Document downloaded from:
http://hdl.handle.net/10251/181147
This paper must be cited as:
Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2021). Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density function. Computational and Mathematical Methods. 3(6):1-10.
https://doi.org/10.1002/cmm4.1141

The final publication is available at
https://doi.org/10.1002/cmm4.1141

Copyright John Wiley \& Sons

Additional Information

This is the peer reviewed version of the following article: Cortés, J-C, Navarro-Quiles, A, Romero, J-V, Roselló, M-D. Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions. Comp and Math Methods. 2021; 3:e1141, which has been published in final form at https://doi.org/10.1002/cmm4.1141. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions ${ }^{t}$

J.-C. Cortés ${ }^{1} \mid$ A. Navarro-Quiles ${ }^{1} \mid$ J.-V. Romero*1 \mid M.-D. Roselló ${ }^{1}$

${ }^{1}$ Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
${ }^{2}$ Department of Statistics and Operational Research, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain

Correspondence

*Corresponding author. Email:
jvromero@imm.upv.es

Present Address

jccortes@imm.upv.es, ana.navarro@uv.es, jvromero@imm.upv.es,
drosello@imm.upv.es

Summary

In this work we consider a particular randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition. We apply the Random Variable Transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the first probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the Random Variable Transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of computing probabilistic information. To motivate this fact, we consider in our analysis two different mappings. Several numerical examples show the capability of our approach and of the obtained results as well. We show, through simulations, that the choice of the transformation, that permits computing the first probability density function, is a crucial issue regarding the computational time.

KEYWORDS:

Chemical kinetic model, first probability density function, Random Variable Transformation technique, random model

1 | INTRODUCTION

Classically, kinetic equations have been used to describe reaction and deactivation processes in chemistry. Nonlinear differential equations that model these kind of problems depend on two rates, the reaction and deactivation constants. Our analysis is based on a previous contribution ${ }^{11}$, where a particular kinetic reaction is considered, the catalysis. Catalysis is a process by which the rate of a chemical reaction is increased. In this process the presence of a substance, called catalyst, accelerates the chemical reaction under study. In reference ${ }^{[1]}$ a particular catalyst is considered, the catalase, an enzyme that decomposes hydrogen peroxide to water and oxygen ${ }^{2]}$

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\text { catalase }} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \text {. }
$$

[^0]This particular chemical reaction can be modeled via the following deterministic initial value problem (IVP)

$$
\begin{align*}
\frac{\mathrm{dC} C_{S}(t)}{\mathrm{dt}} & =-k_{\mathrm{R}} C_{\mathrm{E}}(\mathrm{t}) \mathrm{C}_{\mathrm{S}}(\mathrm{t}), \quad \mathrm{t}>0 \\
\frac{\mathrm{dC}_{\mathrm{E}}(\mathrm{t})}{\mathrm{dt}} & =-\mathrm{k}_{\mathrm{D}} C_{\mathrm{E}}(\mathrm{t}) \mathrm{C}_{\mathrm{S}}(\mathrm{t}) \tag{1}\\
\mathrm{C}_{\mathrm{S}}(0) & =\mathrm{C}_{\mathrm{S}_{0}}, \quad C_{\mathrm{E}}(0)=\mathrm{C}_{\mathrm{E}_{0}}
\end{align*}
$$

being, for every time instant $t, C_{E}(t)$ and $C_{S}(t)$ the concentration of enzyme and the concentration of hydrogen peroxide, respectively. In IVP [1, k_{R} and k_{D} denote the reaction and deactivation rates. After some algebra, and introducing the dimensionless fractional conversion

$$
X(t)=\left(C_{S_{0}}-C_{S}(t)\right) / C_{S_{0}},
$$

from the IVP 1] we obtain the following IVP based on a nonlinear differential equation

$$
\begin{align*}
\frac{\mathrm{dX}(\mathrm{t})}{\mathrm{dt}} & =\left(\mathrm{k}_{\mathrm{R}}^{*}-\mathrm{k}_{\mathrm{D}} \mathrm{C}_{\mathrm{s}_{0}} \mathrm{X}(\mathrm{t})\right)(1-\mathrm{X}(\mathrm{t})), \quad \mathrm{t}>0, \tag{2}\\
\mathrm{X}(0) & =0,
\end{align*}
$$

where $k_{R}^{*}=C_{E_{0}} k_{R}$. The analysis in this work is based on the IVP 2, whose solution is

$$
\begin{cases}X(t)=\frac{1-e^{\left(k_{R}^{*}-k_{D} C_{S_{0}}\right) t}}{C_{S_{0}} \frac{k_{D}}{k_{R}^{*}}-e^{\left(k_{R}^{*}-k_{D} C_{S_{0}}\right) t}} & \text { for } k_{D} C_{S_{0}} \neq k_{R}^{*} \tag{3}\\ X(t)=1-\frac{1}{k_{R}^{*} t+1} & \text { for } k_{D} C_{S_{0}}=k_{R}^{*}\end{cases}
$$

