ഀೖ

಼
ೖసభ

 

Once we have fused the scores for all classes, 
classification is performed by selecting the class with the 
highest score, 𝑘෠ ൌ argmax

௞
𝑠ఈೖ

௡௢௥௠ ൌ argmax
௞

𝑠ఈೖ
. SSI is an 

extension of alpha integration of experts in [10] but shares its 
optimality under alpha risk. 

As with alpha integration, the parameters of SSI usually 
have to be estimated from training data. Derivations to 
optimize the parameters of SSI with respect to the LMSE and 
MPE criteria were presented in [9]. 

III. OTHER FUSION METHODS 

In this work, the performance of alpha integration has been 
compared with two classical fusion techniques: score 
averaging (mean) and majority voting. Furthermore, it has 
also been compared with other state-of-the-art methods for 
late fusion.  

A. Copulas 

Copulas are advanced methods for the estimation of 
multivariate probability density functions [11], since Sklar’s 
theorem states that any multivariate pdf can be expressed as 
the product of a copula function and the product of univariate 
marginal distributions for each variable. Copulas have been 
applied successfully in many applications, such as financial 
model dependence [15].  

We used copulas to build a generative classifier using the 
scores of the single classifiers. Briefly, copulas are used to 
estimate the multivariate pdf of the scores of all the classifiers 
for each true class. Then, for every input sample, the posterior 
probability of each class for that sample is computed using the 
Bayes theorem, and the sample is assigned to its most likely 
class (maximum a posteriori).  

In the following, we considered the t family of copulas and 
the marginals were estimated using non-parametric kernel 
density estimation. 

B. Independent component analysis mixture model 

An alternative to copulas is independent component 
analysis (ICA), which transforms the input data into a linear 
combination of independent components. Thus, since the 
components are independent, their multivariate pdf can also 
be expressed as a product of univariate marginal distributions. 
We considered ICA mixture models (ICAMM), which 
maintain the modeling capabilities of ICA but display 
increased flexibility [12]. ICAMM has been used in many 
applications [16-19], including biosignal processing [20]. The 
estimation of the ICAMM parameters was performed using 
the MIXCA method [12]. 

C. Dempster-Shafer combination 

Evidence theory or Dempster-Shafer (DS) theory is a 
general framework for dealing with uncertainty and belief 
[13]. Dempster-Shafer theory has been used in applications 
such as fault diagnosis [21]. 

In this work, we interpreted the scores produced by each 
classifier as probability masses, and then applied Dempster’s 
rule of combination: 

 ሺ𝑚ଵ⨁𝑚ଶሻሺ𝐴ሻ ൌ
ଵ

ଵିெ
∑ 𝑚ଵሺ𝐵ሻ 𝑚ଶሺ𝐶ሻ஻∩஼ୀ஺ஷ∅  

Where 𝑀 ൌ ∑ 𝑚ଵሺ𝐵ሻ 𝑚ଶሺ𝐶ሻ஻∩஼ୀ∅ , and 𝐴 , 𝐵  and 𝐶  are 
subsets of the whole universe, with ∅ being the empty set.  

D. Behavior knowledge space 

A behavior knowledge space (BKS) is a 𝐷 dimensional 
space where each dimension correponds to the decision of one 

classifier 𝐤መ ൌ ൣ𝑘෠ଵ … 𝑘෠஽൧
்

 [14]. BKS fusion is a decision 
fusion method that estimates the posterior probabilities by 
computing the frequency of each class for every possible set 
of classifier decisions 𝐤መ , based on a given training set. BKS is 
also understood as a  knowledge discovery method [22,23]. 
BKS has been used in many applications, e.g., detecting copy-
move forgery in images [24]. Unlike the previously-presented 
methods, BKS fuses hard decisions (classes) rather than soft 
decisions (scores).  

IV. EXPERIMENTS 

The considered fusion methods were tested on a set of 
multichannel electroencephalographic (EEG) data from six 
epileptic subjects that were performing several 
neuropsychological tests. Evaluating the learning and memory 
functions of the patients is a critical part of their 
neuropsychological condition assessment. Each set of EEG 
signals was captured on 18 bipolar EEG channels set 
according to the 10-20 system, sampled at 500 Hz. An 
example of the captured signals is shown in Fig. 1. For pre-
processing, a band pass filter (0.5 Hz and 50 Hz) and a notch 
filter (50 Hz) were applied on each EEG channel. These data 
have been used in pervious works [25].   

 
Fig. 1. Example of the captured data for one of the subjects during testing: 
a) 18 bipolar EEG channels; b) stages of the test. 

