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Characterizations and perturbation analysis of a class of matrices
related to core-EP inverses

Mengmeng Zhou,* Jianlong Chen,Jf Néstor Thomet

Abstract
Let A,B € C"™ " with ind(A) = k and ind(B) = s and let Ly = B?BD®. A
new condition (Cs.): R(A¥) N N((B*)*) = {0} and R(B*) N N((4%)*) = {0}, is
defined. Some new characterizations related to core-EP inverses are obtained when
B satisfies condition (Cj ). Explicit expressions of B® and BBD are also given. In
addition, equivalent conditions, which guarantee that B satisfies condition (Cs ), are
investigated. We proved that B satisfies condition (Cj ) if and only if Lp has a fixed

matrix form. As an application, upper bounds for the errors || BO — AD® || /|| AD ||
and || BB® — AAD || are studied.
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1 Introduction

Let C™*™ denote the set of all m x n complex matrices. For A € C™*™, the notations
A* tk(A), R(A) and N (A) stand for the conjugate transpose, the rank, the range space and
the null space of matrix A, respectively. The symbols I and || - || denote the identity matrix
of an appropriate order and spectral norm, respectively. The unique matrix X € C"*™
satisfying the following equations:

AXA=A, XAX =X, (AX)* = AX, (XA)*=XA4,

is called the Moore-Penrose inverse of A € C™*" [25] and denoted by Af. It is well known
that the Moore-Penrose inverse of a matrix solves the optimization problem of computing
least-squares minimum-norm and it has important applications in real situations [1].

Let A € C"*™. The unique matrix X € C"*" is called the Drazin inverse of A and
denoted by AP [7] if there exist X € C™*™ and positive integer k such that the following
equations hold:

XA = A4F XAX =X, XA=AX.

If k is the smallest positive integer such that rk(A*) = rk(A**1), then k is called the index
of A and denoted by ind(A). When k = 1, the Drazin inverse of A is the group inverse of A

*Mengmeng Zhou (E-mail: mmz9209@163.com): School of Mathematics, Southeast University, Nanjing
210096, China

fJianlong Chen (Corresponding author E-mail: jlchen@seu.edu.cn): School of Mathematics, Southeast
University, Nanjing 210096, China

#Néstor Thome (Email: njthome@mat.upv.es): Instituto Universitario de Matematica Multidisciplinar,
Universitat Politecnica de Valéncia, Valencia 46022, Spain

1



and denoted by A#. It is well known that the Drazin inverse is useful to solve differential
linear equations and difference linear equations [3] because of its eigenstructure properties.

In 2010, the core inverse of a complex matrix was introduced by Baksalary et al. [2].
In 2017, Xu et al. [34] characterized the core inverse by three equations. Let A € C™*™.
The unique matrix X € C™*" is the core inverse of A and denoted by A® if and only if
X satisfies the following three equations:

(AX)* = AX, AX?=X, XA’=A.

In 2014, Manjunatha Prasad et al. [19] generalized the core inverse of a complex matrix
to the core-EP inverse of a complex matrix. In 2018, Gao et al. [9] extended the core-EP
inverse of a complex matrix to a ring. In rings, the core-EP inverse was characterized as
the unique solution of a system of three equations. Let A € C"*™ with ind(A) = k. The
unique matrix X € C™*" such that the following three equations hold:

XA — Ak AX?2 = X, (AX)* = AX,

is called the core-EP inverse of A and denoted by AD. The core-EP inverse of A is the
core inverse of A when k = 1. More details of the core-EP inverse can be found in [8, 20—
22, 30]. Recently, Wang et al. [32] solved the constrained matrix approximation problem
by using core inverses. Later, Mosi¢ et al. [24] generalized this result and obtained the
unique solution to the constrained matrix minimization problem in the Euclidean norm
by applying the core-EP inverse. Let A € C"*" with ind(A) = k and any b € C". Ji

et al. [11] proved that the constrained problem m%nk) | b — Az ||2 has a unique least
TER(A
squares solution ADb, where || - ||2 is the 2-norm in C". The previous discussion highlights

the crucial role that the core-EP inverse plays in solving the constrained system of linear
equations.

The core inverse arises as an inverse having some common properties satisfied by the
Moore-Penrose and the Drazin inverse. Roughly speaking, it can be seen as an intermediate
inverse between both of them. In consequence, for instance, it is useful when optimization
properties and eigenstructure of matrices must be combined. However, the core inverse
was defined only on the class of index one matrices. In order to exploit this kind of
properties for matrices of arbitrary index (not necessarily at most one index), it arises the
core-EP inverse for offering the corresponding advantages and further applications. Some
numerical methods for computing the core-EP inverse and to analyze perturbations can
be found in [17, 18]. Some extensions to Minkowski spaces appear in [31] and to tensors
in [27]. Weighted core-EP inverses were analyzed, for example, in [28] and determinantal
applications can be seen in [14].