In practice, the positive parameters, $\mathrm{C}_{\mathrm{S}_{0}}, \mathrm{k}_{\mathrm{D}}$ and $\mathrm{k}_{\mathrm{R}}^{*}$, in IVP 2 are usually calculated via experiments, then they have associated a certain measurement error. In addition, there exist some external factors that can affect the system. These facts make more advisable to consider the three aforementioned model parameters as random variables (RVs) rather than deterministic constants. In this contribution, we assume that all the input parameters, $C_{S_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega)$ and $\mathrm{k}_{\mathrm{R}}^{*}(\omega)$, are absolutely continuous RVs defined on a common complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For sake of generality, we will consider dependence between the random parameters, being $f_{0}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)$ the joint probability density function (PDF) of the random vector $\left(\mathrm{C}_{\mathrm{S}_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right.$). In this manner, the randomized kinetic model considered in this contribution is a natural randomization of the deterministic one described in IVP 2.

$$
\begin{align*}
\frac{\mathrm{dX}(\mathrm{t}, \omega)}{\mathrm{dt}} & =\left(\mathrm{k}_{\mathrm{R}}^{*}(\omega)-\mathrm{k}_{\mathrm{D}}(\omega) \mathrm{C}_{\mathrm{S}_{0}}(\omega) \mathrm{X}(\mathrm{t}, \omega)\right)(1-\mathrm{X}(\mathrm{t}, \omega)), \quad \mathrm{t}>0, \tag{4}\\
\mathrm{X}(0) & =0 .
\end{align*}
$$

Therefore, the solution stochastic process (SP) can be directly inferred from 3 as follows

$$
\begin{equation*}
X(t, \omega)=\frac{1-\mathrm{e}^{\left(k_{R}^{*}(\omega)-k_{D}(\omega) C_{S_{0}}(\omega)\right) t}}{C_{S_{0}}(\omega) \frac{k_{D}(\omega)}{k_{R}^{*}(\omega)}-\mathrm{e}^{\left(k_{R}^{*}(\omega)-k_{D}(\omega) C_{S_{0}}(\omega)\right) t}}, \quad \forall \omega \in \Omega, \tag{5}
\end{equation*}
$$

where $\omega \in \Omega$ stands for the sample outcome of the corresponding RV. In the deterministic theory of differential equations, the main goal is the computation of the solution in order to study the behaviour of the dynamical system. In the random framework, as the solution is a SP, the calculation of the main statistical functions (such as the mean and the variance) is also an important objective. If possible, the determination of the 1-PDF, which provides a full probabilistic description of the solution SP , is a more desirable target. In addition, from the 1-PDF the mean and the variance can be calculated from the integration of the 1-PDF. We focus our contribution on the computation of the 1-PDF, $\mathrm{f}_{1}(x, \mathrm{t})$, of $\mathrm{X}(\mathrm{t}, \omega)$ given in formula [5. With this aim, the Random Variable Transformation (RVT) method will be applied. This technique has been applied by authors in some contributions ${ }^{344}$. The RVT method permits to determine the expression of the PDF of a random vector which results from mapping another random vector whose PDF is known. For the sake of completeness, now we state the multidimensional version of the RVT technique that will be extensively applied throughout this paper.

