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This work seeks to provide a formulation to simulate the microscopic behavior of a piezoelectric de-
vice and the corresponding macroscopic implementation into a finite element code for elastic and plastic
regimes, such as [1]. To pull off this objective, a thermodynamically fully-consistent development of
coupled mechanic and electric fields for ferroelectric materials has been established [2]. The formulation
is implemented in the research Finite Element code FEAP [3].

The numerical modeling of the mechanical part of the structure is carried on using Voronoi cells [4].
The different cells are held together by cohesive links that are represented through 3D Timoshenko beams
in finite element code, making computations faster than other structural representations. The degrees of
freedom for the mechanic field are three displacements and three rotations:

u = (u,v,w,Q,V, G)T (1
The strain vector associated with the corresponding degrees of freedom are:
€ = (& Yo Yes Ky Ky K | 2)
And finally, the internal force vector:
F = (N,V,W,M,,,M,,,M,,)" 3)

Regarding the electric field, the degree of freedom is the electric potential ¢. For the beam model,
only the axial component x; is relevant; thus, the definitions for the electric field Ey, and the electric
displacement Dy, are scalars. Assuming the homogeneity of any variable within every section, we can
define the electric charge as Oy, = Dy, A, with A as the transverse area of the beam.

The constitutive equations for piezoelectric materials can be derived from the free-energy potential
as in [8], from which we can retrieve:

o=(Ce—¢€e‘E

D =eE+e‘c @)

The coefficients used in (4) are the stiffness tensor C, the piezoelectric tensor €, and the permittivity
tensor ¢, all of them obtained from material properties.

To reduce the previous model for beams, we need to account for the simplification done above: i)
only a few components of primal variables are relevant, so are the corresponding material tensor entries;
ii) the addition of rotational degrees of freedom for the mechanic field introduces new structural variables
into the stiffness tensor and iii) only axial strain affects the axial electric variables and vice-versa.

The anisotropy introduced by the polarization is also treated. Polarization P is a macroscopic mag-
nitude that accumulates the microscopic electric dipole moments in a material. Ferroelectric materials
have permanent dipoles, generated due to a particular microstructure which generate remanent polariza-
tion P, with the only possibility of a change of orientation or domain switching [6].
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A strong electric field has to be applied in the desired direction to switch the remanent polarization
into any of the equilibrium positions. Also, a switch happens if compressive stress is applied in the direc-
tion of the current remanent polarization or traction in any of the corresponding transversal directions.
The angle between the old and the new P" vector determines the two types of switching: 180° and 90°.
An oriented electric field can cause both switches, whereas stress can only generate a 90° switch.

The selected criteria to determine whether a switch occurs is inspired by [7] where the combination
of both electric field and stress is taken into account. It is an energy criterion at a microscopic level, and
several possibilities have to be evaluated at the same time for both kinds of switch. A switch can take
place if the following conditions meet:

E AP’
. Ps >1, for 180° switch
' Q)
E-AP' Ae’
=+ =1, for 90° switch
- € g€

where the increments AP" and Ae" are the tensors of change for remanent polarization and strain respec-
tively, and P* and €® are the spontaneous values of remanent polarization or strain induced by internal
microstructure. The above conditions need to be evaluated for each of the five alternative directions of
polarization.

The manifestation of these remanent polarization, as well as the hypotheses assumed above, modify
the continuum constitutive model into:

N EA 0 0 0 0 0 —ey A (v, —£,) 0
14 0 GA 0 0 0 0 0 Yo 0
W 0 0 GA 0 0 0 0 Yo s 0
M, |= 0 0 0 GJ 0 0 0 K, +|( 0 (©6)
M,, 0 0 0 0 EI 0 0 Ky, 0
M,, 0 0 0 0 0 EI 0 Kxs 0
Oy, legyA O 0 0 0 0 gA | E,, PLA

where E = E (1 —Vv) /[(1+V) (1 —2v)] is the first term of the continuum stiffness tensor (with E as the
Young’s modulus and v as the Poisson’s coefficient), G is the shear modulus, J is the polar moment of
inertia, / is the moment of inertia, €, is the permittivity in axial direction, and ey, ,, is the piezoelectric
coefficient. Notice that inertia moments are the same for x, and x3 directions since the transversal area
is assumed to be a circle.