From a numerical point of view, a study of perturbation bounds for the Drazin inverse
was published in [4, 6, 12, 13, 15, 26, 33]. Let A € C"*" with ind(A) = k, and let B € C"*"
with ind(B) = s. Castro-Gonzélez et al. [5] characterized the Drazin inverse of a class of
singular matrices, which satisfy conditions:

R(A*) N N(B?®) = {0} and R(B*) N N(A*) = {0}.

They also considered the perturbation of the Drazin inverse under these conditions. In
[16], the author studied the closed form and perturbation bounds for the core inverse under
2



certain assumptions. Later, Ma et al. [17] generalized the perturbation results for the core
inverse in [16] to the core-EP inverse. Gao et al. [10] investigated the continuity of the
core-EP inverse by two methods. Moreover, they considered perturbation bounds for the
core-EP inverse under prescribed conditions. Mosié¢ [23] investigated the perturbation for
the weighted core-EP inverse.

Let A € C"" with ind(A) = k. Motivated by above discussion, we will consider
matrices B € C™*"™ which satisfy the following condition for some positive integer s:

(Cew)  R(AM)NN((B°)*) = {0} and R(B*) N N((A")") = {0}.

Then, we investigate necessary and sufficient conditions which ensure that matrices B €
C™*™ satisfy the condition (Cs ). Furthermore, we consider the perturbation bounds for
the core-EP inverse. It is worth noting that this perturbation result for the core-EP inverse
is different from the perturbation results given in [10, 17].

The rest of this paper is organized as follows. In Section 2, some auxiliary lemmas are
presented. In Section 3, we present expressions of B™ under the condition (Cj ), Moreover,
we prove that B™ is similar to A™, that is, there exists a nonsingular matrix P € C™*"
such that B™ = PA™P~!. In Section 4, we present new equivalent characterizations for a
class of matrices which satisfy the condition (Cs ). Then we investigate representations of
a class of matrices satisfying condition (Cs ). In Section 5, we give the explicit expression
of B® and obtain the perturbation bounds for the core-EP inverse, where B € C**" with
ind(B) = s satisfies the condition (Cs ). In addition, a numerical example is presented to
show that the perturbation bounds is efficient.

2 Preliminaries

Let A € C™" with ind(4) = k. It is well known that the orthogonal projector
I — AAQ corresponding to the zero eigenvalue of A is called the eigenprojection at zero
of A, and we will denote by A™. That is, A™ = I — AAD satisfies (A™)? = A™ = (A™)*.
Moreover, by [8], R(A™) = N((A¥)*) and N(A™) = R(AF). Let B € C"*" with ind(B) = s,
we denote Lp = B2B®. We observe that R(Lg) = R(B*) and N(Lg) = N((B*)*).

Lemma 2.1. [30] (Core-EP decomposition) Let A € C"*™ with ind(A) = k. Then A can
be uniquely written as A = Ay + As, where

(i) ind(4;) < 1;
(ii) A5 =0;
(iii) ATAy = AyA; = 0.

Moreover, there exists a unitary matrix U € C™*" such that

T S\,. (0 0, .
wu (T o meo(® )

where T € C™*7 is nonsingular, N is nilpotent with index k and rk(A*) = r.
3



For A € C™*™ being as in Lemma 2.1, it is known [30] that

71 0 0 0
® _ U lr* T_[U [7*
AT = ( 0 0) » A= <0 I> '

Lemma 2.2. [9] Let A € C"*" with ind(A) = k. Then the following statements hold:
(i) AAD = A™(ADY™ | for arbitrary positive integer m;
(i) AD = AP Ak(AR)T;
(iii) (AD)D = (AD)® = 424D,
(iv) (AD)P)D = AD.

A
C D
and denote Z = I + A'BCA~1. Then

Lemma 2.3. [3] Let M = < ) be a complex square matriz with A € C™*" nonsingular

(i) tk(M) = rk(A) if and only if D = CA™'B;
(i) If rk(M) = rk(A), then ind(M) = 1 if and only if Z is nonsingular.

