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Resumen

La predicción de la demanda eléctrica es uno de los procesos más importantes en el sector
energético. Desde la operación de los sistemas hasta la gestión de compras y ventas de enerǵıa
en los distintos mercados existentes, predecir bien el consumo es vital para evitar problemas
como congestiones en las redes que pueden llegar a causar desabastecimientos o para evitar
importantes pérdidas económicas como consecuencia de planificar mal las compras de los agentes
en los mercados mayoristas. En este TFM se plantea un modelo de predicción de la demanda
eléctrica para administraciones públicas a partir de una descomposición en tipos de consumo y
la aplicación de redes neuronales artificiales (ANN). Normalmente, todas las administraciones
suelen contar con una cierta tipoloǵıa de tipos de consumo; iluminación pública, oficinas, colegios,
semáforos. . . etc, cuya desagregación puede ser útil para fragmentar el problema y observar
patrones que sean más fácilmente predecibles. La metodoloǵıa se aplica al caso de estudio del
Ayuntamiento de Valencia. Se dispone de datos reales de los consumos municipales para el
periodo de 2017 y 2018. Estos consumos se van a clasificar por tipos y se van a tratar para
posteriormente facilitar el proceso de entrenamiento de las redes neuronales y que estas ofrezcan
la predicción más acertada posible. La predicción de cada uno de los tipos de consumo se
hará por separado, dado que cada uno depende de unos inputs diferentes. Posteriormente, se
agregarán todas las predicciones individuales para obtener una predicción global del consumo del
ayuntamiento de Valencia.

Palabras Clave: Demanda eléctrica, Redes Neuronales Artificiales, Administración pública,
Valencia, Predicción, Eficiencia, Mercado eléctrico.
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Resum

La predicció de la demanda elèctrica és un dels processos més importants en el sector energètic.
Des de l’operació dels sistemes fins a la gestió de compra i venda d’energia en els diferents mercats
existents, predir bé el consum és vital per a evitar problemes com congestions en les xarxes
que poden arribar a causar desprovëıments o per a evitar importants pèrdues econòmiques a
conseqüència de planificar malament les compres dels agents en els mercats majoristes. En aquest
TFM es planteja un model de predicció de la demanda elèctrica per a administracions públiques
a partir d’una descomposició en tipus de consum i l’aplicació de xarxes neuronals artificials
(ANN). Normalment, totes les administracions solen comptar amb una certa tipologia de tipus de
consum; il·luminació pública, oficines, col·legis, semàfors. . . etc, la desagregació dels quals pot
ser útil per a fragmentar el problema i observar patrons que siguen més fàcilment predictibles.
La metodologia s’aplica al cas d’estudi de l’Ajuntament de València. Es disposa de dades reals
dels consums municipals per al peŕıode de 2017 i 2018. Aquests consums es classificaran per
tipus i es tractaran per a posteriorment facilitar el procés d’entrenament de les xarxes neuronals
i que aquestes oferisquen la predicció més encertada possible. La predicció de cadascun dels tipus
de consum es farà per separat, atés que cadascun depén d’uns inputs diferents. Posteriorment,
s’agregaran totes les prediccions individuals per a obtindre una predicció global del consum de
l’ajuntament de València.

Paraules clau: Demanda elèctrica, Xarxes Neuronals Artificials, Administració pública, València,
Predicció, Eficiència, Mercat elèctric.
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Abstract

Electricity demand forecasting is one of the most important processes in the energy sector. From
the operation of the systems to the management of energy purchases and sales in the different
existing markets, predicting consumption is vital to avoid problems such as grid congestion
that can lead to shortages or to avoid significant economic losses as a result of poorly planned
purchases by agents in wholesale markets. In this TFM we propose a model for predicting
electricity demand for public administrations based on a decomposition into types of consumption
and the application of artificial neural networks (ANN). Usually, all administrations have a
certain typology of consumption types; public lighting, offices, schools, traffic lights, etc., whose
disaggregation can be useful to lighten the problem and observe patterns that are more easily
predictable. The methodology is applied to the case study of Valencia City Council. Real data
on municipal consumption is available for the period 2017 and 2018. These consumptions are
going to be classified by type and treated to subsequently facilitate the training process of the
neural networks so that they offer the most accurate prediction possible. The prediction of each
type of consumption will be done separately, given that each one depends on different inputs.
Subsequently, all the individual predictions will be aggregated to obtain a global prediction of
the consumption of Valencia City Council.

Keywords:Electricity demand, Artificial Neural Networks, Public administration, Valencia,
Forecast, Efficiency, Electricity market
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REE Red eléctrica de España

SC Schools

SP Specialist professor

TH Threshold

TL Traffic lights and tunnel ventilation systems

10



Design and analysis of artificial neural networks for the prediction of the electricity demand of
public administrations based on type of consumption decomposition

Part I

MEMORY

11



Design and analysis of artificial neural networks for the prediction of the electricity demand of
public administrations based on type of consumption decomposition

1 Introduction and objectives

1.1 Motivation

For decades now, cities have been the center of work and social activity, as well as the place
where most of the resources necessary for life are located: hospitals, universities, administration
centers, etc. This make cities places with a high population density and, by 2050, it is estimated
that over 65% of the world’s population will live in cities (Urban Climate Change Research
Network (UCCRN), 2018). As a consequence, cities, which only occupy around 2% of the planet’s
surface, are energy sinks, consuming two thirds of the world’s energy and being responsible
for 70% of carbon dioxide emissions (C40 cities, 2021; Wei et al., 2021). That high energy
consumption is also present for municipalities, which own facilities like schools, offices and health
centres that have to offer services to a huge population. Municipalities also own public lightning,
traffic lights and other infrastructures that in big cities can represent a considerable share of the
energy consumption for the municipality. This consumption constitutes an important economic
expense for municipalities and an important part of their budgets (Ajuntament de Barcelona,
2020; Ajuntament de València, 2021; Ayuntamiento de Madrid, 2020). For this reason, some
municipalities have started to procure electricity in wholesale markets to eliminate intermediary
costs (Cambranos, 2019; Diario de Rivas, 2018; Radiotelevisión del Principáu d’Asturies, 2014).
Others had more ambitious plans and have created municipal electricity retail companies not to
only purchase electricity for municipal loads but also to offer this service to residential consumers
(Barcelona Enerǵıa, 2021; Bristol Energy, 2021; Eléctrica de Cádiz, 2021; Hamburg energie,
2021). However, buying electricity in the wholesale markets has a large set of associated risks
(Bartelj et al., 2010; Boroumand & Zachmann, 2012; Ojanen, 2002). One of the most important
are penalties due to unbalances between the electricity bought and the actually consumed.
(Alcázar Ortega et al., 2019; Cabello Garćıa, 2020; Carbajo, 2007). These imbalances can lead to
important economic losses, as will be discussed later on this document.

1.2 Background

One of the methods to forecast electricity demand that has gained most popularity in the last
years is Artificial Neural Networks (ANN) (Kumar et al., 2013; Li et al., 2015; Zhang et al., 1998).
ANN’s are a subset of machine learning and are at the heart of deep learning algorithms. Their
name and structure are inspired by the human brain, imitating the way that biological neurons
signal to one another (IBM Cloud Education, 2020). ANN can be trained with past input and
output data and then forecast future outputs given only the inputs. Also, one strategy followed by
some authors is dividing the electricity consumption by end uses (Farinaccio & Zmeureanu, 1999;
Ghisi et al., 2007; Murthy et al., 2001). In (Escrivá-Escrivá et al., 2014) and (Escrivá-Escrivá et
al., 2011), authors propose a method that combine the ANN strategy with dividing consumption
into end uses. Some of the end uses considered are Heat pumps, only chillers systems, public
lightning and some others. Nevertheless, this end-use decomposition is very difficult to apply to
big consumers like municipalities, since they count on a lot of consumption points whose end uses
are wide. In practice, conducting an end-use decomposition to a whole municipality would result
in a deep study of the end uses that every building or municipal facility has and a big expense
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on measurement devices and a good data acquisition system. Hence, the point is obtaining a
methodology that can offer as good results as combining end-use decomposition with ANN that is
applicable to facilities which can have a lot of consumption points of different nature. To achieve
this, in this TFM, a methodology to forecast municipalities’ electricity demand based on the
classification of Metered Supply Points (MSP) and the application of Artificial Neural Networks
(ANN) is proposed. MSP classification is a similar approach to end use decomposition but instead
of splitting consumption into end uses, consumption is divided by groups of MSP that share a
similar load curve and similar types of day and are affected by the same variables (temperature,
sunset time...etc). The most common groups of MSP in municipalities are public lightning,
public offices and working buildings and schools, among others. Once municipality consumption
is divided into groups of MSP, ANN’s are applied to each of the groups. By performing the
classification before the ANN application, the learning process is easier and forecast results are
improved.
The novelty of this work lies in the following aspects:

• The methodology is applied to an actual case of study and can be replicated to forecast
other municipalities’ electric consumption. That could lead to public administrations
having a deeper knowledge of their future consumption, facilitating demand-side strategies
or even buying their own electricity in the wholesale markets, getting the corresponding
savings and avoiding possible dependence on third parties.