These constitutive coefficients are also subjected to change with every polarization switch as in the
previous solid model, which implies a change in E, G, €y, x> and €, [5]. The factor that modifies
these properties from its non-polarized to its polarized value is the polarization multiplier m through the
following linear distributions:

E = B 4 || (E? - £™)

G = G"™ + m| (GP — G™) -

__ ,op P np
€xixp = €xpx +m (eXhXI - exhxl)

&y =& +|m| (€}, — &)

where the superscripts np and p stand for non-polarized and polarized values of each coefficient and |m|
is the absolute value of m. The values for remanent polarization and remanent strain are also a function
of this multiplier as follows:
P =mP;
1 X1
) . ®)
8)61 = |m| £x1
A numerical difficulty arises when the switch in polarization is implemented as a Heaviside step once
one of the conditions in (5) is met. This abrupt change can lead to oscillating residual norms in the finite
element method due to the uncertainty of the beams getting simultaneously polarized.
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A smooth correction to this Heaviside step is proposed for these two models through the hyperbolic
tangent function. The idea is to make a bijective function between electric field and electric displacement,
removing any possible uncertainty and introducing a smooth change of slope. Once the polarization
switches, the constitutive model changes to represent hysteresis behavior.

yes yes
sp =1 —>

no

Sp+1 = Sn sn =10

no
Sl e UL
yes

Figure 1: Diagram of decision to select the switch-state for the next time step s,,+; based on its previous
value s, and the current value of electric field £,

This decision diagram is represented in Figure 1, where every beam starts with the zero switch-
state s, = 0. It will remain in this state until the beam reaches the coercive electric field E. or —E,.
This forces the switch-state to change in the next time step to either 5,1 = 1 or s,+; = —1, denoting
positive or negative polarization respectively. After the beam is polarized, the beam can only switch to
the opposite polarized state (180°) once it reaches the opposite value of the coercive electric field, i.e.,
—E,. fors, =1 and E,. for s, = —1.

The three states of polarization are implemented in this model, although it can be noticed that once a
beam is polarized either positive or negative, it cannot return to the zero-state. This first model is rather
simple but allows us to get a good approximation in macroscopic electric displacement D.

S, = —1

0——|
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/'/
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~0.5
~1.5 ‘

-15 -1 =05 0 0.5 1 1.5 096 097 098 0.99 1 1.01
Normalized Electric Field E,/E, Normalized Electric Field E,/E,
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Figure 2: Left, smoothed polarization multiplier m curves for all three previous state of polarization s,
with the chosen a = 200. Right, detail of curves |s,| = 1 and a = 244 for 5, = 0.

Although the switch-state changes suddenly, the polarization multiplier is a smooth function, contin-
uum and derivable, by means of the hyperbolic tangent. This multiplier, drawn in Figure 2, depends on
the current axial electric field in the beam E, | and the switch from the previous time step s, as follows:

a(sy)
E.

-5
" tanh

My 1 (Eny1,8n) = (Epi1+E) =3 (9

1 n
(En+1 —Ec) +3:| + ‘;Sn tanh |:aé§‘ )

The geometry of the numerical example is a cube, with sides of 20 cm. The top and bottom faces
have prescriptions of the voltage of V. =0 and V = V;(¢), respectively. The voltage at the top is triangular,
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starting with a value of 0 to Viyax = 0.2 MV, then —Vj,.x and returning to Vinax. In planes x; =0, xp = 0,
and x3 = 0, the corresponding perpendicular displacement is prescribed to simulate symmetry boundary
conditions. Rotation degrees of freedom are left free. All switches are set initially to zero. The material
properties are extracted from [9].

04 0.35
E 03 ’/'7 0.3 N~ S
2 02 - 7 0.25 \ _:)><’;’ /
£ oo / [ S W \ o/
g 0 / / 2 015 \~ 'l
< <
g —0.1 / // =2 0.1 //
p 782 / . 0.0(5)
g [
m _
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Electric Field (MV/m) Electric Field (MV/m)

Figure 3: Averaged vertical electric displacement and strain obtained for the numerical example

The electric and mechanic variables calculated with the beam model have to be expressed in the
global frame and averaged with the volume to interpret the macro response of the material using:

z . GdQ

In Figure 3, the averaged response for the numerical example is plotted, where the typical hysteresis
loops for electric displacement and strain can be appreciated. One of the limitations of this method is
that cannot capture transversal effects with accuracy, but the axial variables are close to the continuum
model.
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