Lemma 2.4. Let By € C™™ be nonsingular and let P € C™*" and Q € C™ "™ be

QBlé QBéPP> c Clmtn)x(m+n)  Then W is core
1 1

tnwvertible if and only if I + PQ is nonsingular. In this case,

QU+QQBI+PQ)™ QU+QQBUI+PQ)TQ) 7

arbitrary matrices. Define W = (

Proof. We observe that rk(W) = rk(B;). By Lemma 2.3 (ii), we have W is core invertible
if and only if I + PQ is nonsingular. By setting X as the matrix on the right-hand side
of the equality (2.1), it is easy to check that (WX)* = WX, WX? = X and XW?2 =W.
That is, X = W®. O

Lemma 2.5. [29, 35] Let A, B,C € C"*". Then
(i) tk(AB) = rk(B) — dim(R(B) N N(A));
(ii) rk(ABC) > rk(AB) 4 rk(BC) — rk(B).
A slight modification in Lemma 2.1 in [5] yields the following result.
Lemma 2.6. [5] Let A,U € C™*™ with ind(A) = k and U is a unitary matriz. Then

I - A" +UA™U*A™ is nonsingular if and only if T — A" + U*ATUA" is nonsingular.
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3 An expression for the eigenprojection at zero of B

In this section, we give expressions of B™ when B € C™*" satisfies (Cs «).
Firstly, we give an auxiliary lemma.

Lemma 3.1. Let A € C"™ with ind(A) = k. If B € C™™ with ind(B) = s satisfies
condition (Cs ), then the following statements hold:

(i) I+
(i) T+
(i)

)

(iv

(L3 — A)AD s nonsingular;
(Lp — A)AD is nonsingular;
I+ (AD)*(Lp — A*) is nonsingular;
-

Proof. (i) : Suppose that (I + (L% — A)A®)x = 0, for + € C*. Then A"z = —L APz,
From Lp = B2B® = B*+1(B*)! we obtain R(L%) = R(B*(B*)'B*) C R(B®) and

rk(B*) = rk(B2BOPB®) < rk(Lp) = rk(L%) < rk(B®),

from which R(L%) = R(B®). Then, we have A"z € R(A™) N R(L%) = N((4%)*)n
R(B?®) = {0}. So, A"z = 0, we get that © € N(A™) = R(A*). From LAz = 0, we
get AQx € N(L%) N R(A¥) = N((B*)*) N R(A¥) = {0}. Thus, we obtain A®z = 0.
Since © € N(AD) N R(AF) = N((A*)*) N R(A*) = {0}, we know that = 0. Hence,
I+ (L% — A)AD is nonsingular.

(ii) and (iii) : Similar to the proof of (i).

(iv) : Let & € C" such that (I—(I+(A®)* (L3 —A")) T A™—A™(I+(Lp—A)AD) 1)z =
0. Since

(I — (I + (ADY (L — A") P ANz = A™(I + (Lg — A)AD) "1z,

after doing some algebraic computations, we have
(I+ (AD) (L3 — A") M (AD) Lz = A™(I + (L — A)AD) 1z,
Since, by definition of AD and (AP)*(I+ (L5 — A)AD) = (I+(AD)*(L5 — A*)) AD holds,
we obtain that
(1 + (AD) (L — A7) 1 (AD) = AD(T + (L — H)AD) L.
Then
(I + (AD)* (L — A7)~ H(AP)" Lz € R(AD) N R(AT) = R(A") N N((4")*) = {0}.
So,
(AP Lz =0=A"(I + (Lp — A)AD) 1z

Then Lz = (B?2B®)*z € N((AD)*) N R(B®) = N((A¥)*) n R(B*) = {0}. Thus, = €

N(L%) = N((B*)*). Since (I + (Lp — A)AD)"lz € N(A™) = R(A¥), we have (I + (Lp —

A)AD) 1z = AFy for some y € C". Since AAD is an orthogonal projector onto R(AF)

8], we have x = LpADAFy = B2BOA® Aky. Hence, x € N((B*)*) N R(B*) = {0}. This

completes the proof. O
)



Now, we present an expression for B™ by using Lemma 3.1.

Theorem 3.2. Let A € C™™ with ind(A) = k. If B € C™" with ind(B) = s satisfies
condition (Cs ), then B™ is similar to A™. Moreover,

B™ = —(I+(AD) (L — AN TA™X 1= —X1A"(I 4 (Lp — A)AD)~!
XA™X 1= X71A"X,

where X = I — (I + (AD)* (L — A*) LA™ — A™(I + (Lp — A)AD)~1. As a consequence,
BB is similar to AAD.