• Municipality MSP are classified according to their load curve shape, variables influencing
consumption and the different types of day.

• This classification is easier to perform for municipalities, since it offers good results without
spending resources on a more complex measurement systems that is able to measure the
consumption of all the end uses. Only a smart meter is required for every MSP. Since in
most of the cases smart meters are mandatory, the measurement system doesn’t represent
an extra investment for the municipality.

• The methodology offers a big potential for the future, in the big data era, when all
consumption will be monitored. The highest the data availability, the better performance is
offered by the method, since the classification process can be done more precisely, improving
ANN’s training process and results.

1.3 Objectives

The objective of this TFM is proposing an energy forecast method replicable for municipalities
that offers high precision without spending a lot of resources on a complex data acquisition
system. The methodology is suitable for medium and large municipalities, with a number of MSP
high enough to have reproducible consumption patterns. If municipality is small, consumption
tend to be very variable and can have random behaviours that can make a forecast methodology
difficult to success. To reach this general objective, the following set of specific objectives has
been fixed:

• Study the evolution of the energy forecast methods.
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• Describe the most important working principles of the wholesale market of Spain

• Explain how ANN work

• Apply the strategy described above to a real case of a study and evaluate the performance

• Draw some conclusions and analyse further work that can be done.

The methodology is used to forecast the electricity demand of a whole year of the municipality
of Valencia. To do so, 525 actual load curves provided by the Valencia Council are used. The
load curves represent a whole year consumption from the 2017-2018 period.

1.4 Organization of the document
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2 Electricity Market

2.1 The MIBEL

Since the methodology that is going to be developed is going to be applied to a case study in
Valencia, Spain, in this section, the basics of the Mercado Ibérico de Electricidad (MIBEL) are
going to be explained. If the methodology wants to be applied to other countries different to
Spain and Portugal, other markets should be studied. The following figure illustrates the different
market operators that run markets across Europe (Nord Pool, Epex Spot and OMIE). The little
icons are the different system operators existing in Europe.

Figure 1: Different market and system operators across Europe (Magnus commodities, 2022).
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Currently, the Spanish electricity markets are included in the Iberian Electricity Market, the
MIBEL. The MIBEL is a set of organized and unorganized markets common for Spanish and
Portuguese agents in which they have the possibility to carry out transactions or electricity
contracts and trade different financial products (Alcázar Ortega et al., 2019).
The negotiation process for the constitution of MIBEL started in 1998 and subsequently, in
2001, the cooperation protocol was signed between the Spanish and Portuguese authorities for
its creation. Three years later, the Santiago de Compostela agreement was signed, the terms
of which were revised in 2006 at the XXII Luso-Spanish summit in Badajoz and in 2008 with
the signing of the Braga agreement. MIBEL became fully operational on July 1, 2007 (MIBEL,
2021). With the operation of MIBEL, the aim is to equalize the electricity legislation in both
countries, thus facilitating transactions, movements and actions of the companies and also to
achieve more competitive prices for consumers.
In the future, the aim is to achieve a common European electricity market, and the European
Commission is laying the foundations and setting the guidelines. Currently there is an alliance
between several countries in Europe that are interconnected (PCR Alliance) and that use a
unique algorithm called EUPHEMIA that calculates and assigns the daily market price in all the
countries of the alliance maximizing social welfare and guaranteeing objectivity and transparency.
The initiative started in 2009 but the cooperation and co-ownership agreement was signed by all
RCP members in June 2012. The countries forming this alliance are: Austria, Belgium, Croatia,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Slovakia, Slovenia, Spain, Ireland,
Italy, Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania,
Sweden, Switzerland and the United Kingdom (OMIE, 2020).

Figure 2: Countries joining the PCR alliance (Gestore mercati energetici, 2021)

In spain and in General in the electricity systems, two kind of markets exist: the retail market
and the wholesale markets. On the one hand, the wholesale markets are those in which big
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amounts of energy are exchanged. These exchanges are done between big energy producers
or generators and big consumers. Big consumers are usually retail companies who buy energy
in the wholesale markets and then sell it to the final consumers. Actually, every consumer is
able to buy energy in the wholesale markets. However, to do so they have to pay the so-called
guarantees, a payment done to the Spanish market operator (OMIE), in order to ensure that the
market participants will be able to respond economically to the undertaken obligations. That
guarantees are high so, in practice, buying electricity in the wholesale markets is only an option
for big consumers. These markets are common for Spain and Portugal. On the other hand, the
retail market enables the exchange of little amounts of energy, usually between energy retailers
and final consumers. This market is different for the different countries. Also, in this market
consumers negotiate a price for the energy and they pay what they finally consume. Nevertheless,
in the wholesale markets, buyers pay previously for a precise quantity of energy. When the energy
is finally consumed, differences between the energy bought and the energy finally consumed
(imbalances) are settled (Alcázar Ortega et al., 2019). Imbalances will be explained in Section
2.4.2.

2.2 The wholesale market

2.2.1 Forward or futures market

The forward market is based on a daily session in which operations can be negotiated from 4
years to 2 days before the exchange. The manager of these markets is the Portuguese market
operator (OMIP), which in turn is divided into two entities: OMIP for the technical management
of trading and OMICLEAR for the economic management (clearings).
Each futures market session starts at 8:00 and ends at 18:30 and consists of three phases (OMIE,
2021):

- Pre-trading phase (8:00 - 9:00): brokers can only make inquiries.

- Negotiation phase (9:00 - 17:00): Agents make offers to buy and sell.

- Pre-close phase (17:00 - 18:30): As in the first phase, brokers can only make inquiries.

In the forward market, sellers and buyers make public their purchases and sales offers on an
electronic platform managed by OMIP. At the time of contracting a product on the forward
market, the quantity of energy to be traded, the date of delivery and payment of the energy and
the price to be paid for this energy are agreed upon. The products in the forward markets can
be both physically or financially settled:

- Physical settlement: implies that on the day of exchange, the seller will deliver an amount
of energy to the buyer, who in turn will consume that energy.

- Financial settlement: implies that on the day of delivery, the buyer and seller will not
exchange any amount of energy, but will simply settle the differences between the price
negotiated in the futures market and the actual price of the energy on the day of execution
of the contract.
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The better the agents’ forecasts of the daily market price, the more efficient their operations in
the futures market will be. For example, if subject A buys 1 MWh from subject B for €1/MWh
on the futures market and at the time of delivery the daily market price is €2/MWh, subject A
has saved €1 per MWh.
However, no payment or collection is made on the date of the agreement, but only once the
energy has been delivered to the buyer. The futures contract, like any other contract, establishes
obligations, so those who sign them incur penalties in the event of non-compliance, as commented
above.

2.2.2 Daily market

The daily market, also known as pool, is managed by OMIE and offers to buy and sell energy
are made the day before the exchange.
The purchase and sale bids are included in a matching procedure, which determines a different
price for energy in each of the 24 hours of the following day, depending on the purchase and sale
bids accepted in each hour. Once the bids for each of the hours of the following day have been
submitted, OMIE orders the purchase bids from highest to lowest price and the sale bids from
lowest to highest. With this process, the demand is covered first with the cheapest bids and
then with the most expensive bids until the point where the supply and demand curves intersect.
Normally, at the lower part of the supply curve are producers that need to sell the energy they
produce due to the impossibility of shutting down or storing it, as is the case of nuclear power
plants. Plants such as pumped-storage hydroelectric plants would be located in a higher part
of the supply curve, as they can store their resource to produce energy at another time that is
more convenient for them.
The electricity market is a marginalist market; the point at which the curves intersect is the
market price for each hour, which implies that the market price is always that of the last accepted
bid, the most expensive generation one.