Each trial of the tests was divided in three stages (classes): 
stimulus display (SD), retention interval (RI), and subject 
response (SR). We considered four single classifiers: linear 
discriminant analysis (LDA); naïve Bayes (NB) with non-
parametric kernel density estimation of the marginals; random 
forests (RDF) using 50 trees; and support vector machines 
with a linear kernel (SVM). These classifiers were chosen for 
their successful application in many different applications. 
The single classifiers were considered in isolation and then 

a)

EEG
channels

b)

Display

Retention

Response



 

 

combined using each of the fusion techniques described in 
Sections II and III: two classical fusion techniques (mean, 
majority voting); Dempster-Shafer combination; SSI 
optimized with respect to the LMSE (SSI-LMSE) and MPE 
(SSI-MPE) criteria; copulas; ICAMM; and BKS. 

We considered the following features for classification: 
average amplitude; average power; centroid frequency; power 
in frequency bands delta (0-4 Hz), theta (5-7 Hz), alpha 
(8-12 Hz), sigma (13-15 Hz) and beta (16-30 Hz); and the 
activity, mobility and complexity of the signal [26]. These 
features are common in EEG signal processing [27,28] and 
other classification works [29]. The features were extracted in 
1-second epochs with no overlap between epochs. The same 
features were extracted for each of the 18 EEG channels, 
resulting in 198 features per epoch. Given the relatively high 
dimensionality of the data, feature selection was performed 
before classification. For this task, a feature ranking method 
was chosen [30]. In this work, the score of each feature was 
estimated as its average accuracy using a simple classifier that 
only considered that feature. This accuracy was estimated 
using 10-fold cross-validation. Then, the features were ranked 
in descending order of performance and the 10 best-ranked 
features were chosen.  

The number of epochs available for each subject was 
limited, and the prior probabilities were low for some classes. 
To test the performance of the system, we performed a set of 
Monte Carlo experiments. For each iteration of the 
experiments, we used 10-fold cross-validation. First, we used 
10-fold cross-validation to obtain scores of each classifier for 
every epoch. Then, we used a different 10-fold cross-
validation experiment to obtain the scores using the fusion 
methods that require parameter fitting (alpha integration, 
BKS, copulas, and ICAMM). This way, every given method 
was trained using 90% of the samples and then tested on the 
remaining 10%, keeping as many values as possible for 
training. Finally, the result was obtained as the average of 100 
iterations. 

For performance, the kappa coefficient was chosen 
because of the differences in prior probability for the stages of 
the test, which might impact performance. The following 
extension of kappa coefficient for multiclass classification 
was used [31]: 

 𝜅 ൌ
ே൉∑ ௖೔೔

಼
೔సభ ି∑ ௖೔శ൉௖శ೔

಼
೔సభ

ேమି∑ ௖೔శ൉௖శ೔
಼
೔సభ

 

Where 𝑁 is the total number of samples; 𝑐௜௜ is the number 
of correctly classified samples that belong to class 𝑖; 𝑐௜ା is the 
number of samples that belong to class 𝑖 ; and 𝑐ା௜  is the 
number of samples classified as class 𝑖 . Unlike other 
classification performance indicators, such as the accuracy 
and balanced accuracy, the kappa coefficient accounts for the 
different prior probabilities of each class and compensates for 
the possibility of correct classifications occuring by chance. 
Thus, the kappa coefficient is more complete and demanding 
than most other classification performance indicators. 

A. Test #1: Barcelona test (visual memory) 

The first test was the Barcelona test [32]. During each trial 
of the Barcelona test, the subject is shown a probe item for 3 
seconds and, after a 2-second retention interval, the subject 
must be able to pick the probe item from a set of four similar 

items. There are ten trials in the test, with scoring depending 
on the number of correct items. 

The average performance of each method during the 
experiment is shown in Fig. 2. The best-performing single 
classifier was RDF, followed by LDA. Out of the considered 
late fusion techniques, only DS and alpha integration were 
able to optimally combine the scores from the different 
classifiers: classical methods and copulas, ICAMM and BKS 
returned worse results than the best-performing single 
classifier. 

 
Fig. 2. Average results obtained for the Barcelona test. 

B. Test #2: Figural memory 

The second test was the figural memory subtest of the 
Wechsler Memory Scale (WMS-R) [33]. This is an immediate 
recognition test of abstract designs. The participant is shown 
three abstract figures for 10 seconds. After a 2-second 
retention interval, the subject is shown a set of nine similar 
figures from which they have to select the three figures they 
were shown before. There are three trials of increasing 
difficulty, and scoring is calculated from the number of 
correctly-selected figures. 

The average performance of each method during the 
experiment is shown in Fig. 3. NB and RDF were tied as the 
best performing single classifiers. With respect to the late 
fusion methods, the best performance was yielded by 
ICAMM, which obtained a much better result than the rest of 
the methods. Alpha integration and BKS were tied as the 
second best performing late fusion method. 

 
Fig. 3. Average results obtained for the figural memory subtest of WMS-R. 