Proof. By Lemma 3.1, we know that the expressions I+ (A®)*(L*B —A*), I+ (Lp—A)AD
and X are nonsingular. Set H = (I + (A®)* (L% — A*))"'and W = (I + (L — A)AD)~L.
Then X =1 — HA™ — A™W. Since

AT(I + (AD)*(Lp — A*)) = A" = (I + (Lp — A)AD) A7,
we have ATH = A™ = W A™. Since

XHA™ = (I—HA™ — A"W)HA™ = HA™ — HATHA™ — A"W HA™
= —ATWHA™ = A"W(I — HA™ — A"W) = A"W X,

we have HATX ! = X 1A™W. Setting Q = —HA™X !, It is easy to see that XA™ =
—HA™ and A™X = —A™W. So, we get XATX ! = X 1A™X. We have Q = XA™ X!,
which is obviously idempotent. Next, we will prove that R(Q) = N((B*)*) and N(Q) =
R(B?®). Let x € N((B*)*), by Lemma 2.2, we have

ATz + (ADY Lhr = A%z + (AD) (BN (B ) 'w = A"z

From the definition of H, we have x = HA™z. So, x € R(Q). Suppose that x € R(Q).

There exists y € C" such that * = HA™y. We have (A™ + (AD)*L%)z = A™y. We easily

see A"z = (ATH)A™y = A™y. Then (AD)* Lz = 0. We have Lz € N((ADQ)*)NR(B*) =

N((A%)*) N R(B?®) = {0}. Thus, = € N(L%) = N((B*)*). Hence, R(Q) = N((B*)*).
Since X is nonsingular, N(Q) = N(A™W). Let z € N(Q). Then

AWe =W = LgADYWa = (I — LgADW)z = 0.

We obtain that + = LgA®W=z. So, x € R(Lg) = R(B*). That is, N(Q) C R(B®). Since
ind(B) = s and C" = R(Q) @ N(Q) = R(B®) ® N((B*)*), we have N(Q) = R(B?). Thus,
Q = B™ and BT is similar to A™. As a consequence, BB® is similar to AA®. O

4 Characterizations of matrices satisfying condition (C, )

In this section, we characterize matrices B € C"*" satisfying the condition (Cs )
with ind(B) = s. We prove that the matrix B € C™*" satisfies (Cs ) if and only if
I — A™ — B™ is nonsingular. Then we present the representation of matrix L g with respect
to the core-EP decomposition of matrix A € C™**",
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Theorem 4.1. Let A € C"*™ with ind(A) = k. Then the following statements on B €
C™ "™ with ind(B) = s are equivalent:

7

(i) B satisfies condition (Cs .

)

(ii) rk(B®) = rk(A*)

(iii

)
rk((A*)*Lp) = tk(LpA¥);
rk(B*) = rk(AF) = rk((A*)* L AF);

)
)
)
(iv) rk(B?®) = 1k(A*) and I — (I — B™)A™ is nonsingular;
(v) I — (A™ — B™)? is nonsingular;

)

(vi) I — A™ — B™ is nonsingular.
Proof. (i) = (ii) : Since R(B*)NN((A*)*) = {0} and R(A*)NN((B*)*) = {0}, by Lemma
2.5 (i), we have
rk(BBPAAD) = 1k(AAD) — dim(R(AADP) N N(BBD))
= rk(A4%) — dim(R(4%) N N((B%)"))
= 1k(4AF)

and

rk(AAPBB®) = 1k(BB®P) — dim(R(BB®) N N(AAD))
— 1k(B*) — dim(R(B*) N N((4%)"))
= rk(B%).

From rk(AAPBB®) = 1k((AAPBB®)*) = rk(BBPAAD), we obtain that rk(B°) =
rk(A¥). Since Lp = B2B® and ind(B) = s, we obtain rk(Lpg) = rk(B*). By Lemma 2.5
(i), we have

rk((A¥)*Lp) = rk(B®) — dim(R(B*) N N((A%)*) = rk(B*)

and
rk(LgA*) = rk(A¥) — dim(R(A¥) N N((B*)*) = rk(4%).

(ii) = (iii) : We observe that rk((A*)*LpA*) < rk(A¥) = rk(B*). By Lemma 2.5 (ii),
rk((AF)*Lp A*F) > 1k((A¥)*Lp) + tk(LpA*) — k(L) = rk(B*).

(iii) = (iv) : From (iii) and Lemma 2.5, we have R(A¥) N N((B*)*) = {0} and
R(B*) NN ((AF)*) = {0}. Let 2 € C" such that (I — A"+ B*A™)z = 0. Then (I — A™)z =
—B™A™x. We obtain that

(I — A"z € R(A") N R(B™) = R(A*) N N((B*)*) = {0}.

