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FROM PROJECTORS TO 1MP AND MP1 GENERALIZED INVERSES AND THEIR

INDUCED PARTIAL ORDERS∗

M.V. HERNÁNDEZ † , M.B. LATTANZI† , AND N. THOME‡

Abstract. This paper deals with new generalized inverses of rectangular complex matrices, namely 1MP and MP1-

inverses. They are constructed from oblique projectors represented by means of inner generalized inverses, by using an

adequate equivalence relation, and then passing to the quotient set. We give characterizations and general expressions for

1MP and MP1-inverses. As applications, the binary relations induced for these new generalized inverses are proved to be

partial orders.
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1. Introduction and background. Several generalized inverses were defined in the literature, and

their duals when possible, from others previously studied. For example, the core inverse and the dual core

inverse were introduced for square matrices of index at most 1 [2], two kind of extensions for matrices

of arbitrary index, namely, DMP-inverse and its dual [16], and core-EP inverse [19]; and in addition the

CMP-inverse for square arbitrary matrices [17], among others.

It is quite usual to present generalized inverses as the solution of a system of matrix equations. In

this paper, we will introduce a new class of hybrid generalized inverses of rectangular complex matrices (of

arbitrary index) as a representative of an equivalence class for equivalence relations defined on certain set

from oblique projectors. The novelty is that the process used here to introduce new generalized inverses is

different from the classical one and may serve as starting point for other authors for analyze generalized

inverses from another point of view.
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Let Cm×n be the set of m×n complex matrices. For A ∈ Cm×n, let A∗, A−1, rk(A), and R(A) denote

the conjugate transpose, the inverse (m = n), the rank, and the range space of A, respectively. As usual,

In stands for the n× n identity matrix and 0m×n denotes the m× n zero matrix. The subscripts will be

omitted when no confusion is caused.

Let A ∈ Cm×n. A matrix X ∈ Cn×m that satisfies the equation (1)AXA = A is called a {1}-

inverse of A, and is denoted by A−. The Moore-Penrose inverse of A ∈ Cm×n is the unique matrix

X ∈ Cn×m such that (1)AXA = A, (2)XAX = X, (3) (AX)∗ = AX, and (4) (XA)∗ = XA hold, and

is denoted by A†. In general, for A ∈ Cm×n, the set of matrices X ∈ Cn×m satisfying the equations

(i), (j), . . . , (t) ∈ {(1), (2), (3), (4)} is denoted by A{i, j, . . . , t}. A matrix X ∈ A{i, j, . . . , t} is called an

{i, j, . . . , t}-inverse of A.

The following results are used later.

Theorem 1.1. [3] Let A ∈ Cm×n, B ∈ Cp×q, and C ∈ Cm×q. The matrix equation AXB = C has a

solution if and only if there exist {1}-inverses A− and B− of A and B, respectively, such that AA−C = C

and CB−B = C. In this case, the set of all solutions is given by X = A−CB− + Y − A−AY BB−, for

arbitrary Y ∈ Cn×p.

Theorem 1.2. [18] Let A ∈ Cm×n and G be a fixed {1}-inverse of A. The class of all {1}-inverses

of A is given by

A{1} = {G + U −GAUAG : U is arbitrary} = {G + (I −GA)V + W (I −AG) : V,W are arbitrary}.

For A ∈ Cn×n, the index of A is the smallest nonnegative integer k such that R(Ak) = R(Ak+1), and

is denoted by k = ind(A). Let A ∈ Cn×n with k = ind(A). The Drazin inverse of A is the unique matrix

X ∈ Cn×n such that XAX = X, AX = XA, and Ak+1X = Ak hold, and is denoted by AD. If ind(A) ≤ 1,

then the Drazin inverse of A is called the group inverse of A and is denoted by A#. A detailed analysis of

all these generalized inverses can be found, for example, in [1, 3, 4, 12,13].

For a matrix A ∈ Cn×n of index at most 1, two types of (unique) hybrid generalized inverses, namely

A#AA† and A†AA# were defined in [21, p.97] by using other notation. The same were rediscovered by

Baksalary and Trenkler in [2] and since then they were a key point of the study of generalized inverses.