Theorem 1. (Multidimensional version, ${ }^{5}$. pp. 24-25). Let $\mathbf{u}(\omega)=\left(u_{1}(\omega), \ldots, u_{n}(\omega)\right)^{\top}$ and $\mathbf{v}(\omega)=\left(v_{1}(\omega), \ldots, v_{n}(\omega)\right)^{\top}$ be two n-dimensional absolutely continuous random vectors. Let $\mathbf{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a one-to-one deterministic transformation of \mathbf{u} into \mathbf{v}, i.e., $\mathbf{v}=\mathbf{r}(\mathbf{u})$. Assume that \mathbf{r} is continuous in \mathbf{u} and has continuous partial derivatives with respect to \mathbf{u}. Then, if $f_{\mathbf{u}}(\mathbf{u})$ denotes the joint probability density function of the random vector $\mathbf{u}(\omega)$, and $\mathbf{s}=\mathbf{r}^{-1}=\left(s_{1}\left(v_{1}, \ldots, v_{n}\right), \ldots, s_{n}\left(v_{1}, \ldots, v_{n}\right)\right)^{\top}$ represents the inverse mapping of $\mathbf{r}=\left(r_{1}\left(u_{1}, \ldots, u_{n}\right), \ldots, r_{n}\left(u_{1}, \ldots, u_{n}\right)\right)^{\top}$, the joint probability density function of vector $\mathbf{v}(\omega)$ is given by

$$
\begin{equation*}
f_{\mathbf{v}}(\mathbf{v})=f_{\mathbf{u}}(\mathbf{s}(\mathbf{v}))\left|J_{n}\right| \tag{6}
\end{equation*}
$$

where $\left|J_{n}\right|$ is the absolute value of the Jacobian, which is defined by

$$
J_{n}=\operatorname{det}\left(\frac{\partial \mathbf{s}^{\top}}{\partial \mathbf{v}}\right)=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial \mathbf{s}_{1}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)}{\partial \mathbf{v}_{1}} & \cdots & \frac{\partial \mathbf{s}_{\mathrm{n}}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)}{\partial \mathbf{v}_{1}} \tag{7}\\
\vdots & \ddots & \vdots \\
\frac{\partial \mathbf{s}_{1}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)}{\partial \mathrm{v}_{\mathrm{n}}} & \cdots & \frac{\partial \mathbf{s}_{\mathrm{n}}\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)}{\partial \mathrm{v}_{\mathrm{n}}}
\end{array}\right)
$$

The paper is organized as follows. In Section 2 we calculate the 1-PDF of the solution SP 5]. We compute two different expressions for the 1PDF, by considering two different mappings in the application of the RVT method. We illustrate the capability of the theoretical established results via some numerical examples in Section 3 In these numerical examples we consider a wide range of distributions for the random input parameters. In addition, we show that the mapping considered in the application of the RVT method affects to the computational time to calculate the 1-PDF. Conclusions are drawn in Section 4

2 | COMPUTING THE 1-PDF OF THE SOLUTION SP X(t, ω)

In this section two expressions for the 1-PDF of the solution $\operatorname{SP} \mathrm{X}(\mathrm{t}, \omega)$ are computed. These formulas are obtained applying the RVT technique, stated in Theorem 1 considering two different mappings.

2.1 | Obtaining the 1-PDF: first mapping

Let $\mathrm{t}>0$ be fixed, we apply the RVT method with the following choice in Theorem 1

$$
\begin{aligned}
& \mathbf{u}(\omega)=\left(C_{\mathrm{S}_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right)^{\top}, \\
& \mathbf{v}(\omega)=\left(\mathrm{v}_{1}(\omega), \mathrm{v}_{2}(\omega), \mathrm{v}_{3}(\omega)\right)^{\top},
\end{aligned}
$$

where, for each $\omega \in \Omega$, the components of \mathbf{v} are defined by the mapping $\mathbf{r}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\begin{aligned}
& v_{1}=r_{1}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=\frac{\left(-1+e^{\left(C_{S_{0}} k_{D}-k_{R}^{*}\right) t}\right) k_{R}^{*}}{C_{S_{0}} k_{D} e^{\left(C_{S_{0}} k_{D}-k_{R}^{*}\right) t}-k_{R}^{*}}, \\
& v_{2}=r_{2}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=k_{D}, \\
& v_{3}=r_{3}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=k_{R}^{*} .
\end{aligned}
$$

The inverse mapping of the transformation \mathbf{r}, denoted by \mathbf{s}, is calculated isolating parameters $\mathrm{C}_{\mathrm{S}_{0}}, \mathrm{k}_{\mathrm{D}}$ and $\mathrm{k}_{\mathrm{R}}^{*}$ above

$$
\begin{aligned}
& C_{S_{0}}=s_{1}\left(v_{1}, v_{2}, v_{3}\right)=\frac{t v_{3}+v_{1} W_{k}\left(\frac{e^{\frac{t\left(-1+v_{1}\right) v_{3}}{v_{1}}} t\left(-1+v_{1}\right) v_{3}}{v_{1}}\right)}{t v_{1} v_{2}} \\
& k_{D}=s_{2}\left(v_{1}, v_{2}, v_{3}\right)=v_{2} \\
& k_{R}^{*}=s_{3}\left(v_{1}, v_{2}, v_{3}\right)=v_{3}
\end{aligned}
$$

where $W_{k}(x)$ denotes the Lambert function, which is a multivalued function, namely the branches of the inverse relation of the function $w \mathrm{e}^{\mathrm{w} 6}$. That is, for each integer k, there is one branch, $W_{k}(z)$, with the following property: if z and w are any complex numbers, then

$$
w \mathrm{e}^{w}=z \text { holds if and only if } w=W_{k}(z) \text {, for some integer } k .
$$