Figure 3: Supply-demand matching for any given hour.
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Bids to the right of the matching point do not enter the market. Generators that have bid above
the market price do not find a consumer to buy the power at that price. The same is true for
consumers if they have bid their purchase at a price below the market price.

2.2.3 Intraday market

Once the quantities to be exchanged and the price of energy for each hour of the day D has been
determined, buyers or sellers may notice changes in their energy predictions. In the intraday
market, new purchase and sale offers can be made after the close of the daily market to balance
the operations more accurately, thus avoiding deviations that can lead to significant costs. For
example, if a trader had bought 1 MWh and after the close of the daily market his predictions
show that 2 MWh will be consumed instead of the MWh he had previously calculated, the agent
can make a purchase offer in the intraday market to balance his mismatch.
Bids may be placed up to a few hours before the exchange, with several sessions being held after
the daily market: The following figure also shows the times for which trades are effective in

Table 1: Trading sequence in the intraday market (OMIE, 2021)

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

Opening of the session 14:00 17:00 21:00 01:00 04:00 09:00

Closing of session 15:00 17:50 21:50 01:50 04:50 09:50

Matching and publication 15:07 17:57 21:57 01:57 04:57 09:57

each of the sessions. For example, trades submitted in session 1, which opens at 14:00, will be
executed from 00:00 on day D until 23:00 on the same day D.
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Figure 4: Intraday market session scheduling horizon. Prepared by the authors on the basis of
(OMIE, 2021)

Prices in this market do not necessarily have to be more expensive than those of the daily market,
as they obey a matching system equal to that of the latter so that the difference will depend
exclusively on the purchase and sale bids made in one or the other market.
Apart from the intraday market by auction, there is a second option for adjusting bids, which
is the continuous contracting or Single Intraday Coupling (SIDC) market, which allows energy
to be traded continuously between different regions in Europe. This market currently includes
23 countries and allows adjustments to be made up to one hour before the delivery of energy.
Both the intraday and day-ahead markets are managed by OMIE. The SIDC is managed by all
market operators in its member countries.
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Figure 5: Current and expected members of the SDIC market.(Entso-e, 2021)

2.3 Wholesale market purchasers

In Spain, is considered that a qualified consumer is the one who is able to choose freely his
electricity provider and negotiate with him the economic conditions of his contract. Since the
year 2009, every consumer within the MIBEL is considered a qualified consumer. Hence, no
matter the volume of the annual energy consumed, they can acquire electricity either through a
electricity retailer or through the wholesale markets or even by signing a bilateral contract with
a provider outside the regulated market. However, as explained on Section 2.1, these options are
only profitable for large consumers.
In the last years, entities like municipalities have started to satisfy their own electricity demand
by purchasing on the wholesale markets, especially on the daily market. In Spain, some examples
of this are Aviles (Asturias) and Rivas Vaciamadrid (Madrid), with 79.000 and 86.000 inhabitants,
respectively. The first city started operating in the day-ahead market in 2014 and the second
did it in 2018. Both started acquiring the electricity for their most predictable consumption to
not incur in imbalances and once they had enough experience, they extended it to most of their
consumption points. Both cities have reported saving of around 20% a year from their initial
bills (Cambranos, 2019; Diario de Rivas, 2018).
Barcelona and Cadiz had more ambitious projects and they started municipal retail companies.
Barcelona, a 1,64 M inhabitants city is first city in Spain that created a new retail company,
Barcelona Energia, that provides electricity to the municipal consumption and 20,000 customers
through a public company, TERSA. The company buys the electricity and does the retail business
but also serves as a seller of the municipal generating infrastructure and has a program to help
its clients to install systems for self-generation. Barcelona does not offer cheaper prices but offers
a more transparent service with counselling to their customers.
Cadiz, with 116.000 inhabitants, has a municipal retail company too. Since the mid-20th century,
Eléctrica de Cádiz serves the municipal consumption and more than 60.000 customers. Its
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experience allows the company to provide competitive prices and services, which have recently
wined several prices regarding Energy Poverty and decentralised PV installations.
Other cities such as Pamplona and Palma de Mallorca have studied the possibility to create this
similar companies (Som energia, 2016). However, both projects have not been implemented yet
due to political and legal barriers.

2.4 Risks of the wholesale markets purchasers

Acquiring electricity in the wholesale markets is usually cheaper, since by doing it, no interme-
diaries like retailers are needed. Nevertheless, it has a set of associated risks that need to be
known in order to avoid problems like having important extra costs or losing the right to operate
in the market, which might lead to shortages.

2.4.1 Guarantees

In order to ensure the correct payment to the corresponding market agents, the Market Operator
and the System Operator require to every agent participating in the wholesale market to pay a
deposit called guarantees. Not fulfilling these payments, which are done weekly, can end up in
fees to the buyer and even its disqualification from the market.

2.4.2 Imbalances

Deviations are the difference between the energy that is scheduled in the different markets and
the energy that is actually produced or consumed in real time. There are always deviations, since
it is physically impossible for the system to generate or consume exactly what was scheduled
initially.
The system operator has to ensure that at all times the energy produced is equal to the energy
consumed, otherwise there could be problems with the frequency values of the grid and another
operation problems. To do this, market operator uses adjustment services offered in the operating
markets, which have a cost that the system has to pay. The cost of these adjustment services is
covered only by the agents that deviate in their predictions based on the system state. Deviations
can go against or in favour of the system:

1. In favour:
When the whole system is generating more energy than it consumes (surplus system) and
purchasers consume more energy than they bought on the market. Purchasers can also
deviate in favour of the system when it is consuming more energy than is generated (deficit
system) and they consume less than expected. In both situations, a contribution is made
to the generation-demand compensation in the system, so that the agents don’t receive any
penalty.

2. Against:
When the system is in surplus state, consumers consume less than expected and when
the system is in deficit state, consumers increase their consumption. In both cases, the
generation-demand gap increases, so agents are penalised.
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Table 2: Types of imbalances summarized. Own elaboration

System status Consumer action Type of imbalance Penalty

(compared to what they initially bought)

Surplus They consume less Against Yes

Surplus They consume more In favour no

Deficit They consume more Against yes

Deficit They consume less In favour no

3 Electricity load forecasting

3.1 Importance of electricity load forecasting

Forecasting models are widely used in different fields (Kuster et al., 2017a); For example, in
the finance area to forecast stock exchange movements or different indices of the stock markets
(Bianco et al., 2009), in business to schedule staff, manage inventory and predict demand
(Intergovernmental Panel on Climate Change, 2014), in medicine to monitor the spread of
diseases (Generous et al., 2014), and in meteorology for predicting weather.
In the electricity field, forecasting is esential and very used. Load forecasting can offer useful
information for utilities that they can use to make important decisions like purchasing or
generating electricity, switching loads or decisions on infrastructure development (Singh et al.,
2012a). Is considered specially important in the operation of power systems. Since system
operators need to schedule enough electricity to meet demand at every moment, accuracy of load
forecasts has considerable effects on the operational economies of the system. Indeed, operation
costs can be largely increased due to forecasting errors (either positive or negative)(Haida &
Muto, 1994).
Load forecasting is critically important when talking about large consumers or purcharsers
in the wholesale markets. As was discussed on Section 2.4.2, umbalances between the energy
bought and the actually consumed can be penalised if that umbalance goes against the system.
In (Mateo Barcos et al., 2020), a quantification of costs due to umbalances is done, assuming
different percentages of hourly imbalances from a retailer that is purchasing electricity in the
Spanish daily wholesale market. This calculation was done considering that every imbalance was
against the system, which is the type of imbalance that has economic penalties in the Spanish
electricity market (Alcázar Ortega et al., 2019).The study was done for the period from 2017 to
2018, so market prices were the ones from that period and therefore also cost overruns.
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Table 3: Volume of the hourly imbalances assumed (Mateo Barcos et al., 2020)

Hourly imbalances (%) Hourly imbalances (MWh)

5% 0,54

10% 1,09

15% 1,63

20% 2,18

25% 2,72

30% 3,26

35% 3,81

Figure 6: Effect of the assumed imbalances over costs (Mateo Barcos et al., 2020)

Figure 6 show that imbalances play an important role when managing energy acquisition in the
wholesale markets. As it can be seen, cost overrun can reach 500.000€ with hourly deviations
from the purchased energy of a 10%. Therefore, it is essential for municipalities to count on good
tools to forecast their demand, not only to avoid important losses, but also to plan demand-side
strategies (Moghaddam et al., 2011; Pina et al., 2012; Strbac, 2008).