The authors introduced the matrix A#AA† as the unique matrix X ∈ Cn×n such that AX = AA† and

R(X) ⊆ R(A). Clearly, the matrix A#AA†, which is denoted by A#©, and A†AA# denoted by A#©, exist

only when ind(A) ≤ 1; such matrices are known as the core and the dual core inverse of A, respectively.

In [23, Theorem 2.1], Wang and Liu proved that if ind(A) ≤ 1 then the core inverse of A is the unique
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matrix X ∈ Cn×n satisfying the following three equations:

(1.1) AXA = A, AX2 = X, and (AX)∗ = AX.

These inverses were generalized for matrices of arbitrary index by Malik and Thome in [16]. They in-

troduced the DMP-inverse and its dual, for a matrix A ∈ Cn×n of index k, by AD,† = ADAA† and

A†,D = A†AAD, respectively. It was also proved that the matrix AD,† is the unique solution of the matrix

equation system

(1.2) XAX = X, XA = ADA, and AkX = AkA†.

In [20], Rakić, Dinčić, and Djordjević generalized the core inverse of a complex matrix to the case of an

element in a ring. On the other hand, Chen, Zhu, Patŕıcio, and Zhang analyzed characterizations and

representations of core and dual core inverses in a ring in [6]. Other generalizations on the ring environment

can be seen in [14,25–27], and some more applications can be found in [22].

On the other hand, CMP-inverses were defined by Mehdipour and Salemi in [17] for a square matrix

A as Ac,† = A†A1A
†, with A1 = AADA as the unique solution of the matricial equations system

(1.3) XAX = X, AXA = A1 AX = A1A
†, and XA = A†A1.

Some related results, applications, and extensions of these generalized inverses can be found in [5, 7–11,

15–17,24,28].

Except for {1}-inverses, all the aforementioned inverses exist and are unique. Moreover, each of them

can be represented as the unique solution to a system of suitable matrix equations.

In this paper, new generalized hybrid inverses (and their duals) are introduced. These new classes of

matrices provide not only a generalization of the core inverse to matrices of arbitrary index but also to

rectangular matrices.

In [3, Lemma 3, p.45], it was proven that if B and C are {1}-inverses of A, then the product BAC is

a {1, 2}-inverse of A. This general type of {1, 2}-inverses play an important role in our definitions due to,

in this work, some cases in which B or C are Moore-Penrose inverses are introduced and studied.

The importance of projectors, in all branches of Mathematics, is undoubted. Generalized inverses are

a very interesting tool for representing such projectors and operate with them. The main contribution

of this paper is the idea of exploiting oblique projectors given by AA− and A−A in order to construct

new generalized inverses. The novelty is that the process used here to introduce new generalized inverses



4 M.V. Hernández, M. Lattanzi, and N. Thome

is different from the classical one. While usually generalized inverses are presented as the solution of a

system of matrix equations, we will introduce them as a “nice” representative of an equivalence class of

certain quotient sets.

The paper is organized as follows. In Section 2, we introduce a new type of generalized inverses, called

1MP-inverses and denoted by A−†, which can be considered as a generalization of core inverses to rectan-

gular matrices. The 1MP-inverses of a matrix A are characterized from a singular value decomposition of

A. In Section 3, we give some characterizations of 1MP-inverses of a matrix A as {1, 2, 3}-inverses of A, as

the solutions of a matrix equation system, and as a 1-parametrized set. As an application, we analyze the

restriction of 1MP-inverses to the set of partial isometries. In Section 4, we introduce and study a partial

order associated to 1MP-inverses as other application of 1MP-inverses. In Section 5, the dual case (called

MP1-inverses) is studied.

2. 1MP-inverses. We notice that aforementioned generalized inverses are placing in some ways the

emphasis on the projector A−A for A− ∈ A{1}. Firstly, we are going to clarify what information can we

extract from this product and then we will use it to define a new class of generalized inverses. This class

will provide a generalization of core inverses from square to rectangular matrices.

For any matrix A ∈ Cm×n with rk(A) = a > 0, a singular value decomposition (SVD, for short) [3, 4, 18]

is given by

(2.1) A = U

 Da 0

0 0

V ∗,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices, and Da ∈ Ca×a is a positive definite diagonal

matrix.