W_{0} is known as the principal branch, and it gives the principal solution for w in $z=w \mathrm{e}^{\mathrm{w}}$. In the set of real numbers, two branches W_{0} and W_{-1} are sufficient. Then, the system has two solutions, considering $W_{0}(x)$ and $W_{-1}(x)$, see Figure 1 The Jacobian of the mapping s, for each $k \in\{0,1\}$ is

$$
J_{3}=\frac{1}{t\left(-1+v_{1}\right) v_{1}^{2} v_{2}}\left(v_{1}-\frac{v_{1}+t\left(-1+v_{1}\right) v_{3}}{1+W_{k}\left(\frac{\mathrm{e}^{\frac{t\left(-1+v_{1}\right) v_{3}}{v_{1}}} t\left(-1+v_{1}\right) v_{3}}{v_{1}}\right)}\right) .
$$

FIGURE 1 Lambert function in the set of real numbers. Red line: $W_{-1}(x)$. Blue line $W_{0}(x)$.

Therefore, applying RVT method, the PDF of the random vector $\mathbf{v}(\omega)$ is obtained in terms of the joint PDF, $f_{0}\left(C_{S_{0}}, k_{D}, k_{R}\right)$, of the random input parameters $\left(C_{S_{0}}(\omega), k_{D}(\omega), k_{R}^{*}(\omega)\right)$

$$
f_{\mathbf{v}}\left(v_{1}, v_{2}, v_{3}\right)=f_{0}\left(\frac{t v_{3}+v_{1} W_{k}\left(\frac{\mathrm{e}^{\frac{t\left(-1+v_{1}\right) v_{3}}{v_{1}} t\left(-1+v_{1}\right) v_{3}}}{v_{1}}\right)}{t v_{1} v_{2}}, v_{2}, v_{3}\right)\left|\frac{1}{t\left(-1+v_{1}\right) v_{1}^{2} v_{2}}\left(v_{1}-\frac{v_{1}+t\left(-1+v_{1}\right) v_{3}}{1+W_{k}\left(\frac{\mathrm{e}^{\frac{t\left(-1+v_{1}\right) v_{3}}{v_{1}}} t\left(-1+v_{1}\right) v_{3}}{v_{1}}\right)}\right)\right|(
$$

Marginalizing with respect to $\mathrm{v}_{2}(\omega)=\mathrm{k}_{\mathrm{D}}(\omega)$ and $\mathrm{v}_{3}(\omega)=\mathrm{k}_{\mathrm{R}}^{*}(\omega)$, and taking $\mathrm{t}>0$ arbitrary, we obtain the 1-PDF of the solution $\operatorname{SP} \mathrm{X}(\mathrm{t}, \omega)$, which depends on $\mathrm{k} \in\{0,1\}$,
$f_{1, k}^{1}(x, t)=\int_{0}^{+\infty} \int_{0}^{+\infty} f_{0}\left(\frac{t k_{R}^{*}+x W_{k}\left(\frac{\mathrm{e}^{\frac{t(-1+x) k_{R}^{*}}{x}} t(-1+x) k_{R}^{*}}{x}\right)}{t x k_{D}}, k_{D}, k_{R}^{*}\right)\left|\frac{1}{t(-1+x) x^{2} k_{D}}\left(x-\frac{x+t(-1+x) k_{R}^{*}}{1+W_{k}\left(\frac{\mathrm{e}^{\frac{t(1+x) k_{R}^{*}}{x}} t(-1+x) k_{R}^{*}}{x}\right)}\right)\right| \mathrm{d} k_{D} \mathrm{~d} k_{R}^{*}$.
As we have previously indicated, the density function obtained depends on k, then the 1-PDF $f_{1}^{1}(x, t)$ shall be split into two pieces, $f_{1,0}^{1}(x, t)$ and $f_{1,-1}^{1}(x, t)$, corresponding to the contribution of W_{0} and W_{-1}, respectively. Then, the complete 1-PDF must be expressed by

$$
\begin{equation*}
f_{1}^{1}(x, t)=f_{1,0}^{1}(x, t)+f_{1,-1}^{1}(x, t) . \tag{9}
\end{equation*}
$$

Notice that for each $t>0, f_{1,0}^{1}(x, t)$ and $f_{1,-1}^{1}(x, t)$ are not separately PDF.