3.2 Evolution of electricity load forecasting methods

Forecast methods have evolved a lot in the last decades, from simple methods to the application
of complex AI algorithms and hybrid method that mix different techniques.
In the equator of the XX century, as more and more electric appliances, such as electric iron, radio
and electric washer, were being invented and became popular, the forecasting problem gradually
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turned to be non-trivial. In 1940’s, it was observed that electricity demand was very importantly
affected by weather, especially because of the penetration of air conditioners. Because there
were no statistical software packages at that time, an engineering approach was developed to
manually forecast the future load using charts and tables. Some of those elements, such as
heating/cooling degree days, temperature-humidity index, and wind-chill factor, are inherited by
today’s load forecasting models. The similar day method, which derives a future load profile
using the historical days with similar temperature profiles and day type (e.g., day of the week
and holiday), is still used in many utilities’ operations centers. Indeed, is used in this TFM to
improve the performance of the forecast.
From the 1980s onwards, as computer applications started to appear and became popular in
within the engineering community, a significant amount of research was dedicated to long term
spatial load forecasting, which consist of predicting when, where and how much load growth will
occur. The forecasting horizon ranges from several years to several decades. These forecasts have
been widely used in transmission and distribution planning.
Later, short term load forecasting started to gain more and more importance. Researchers
first tried to apply statistical techniques, such as regression analysis and time series analysis.
Then Artificial Intelligence (AI) became one of the most discussed methods in the scientific
community(Hong, 2013). The models based on AI techniques, such as ANN, fuzzy logic, and
support vector machine, which are black-box models, are very used today and will be discussed
on the following section.

3.3 Currently used forecasting techniques

There are multiple methods used in the field of electricity load forecasting. Some of the most
used are the Autoregressive Integrated Moving Average (ARIMA), the Autoregressive Moving
Average (ARMA), linear and multiple regression methods, Support Vector Machines (SVM) and
Artificial Neural Networks (ANN). ANN will be explained deeper on Section 4.

• ARMA and ARIMA. These methods were introduced in 1970 (Box et al., 2015). The basic
ARMA model is composed of an autoregressive model (AR) and a moving average model
(MA). The autoregressive model is a linear regression of the current value based on one or
more previous values. Just as an AR, the MA is a linear regression, at the difference that it
regresses current values against the white noise or error of one or more past values (Kuster
et al., 2017b). However, this model can only be accurate if the time series is stationary.
If the process is dynamic, then ARIMA is used and transformation of the series to the
stationary form is done first (Singh et al., 2012b).

• Regression analysis. This method is present in a lot of forecasting processes. The dependent
variable or output can be defined by other independent variables. Linear regression links
the output to the independent variable by the simple linear model:

y = β0 + β1 · x + ϵ (1)

Where β0, β1 and ϵ are the intercept and the slope of the line and the random ”error”,
respectively (Kuster et al., 2017b). The difference between simple and multiple linear
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regression is the number of variables introduced as independent variables ranging from one
variable in the simple model to several in the multiple.

• Support vector machines.This method was firstly introduced in 1995 (Cortes & Vapnik,
1995). The power of an SVM stems from its ability to learn data classification patterns
with balanced accuracy and reproducibility. Although occasionally used to perform re-
gression, SVM has become a widely used tool for classification, with high versatility that
extends across multiple data science scenarios, including brain disorders research. An
SVM decision function is more precisely an optimal “hyperplane” that serves to classify
observations belonging to one class from another based on patterns of information about
those observations called features. That hyperplane can then be used to determine the
most probable label for unseen data (Pisner & Schnyer, 2020).

3.4 Error measures used in the forecasting methods

In order to evaluate the performance of a forecast method, different kind of error measurements
are used. A wrong or incomplete selection of the error measure can lead to a inaccurate evalua-
tion of the forecasting results. Usually, at least 2 error measures are chosen to perform a good
performance analysis. In this section, different kind of error measures are explained (Shcherbakov
et al., 2013). They can be divided in the following groups:

Absolute Forecasting Error: The first group is based on the absolute error calculation.
They are all based on the calculation of the error eh:

et = (yt − ŷt) (2)

Where:

- yt is the measured value at time t.

- ŷt is the forecasted value at time t.

This group of errors include, among others, the Mean Absolute Error (MAE), the Mean Square
Error (MSE) and the Root Mean Square Error (RMSE). These errors are very used in various
fields. However, they have the following limitations:

• Scale dependency (Hyndman & Koehler, 2006). If the forecast includes objects with
different scales, absolute error can’t be applied to obtain reliable results.

• High influence of anomalous data. If data contains errors like extremely high or low values,
absolute error will offer a very altered value.

Measures based on percentage errors. These errors are all based on the calculation of pt:

pt = |yt − ŷt|
yt

(3)

This is the most used kind of error in the forecasting field. Among this group, the most extended
one is the Mean Absolute Percentage Error (MAPE), which is one of the errors used in this TFM,
as it was stated on 5. Its formula is presented on Equation 7. The limitations of the MAPE are
the following ones:
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• A division by zero can appear when yt (the actual value of the magnitude) is zero.

• Non-symmetrical problem. The error values are different whether the forecasted value is
bigger or smaller than the actual. In fact, predicted values (ŷt) below the actual one (yt)
can only offer a maximum MAPE of the 100%. However, values above the actual one are
limitless (Goodwin & Lawton, 1999).

• Magnitude dependency. Deviations from the actual value of little importance in the
forecasting process can offer a big MAPE that doesn’t reflect reality. For example, if daily
energy consumption wants to be predicted, it may happen that, for some energy uses, like
lightning, that some hours in the day have consumption values near to 0, as it can be seen:
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Figure 7: Typical lightning daily consumption profile.

As it can be seen in Figure 7, consumption during day hours is close to zero, while during the
night, consumption reaches its maximum. The MAPE for the whole day, with the predicted
value, is represented in the next figure:
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Figure 8: Behaviour of the MAPE for the evaluation of a daily forecast in PL.

Even though errors during the day hours are almost insignificant in terms of volume of energy,
MAPE is higher during these hours than during the night. That could lead to think that the
forecast is poor, which might be far from reality. Nevertheless, when calculating the MAPE for
longer periods of time, like for example a whole week, this effect reduces its influence.

Scaled error: Scaled errors are based on the calculation of qt:

qt = |yt − ŷt|
1

n−1
∑n

i=2 |yi − yi−1|
(4)

Within this group, two main errors can be found; the Mean Absolute Scaled Error (MASE),
which is calculated as the mean of qt for the time horizon of the forecast evaluated and the Root
Mean Scaled Error (RMSSE):

RMSSE =
√

meani=1,n(q2
i ) (5)

Besides the MASE and de RMSSE, EME (Equation 8) could also be included in the category
of scaled errors. This measure has been found in (Escrivá-Escrivá et al., 2011; Escrivá-Escrivá
et al., 2014). EME is similar to qt and is especially useful for the field of load forecast, since it
calculated the forecast error taking into account the volume of the energy consumed during the
time horizon of the forecast. That way, the issue that occurs on the calculation of the MAPE
(Figure 8), doesn’t take place with the EME. The main problem of the scaled errors is that,
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again, division by zero can occur. From all the error explained in this section, MAPE and EME
have been chosen. MAPE is going to be used since most of researchers have measured the error
of their forecast methodologies with it, so it would be easier to compare results of different
methodologies with the one presented on this TFM. On the other side, EME has been chosen
because it takes into account the volume of the energy consumed during the time horizon of the
forecast, being a good support to the MAPE measure.
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4 Artificial Neural Networks (ANN)

In this chapter, a basic explanation of how neural networks work is done. The explanation is
dedicated to the most common type of ANN ensemble in the field of electric forecasting that is
also the one used in this TFM; the multilayer perceptron (MLP) feed forward network.
The MLP consists of multiple layers of neurons that interact with each other using weighted
connections. There is always an input and output layer, which are connected by a certain number
of hidden layers, usually one or two. There are no interconnections within a layer. However, all
neurons in a layer are fully connected to neurons in adjacent layers. Weights measure the degree
of correlation between the input of a neurons and the output (Pal & Mitra, 1992). Figure 9
illustrates the shape of a MLP ANN:

Figure 9: Scheme of a three-layer neural network with 3 neurons in the hidden layer. Own
elaboration

The basic unit of an ANN ensemble is the artificial neuron, schematically represented in Figure
10:
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Figure 10: Example of a neuron within a ANN ensemble. Own elaboration

In the example, input layer and output layer are represented by a superscript ranging from (0)
for the input layer to (1) for the output layer. The neuron receives input data from a certain
number of input nodes, processes it internally and produces a response or output. The processing
is usually done in two stages: first, the input values are linearly combined and then the result is
used as the argument of a nonlinear function called the activation function. Every connection
between input node and neuron has a weight (wi,j) and every neuron has a certain bias associated
(bi). Hence, the output of a neuron is calculated as the weighted sum of the inputs passed through
the activation function, as follows:

an
i = f

 N∑
j=0

wi,j · an−1
i + bi

 (6)

where:

- an
i : Output of the ith neuron of the n layer

- wi,j : Weight of the connection bewtween the ith and jth neurons

- bi: Bias of the ith neuron of the n layer

- N: number of neurons in the n-1 layer

The activation function must be a nondecreasing and differentiable function; the most common
choices are either the identity function (y = x) , or the sigmoid function:

Figure 11: Sigmoid function.(Næs et al., 1993)
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Since the range of the sigmoid function is [0,1], using it is a guarantee that the output of this
unit will always be between 0 and 1. Also, as the sigmoid function is a non-linear function, the
output of this unit would be a non-linear function of the weighted sum of inputs Saeed, 2021.
Once the basic working principle of neurons is explained, it is important to know how are weights
and biases calculated, since these are the parameters output of the network will depend on. This
is done through a process called training. In this process, a set of experimental records in which
inputs and outputs are known is used. This set is called the training set. Inputs are presented to
the input layer of the network. This data is then multiplied by a weighting factor and fed forward
to the nodes of the first hidden layer. The weighted outputs from the input layer are summed
and transformed by the activation function, also called transfer function, as Equation 6 shows.
The resultant output is also weighted and fed to the subsequent layer and so on. The output
from the output layer represent the forecast of the dependent variables of the model. In this case,
the electricity consumption. Then, outputs of the model are compared with the actual values,
obtaining the prediction error from which a performance function (often the mean squared error)
is derived. The performance function is used by a backpropagation training algorithm to adjust
the weights and biases applied at the connections between nodes and to the neurons in each
layer. By iteratively presenting the training set to the network and adjusting the weight and
biases matrix, the performance function can be minimised. In this way, the network learns the
relationships between ingredients and properties and develops a model capable of predicting the
properties of any formulation/process problem lying within the model space (Plumb et al., 2005).
The most common backpropagation training algorithm and the one used in this TFM is the
Levenberg-Marquardt (Moré, 1978; Ranganathan, 2004).
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5 Methodology

The methodology followed to forecast the electricity consumption of a municipality consists of
three parts and it’s summarized in the next figure:

Figure 12: Methodology block diagram
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1. Data collection, treatment and classification.

First, it is necessary to obtain as much consumption data as possible from at least one year, in
order to appreciate the seasonal behaviour of demand so that ANN’s can be trained properly.
Granularity of data is also important. For the method proposed, at least a one-hour granularity
is required. Also, consumption data should be as specific as possible. That means, having a
repository of load curves from specific MSP instead of having consumption inventories that put
together data from several consumption points. Furthermore, is necessary to classify every load
curve available of every MSP by groups. As noted above, this groups should share a similar
consumption scheme and variables influencing consumption. Also, the different types of day
should be the same. In municipalities, some of this groups are usually public lightning, public
offices, working buildings and schools, among others. Also, it is important to collect data from
the potential inputs that might be introduced to the model. Some of these potential inputs are
hourly temperatures, previous electricity consumption and sunrise and sunset time for the period
of analysis. With this data, other inputs can be set, like daily average temperature.
Once data is collected, a removal of anomalous data should be done, with the aim of excluding
from the analysis noise that could affect the performance of the forecast. Examples of anomalous
data are sudden values drops to zero or extremely high values.
After collecting and filtering the available data, consumption data must be classified into different
type of days for every group of MSP. A typical type of day classification consists of treating
weekdays and weekends separately. However, depending on the MSP group, other types of day
might be useful for the analysis. This classification should be done by observing and analysing
the consumption patterns for every group. In figure 13, consumption behaviour for three different
types of days is shown.
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Figure 13: Type of day consumption daily profiles for an example MSP group
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Also, it can be seen that daily load curves of the same type of day are quite different in magni-
tude. Since all the days of the year of the same type of day have been plotted, magnitude of
consumption changes depending on the season. Climate equipment consume more in cooling
mode (summer) than in heating mode. That’s why magnitude of consumption is different. That
way, even though the shape of the daily load curve is the same, the amount of energy consumed
increases or decreases depending on the moment of the year.

2. Design of ANN’s for every MSP group.

Step two consists of the design of ANN’s for every MSP group. The first part of the ANN design
is the preselection of inputs. Since almost all of the MSP groups represent different types of
buildings, most inputs correspond to external temperatures and previous electricity consumption
as both have a major correlation with future consumption (Roldán-Blay et al., 2013). Some
authors also use outdoor solar radiation (Mena et al., 2014). In (Akarslan & Hocaoglu, 2018),
the actual date, time and electricity consumption are employed as inputs. Nevertheless, to check
whether the selected inputs for every MSP group would introduce useful information to the model
or not, the relation between the possible inputs and electrical consumption has been analysed.
For example, in figure 14, the influence of the electrical consumption of the previous hour to the
hour of prediction (t) and the temperature at t over consumption is shown for an example MSP
group. We can see that consumption at t and t-1 are linearly related. On the other side, we
can also appreciate the influence of cooling and heating systems over electrical consumption. As
temperature increases or decreases above or below 20ºC, heating and cooling systems start to
work and consumption rises. Therefore, these two inputs will be introduced to the model for
this particular MSP group. On the other side, some inputs are not related with consumption,
as we can see in figure 15. In this case, the represented inputs are the sunrise and sunset time.
For some MSP groups like public lightning, these inputs will have an important influence over
consumption. However, for this example MSP group in the figure, the represented inputs and
consumption are not related. Hence, these two inputs won’t be introduced to the model.
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Figure 14: Influence of variables over electrical consumption.
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Figure 15: Influence of variables over electrical consumption (non related).

As inputs are defined, we start defining the ANN architecture itself. During this phase we make
an initial choice of parameters such as number of hidden layers, number of neurons, training
algorithm and activation functions (Mohandes et al., 2019). These parameters were explained on
Section 3 and will be optimized after checking ANNs results and behaviour, since deciding ANNs
architecture is usually an iterative process.
After several tests and bibliography revision, the ANN architecture is the one presented in Table
7.

Table 4: ANN architecture

Parameter value

Type of network Feed-forward

Number of hidden layers 1

Number of neurons in hidden layers 5

Training algorithm Levenberg-Marquardt

Activation function Sigmoid function

3. Prediction results
Once the training phase is completed, we feed the hourly networks with new input data, which
corresponds with the data for the day of prediction (DOP). Then, we sum the hourly results to
obtain a full day or a several days prediction. To check the network performance, we use the
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Mean Absolute Percentage Error (MAPE) and the Energy Mean Error (EME).

MAPE =
∑N

t=1
|Êt−Et|

|Et|
N

· 100 (7)

EME =
N∑

t=1

∣∣∣Êt − Et

∣∣∣∑N
t=1 Et

· 100 (8)

Where:
- N is the total number of hours within the period that wants to be predicted.
- Êt is the predicted consumption during the hour t.
- Et is the actual consumption during the hour t.