Let A ∈ Cm×n be written as in (2.1). In this case, it is well known that the general form for {1}-inverses

of A is given by

(2.2) A− = V

 D−1a A12

A21 A22

U∗,

partitioned according to the partition of A. Then, it is easy to see that

A−A = V

 Ia 0

A21Da 0

V ∗.

Now, for a given matrix A, we want to analyze conditions under which two of these projectors (of type
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A−A) are different by ranging A− ∈ A{1}. In order to do that, an equivalence relation is defined on the

set A{1}.

Let A ∈ Cm×n. We define the binary relation ∼ on the set A{1} as follows. For A−, A= ∈ A{1},

A− ∼` A
= if and only if A−A = A=A.

Clearly, ∼` is an equivalence relation on A{1}. The equivalence class of A− ∈ A{1} is given by

[A−]∼`
= {A= ∈ A{1} : A−A = A=A}. It is easy to check that

A= = V

 D−1a B12

B21 B22

U∗ ∈ [A−]∼`
if and only if A21 = B21.

That is,

[A−]∼`
=

V

 D−1a B12

A21 B22

U∗ ∈ A{1} : B12 ∈ Ca×(m−a), B22 ∈ C(n−a)×(m−a)

 .

The quotient set of A{1} by ∼` is given by A{1}/ ∼`= {[A−]∼`
: A− ∈ A{1}}. A complete set of

representatives of the partition on A{1} induced by ∼` is given by

R∼`
:=

V

 D−1a 0

A21 0

U∗ : A21 ∈ C(n−a)×a is arbitrary

 .

Recalling that, for A written as in (2.1), the Moore-Penrose inverse of A is given by

A† = V

 D−1a 0

0 0

U∗

and by observing that any element in R∼`
can be written as A−AA†, we can state the following definition.

Definition 2.1. Let A ∈ Cm×n. For each A− ∈ A{1}, the matrix

A−† := A−AA† ∈ Cn×m

is called a 1MP-inverse of A. That is, A−† is defined as the “most simple” representative of an equivalence

class of A{1} by ∼`.

The symbol A{−†} stands for the set of all 1MP-inverses of A. Clearly, since A† is an element of this

set, A{−†} 6= ∅ and, moreover,

(2.3) A{−†} = {A−AA† : A− ∈ A{1}} =

V

 D−1a 0

A21 0

U∗ : A21 ∈ C(n−a)×a

 .
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The existence of {1}-inverses and the Moore-Penrose inverse of A guarantee that 1MP-inverses of A always

exist. It is clear that A{−†} = {A−1} whenever A ∈ Cn×n is nonsingular and, moreover, O{−†} = {O}.

In general, 1MP-inverses are not unique.

We observe that for a given matrix A ∈ Cm×n, by using a singular value decomposition of A, we can

give a canonical form for 1MP-inverses of A as those matrices in (2.3).

Next result says that the interesting case is that given by matrices A−, A= ∈ A{1} such that A−A 6=

A=A, otherwise, both A− and A= provide the same 1MP-inverse A−AA† = A=AA†. This fact is shown

in the next result, where the symbol M ' N indicates that there exists a bijection between the sets M

and N .

Proposition 2.2. Let A ∈ Cm×n of rank a > 0 written as in (2.1). Then

A{1}/∼` ' A{−†} ' C(n−a)×a.

Proof. Let ϕ : A{1}/∼`→ A{−†} be the function defined by ϕ([A−]∼`
) = A−AA†. Clearly, ϕ is well-

defined. Let [A−]∼`
and [A=]∼`

be in A{1}/∼` such that ϕ([A−]∼`
) = ϕ([A=]∼`

). Then A−AA† = A=AA†,

so A−AA†A = A=AA†A. Hence, A−A = A=A, i.e., [A−]∼`
= [A=]∼`

, from where ϕ is injective. If

Y ∈ A{−†}, by (2.3) there exists A− ∈ A{1} such that Y = A−AA†. Thus, ϕ([A−]∼`
) = A−AA† = Y .

Hence, ϕ is surjective. In consequence, ϕ is a one-to-one correspondence between the sets A{1}/∼` and

A{−†}, i.e., A{1}/∼`' A{−†}.