So, x = A"z and B"A™z = 0. Thus, A"z € R(A™) N N(B™) = N((A*)*) N R(B*) = {0}.
Hence, x = 0. That is, I — A™ + B™A™ is nonsingular.
(iv) = (v) : Since I — (A™ — B™)? = (I — A™ + B™A™)(I — B™ + A™B™), it is sufficient

to verify that I — B™ + A™B™ is nonsingular. Taking A = U (1;)’4 f]A> U* and B =
A
7



v <7(;B §B> V* where U and V are unitary matrices, T4 and Tp are nonsingular. Since
B

rk(B?®) = rk(A¥), T4 and Tp are of the same size. Since U*A™U = 8 ? =V*B™V, we
get BT = VU*ATUV*. Since [ — A"+ B"TA™ =1 - AT+ VU*ATUV*A™ is nonsingular,
by Lemma 2.6, I — A" + UV*A™VU*A™ = UV*(I — B™ + A"B™)VU* is nonsingular. So,
I — B™ + A™B™ is nonsingular. Thus, I — (A™ — B™)? is nonsingular.

(v) = (vi) : Similar to [5, Theorem 2.1 (e) = (f)].

(vi) = (i) : Suppose that I — A™ — B™ is nonsingular. Since I — A™ and B™ are
idempotent matrices, by [13, Theorem 1.2}, we have R(I — A™) N R(B™) = {0} and N(I —
A™)NN(B™) = {0}. Since R(I—A™) = R(A¥), R(B™) = N((B*)*), N(I—A™) = N((A*)*)
and N(B™) = R(B?®), we obtain that R(A*) N N((B*)*) = {0} and R(B*) N N((A*)*) =
{0}. O

Theorem 4.2. Let A € C"*" with ind(A) = k. Then the following conditions on B €
C™™ with ind(B) = s are equivalent:

(i) B satisfies condition (Csx);
(ii) I+ (Lp — A)AD is nonsingular, A™(I + (L — A)AD)"'Lg = 0;

(ii") I+ (Lp — A)AD is nonsingular, A"XLg = 0, where X = I — (I + (AD)*(L% —
A*)TLAT — A™(I + (Lp — A)AD) L,

(iii) If A is written as in Lemma 2.1, then Lp has the following matriz form:

By, BP N
Lg=U U-,
N (Q& QBlp)
for any matrices By € C"™*", P and Q such that By and I + PQ are nonsingular;

(iv) rk(B?®) = 1k(A*), I + (Lg — A)AQ is nonsingular.

Proof. (i) = (ii) : By Lemma 3.1, we know that I + (L — A)A® is nonsingular. By
Lemma 2.2 and Theorem 3.2, we have

O:B”BSJrl(B@)S :BWBZBG‘) =B"Lp= _XflAﬂ’(I_i_(LB _A)A®)71LB7

where X = I — (I + (AD)* (L — A*)) LA™ — A™(I + (Lp — A)AD)~ L.
(ii) < (ii’) : From the proof of Theorem 3.2, we know that A™X = —A"W, where
W=+ (Lp— A)AD)~!. By expression of B, it is clear.

(ii) = (iii) : Suppose that Lgp = U <BH Bw) U*. Then we have
Ba1 By

BTt 0
- @ . 11 *
I+(LB A)A —1/ <B21T1 I) 1/ .

Since I + (Lg — A)A® is nonsingular, we obtain that By is nonsingular. From

0 0
0=A"(I + (Lg— A)AD)~'L :U< _ )U*,
(I+(Lp—A)AY) Lp 0 Bss— BB Bis
8



we get Bog = BngﬂlBlg. By Lemma 2.3 (i), we know that rk(Lp) = rk(Bj1). Since
LQB = B*BD we have

rk(Lg) = rk(B?B®) = 1k(B*BOPB®) < rk(B3B®) = rk(L%) < rk(Lp).

So, tk(Lp) = rk(L%). That is, ind(Lg) = 1. By Lemma 2.3 (i), we have I+By;' B1aB21 Bj}!
is nonsingular. Taking Bi; := By, P := Bl_lBlz and @ := leBl_l. Then By = QB P.
From the nonsingularity of I + BﬁlBlnglBﬁl, we obtain that I + P(Q) is nonsingular.
(iii) = (i) : By Lemma 2.3, we have rk(Lg) = rk(B;) = rk(A4*) and ind(Lp) = 1.
Since
rk(B?%) = rk(BP B?BPB*) < rk(Lp) < rk(B*),

we have 1k(B*) = rk(Lp) = rk(A4*). By a direct computation, we have

tk((A*)*LpAF) = k(U <(T_£M)* ?) ((Tk)zBlTk 8) (é T_;M) U*)

= tk((T")*B1T*) = rk(4F),

k—1
where M = " T'SN*=1=1 So, rk(B*) = rk(A*) = rk((A*)* L A¥). By Theorem 4.1 (iii),
i=0
we know that B satisfies condition (Cs ).
(iii) = (iv) : According to the proof of (iii) = (i), we have rk(B*) = rk(A*). The rest
is clear by a direct computation.
: : Bi1 Bz
(iv) = (iil) : Taking Lp = U <B21 Boy
Since I + (Lp — A)A® is nonsingular, by the proof of (ii) = (iii), we know that By is
nonsingular. Since rk(Lg) = rk(B*) = rk(A¥), we get that rk(Lp) = rk(Bj1). By Lemma
2.3 (i), we know that Bay = Bngl_llBlg. From ind(Lp) = 1, by Lemma 2.3 (ii), we have
I+ Bl_llBlnglBl_l1 is nonsingular. Denoting B; := Bjj. Then there exist matrices P and
Q such that Bio = B1 P, By = QB1 and Bos = QB1P. Thus I + P(Q is nonsingular. [

> U*, where B1; and T have the same size.