2.2 | Obtaining the 1-PDF: second mapping

Given the complexity of the expression of the 1-PDF obtained in Eq. 8 and Eq. (97, in this subsection, we consider a different mapping. The chosen transformation it is more complex than the previous one, but we obtain a simpler formula for the 1-PDF of the solution SP. Let $\mathrm{t}>0$ be fixed, we apply Theorem 1 with

$$
\begin{aligned}
& \mathbf{u}(\omega)=\left(\mathrm{C}_{\mathrm{S}_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right)^{\top}, \\
& \mathbf{v}(\omega)=\left(\mathrm{v}_{1}(\omega), \mathrm{v}_{2}(\omega), \mathrm{v}_{3}(\omega)\right)^{\top} .
\end{aligned}
$$

For each $\omega \in \Omega$, we define the mapping $\mathbf{r}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\begin{aligned}
& v_{1}=r_{1}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=\frac{\left(-1+e^{\left(C_{S_{0}} k_{D}-k_{R}^{*}\right) t}\right) k_{R}^{*}}{C_{S_{0}} k_{D} e^{\left(C_{S_{0}} k_{D}-k_{R}^{*}\right) t}-k_{R}^{*}}, \\
& v_{2}=r_{2}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=C_{S_{0}} k_{D}-k_{R}^{*}, \\
& v_{3}=r_{3}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=k_{D} .
\end{aligned}
$$

The inverse mapping of the transformation \mathbf{r}, denoted by \mathbf{s}, and the Jacobian are given by

$$
\begin{gathered}
\mathrm{C}_{\mathrm{s}_{0}}=\mathrm{s}_{1}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)=-\frac{\left(-1+\mathrm{e}^{\mathrm{tv}}+\mathrm{v}_{1}\right) \mathrm{v}_{2}}{\left(-1+\mathrm{e}^{\mathrm{tv}}\right)\left(-1+\mathrm{v}_{1}\right) \mathrm{v}_{3}} \\
\mathrm{k}_{\mathrm{D}}=\mathrm{s}_{2}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)=\mathrm{v}_{3} \\
\mathrm{k}_{\mathrm{R}}^{*}=\mathrm{s}_{3}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right)=-\frac{\mathrm{e}^{\mathrm{tv}} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2}}{\left(-1+\mathrm{e}^{\mathrm{tv}}\right)\left(-1+\mathrm{v}_{1}\right)} \\
J_{3}=-\frac{\mathrm{e}^{t v_{2}} v_{2}}{\left(-1+\mathrm{e}^{t v_{2}}\right)\left(-1+v_{1}\right)^{2} v_{3}}
\end{gathered}
$$

Applying RVT method, Theorem 11, we obtain the joint PDF of the random vector $\left(v_{1}(\omega), v_{2}(\omega), v_{3}(\omega)\right)$ in terms of $f_{0}\left(C_{S_{0}}, k_{D}\right.$, $\left.k_{R}\right)$, which is assumed known,

$$
f_{\mathbf{v}}\left(v_{1}, v_{2}, v_{3}\right)=f_{0}\left(-\frac{\left(-1+\mathrm{e}^{t v_{2}}+v_{1}\right) v_{2}}{\left(-1+\mathrm{e}^{t v_{2}}\right)\left(-1+v_{1}\right) v_{3}}, v_{3},-\frac{\mathrm{e}^{t v_{2}} v_{1} v_{2}}{\left(-1+\mathrm{e}^{t v_{2}}\right)\left(-1+v_{1}\right)}\right)\left|-\frac{\mathrm{e}^{t v_{2}} v_{2}}{\left(-1+\mathrm{e}^{t v_{2}}\right)\left(-1+v_{1}\right)^{2} v_{3}}\right|
$$