Let A ∈ Cm×n of rank a > 0 written as in (2.1). We consider Γ : A{−†} → C(n−a)×a as the function

defined by Γ(A−†) = A21, where A−† is given as in (2.3). It is easy to see that Γ is a bijective function.

Hence, A{−†} ' C(n−a)×a.

By Theorem 1.1, by solving the matrix equation A−A = A=A (in A=), its solution set is given by

[A−]∼`
= {A= ∈ A{1} : A= = A−AA† + Y (I −AA†) for arbitrary Y ∈ Cn×m},

which allows us to express the solution set as a 1-parametrized set.

Proposition 2.3. Let A ∈ Cm×n. For a given A− ∈ A{1}, the matrix A−† ∈ Cn×m satisfies the

following properties:

(a) A−† ∈ A{1, 2, 3}.

(b) A−†A = A−A and AA−† = AA†, (i.e., A−†A is an oblique projector onto R(A−A) along N (A) and

AA−† is an orthogonal projector onto R(A)).
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Proof. (a) Since A−, A† ∈ A{1}, it follows that A−† ∈ A{1, 2}. Since AA−† = AA−AA† = AA†,

which is hermitian, we have A−† ∈ A{3}.

(b) A−†A = A−AA†A = A−A, which is a projector onto R(A−A) along N (A−A) = N (A). The other

equality was proved in the previous item.

From Proposicion 2.3 (b) and recalling that two n× n projectors coincide if and only if they have the

same range and the same null space, we can state that

[A−]∼`
= {A= ∈ A{1} : A−R(A) = A=R(A)},

where, for an adequate set M , the notation AM means AM := {Am : m ∈M}.

We recall that a complete system of invariants for an equivalence relation ≈ on a nonempty set S is

a family F of functions defined on S that satisfy: s1 ≈ s2 if and only if f(s1) = f(s2), for all f ∈ F . We

conclude that, for A written as in (2.1), the family F containing the sole function f : A{1} → C(n−a)×n

defined, for every X ∈ A{1} written as in (2.2), by

f(X) =
[

0 Ia

]
V ∗XU

 Ia

0

 ,

constitutes a complete system of invariants on A{1} for the equivalence relation ∼` because

A− ∼` A
= ⇐⇒ A21 = B21 ⇐⇒ f(A−) = f(A=).

3. Characterizations of 1MP-inverses. In this section we obtain characterizations from 1MP-

inverses from several points of view.

By Proposition 2.3, we have that A{−†} ⊆ A{1, 2, 3} holds. As we will see below, these sets are the

same.

Also, by Proposition 2.3, every matrix X ∈ A{−†} satisfies the two equations of the system given by

(3.1) XAX = X and AX = AA†.

We will prove that the set A{−†} is the solution set of the system (3.1) by characterizing the solutions of

the system (3.1).

Theorem 3.1. Let A ∈ Cm×n. The following conditions are equivalent:

(a) Z ∈ A{−†}.
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(b) Z is solution of system (3.1).

(c) Z ∈ A{1, 2, 3}.

Proof. (a) ⇒ (b) It follows from Proposition 2.3.

(b) ⇒ (a) Assume that Z satisfies XAX = X and AX = AA†, and let A be written in its SVD form

as in (2.1).

Let Z := V

 Z11 Z12

Z21 Z22

U∗ be partitioned accordingly to the sizes of the blocks of A. It is easy to

see that

AZ = U

 DaZ11 DaZ12

0 0

U∗ and AA† = U

 Ia 0

0 0

U∗.

From AZ = AA†, we have Z11 = D−1a and Z12 = 0. Moreover,

ZAZ = V

 D−1a 0

Z21 0

U∗.

From ZAZ = Z, we obtain Z22 = 0. Therefore, Z = V

 D−1a 0

Z21 0

U∗, where Z21 ∈ C(n−a)×a is

arbitrary. Hence, from (2.3), we get Z ∈ A{−†}.

(b) ⇒ (c) It is clear that if Z satisfies XAX = X and AX = AA† then Z ∈ A{2, 3}. Now, AZA =

AA†A = A, thus Z ∈ A{1}.