Analogously, we have the following result.

Corollary 4.3. Let A € C™*" with ind(A) = k. Then the following conditions on B €
C™™ with ind(B) = s are equivalent:

(i) B satisfies condition (Csx);
(ii) 1+ (AD)*(L3 — A*) is nonsingular, Lp(I + (AD)*(L} — A*))"1A™ = 0;

(ii") I+ (AD)* (L% — A*) is nonsingular, Lp X A™ = 0, where X = I — (I + (AD)*(L% —
A)TLAT — A™(I 4 (Lp — A)AD)~;

(iii) If A is written as in Lemma 2.1, then Ly has the following matriz form:

By B1P>U*
QB QBP ’

for any matrices By, P and Q such that By and I + PQ are nonsingular;

Lo=v

iv) tk(B®) = rk(AF), I + (AD)* (L%, — A*) is nonsingular.
(iv) B
9



5 Perturbation bounds

In this section, we give the perturbation bounds for the core-EP inverse under the
condition (Cj ). First, we obtain an explicit expression for B®.

Theorem 5.1. Let A € C" " with ind(A) = k and let B € C"" with ind(B) = s
satisfying the condition (Cs ). Denote E = Lp — A and F = Lg — A*, then

B = (A4 T -wW)YU1AD 4 (I+Y)
x (AD — APEADS~! — o~ 10 — NADPS (T +V*Y) v ), (5.1)

where ® = I + BEAD, & = I + (AD)*F, W = (&) 1(AD)*FA™, Y = ATEAD®! and
U=14+WY.

Proof. Let A € C" "™ be as in Lemma 2.1. By Theorem 4.2, we have

LB_U<B1 BlP)U*,

QB1 QBP

where By, P, and @) are any matrices such that By and I + PQ are nonsingular. It is easy
to check that ind(Lp) = 1. From [2, Lemma 2.2] and [8, Theorem 2.9], we can deduce
that B? = (B2B®)® = (B2B®)® = L2 Now, by Lemma 2.4, we get
B® = 9
A AR AN R LR AT
QU +Q*Q)BI(I+PQ))™" QUU+QQBi(I+PQ) Q") "~

By denoting E=Lp — A, F =L — A*, ® =T+ FA® and d=1I+ (AD)*F we have

o (Bi-T BP-S\,. . (BT B, P .
E_U<Q31 QBlP—N>U’ F_U<QB1—S* QBlP—N*>U’

B BiT~! 0\, = (T~YH*B1 (T71)*B\P\ , .
(I)_U<QBlT1 I)U and‘I’—U( 0 7 U*.

Since ® and ® are nonsingular, we get that

1 (TBY 0\, ., ~_ . (B'T* —-P\ .,
P _U<—Q I Ufand & =U 0 7 U~.

Then

B@¢_U< (I +PQ)~1T~! ((I+Q*Q)B1(I+PQ))‘1Q*> .
QU PQTITT QU QBT+ PQ) Q!

Denote W = %_1(A@)*FA” and Y = ATEADP~!. By a direct computation, we obtain

that
0 P N _ 0 O «
W_U<O 0>U andY_U<Q 0>U.
10



—1
Taking ¥ = [+ WY. Then\I/:U(I+0PQ 0) U* and WL U<(I+];Q) ?) U*.

By denoting
H = AD 4 (I —W)Yo 149,

Hy = A®D — APEADp~! — v 1(w - 1) 4D,
Hs = (I4+Y)Hy(I+Y*Y) Y™,

we compute that

_ o T+PQTITT 0\ o (U+PQTIBT 0\,
Hl_U(Q(I+PQ)1T1 0>U’ HQ_U( o o)U

and

_ I 0 (I+PQ )'B ! I+Q* 0\ [0 Q*\, ..
i = v (g 1) ( ) (TS D6 T

— (0 (T+Q" Q)Bl(I+PQ )@ )
0 QI +QQ)Bi(I+PQ)'Q"

We observe that BO® = H; + Hs. Then
B® = (H, + H3)®d™!
By substituting H; and Hs, we obtain the equality (5.1). O

By using the same notations as in the proof of the Theorem 5.1, we have the following
results.

