TABLE OF CONTENTS

ABSTRACT..XI
RESUMEN...XIII
RESUM..XV
INDEX OF TABLES...XIX
INDEX OF FIGURES..XXI
ABBREVIATIONS..XXV

1. INTRODUCTION..1
1.1. THE HORMONE ABSCISIC ACID: PHYSIOLOGICAL ROLES...3
 1.1.1. ROLE OF ABA IN GROWTH AND DEVELOPMENT...4
 1.1.2. DUAL ROLE OF ABA UNDER STRESS CONDITIONS..7
 1.1.2.1. ABIOTIC STRESS...7
 1.1.2.2. BIOTIC STRESSES..11
1.2. REGULATION OF ABA LEVELS..12
1.3. PHYSIOLOGICAL EFFECTS OF THE ABA DEFICIENCY..17
1.4. ABA SIGNALLING CASCADE...20
 1.4.1. HORMONE PERCEPTION: ABA RECEPTORS...21
 1.4.1.1. FCA: Flowering time control protein..21
 1.4.1.2. CHLH: Magnesium-protoporphyrin IX chelatase..22
 1.4.1.3. GCPR: G-protein-coupled receptors...23
 1.4.1.4. PYR/PYL/RCAR proteins: cytosolic receptors..24
 1.4.2. CLADE-A PROTEIN PHOSPHATASES 2C: NEGATIVE REGULATORS.........................27
 1.4.3. PROTEIN KINASES INVOLVED IN THE ABA SIGNALLING CASCADE..........................30
 1.4.4. ABA SIGNALLING INTEGRATION...32
2. OBJECTIVES...37

3. RESULTS..41

3.1. CHAPTER 1...43
Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

3.2. CHAPTER 2..85
The Citrus ABA-signalosome: Identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration

3.3. CHAPTER 3..137
Differential expression of the Citrus sinensis ABA perception system genes in postharvest fruit dehydration

4. GENERAL DISCUSSION...169

5. CONCLUSIONS..187

6. REFERENCES..193
INDEX OF TABLES

Introduction

Table 1. Transcriptional profiling of PYR/PYL/RCAR ABA receptors upon ABA treatment and stress conditions that increase endogenous ABA levels in seedlings and leaves of *Arabidopsis*...26

Table 2. Transcriptional profiling of PP2CAs upon ABA treatment and stress conditions that increase endogenous ABA levels in seedlings and leaves of *Arabidopsis*...29

Results Chapter 1

Table 1. Selected genes and primers used for qRT-PCR analysis in the flavedo of ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 12 °C and 70-75% RH for up to six weeks..55

Table 2. Functional categorization of differentially expressed genes in the flavedo of ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 12 °C and 70-75% RH for 1 and 3 weeks respect to FH fruits...62

Table 3. Genes belonging to the most specific and relevant biological processes differentially represented in the flavedo of ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 12 °C and 70-75% RH...63

Supplementary material Chapter 1

Table S1. Representative set of ABA-regulated genes whose expression did not significantly (SAM, FDR < 0.01) change in ‘Pinalate’ fruits after ABA treatment respect to FH ‘Pinalate’ fruits...83

Results Chapter 2

Table 1. Comparison of *PYR/PYL/RCAR*, clade-A *PP2Cs* and subclass III *SnRK2s* genes between *Arabidopsis thaliana* and *Citrus sinensis*...97
Supplementary material Chapter 2

Table S1. Colour evolution of ‘Navelate’ and ‘Pinalate’ fruits during ripening.....127

Table S2. Primers designed for gene expression analysis by quantitative RT-PCR...127

Table S3. Similarity matrix between *Citrus* and *Arabidopsis* PYR/PYL/RCAR proteins based on deduced amino acid and sequences alignment..............................128

Table S4. Similarity matrix between *Citrus* and *Arabidopsis* clade-A PP2C proteins based on deduced amino acid and sequences alignment..............................129

Table S5. Similarity matrix between *Citrus* and *Arabidopsis* subclass III SnRK2 proteins based on deduced amino acid and sequences alignment..............................130

Table S6. Absolute gene expression analysis by qRT-PCR of the ABA-signalling components in ‘Navelate’ and ‘Pinalate’ varieties during fruit ripening and leaf dehydration...130

Results Chapter 3

Table 1. Primers designed for gene expression analysis of the ABA-signalling core components by quantitative RT-PCR...145

Table 2. Absolute gene expression analysis by qRT-PCR of the ABA-signalsome components, ABA content and percentage of weight loss in ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruit during moderate water stress conditions...150
INDEX OF FIGURES

Introduction
Figure 1. Roles of abscisic acid in plant development and survival..4

Figure 2. Non-chilling peel pitting symptoms in Citrus cultivars..11

Figure 3. Differential phenotype and susceptibility to non-chilling peel pitting of ‘Navelate’ and ‘Pinalate’ fruit...20

Figure 4. Model for the ABA-dependent PYR/PYL/RCAR-mediated inhibition of PP2CA activity and the consequent release of the SnRK2 for allowing the downstream ABA signalling...34

Results Chapter 1
Figure 1. Non-chilling peel pitting index (A), percentage of fruit weight loss per surface area (B) and ABA content in the flavedo (C) of ‘Navelate’ (squares) and ‘Pinalate’ (circles) fruits treated (white) or not (black) with ABA and stored for up to 6 weeks at 12 ºC and 70-75% RH..57

Figure 2. Venn diagrams showing differentially expressed genes (SAM analysis, FDR < 0.01) in the flavedo of ‘Navelate’, ‘Pinalate’ and ABA-treated ‘Pinalate’ fruits stored at 12 ºC and 70-75% RH for 1 (A) and 3 (B) weeks.................59