At that point, we observe the results graphically and analytically. If prediction is not working
properly, we check whether the architecture of the ANN or the input selection could be optimized.
Finally, annual consumption for the different MSP groups is forecast. Then, all these individual
yearly predictions are added to obtain the global prediction of the municipality. Yearly forecast
performance is also evaluated through equations 8 and 7.
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6 Case Study

In this section, the methodology explained on section 5 is applied to the case of study of Valencia’s
city municipality

6.1 Data collection, treatment and classification.

6.1.1 Data collection

First, data of actual electricity consumption of the Valencia municipality is collected. Data
consists of a general register in Excel datasheet format which contains information about the
1.558 MSP owned by the Valencia municipality during the period 2017-2018 provided by the
electricity supply contracting service of the City Council itself: CUPS 1, MSP group, location,
contracted power, billing data for a specified period, etc. On the other hand, there are 888 Excel
files which are the load curves with a 15 minutes granularity of some of the MSP that appear in
this general register.
Since there are 1.558 MSP registered but 888 load curves, it is convenient to know to which
MSP group these load curves belong. For this purpose, a script in matlab has been programmed,
which reads all the data from the general register and at the same time reads the CUPS of the
load curves datasheets. If the CUPS of the load curve examined coincides with a CUPS from the
general file, it reads the MSP group that this load curve belongs to and add it to the rest of the
load curves of the same MSP group.
In order to observe the effects of seasonality over consumption, a data period of at least one year
is desired. However, not all load curve measures cover the same time period, so it is necessary to
determine which time period is the one with more measures available. After analysing multiple
load curves, it is observed that the most common period of measures among them is from
1/9/2017 to 1/9/2018. To check how many load curves have measurements in the described
period, a script in Matlab has been programmed, which is given the start and end dates to be
checked as input. The script stores the data from the general register, examines each of the load
curves, checks if they have data in the period that has been specified and if so, stores its CUPS.
If, on the other hand, it has no data on the period of analysis, it does exactly the same. After
proceeding in this way with all the load curves, it obtains the number of meters that have and
do not have data in the period described.
Finally, 525 load curves are available for the study from September 2017 to September 2018,
which is the period of analysis (PA) established. Load curves of that time period represent a
total consumption of 49 MWh.

6.1.2 MSP classification

One of the first tasks is regrouping the load curves by MSP groups. Initially, in the general
register mentioned above, MSP were classified in 15 type of MSP groups and so were load
curves. However, this number has been reduced to 8 by grouping some of the initial MSP groups
according to its characteristics, schedules, uses of energy and most important variables affecting

1Universal Supply Point Code, a code to identify every supply point in Spain
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consumption. Finally, the groups established are public lightning (PL), schools (SC), public
parks and gardens (PG), public offices and working buildings (PO), cemeteries (CM), public
markets (PM), libraries and museums (LM) and traffic lights and tunnel ventilation systems
(TL). All the load curves available for these MSP groups have been added, obtaining a single
load curve for every MSP group. The number of load curves available for each different MSP
group is presented on table 5:

Table 5: MSP groups

n MSP group Available load curves

1 Public lightning PL 144

2 Schools SC 18

3 Parks and gardens PG 56

4 Public offices and working buildings PO 78

5 Cemeteries CM 3

6 Public markets PM 5

7 Libraries and museums LM 3

8 Traffic lights and tunnel ventilation systems TL 218

TOTAL 525

6.1.3 Anomalous data removal

Removing anomalous data is important in order to avoid ANN training with data that may
introduce errors in the later prediction. Data considered anomalous is eliminated by two methods:

• Simple observation of load curves: First, consumption of every MSP group is calculated
daily. When representing daily consumption for the whole PA for every MSP group, data
that is obviously anomalous is identified and removed, like zero consumption days or
extremely high and sudden consumption days.

• Average and thresholds approach. As in the previous approach, daily consumption is
calculated. Then, a script is programmed in Matlab. This script analyzes each day
individually and calculates the average consumption of the 7 previous of the same type
of day. A threshold (TH) is established above and below the calculated average. If
consumption of the day is greater or lower than the thresholds, consumption of that day is
considered anomalous and is removed. Threshold is calculated as a percentage of the seven
previous days’ average, depending on the variance of the consumption of the MSP group
analyzed.

TH = ±x% · meanDOP
DOP −7(

24∑
h=1

Eh) (9)
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Where x is different for every MSP group, depending on the variance of the consumption, as said
above.

6.1.4 Type of day classification

In order to make easier the ANN learning process, performing a type of day classification for every
MSP group on Table 5 is very important (Cancelo et al., 2008; Chen et al., 2009; Senjyu et al.,
2005), since consumption patterns can change a lot from weekdays to weekends, for example.
To do so, a cyclic process has been followed: First, total load curves of the MSP groups are
observed individually to see the consumption profile over the week. Then, an initial type of day
classification is done according to that initial observation of the profiles. For example, if different
consumption behaviours are observed between Mondays and the rest of the weekdays, they are
considered as different types of day. If after this classification non-coherent consumption profiles
are found, the type of day separation is rethought, until the minimum types of days that fairly
represent the consumption behaviour is reached. For example, for a certain MSP group, two of
the types of day initially created are the ones on Figure 16. As it can be seen, the consumption
pattern is exactly the same so no differentiation is needed between them.

Figure 16: Similarities between consumption patterns for two different types of day of a generic
MSP group.

In the following figures the different consumption profiles for some of the MSP groups that do
have different behaviour depending on the type of day are shown.
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Figure 17: Daily consumption profiles for the PO group
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Figure 18: Daily consumption profiles for the SC group

The consumption of the rest of the MSP groups is quite constant along the whole year or its low
consumption doesn’t allow to create type of day profiles that are significantly different to others.
In the case of the PM group, the type of day classification is not useful, since only 5 load curves
are available and each one of them follow different consumption patterns, as it can be seen on
Figure 19. Fortunately, the consumption of this group is low compared with the rest. Thus, the

41



Design and analysis of artificial neural networks for the prediction of the electricity demand of
public administrations based on type of consumption decomposition

error introduced by this MSP group won’t make a significant change in the precision of the total
forecast.
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Figure 19: Daily consumption profiles for the PM group

6.1.5 Selection of ANN inputs

As stated on Section 5, most of the inputs correspond to external temperatures and previous
electricity consumption. Also, for certain groups like PL, it is also necessary to know the moment
at which the sunrise and sunset take place for the DOP, since it will indicate at what moment
electricity consumption rises or drops. Temperature data is obtained from a measurement station
at the Polytechnic University of Valencia (UPV). However, some data was unavailable, as it can
be seen in Figure 21. Hence, the method presented in (Roldán-Blay et al., 2013) is used used
to forecast the missing temperatures. The model used by authors enables the creation of an
hourly temperature curve using the minimum and maximum temperatures of the DOP and the
surrounding days. Implementing this method, it is possible to obtain the missing temperatures.
The model uses a sinusoidal and a exponential segment for modelling the day, as shown:
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Figure 20: Temperature curve model. (Roldán-Blay et al., 2013)

The sinusoidal segment is used to simulate sun hours, since thermal inertia causes a gradual
temperature rise. Exponential segment is used to simulate the progressive decrease of the
temperature due to the lowering of radiation.

Figure 21: Initial hourly temperatures curve. Measurement station of the UPV
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The sequence of equations implemented to calculate the temperature curve has been replicated
from (Roldán-Blay et al., 2013) and is presented here:

θ = 2 · π

365 · (dn − 1) (10)

Where:

- θ is the daily angle in radians

- dn is the Julian day number of the year

et = (0.000075+0.001868·cos(θ)+0.032077·sin(θ)−0.014615·cos(2·θ)−0.04089·sin(2·θ))229.18
(11)

δ = 23.45◦ · cos(2 · π · dn − 173
365 ) · π

180 (12)

Where:

- et is the equation of time, which denotes the difference between true solar time and mean
solar time

- δ is the solar declination angle between the equatorial plane and the line connecting the
centres of the Sun and Earth in radians

- 173 corresponds to julian day number for june 22 (vernal equinox)

h = cos−1
(

sin(−0.833·π
180 · sin(δ))

cos(φ) · cos(δ)

)
(13)

nd = h

7.5 · 180
π

(14)

Where:

- h is the Solar angular hour

- φ is the latitude in radians

- nd is the number of hours of daylight

tsr = 12 − nd

2 − et

60 (15)

tss = 12 + nd

2 − et

60 (16)

Where:

- tsr is the sunrise time in hours

- tsr is the sunset time in hours
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ta
min = ta

sr + ha
d − λ · 24

360 − eta

60 (17)

ta
max =

ta
min + ta

ss + ha
d − λ · 24

360 − eta

60
2 + 1.5 (18)

tmin = tsr + hd − λ · 24
360 − et

60 (19)

tmax =
tmin + tss + hd − λ · 24

360 − et
60

2 + 1.5 (20)

tp
min = tp

sr + hp
d − λ · 24

360 − etp

60 (21)