Finally, as we are interested in computing the PDF of $v_{1}(\omega)=X(t, \omega)$, we take the marginal with respect to $v_{2}(\omega)$ and $v_{3}(\omega)$, and taking $t>0$ arbitrary, we obtain the 1-PDF of the solution $\operatorname{SP} \times(\mathrm{t}, \omega)$

$$
\begin{equation*}
f_{1}^{2}(x, t)=\int_{-\infty}^{+\infty} \int_{0}^{+\infty} f_{0}\left(-\frac{\left(-1+\mathrm{e}^{t a}+x\right) a}{\left(-1+\mathrm{e}^{t a}\right)(-1+x) k_{D}}, k_{D},-\frac{\mathrm{e}^{t a} x a}{\left(-1+\mathrm{e}^{t a}\right)(-1+x)}\right)\left|\frac{\mathrm{e}^{t a} a}{\left(-1+\mathrm{e}^{t a}\right)(-1+x)^{2} k_{D}}\right| \mathrm{d} k_{D} \mathrm{~d} a \tag{10}
\end{equation*}
$$

3 | NUMERICAL EXAMPLES

In this section, we show two examples where the theoretical results obtained in Section 2are applied. In the first example statistical independence between the RVs is assumed, thus the joint PDF of the random vector $\left(\mathrm{C}_{\mathrm{S}_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right)$ can be written as the product of the marginals

$$
f_{0}\left(C_{S_{0}}, k_{D}, k_{R}^{*}\right)=f_{C_{S_{0}}}\left(C_{S_{0}}\right) f_{k_{D}}\left(k_{D}\right) f_{k_{R}^{*}}\left(k_{R}^{*}\right)
$$

In the second example, we assume dependent RVs with a Gaussian distribution. In both examples we compute the 1-PDF of the solution $\mathrm{SP}, \mathrm{X}(\mathrm{t}, \omega)$, the mean and the variance with the both mappings indicated in Section 2 The mean and the variance are fundamental statistical functions that can be directly calculated from the 1-PDF. Let $f_{1}(x, t)$ be a given 1-PDF of a $S P, X(t, \omega)$, the mean and the variance in every time instant t are defined by

$$
\begin{align*}
\mu_{\mathrm{X}}(\mathrm{t}) & =\mathbb{E}[\mathrm{X}(\mathrm{t}, \omega)]=\int_{\mathbb{R}} \mathrm{x} f_{1}(\mathrm{x}, \mathrm{t}) \mathrm{dx}, \\
\sigma_{\mathrm{X}}^{2}(\mathrm{t}) & =\mathbb{E}\left[\mathrm{X}(\mathrm{t}, \omega)^{2}\right]-\mathbb{E}[\mathrm{X}(\mathrm{t}, \omega)]^{2}=\int_{\mathbb{R}} \mathrm{x}^{2} \mathrm{f}_{1}(\mathrm{x}, \mathrm{t}) \mathrm{dx}-\mu_{\mathrm{X}}(\mathrm{t}) . \tag{11}
\end{align*}
$$

In both examples we show how the chosen transformation significantly affects the computational time needed to calculate the 1-PDF.

3.1 | Numerical Example 1. Independent RVs

We consider the randomized kinetic model described in 4] and we chose the following independent probability distributions for the input parameters

- $\mathrm{C}_{\mathrm{S}_{0}}(\omega)$ has a truncated Gaussian distribution with mean 0.01 and standard deviation 0.005 on the interval $\mathrm{T}=[0,0.015]$, i.e., $\mathrm{C}_{\mathrm{S}_{0}}(\omega) \sim$ $N_{T}(0.01,0.005)$. This selection is motived by the previous contribution ${ }^{11}$, where the deterministic kinetic model is constructed under the condition $0<\mathrm{C}_{\mathrm{s}_{0}}<0.015$.
- $k_{D}(\omega)$ has a Gamma distribution with parameters 20 and 15 , i.e., $k_{D}(\omega) \sim G(20,15)$.
- $k_{R}^{*}(\omega)$ follows a Beta distribution with parameters 15 and 20 , i.e., $k_{R}^{*}(\omega) \sim B(15,20)$.