Figure 3. (A) Principal Component (PCA) and (B) Hierarchical Cluster Analysis (HCA) of flavedo large-scale transcriptional profiles of ‘Navelate’ (N), ‘Pinalate’ (P) and ABA-treated ‘Pinalate’ (P+ABA) fruits stored for one (1W) and three weeks (3W) at 12 ºC and 70-75% RH respect to FH fruits. Colours in PCA for each condition are consistent with those in HCA...60

Figure 4. Real time qRT-PCR expression analysis for candidate genes selected from microarrays analysis. Relative transcript abundance for selected genes belonging to ‘Water deprivation’ (A), ‘Di-, tri-valent inorganic cation transport’ (B), ‘Carbohydrate biosynthesis’ (C) and ‘Protein ubiquitination’ (D) biological processes differentially regulated in ‘Navelate’ (squares) and ‘Pinalate’ (circles) fruits treated (white) or not (black) with ABA and stored for up to 6 weeks at 12 ºC and 70-75% RH..65
Supplementary material Chapter 1

Figure S1. Non-chilling peel pitting index (A) and percentage of fruit weight loss per surface area (B) of ‘Navelate’ (squares) fruits treated (white) or not (black) with ABA and stored for up to 6 weeks at 12 °C and 70-75% RH......................84

Figure S2. Percentage of decay in ‘Navelate’ (white), ‘Pinalate’ (grey) and ABA-treated ‘Pinalate’ (black) fruits stored at 12 °C and 70-75% RH........................84

Results Chapter 2

Figure 1. Phylogenetic trees containing C. sinensis and A. thaliana PYR/PYL/RCAR ABA receptors (A), PP2CAs (B) and SnRK2s protein kinases (C).........................99

Figure 2. ABA content in the flavedo of ‘Navelate’ (black) and ‘Pinalate’ (white) fruit during development and ripening (Immature Green, IG; Mature Green I, MI; Mature Green II, MII; Breaker, Bk; Coloured, C; Full Coloured, FC)........102

Figure 3. Relative gene expression analysis by qRT-PCR of Citrus PYR/PYL/RCAR ABA receptors (A), clade-A PP2Cs (B) and subclass III SnRK2s (C) in ‘Navelate’ (black) and ‘Pinalate’ (white) fruits during fruit development and ripening. Expression values were referred to MI ‘Navelate’ fruits.........................104

Figure 4. Effect of water stress on weight loss and ABA content in ‘Navelate’ and ‘Pinalate’ detached leaves. Changes in control samples are represented as black bars and in water-stressed leaves as white bars.........................107

Figure 5. Relative gene expression analysis of Citrus PYR/PYL/RCAR ABA receptors in control (black) and water-stressed (white) leaves..108

Figure 6. Relative gene expression analysis by qRT-PCR of Citrus clade-A PP2Cs in control (black) and water-stressed (white) ‘Navelate’ and ‘Pinalate’ leaves...109

Figure 7. Relative gene expression analysis by qRT-PCR of Citrus subclass III SnRK2s in control (black) and water-stressed (white) leaves..111

Supplementary material Chapter 2

Figure S1. Multiple sequence alignment of the Arabidopsis thaliana and Citrus sinensis ABA signalling core components. (A) START-like domain of the ABA-receptors. (B) PP2C-like domain of the clade-A PP2Cs proteins. (C) Subclass III SnRK2s full protein sequences. Predicted secondary structures of AtPYR1 (A),
AtABI1 (B) and AtSnRK2.6 (C) are reported below the corresponding alignment...

Figure S2. Predicted tertiary structure model of the ABA-signalosome components of Citrus by using the Arabidopsis available crystallographic structure of homologous proteins as templates in I-Tasser program (left). Overlay of the predicted structure with the corresponding Arabidopsis homologous (right). (A-D) PYR/PYL/RCAR ABA-receptors. (E) PP2CA. (F) SnRK2...

Figure S3. Gene expression analysis by RT-qPCR of Citrus HVA22E (upper panel) and ALDH (lower panel) in ‘Navelate’ (black) and ‘Pinalate’ (white) fruits during development and ripening stages. Expression values are relative to transcript levels obtained in MI ‘Navelate’ fruits...

Results Chapter 3

Figure 1. Relative gene expression analysis of Citrus PYR/PYL/RCAR ABA receptors in ‘Navelate’ (squares) and ‘Pinalate’ (circle) fruit, treated (white) or not (black) with ABA and stored under conditions causing moderate water-stress (70-75% RH and 12 ºC). Expression values are relative to transcript levels obtained in FH ‘Navelate’ fruit...

Figure 2. Relative gene expression analysis of Citrus PP2CA negative regulators in ‘Navelate’ (squares) and ‘Pinalate’ (circle) fruit, treated (white) or not (black) with ABA and stored under conditions causing moderate water-stress (70-75% RH and 12 ºC). Expression values are relative to transcript levels obtained in FH ‘Navelate’ fruit...

Figure 3. Relative gene expression analysis of Citrus SnRK2 downstream protein kinases in ‘Navelate’ (squares) and ‘Pinalate’ (circle) fruit, treated (white) or not (black) with ABA and stored under conditions causing moderate water-stress (70-75% RH and 12 ºC). Expression values are relative to transcript levels obtained in FH ‘Navelate’ fruit...

Figure 4. Non-chilling peel pitting incidence in ‘Navelate’ (squares) and ‘Pinalate’ (circle) fruit, treated (white) or not (black) with ABA, stored for up to 6 weeks at 12 ºC and 70-75% RH...

Figure 5. ABA signalling integration model in dehydrated citrus fruit and influence of ABA-deficiency...