Where:

- Superscript a refers to all variables of the day before the DOP

- Superscript p refers to all variables of the day after the DOP

- tmin is the time in the model at which minimum temperature of the day occurs in hours

- tmin is the time in the model at which maximum temperature of the day occurs in hours

- hd is the hours of difference to the meridian for the location and date of the DOP. In
Valencia, a value of +1h during winter and +2h during summer time is used

- λ is the longitude in radians

- t is the time of forecast (from t=0 to t=23)

ta
c =

(
ta
ss + ha

d − λ · 24
360 − eta

60 − 2
)

− 24 (22)

tc =
(

tss + hd − λ · 24
360 − et

60 − 2
)

(23)

where tc is the time at which the sinusoidal temperature segment joins the exponential segment
(Figure 20)

Tavga
sin = T a

max + T a
min

2 (24)

Tavgsin = Tmax + Tmin

2 (25)

With this data, a value for the temperature can be calculated for every hour (from t=0 to t=23)
following the next list of equations for the different time intervals presented:

For t < tmin
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P a
sin = 2 · (ta

max − ta
min) (26)

Aa
sin = T a

max − T a
min (27)

T a
c = Tavga

sin + Aa
sin

2 ·
(

(ta
c − ta

max) · 2 · π

P a
sin

)
(28)

B = ln(T a
c ) − ln(Tmin)
ta
c − tmin

(29)

A = T a
c

eB·ta
c

(30)

T (t) = A · eB·t (31)

For tmin ≤ t < tc

Psin = 2 · (tmax − tmin) (32)

Asin = Tmax − Tmin (33)

T (t) = Tavgsin + Asin

2 · cos
(

(t − tmax) · 2 · π

Psin

)
(34)

For t ≥ tc

Psin = 2 · (tmax − tmin) (35)

Asin = Tmax − Tmin (36)

Tc = Tavgsin + Asin

2 · cos
(

(tc − tmax) · 2 · π

Psin

)
(37)

B = ln(Tc) − ln(T p
min)

tc − tp
min

(38)

A = Tc

eB·tc
(39)

T (t) = A · eB·t (40)

Where:

- Psin is the period of time of the sinusoidal part of the temperature curve in hours

- Asin is the amplitude of the sinusoidal part in kelvin

- A and B are parameters established to define the exponential segment
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Finally, all this equations are applied through a script in Matlab. As only some temperature
values were missing, the model described above in only used to obtain those values. Hence, the
initial temperature curve in Figure 21 becomes the one presented on Figure 22 after adding the
temperatures obtained to the temperatures initially available.

Figure 22: Hourly temperature curve after adding the temperatures obtained with the method
presented on (Roldán-Blay et al., 2013) to the initial curve.

Another inputs used in the model, like sunset and sunrise time data were obtained from (Salida
y puesta del sol, 2017). Electrical consumption was obtained from the load curves given by the
council’s electricity supply managers after treating all the available material, as explained on 6.1.
Finally, the inputs used for SC, PO, CM, PM and LM are the energy consumed at t-1 (Et−1),
the average temperature of the three previous hours (TAvg,t−3) and the temperature at t (Tt).
PG and TL groups only receive as input the previous consumption, since their daily consumption
profile remains constant, having a little variation depending on the type of day. Finally, PL
receive the previous consumption and also the minute of the day at which the sunrise and sunset
takes place for the DOP (tsr and tss). A summary of the inputs together with the type of day
classification for every ANN is presented on Table 6.
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Table 6: ANN parameters for every MSP group

MSP group n Type of day input 1 (kWh) input 2 (ºC) input 3 (ºC)

LM 1 Working days Et−1 Tt TAvg,t−3

2 Weekends, holidays and August

SC 1 School days

2 Working days that are not school days Et−1 Tt TAvg,t−3

3 Weekends, general holidays and August

PO 1 Working days except Tuesdays

2 Tuesday working days Et−1 Tt TAvg,t−3

3 Weekends and holidays

PM 1 Working days (including saturdays) Et−1 Tt TAvg,t−3

2 Sundays and holidays

PG 1 Working days Et−1 - -

2 Sundays and holidays

PL 1 All Et−1 tsr tss

TL 1 All Et−1 - -

CM 1 All Et−1 Tt TAvg,t−3

In the SC MSP group, working days that are not school days are referred to those days in
which students are in holidays, but teachers and staff still go to work.

6.2 Design of ANN’s for every MSP group

After explaining how ANN’s work and its more important parameters, the architecture decided
for the ANN’s implemented in this TFM is the following 2:

Table 7: ANN architecture

Parameter value

Type of network Feed-forward

Number of hidden layers 1

Number of neurons in hidden layers 5

Training algorithm Levenberg-Marquardt

Activation function Sigmoid function

2all the parameters involved were explained on Section 4
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In order to apply the ANN’s, matlab’s Deep Learning Toolbox is used. A general script for
every MSP group is used. Doing different scripts for every single MSP group is necessary, since
the type of days and inputs used vary from one to another (Table 6).
Within every script, a single ANN is used for each one of the hours of the day, as explained
below:

Figure 23: Working principle of the ANN’s used for every single MSP group

First, the script receives the corresponding ANN inputs for all the period of analysis (PA). The
granularity of the prediction is one hour so the ANN receives 8760 values for each input. Script
is also fed with actual hourly consumption for the PA, which will be ANN’s output during the
training phase.
Secondly, only the days that are of the same type of the DOP are selected .
Then, a single ANN for every hour of the DOP is trained. Thus, the prediction of a whole day
will be the group of the results of 24 ANN. Every hourly network is trained only with data from
the moment t of the 15 previous days , adopting so a sliding time window strategy (Yang et al.,
2005).That means that if the ANN of the hour 13 is being trained, ANN will only train with
data from the hour 13 of the 15 previous days to the DOP. If many measures are used in the
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training phase, then random and uncontrolled training data may be introduced (Escrivá-Escrivá
et al., 2011). In order to train the networks, data has to be split into 3 sets; training, validation
and testing. The division is made randomly between the 15 selected days, establishing only the
percentages of data dedicated to each set. 70% for training, 15% for validation and 15% for
testing has been used, which means that 12 days are used for training, 2 for validating and 1
for testing. The training set is used in parallel with the validation set in a way that during the
training phase, outputs obtained with the ANN are compared with the actual outputs given and
weights and biases are adjusted to match inputs with outputs. Validation set is used to check the
performance of the ANN continuously by calculating the error of the prediction. When that error
reaches a minimum, the training phase is finished and an error obtained through the testing set
is obtained. The testing set is not strictly necessary, since the prediction itself is going to be a
test, but Matlab doesn’t allow to set the testing set percentage to 0, so a minimum percentage of
5% has been considered.
Once the training phase is completed, the hourly networks are fed with new input data, which
corresponds with the input data for the DOP

6.3 Prediction results

To obtain a full prediction, it is necessary to forecast separately the consumption of every single
MSP group for the same time period, as explained above. If the time horizon of the forecast is
one single day, 24 ANN’s are calculated for every MSP group, since a single ANN is trained for
every hour of the day.
Once the consumption of every MSP is predicted separately, results are added, obtaining the
total forecast for the whole electricity consumption of the Valencia municipality.
To evaluate how good the forecast is, MAPE and EME are calculated for the time horizon of the
forecast. As results will be presented for some example weeks on Section 7, MAPE and EME
equations for that time period are specified:

MAPEweek =
∑24 hours·7 days

t=1
|Êt−Et|

|Et|
24 hours · 7 days

· 100 =
∑168

t=1
|Êt−Et|

|Et|
168 · 100 (41)

EMEweek =
24 hours·7 days∑

t=1

∣∣∣Êt − Et

∣∣∣∑24 hours·7 days
t=1 Et

· 100 =
168∑
t=1

∣∣∣Êt − Et

∣∣∣∑168
t=1 Et

· 100 (42)
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7 Results

In this section the different forecast results obtained through the MSP classification and the
ANN application are shown. First, forecast results of every individual MSP group are calculated.
Then, these individual forecast are aggregated, obtaining a complete forecast for all the Valencia
municipality consumption. All the results are shown for the same example week selected randomly.

7.1 MSP groups forecast results

On the following figures, results of the forecast methodology applied to all the MSP groups
on Table 5 are shown. Results are displayed in order of importance according to its volume of
annual electricity consumption.