We have chosen the distributions of the $\mathrm{RV} \mathrm{k}_{\mathrm{D}}(\omega)$ and $\mathrm{k}_{\mathrm{R}}^{*}(\omega)$ taking into account only the positiveness restriction of both parameters. All the computations have been carried out using the Mathematica ${ }^{\circledR}$ software. We have calculated the 1-PDF of the solution $\operatorname{SP}, \mathrm{X}(\mathrm{t}, \omega)$, with the both mapping, $f_{1}^{1}(x, t)$ and $f_{1}^{2}(x, t)$ for different time instants $t \in\{0.1,0.2, \ldots, 1\}$. In Figure 2 we observe that the 1-PDF is practically the same in both cases. Although theoretically $f_{1}^{1}(x, t)$ and $f_{1}^{2}(x, t)$ match, due to numerical errors they slightly differ. We use the L^{1}-norm to measure, for each t fixed, this difference

$$
\begin{equation*}
e_{t}=\int_{\mathbb{R}}\left|f_{1}^{1}(x, t)-f_{1}^{2}(x, t)\right| \mathrm{d} x . \tag{12}
\end{equation*}
$$

In Table 1 we collect the values of this norm at different time instants. On the other hand, in Figure 2 we observe that both the mean and the variability of the distribution increase over the time. This behaviour is in agreement with the expectation and the variance plotted in Figure 3 The computational time needed for the calculation of the 1-PDFs, for each time instant, is shown in Figure 4 We observe that the computational time is approximately 26 times greater for the first mapping than for the second one, given the complexity of the expression of the 1-PDF obtained in equations 8 and 9 compared with the formula obtained in 10 . Notice that, for the calculation of the involved integrals we have used the command NIntegrate and the "QuasiMonteCarloMethod" with "MaxPoints $\rightarrow 200000$ ", implemented in Mathematica ${ }^{\circledR}$.

t	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
e_{t}	0.023889	0.025619	0.017179	0.016514	0.017891	0.012177	0.019279	0.013842	0.017829

TABLE 1 Difference between the 1-PDFs, $f_{1}^{1}(x, t)$ and $f_{1}^{2}(x, t)$, for different time instants $t \in\{0.1,0.2, \ldots, 1\}$. This difference has been measured via the L^{1}-norm defined in 12. Numerical Example 3.1

3.2 | Numerical Example 2. Dependent RVs

In contrast to Example 3.1 in this numerical example we consider that $C_{S_{0}}(\omega), k_{D}(\omega)$ and $k_{R}^{*}(\omega)$ are dependent random variables. We assume that the random vector $\left(\mathrm{C}_{\mathrm{S}_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right.$) has a truncated Gaussian distribution on the region $\mathrm{T}=[0,0.015] \times[0,1] \times[290,310]$, $\left(C_{S_{0}}(\omega), \mathrm{k}_{\mathrm{D}}(\omega), \mathrm{k}_{\mathrm{R}}^{*}(\omega)\right) \sim \mathrm{N}_{\mathrm{T}}(\mu, \Sigma)$, being μ and Σ the mean and the variance-covariance matrix, respectively, given by

$$
\mu=\left(\begin{array}{c}
0.01 \\
0.5 \\
300
\end{array}\right), \quad \Sigma=\frac{1}{200}\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 10 & 1.4 \\
1 & 1.4 & 200
\end{array}\right)
$$

In Figure 5 the 1-PDFs of the solution $\mathrm{SP}, \mathrm{X}(\mathrm{t}, \omega)$, for each mapping, have been plotted. This graphical representation has been done for different time instants $t \in\{0.1,0.2, \ldots, 1\}$. We observe that, as in the previous example, both 1-PDF practically match, being the longer the time, the greater the expectation and the variability. As in Example 3.1 to highlight the numerical differences in the calculation of both 1-PDFs, $\mathrm{f}_{1}^{1}(\mathrm{x}, \mathrm{t})$ and $f_{1}^{2}(x, t)$, in Table 2 we show the values of the L^{1}-norm given in 12 at different time instants $t \in\{0.1,0.2, \ldots, 1\}$. In this case, the differences are smaller perhaps because of the probabilistic dependence assumed for model parameters. The behaviour agrees with the expectation and the variance represented in Figure6 The computational time needed for the calculation of the 1-PDFs, for each time instant, is shown in Figure 7 In this case, the computational time, in seconds, to compute the 1-PDF with the first mapping is also approximately 26 times greater than with the second mapping considered in Section 2 To calculate the integrals in formulas 8 and 10, we also have used the command Nintegrate and the "QuasiMonteCarloMethod" with "MaxPoints $\rightarrow 200000$ ", implemented in Mathematica ${ }^{\circledR}$ software.
$\left.\begin{array}{cccccccccc}\mathrm{t} & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9\end{array}\right] 1$

TABLE 2 Difference between the 1-PDFs $f_{1}^{1}(x, t)$ and $f_{1}^{2}(x, t)$ for different time instants $t \in\{0.1,0.2, \ldots, 1\}$, this error has been calculated from formula 12. Numerical Example 3.2