(c) ⇒ (b) Suposse Z ∈ A{1, 2, 3}. Then, Z satisfies XAX = X.

Let A be written in its SVD form as in (2.1). From Z ∈ A{1}, by (2.2) we have

Z = V

 D−1a Z12

Z21 Z22

U∗,

which is partitioned accordingly to the sizes of the blocks of A.

From (AZ)∗ = AZ we obtain Z12 = 0. So,

AZ = U

 Ia 0

0 0

U∗ = AA†.
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The previous result characterizes the set A{−†} as follows

A{−†} = {X ∈ Cn×m : XAX = X, AX = AA†} = A{1, 2, 3}.

Now, we will give another characterization of the set A{−†} from a fixed 1MP of A.

Proposition 3.2. Let A ∈ Cm×n and let A−† be a fixed matrix in A{−†}. The set of all 1MP-inverses

of A is given by the 1-parametrized set

A{−†} = {A−† + (In −A−†A)WAA−† : W ∈ Cn×m is arbitrary}.

Proof. If we denote S := {A−† + (In − A−†A)WAA−† : for arbitrary W ∈ Cn×m}, we have to show

that A{−†} = S. In fact, by Proposition 2.3, we can see that S ⊆ A{−†} because A[A−† + (In −

A−†A)WAA−†] = AA−† + A(In − A−†A)WAA−† = AA−† = AA†, which is hermitian and, moreover,

[A−†+ (In−A−†A)WAA−†]A[A−†+ (In−A−†A)WAA−†] = [A−†+ (In−A−†A)WAA−†]AA−† = A−†+

(In −A−†A)WAA−†. Now, the result follows from the equivalences between (a) and (b) in Theorem 3.1.

Now, if Z ∈ A{−†}, there exists C ∈ A{1} such that Z = CAA†. On the other hand, the fixed matrix

A−† ∈ A{−†} given in the hypothesis can be written as A−† = A−AA†, for some matrix A− ∈ A{1}.

Hence, from Theorem 1.2, there exists W ∈ Cn×m such that C = A− + W − A−AWAA−. Thus,

since A−A = A−†A and AA† = AA−†, by applying distributive property in the last equality we have

Z = CAA† = (A− + W − A−AWAA−)AA† = A−† + (In − A−†A)WAA−†. Thus, Z ∈ S. Hence,

A{−†} ⊆ S.

Remark 3.3. By using that A{−†} ⊆ A{1, 2}, we notice that, for each A− ∈ A{1}, any 1MP-

inverse A−† of A can be seen as an A
(1,2)
T,S inverse of A, for T = A−R(A) and S = N (A∗), because

R(A−†) = R(A−†A) = R(A−A) = T and N (A−†) = N (AA−†) = N (AA†) = N (A†) = N (A∗) = S.

3.1. 1MP-inverses for partial isometries. It is well known that a matrix A ∈ Cm×n is a partial

isometry if and only if A† = A∗, which is equivalent to AA∗A = A [4]. In this case, A−† = A−AA∗ ∈

A{−†}. The following result analyzes the restriction of 1MP-inverses to the set of partial isometries.

Proposition 3.4. Let A ∈ Cm×n be a partial isometry. The following conditions are equivalent:

(a) The matrix equation system

XAX = X and AX = AA∗(3.2)

has a solution.
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(b) There exists A− ∈ A{1} such that X = A−AA∗ + (I − A−A)WAA∗, for some matrix W of suitable

size.

Proof. (a)⇒ (b) Since A is a partial isometry, A† = A∗ and system (3.2) is equivalent to system (3.1).

By Theorem 3.1, X ∈ A{−†}. Thus, from Proposition 3.2, by using A−† = A−AA∗, A−†A = A−A, and

AA−† = AA∗, we conclude that there exists A− ∈ A{1} such that X = A−AA∗ + (I − A−A)WAA∗, for

some W ∈ Cn×m.

(b) ⇒ (a) Let X = A−AA∗ + (I − A−A)WAA∗, with W ∈ Cn×m for some fixed A− ∈ A{1}. It

is easy to see that AX = AA∗. Since AA∗A = A, by making some computations, we conclude that

XAX = XAA∗ = X holds.