Theorem 5.2. Let A € C" " with ind(A) = k and let B € C""™ with ind(B) = s
satisfying the condition (Cs). Denote E = Lg — A and F = L — A*. If max{|| EAD ||
(AP F ||} <1 and || ATEAD || < 1— || EA® |, then

| BO — AD | < | EAQD | | =1 ]|]| ATEAD || 1 | (AD)*FA™ ||
| A® || T 1- || EA9 | (1- || EAD )2 1— || (AD)*F ||
. | ATEAD |
(1- | EAD® |[)(1— || EAD || — || ATEAD |))
< (1 | EAD || | o= ATEAD ||| (AD)*F AT II)' (5.2)
1- || EAD ||~ (1—|| EAD [|)2(1— || (AD)*F |))
If max{|| EA® ||| (AD)*F ||} <o ”Aﬁ” then
_ 1— || (AD)Y*F ||)(1— || EA®
|ot < (1= || (A" F [[)(1— || ) (5.3)

(1= I (AQ)*F [N(1— || EAD [)— || (AD)*F |[|| ATEAD |

where ¥ = I + (I 4+ (AD)*F) Y (AD)*FATEAD(I + EAD)~!
11



Proof. Since BO® — AD = B® - A® 4 (BO — AD 1 AD)EAD, we have
B® — A® 4+ (BO® — A® 4 AD)EAD = H| — AD + Hj,

where ® = I + EAD, Y = A"EAD®! H; = AD + (I - W)YU'AD and H; =
(I +Y)Ho(I +Y*Y)~1Y*. Then

| BY — A ||<|| EAD ||| B® — AD || + | EAD ||| A® || + || Hy — A || + || Hs || .

Since max{|| EAQ ||, || (AD)*F ||} <1 and || ATEAD ||< 1— || EA® ||, we compute that

1 ~ 1
o< ——————and |7 < ,
Fe™" < = TEAD | ™" ll< = T(ADYF |
AD Jij &= ||| ATEAQ | | (AD)*FA™ ||
Hl—A® < 1 ,
! ” - [ EAD | S VDL
| H | H 1Y 1A+ 1Y) _ Y Il He |
- -] Y =Y
| AD ||| ATEAD ||
T 1| BAD || - | ATEAD |
® -1 T A® OV 17 AT
< (14 [EAV ] o7 [l ATEA® ]| (A®)*FA II)_

1= | EAD ||~ (1= || EAD [)>(1— || (AD)*F |))

By substitution and simplification, we obtain inequality (5.2).
If EA® A®) F —L_ th
max{| BA® || (AP)F |} < -k, then

®)* T ® H AT || ( ; )2
Lo e AP A BAD ) A
- (1— ® — ®)* 1 2 ’
(= BAD (=T (ASFF ) ~ (1= 1)
Thus,
1o < (1— || (AD)*F |)(1— || EAD |))

(1= [ (A F [N(A— || EAD [)— || (AD)*F |[|| ATEAD |
O

Theorem 5.3. Let A € C"" with ind(A) = k and let B € C"™™ with ind(B) = s
satisfying the condition (Cs). Denote E = L — A. If || EAD ||< 1 and || ATEA® || <
1— || EAD ||, then

| ATEAD | | ATEAD |
1= [EAD [ " (1= [ BAD [)(1— | EAD || — || A"EA |

|| BT — A" ||I< . (5.4)
Proof. Suppose that A is written as in Lemma 2.1. By Theorem 3.2, we have B™ +
B™TEA® = —X71A™ where X = — A™(I + EAD)~! — (I + EA®)~1)*A™. By the proof
of Theorem 5.1, we obtain
I Q" o« -1 ( (I+Q Q)" (I+Q Q) 'Q > .

U*and X " =U AN N1 Uu*.
Q —I> QU+QQ)™ QU+QQ)™Q I

12
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- 0 —(I+QQ)'Q -
o 1 pm — AT * _ 1 pm — AT _
So, —XTAT=A +U<0 _QU + 0*0) 10" U*. Then — X tA"=A"— (I+Y)(I +
Y*Y)71Y*, where Y = ATEA®®~!. Thus, we have
—AT = XA AT — (BT — A" + AT)EA®
= —(B"— A"+ AMEA®D — (I + A“"EAD®Y)
x (I+(A"EADd 1Y A"EADS 1)L (ATEADS )",

By substitution and simplification, we have inequality (5.4). O

Remark 5.4. The upper bound of || B™ — A™ || is the upper bound of || BB® — AAD |.
In fuct, | B — A7 |=| —(BB® — AA®) |=|| BB® — AAD | .