FIGURE 2 1-PDF of the solution $\mathrm{SP}, \mathrm{X}(\mathrm{t}, \omega)$ for different time instants $\mathrm{t} \in\{0.1,0.2, \ldots, 1\}$. Top: 1-PDF calculated from expressions 8 and 9 (First mapping); Bottom: 1-PDF calculated from expression 10 (Second mapping). Numerical Example 3.1

4 | CONCLUSIONS

In this paper we have obtained a full probabilistic description of the solution stochastic process of a particular randomized kinetic model. The analysis have been done via the computation of the first probability density function of the solution stochastic process. We have obtained two equivalent expressions for the first probability density function. With this aim we have applied the random variable transformation technique to two different mappings. Despite both representations of the first probability density functions are valid, the computations reveal that there are significant differences regarding the computational time required to carry out calculations from both expressions. Therefore, the choice of the mapping required to apply the Random Variable Transformation technique to compute the first probability density function is a key point to save computational time in the mathematical expressions where the first probability density function is involved.

FIGURE 3 Expectation (left), $\mu_{X}(\mathrm{t})$, and variance (right), $\sigma_{X}^{2}(\mathrm{t})$, of the solution $\mathrm{SP}, \mathrm{X}(\mathrm{t}, \omega)$, in the time interval $[0,1]$. Numerical Example 3.1

FIGURE 4 Computational time (in seconds) needed for the calculation of the 1-PDFs, first mapping in red colour and second mapping in blue colour, for every time instant $t \in\{0.1,0.2, \ldots, 1\}$. Numerical Example 3.1

ACKNOWLEDGMENTS

Removed by authors for review process

Author contributions
All authors contributed equally to this work.

Conflict of interest

The authors declare no potential conflict of interests.

FIGURE 5 1-PDF of the solution $S P, X(t, \omega)$, for different time instants $t \in\{0.1,0.2, \ldots, 1\}$. Top: 1-PDF calculated from expressions 8 and 9 (First mapping); Bottom: 1-PDF calculated from expression 10 (Second mapping). Numerical Example 3.2

References

1. Milek J. Estimation of the kinetic parameters for $\mathrm{H}_{2} \mathrm{O}_{2}$ enzymatic decomposition and for catalase deactivation. Brazilian Journal of Chemical Engineering, 35(3) 995-1004 (2018). Doi: 10.1590/0104-6632.20180353s20160617.
2. Leeuwen PW. Homogeneous Catalysis: Understanding. Springer Science \& Business Media, 2006.
3. Casabán MC, Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD, Villanueva, RJ Computing probabilistic solutions of the Bernoulli random differential equation. Journal of Computational and Applied Mathematics, 309, 396-407 (2017). Doi: 10.1016/j.cam.2016.02.034.

FIGURE 6 Expectation (left), $\mu_{\mathrm{X}}(\mathrm{t})$, and variance (right), $\sigma_{\mathrm{X}}^{2}(\mathrm{t})$, of the solution $\mathrm{SP}, \mathrm{X}(\mathrm{t}, \omega)$, in the time interval $[0,1]$. Numerical Example 3.2

FIGURE 7 Computational time (in seconds) needed for the calculation of the 1-PDFs, first mapping in red colour and second mapping in blue colour, for every time instant $\mathrm{t} \in\{0.1,0.2, \ldots, 1\}$. Numerical Example 3.2
4. Cortés JC, Navarro-Quiles A, Romero JV, Roselló MD A probabilistic analysis of a Beverton-Holt type discrete model: Theoretical and computing analysis. Computational and Mathematical Methods, 1:e1013, 1-12 (2019). Doi: 10.1002/cmm4.1013.
5. Soong TT Random Differential Equations in Science and Engineering. Academic Press, New York, 1973.
6. de Bruijin NG, Asymptotic Methods in Analysis. Dover Books in Mathematics, 2003.

AUTHOR BIOGRAPHY

empty.pdf

Author Name. This is sample author biography text this is
sample author biography text this is sample author biography text this is sample author biography text this is sample author biography text this is sample author biography text this is sample author biography text this is sample author biography text this is sample author biography text.

How to cite this article

[^0]: \dagger Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions.
 ${ }^{0}$ Abbreviations: IVP, initial value problem; PDF, probability density function; RV, random variable; RVT, Random Variable Transformation technique; SP, stochastic process