We notice that if we obtain one 1MP-inverse from Proposition 3.4, we can completely solve system

(3.2) by using Proposition 3.2.

4. An application: Partial order associated to 1MP-inverses. This section is devoted to

develop a partial order associated 1MP-inverses previously introduced.

Definition 4.1. Let A,B ∈ Cm×n. We will say that A is below B under the binary relation ≤−†,

and it is denoted by A ≤−† B, if there exists A−† ∈ A{−†} such that A−†A = A−†B and AA−† = BA−†.

For a fixed matrix A ∈ Cm×n, next result provides all matrices B ∈ Cm×n such that A ≤−† B and, in

this case, the general form for B−†. Recall that, if A is written as in (2.1), from (2.3) we have that every

1MP-inverse can be expressed as

(4.1) V

 D−1a 0

A21 0

U∗,

for arbitrary A21 ∈ C(n−a)×a.

Theorem 4.2. Let A ∈ Cm×n written as in (2.1).

(a) For B ∈ Cm×n, the following conditions are equivalent:

(i) A ≤−† B;

(ii)

(4.2) B = U

 Da 0

−B4A21Da B4

V ∗

for some A21 ∈ C(n−a)×a and B4 ∈ C(m−a)×(n−a).
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(b) Let B ∈ Cm×n such that A ≤−† B. The following conditions are equivalent:

(i) X ∈ B{−†}.

(ii) There are matrices X3 and X4 of suitable sizes such that

(4.3) X = V

 D−1a 0

X3 X4

U∗,

where B4X3 = B4A21 and X4 ∈ B4{−†}.

Proof. Let A be written as in (2.1).

(a) Suppose that there exists B ∈ Cm×n such that A ≤−† B. Then, there exists A−† ∈ A{−†} such

that A−†A = A−†B and AA−† = BA−†. From (4.1), we can write A−† = V

 D−1a 0

A21 0

U∗, for some

A21 ∈ C(n−a)×a. Let B := U

 B1 B2

B3 B4

V ∗ be partitioned accordingly to the sizes of the blocks of A.

Then,

A−†A = V

 Ia 0

A21Da 0

V ∗ and A−†B = V

 D−1a B1 D−1a B2

A21B1 A21B2

V ∗.

From A−†A = A−†B we get B1 = Da and B2 = 0. Furthermore,

AA−† = U

 Ia 0

0 0

U∗ and BA−† = U

 Ia 0

B3D
−1
a + B4A21 0

V ∗.

From AA−† = BA−† we arrive at B3 = −B4A21Da. Hence, B = U

 Da 0

−B4A21Da B4

V ∗. Thus, (i)

=⇒ (ii) is proved.

Conversely, suppose that there exist A21 ∈ C(n−a)×a and B4 ∈ C(m−a)×(n−a) such that B is written

as in (4.2). Let

A−† := V

 D−1a 0

A21 0

U∗.

From (2.3), it is clear that A−† ∈ A{−†}. It is easy to see that A−†A = A−†B and AA−† = BA−†, i.e.,

A ≤−† B which proves (ii) =⇒ (i).

(b) Let B ∈ Cm×n such that A ≤−† B.
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(i) =⇒ (ii) From item (a) it is clear that B can be written as in (4.2).

Let X ∈ B{−†} = B{1, 2, 3} (see Theorem 3.1) partitioned as X = V

 X1 X2

X3 X4

U∗, accordingly

to the sizes of the blocks of A. Thus,

BXB = U

 DaX1Da −DaX2B4A21Da DaX2B4

B4[(X3 −A21DaX1)−ΠB4A21]Da B4ΠB4

V ∗,

where Π := X4 − A21DaX2. By making some computations, from BXB = B, we have X1 = D−1a ,

B4 = B4X4B4, and B4A21 = B4X3. Since

BX = U

 Ia DaX2

0 −B4A21DaX2 + B4X4

U∗

is hermitian, we obtain X2 = 0 and B4X4 = (B4X4)∗. Now, X = V

 D−1a 0

X3 X4

U∗. From XBX = X,

we get X4 = X4B4X4. Therefore, X4 ∈ B4{1, 2, 3} = B4{−†}.

(ii) =⇒ (i) It is an easy computation by using Theorem 3.1.