Finally, the following examples illustrate the above theorems.

1 1 1 2
12 L L -5 300
Example 5.5. Let A = 2100 with ind(A) = 2 Then AD = 3 3 00
pie 99 “loo o 1 - | 0o 00 o0
00 0 0 0 000

Set B € C** with ind(B) =

11
(i) and condition (iii) in Theorem 4.2, we set By = < ; ? >, P = ( 16) 16) > and

, where 0 < s < 4. By the equivalence of condition

»n

1
Q= < ? 0 > By using MATLAB, we obtain
10

0
] 2 1 1 109 200 _ 400 _ 200
10 10 1326 309 T 648 648
2 1 ¢ ®_1®_ —3 o o
Lp=|1 2 % 1|, BY=Lg= _400 40° _i _ﬁ )
SO S U D A ' M i
10 5 100 100 76489 309 6489 6489
1 4 2
0 00O 57 0 —33 —31
e 0000} 00 0 0|
0 01 0 —2;1 0 @ —@
0 0 0 1 —57 0 165 105
0 0 0 0 0 0 ﬁ =
0 0 I 1 i 0 0 11
E=Lp-A=| 1 5 1} B | F=Lp—A"=| 1 » ro1
I B U o5 & %
0 5 100 100 0 5 —10 100
In this case, we have | EAQ ||= % <1, || (AD)yF |= 113992 <1land| EAD | + |

ATEA® = 35 1292 < 1. Denoting by v, v1 and ve the value of the right side of inequalities
(5.2), (5.3) and (5.4), respectively. By Theorem 5.2 and Theorem 5.3, we obtain v = 1323

. . ®_4®
and vy = 1352, By a direct computation, we have HB”A&H I = B < v and | B"—A™ ||=
769 1 985
3mag < V2. Since T = 193 ve know that max{|| EAD |, || (AD®)*F ||} < W
By using the same notation as in the proof of Theorem 5.1, we obtain | V! ||= 1. By a

direct computation, we get vy = 1522 So, || U~ || < vy.
13



L 0 300
0 & 0 0 %
Example 5.6. Let A = | 0 0 0 1 0| with ind(A) = 3. It is easy to obtain
0 0 001
0 0 00O
10 00 0 0 % 0 w5 0 %
0 10 0 0 0 0 &+ 0 ? 0
that AD=1 0 0 0 0 0 [. Setting Lp = 33%0 35 T05 500 @ with
0 0000 =5 0 =5 0 5550
0 0000 0 w5 0 g O

ind(B) = s, where 0 < s < 5. Since tk(B*) = rk(Lp) = 2 = tk(A¥) = rk((A¥)*Lg A¥), by
Theorem 4.1, B satisfies consition (Cs ). By using MATLAB, it is easy to obtain

5165 37 1744 1033 24
519 68 5@ B 5190 2%
A
A™ = diag(0,0,1,1,1), B® = L2L 22l L
(0,0,1,1,1), & B 11426 p51 33587 B 20305 )
B 5100 1% 18024 B 29894 4335
68471 1448 20953 142648 82554
59 18 _ 53
39135 16247 2%7 2654 162458
B _1% _1% 13% _9021651 67534
- ﬂ 1303 4551 ﬁ(%sg ?6509 )
2654 91012261 22559 256)4 3604
162470 67834 3609 3605
0 0 4 L
~ 100 . 409
0 0 0 500 5
E=Lp— A= 1 1 1 5999
= B = 300 300 3000 6000 12888 )
L _1 0 9
500 5000 1 20000
0 600 0 12000 0
1 1
0 0 100 (1) 00
0 0 0 500 0
Felp_a—| -1 1 1 A
= LB = 300 300 3000 6000 12000
500 0 _ﬁ 0 20000
119 11999
0 600 0 ~ 12000 0
In this case, we have | EAD ||= % <1, || (AD)yF |= 2201417 <1land| EAD | + |

ATEA® II= 5567869 < 1. Denoting by v, v1 and ve the value of the right side of inequalities
(5.2), (5.3) and (5.4), respectively. By Theorem 5.2 and Theorem 5.3, we obtain v = 5%

3801
and vy = 2% By a direct computation we have ”Bﬁz A”®H o <wvand || BT— A" ||=
113 - 1 _

5955 < V2. Since sy i 5, we know that max{|| EAD || (AD)*F ||} < W
By using the same notation as in the proof of Theorem 5.1, we obtain | ¥~! ||= 2(1)8. By
a direct computation, we get v; = §1°. So, || ¥~ ||< vy.

These two examples highlight the powerful of our theorems because they show that
we can compute the core-EP inverse of B without needing the explicit computation of
matrix B.
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