C. Test #3: Visual reproduction 

The third test was the Visual Reproduction subtest of the 
Wechsler Adult Intelligence Scale (WAIS-III) [33]. During 
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the test, the subject is shown an abstract line figure during 10 
seconds. The figure is then removed and, after a 10-second 
retention interval, the subject must draw the figure from 
memory. There are three trials of increasing difficulty. 
Scoring depends on the similarities between the original figure 
and the reproduction.  

The average performance of each method during the 
experiment is shown in Fig. 4. In this case, RDF was the best 
performing single classifier, followed closely by NB. As for 
the figural memory test, the best performing late fusion 
method was ICAMM. In this case, the second best 
performance was yielded by copulas.  

 
Fig. 4. Average results for the visual reproduction subtest of WMS-R. 

D. Test #4: Sternberg memory task 

The fourth test was Sternberg’s memory task [34]. During 
each trial of the task, the subject is shown 2 to 5 probe items 
(numbers). Each symbol is shown on screen for 0.2 seconds, 
with a 1-second blank between symbols. Then, after a 1-
second retention interval, the subject is shown a test item and 
asked to determine whether it was one of the probe items. 
There are 30 trials in the test, with scoring determined by the 
number of correct responses. 

 The average performance of each method during the 
experiment is shown in Fig. 5. The best-performing single 
classifier was RDF, followed by NB. Out of the considered 
late fusion techniques, only alpha integration was able to 
optimally combine the scores from the different classifiers to 
improve over RDF. 

 
Fig. 5. Average results for Sternberg’s memory task. 

V. DISCUSSION 

The problem of automatic staging of EEG signals from 
subjects performing learning and memory tasks is a hard 

problem, as shown by the relatively low values of the kappa 
coefficient of the single classifiers (0.2-0.4, depending on the 
particular test). In all cases, at least one of the late fusion 
methods was able to optimally combine the classifiers to 
obtain improved performance. 

The behavior of the late fusion methods was different for 
each of the considered tests. For instance, BKS and ICAMM 
oscillated between the best result and a result lower than that 
of the best single classifier. This performance seemed to be 
related with the relative performance of the single classifiers. 
In cases where one of the single classifiers yielded a 
considerably better result than the rest (see Fig. 2 and Fig. 5), 
BKS and ICAMM did not yield a good performance. 
However, when the single classifiers were more comparable 
(see Fig. 3 and Fig. 4), those late fusion methods yielded 
optimal performances. Conversely, alpha integration proved 
to be the more robust late fusion method, always exceeding 
the performance of the best-performing classifier (RDF or the 
Gaussian mixture model, depending on the test).  

These effects might come from the modeling of the 
multivariate pdf of the data. In cases where performance was 
low, the resulting scores were more similar across different 
classes, and in cases where the number of samples is low (such 
as this work), the estimated pdfs were not useful. This would 
also explain the relatively low performance yielded by the 
copulas. In contrast, alpha integration does not model the pdf 
of the data, instead fitting a discriminative model for the 
scores. Thus, it might be more appropriate in cases where we 
do not have enough samples to properly model the 
multivariate pdf of the scores. 

There are many possible sources of noise in EEG signals, 
such as line noise and artifacts (eye blinks, muscle activity…) 
[27]. This noise can make it difficult to find common patterns 
for the same class, reducing classification performance. 
Furthermore, the contribution of these sources of noise may 
not be uniform throughout the tests, with longer and more 
difficult tests leading to more eye blinks, subject fidgeting that 
leads to muscle noise, and so on. Noise has not been 
considered in this work. However, one of the advantages of 
decision fusion is a reduction of the effect of the noise [3]. 
Since multiple classifiers are considered, each with its own 
decision boundary, it is likely that noise will not affect all of 
them equally and thus their combination will be less affected 
by said noise. However, more work would be needed in order 
to confirm this possibility. 

VI. CONCLUSIONS 

This work has tested the relative performance of several 
state-of-the-art late fusion methods on a difficult problem with 
real data: automatically staging electroencephalographic data 
from subjects performing visual learning and memory tests.  
The considered late fusion methods were: alpha integration 
extended to the multiclass case (SSI); copulas; Dempster-
Shafer combination (DS); independent component analysis 
mixture models (ICAMM); and behavior knowledge space 
(BKS).   

The considered fusion methods were employed to 
combine four classifiers on data from four different 
neuropsychological tests. These classifiers were trained to 
perform automatic staging of the tests into three classes: 
stimulus display, retention interval, and subject response. The 
considered late fusion methods were able to improve the 
performance for the automatic staging task. Out of the 
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considered late fusion methods, ICAMM and BKS yielded 
very good results in some tests but bad results in others. These 
behaviors owed to the reduced number of samples available 
for the problem, which could discourage the estimation of 
complex multivariate pdfs. Conversely, alpha integration 
proved to be the most stable, always outperforming the best-
performing single classifier. 
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