Now, we are able to state that ≤−† is a partial order on Cm×n.

Theorem 4.3. The relation ≤−† defined on Cm×n is a matrix partial order.

Proof. It is clear that ≤−† is reflexive. Let A ∈ Cm×n written as in (2.1).

Let B ∈ Cm×n such that A ≤−† B and B ≤−† A. From B ≤−† A, there exists B−† ∈ B{−†} such

taht B−†B = B−†A. Since A ≤−† B, by Theorem 4.2, B admits a representation as (4.2) and B−† can be

represented as in (4.3), i.e., B−† = V

 D−1a 0

X3 X4

U∗ and satisfies B4X3 = B4A21 and X4 ∈ B4{−†}.

Then,

B−†B = V

 Ia 0

(X3 −X4B4A21)Da X4B4

V ∗ and B−†A = V

 Ia 0

X3Da 0

V ∗.

From B−†B = B−†A, we have X4B4 = 0 and, consequently, B4 = B4X4B4 = 0. Then, B = A. Hence,

≤−† is antisymmetric.

Let B,C ∈ Cm×n such that A ≤−† B and B ≤−† C. Since B ≤−† C, there exists a 1MP-inverse B−†

of B such that B−†B = B−†C and BB−† = CB−†. From A ≤−† B, by Theorem 4.2, B and B−† can be
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written as in (4.2) and (4.3), respectively, i.e.,

B = U

 Da 0

−B4A21Da B4

V ∗ and B−† = V

 D−1a 0

X3 X4

U∗,

and satisfy B4X3 = B4A21 and X4 ∈ B4{−†}.

Let C := U

 C1 C2

C3 C4

V ∗ be partitioned accordingly to the sizes of the blocks of A. Then

B−†B = V

 Ia 0

X3Da −X4B4A21Da X4B4

V ∗

and

B−†C = V

 D−1a C1 D−1a C2

X3C1 + X4C3 X3C2 + X4C4

V ∗,

From B−†B = B−†C we get C1 = Da, C2 = 0, X4C3 = −X4B4A21Da, and X4B4 = X4C4. Moreover,

BB−† = U

 Ia 0

0 B4X4

U∗ and CB−† = U

 Ia 0

C3D
−1
a + C4X3 C4X4

U∗.

Since BB−† = CB−†, we get C3 = −C4X3Da and B4X4 = C4X4. Therefore,

(4.4) C = U

 Da 0

−C4X3Da C4

V ∗.

That is, there exist matrices X3 ∈ C(n−a)×a and C4 ∈ C(m−a)×(n−a) such that C has the form given in

(4.4). So, From Theorem 4.2 (a), we conclude A ≤−† C. Therefore, ≤−† is transitive.

Remark 4.4. Let A,B ∈ Cm×n. Note that, in general, A ≤−† B does not imply B{−†} ⊆ A{−†}.

Indeed, assume that A ≤−† B holds and suppose that A is written as in (2.1) and B has the form found

in Theorem 4.2. If X ∈ B{−†}, then X can be written as in Theorem 4.2 (b) (ii). By (2.3), it is clear

that X ∈ A{−†} if and only if X4 = 0. Clearly, if we consider a matrix X such that X4 6= 0, the

statement A ≤−† B ⇒ B{−†} ⊆ A{−†} is false. Moreover, X4 = 0 if and only if B4 = 0 because

X4 ∈ B4{−†} = B4{1, 2, 3}. Therefore, B{−†} ⊆ A{−†} if and only if A = B.

5. MP1-inverse and the associated partial order. This section is devoted to present dual in-

verses of the 1MP-inverses introduced and characterized in the previous section and the associated partial

order.
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Proceeding as in Section 2, if A ∈ Cm×n is written as in (2.1) and the general form for {1}-inverses of

A is given by (2.2), we obtain

AA− = U

 Ia DaA12

0 0

U∗.

Now, by defining the equivalence relation: for A−, A= ∈ A{1},

A− ∼r A= if and only if AA− = AA=,

we get

[A−]∼r =

V

 D−1a A12

B21 B22

U∗ ∈ A{1} : B21 ∈ C(n−a)×a, B22 ∈ C(n−a)×(m−a)

 .

A complete set of representatives of the partition on A{1} induced by ∼r is given by

R∼r
:=

V

 D−1a A12

0 0

U∗ : A12 ∈ Ca×(m−a) is arbitrary

 .

Now, we observe that any element in R∼r can be written as A†AA−. So, we consider a new type of

generalized inverses which is the dual of the 1MP-inverses.

Definition 5.1. Let A ∈ Cm×n. For each A− ∈ A{1}, the MP1-inverse of A, denoted by A†−, is the

n×m matrix

A†− := A†AA−.

The symbol A{†−} stands for the set of all MP1-inverses of A; clearly A† is an element of this set,

thus A{†−} 6= ∅. Hence, A{†−} = {A†AA− : A− ∈ A{1}}. Therefore, MP1-inverses of A always exist; in

general, they are not unique.

Since the development of MP1-inverses is analogous to 1MP-inverses, we only provide the results

without proofs.

First of all, we observe that if A ∈ Cm×n, for each A− ∈ A{1}, the matrix A†− ∈ A{1, 2, 4}.

In this case, the set A{†−} can be characterized as follows

A{†−} = A{1, 2, 4} = {X ∈ Cn×m : XAX = X,XA = A†A}.

Moreover, if A is written as in (2.1) then there exists A− ∈ A{1} such that Z := A†AA− ∈ A{†−} if and

only if

Z = V

 D−1a Z12

0 0

U∗,
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for arbitrary Z12 ∈ Ca×(m−a).

A 1-parametrized formula for MP1-inverses can be also established. Let A ∈ Cm×n. The following

conditions are equivalent: Z ∈ A{†−} if and only if there exists A†− ∈ A{†−} such that Z = A†− +

A†−AW (I −AA†−), for arbitrary W of suitable size.

Remark 5.2. Let A ∈ Cm×n. Note that, for each A− ∈ A{1}, any MP1-inverse A†− of A can be seen

as an outer inverse A
(1,2)
T,S of A, by setting T := R(A∗) and S := N (AA−).

We can state an interesting relationship between 1MP- and MP1-inverses.

Proposition 5.3. Let A ∈ Cm×n. Then

A{−†} ∩ A{†−} = {A†}.

Proof. It directly follows from A{−†} = A{1, 2, 3} and A{†−} = A{1, 2, 4}.

Remark 5.4. Let A ∈ Cn×n. If ind(A) ≤ 1, it is immediate that A#© ∈ A{−†}. In addition, it is

easy to see that if AD,† ∈ A{−†} then AADA = A. Thus, ind(A) ≤ 1, from where AD,† = A#©. That is,

AD,† ∈ A{−†} ⇐⇒ AD,† = A#©. Similarly, for dual core inverses: A†,D ∈ A{†−} if and only if A#© = A†,D.

In addition, Ac,† ∈ A{−†} if and only if Ac,† ∈ A{†−} if and only if Ac,† = A†.

Definition 5.5. Let A,B ∈ Cm×n. We will say that A is below B under the binary relation ≤†−,

and it is denoted by A ≤†− B, if there exists A†− ∈ A{†−} such that A†−A = A†−B and AA†− = BA†−.

For a fixed matrix A ∈ Cm×n, the next result provides all matrices B ∈ Cm×n such that A ≤†− B

and, in this case, the general form for B†−.

Theorem 5.6. Let A ∈ Cm×n written as in (2.1).

(a) The following conditions are equivalent:

(i) There exists B ∈ Cm×n such that A ≤†− B.

(ii) There exist matrices A12 ∈ Ca×(m−a) and B4 ∈ C(m−a)×(n−a) such that

B = U

 Da −DaA12B4

0 B4

V ∗.

(b) Let B ∈ Cm×n such that A ≤−† B. The following conditions are equivalent:

(i) X ∈ B{†−}.
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(ii) There are matrices X2 and X4 of suitable sizes such that

X = V

 D−1a X2

0 X4

U∗,

where X2B4 = A12B4, and X4 ∈ B4{†−}.

We close this section by stating that ≤†− is a partial order on Cm×n.

Theorem 5.7. The binary relation ≤†− defined on Cm×n is a partial order.
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