Figure 24: Annual energy consumption distribution of every MSP group

As it can be seen on Figure 24, the MSP groups that represent a highest annual electricity
consumption are PL (37,48%), PO (34,24%) and TL (23,81%). Hence, achieving a good forecast
on these groups is vital to obtain a good total forecast of the Valencia municipality electricity
consumption.

7.1.1 Public lightning (PL)

The firs forecast results presented are those of the PL MSP group:
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Figure 25: Prediction vs consumption for the PL MSP group

Table 8: MAPE and EME (%) of the PL forecast for the week shown on Figure 25.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 6,60 3,91 5,41 3,97 2,83 4,63 2,91

EME 2,96 1,12 3,47 1,14 1,40 2,11 2,34

Figure 25 shows that the forecast of the PL group is almost perfect. As it can be seen, there’s a
moment in which consumption is residual. This hours correspond to the day hours, in which
no lightning is needed. However, during the night hours, electricity consumption reaches its
maximum. Lightning is a type of consumption that is easy to predict, since installed equipment
has a constant consumption during the hours of use. One of the biggest variation that this type
of consumption can have is the one caused by the minute of the day in which sun rises or sets,
which varies along the year. Because of that, time of sunrise and sunset is given as an input to
the ANN’s of this MSP group.
Even though forecast is almost perfect, the MAPE is quite high. This is due to the effect of not
considering the volume of energy of the period of calculation to calculate the hourly MAPE, as
it was commented on Section 3.4. High MAPE values on day hours cause the daily MAPE to be
higher than expected.
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7.1.2 Public offices (PO)

Now, PO results are presented. The PO MSP group is the second group in terms of annual
electricity consumption, as seen before.
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Figure 26: Prediction vs consumption for the PO MSP group

Table 9: MAPE and EME (%) of the PO forecast for the week shown on Figure 26.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 3,06 2,88 5,08 3,12 4,72 14,75 8,31

EME 2,04 2,94 3,54 2,78 4,80 12,34 8,29

Forecast is really good during weekdays, as it can be seen on Figure 26 and Table 9. Consumption
on these days starts to rise at 7:00, as people begin entering the workplaces and starts to decrease
at 17:00 as workers leave. The consumption of the rest of the day is the residual consumption
(some lightning, equipment like some PC’s...etc):
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Figure 27: Prediction vs consumption for a single day for the PO MSP group

On the weekends, however, forecast is relatively poor, this is because during these type of days,
consumption is very changeable. Furthermore, ANN’s train with the 15 previous days of the
same type. That means that ANN’s of the DOP of a weekend is trained with days from some
weeks ago, in which conditions can be different from that ones of the DOP. However, prediction
on the weekends in winter is way better than in the week shown on Figure 26, as it can be seen:
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Figure 28: Consumption vs prediction for winter weekends (PO MSP).

7.1.3 Traffic lights (TL)
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Figure 29: Prediction vs consumption for the TL MSP group
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Table 10: MAPE and EME (%) of the TL forecast for for the week shown on Figure 29.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 1,016 1,179 0,549 2,572 0,962 0,499 1,079

EME 1 1,17 0,54 2,52 0,95 0,50 1,07

Prediction for the TL MSP group works fine, with the exception of some unexpected peaks
happening on days 1 and 4 of the displayed week. This might be caused by peaks happening
on the previous week, which ANN’s of the displayed week train with. Despite that, MAPE and
EME errors on Table 10 are very low, since peaks happen only in two hours of the whole week.
The following MSP groups represent low levels of consumption compared with the previous ones,
as it was seen on Figure 24. Since the number of load curves is much lower that in the previous
MSP groups and the consumption is less, errors are bigger in general. However, because of its
importance in relation to the previous MSP groups, bigger errors in the following groups won’t
introduce a significant error in the general forecast.

7.1.4 Public gardens (PG)

Jul 23 Jul 24 Jul 25 Jul 26 Jul 27 Jul 28 Jul 29 Jul 30

2018   

0

20

40

60

80

100

120

140

k
W

h

Prediction vs consumption: PG

Predicted Actual

Figure 30: Prediction vs consumption for the PG MSP group
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Table 11: MAPE and EME (%) of the PG forecast for for the week shown on Figure 30.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 17,346 13,761 30,693 7,413 18,784 28,540 22,645

EME 11,067 6,789 6,910 5,652 11,200 9,876 5,723

As it was expected, forecast in the PG MSP group is worse than in the previous groups. However,
bigger errors take place on the moment of maximum or minimum consumption, while the rising
or decrease moments of electricity consumption are well foretold. Even though daily errors are a
little high, in terms of energy, the maximum error that happens, which takes place on july 9, is
less than 50 kWh. And again, MAPE error is much higher than EME because of the same effect
commented for the PL MSP group. In day 3 that effect can be appreciated properly. EME in
that day is less 7%. However, MAPE exceeds a 30%. The moment that is causing that difference
is the one that happens in the early morning of july 26, when consumption is low. Since MAPE
calculates the error without taking into account the moment of the day, a small error in terms of
energy (less than 10 kWh) is causing a big MAPE value.

7.1.5 Schools (SC)
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Figure 31: Prediction vs consumption for the SC MSP group
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Table 12: MAPE and EME (%) of the SC forecast for for the week shown on Figure 31.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 18,783 14,995 8,862 12,159 14,197 10,808 7,908

EME 23,203 17,203 9,205 11,526 15,320 10,349 7,843

Since only 18 load curves are available for the analysis of the SC MSP group, error are quite high.
Despite of that, the shape of the forecast is very similar to the actual consumption, with the
exception of some unexpected peaks happening specially in the moments of higher consumption.
As only 18 load curves are included in the analysis, a change in the consumption pattern at some
particular moment in some particular school can introduce a peak in the consumption of the
MSP group. ANN’s are trained with all data of the previous 15 days, including these little peaks
of consumption. Hence, ANN’s might tend to replicate that peak, causing the error observed
specially on July 23 and 24. Nevertheless, the error is very low in terms of energy, reaching a
maximum of about 10 kWh.

7.1.6 Cemeteries (CM)
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Figure 32: Prediction vs consumption for the CM MSP group
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Table 13: MAPE and EME (%) of the CM forecast for for the week shown on Figure 32.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 18,635 18,391 18,784 7,655 46,231 15,002 16,841

EME 17,584 19,386 18,765 8,852 45,910 16,326 15,290

Cemeteries forecast is less accurate than the first MSP groups. Only 3 load curves are included
in this analysis and as it can be seen, a maximum of 2,5 kWh of daily electricity consumption is
reached. Hence, the error introduced by this MSP group is negligible. Regardless of that, the
model is pretty capable to imitate the consumption pattern of the group.

7.1.7 Libraries and museums (LM)
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Figure 33: Prediction vs consumption for the LM MSP group

Table 14: MAPE and EME (%) of the LM forecast for for the week shown on Figure 33.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 37,530 24,251 32,735 20,480 24,376 4,747 6,554

EME 15,224 8,587 11,179 15,261 9,207 4,727 6,541
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Even though only 3 libraries are included in the analysis, the model predicts quite fine the
consumption. This is because libraries consumption is very stable. Errors introduced are mainly
due to libraries having different schedules and working days. This factors introduce noise in the
model that then ANN’s can replicate in some way. Maximum error in the displayed weeks is
about 8 kWh.

7.1.8 Public markets (PM)
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Figure 34: Prediction vs consumption for the PM MSP group

Table 15: MAPE and EME (%) of the PM forecast for for the week shown on Figure 34.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 12,049 20,031 12,994 128,472 20,862 13,087 17,545

EME 7,911 10,083 9,207 20,015 16,183 10,429 17,213

Only 5 load curves are available for the analysis of the PM MSP group. Furthermore, every market
consumption is very different. They have different daily schedules and different holidays, so the
training process of the ANN’s is difficult. In the following figure, the electricity consumption of
the 365 days of the year is shown:
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Figure 35: Daily profile of the PM electricity consumption

As it can be seen, almost every day’s consumption is different. That way, ANN’s are difficulty
able to calculate reproducible patterns. Even though forecast in Figure 34 is quite fine taking
into account what’s been explained, forecast in some weeks might me worse, depending on how
good the training process is.

7.2 Aggregated forecast

Once the forecast of every individual MSP group is done, they are added to achieve the forecast
of the total consumption of the Valencia municipality. To appreciate the effect of seasonality
over consumption profile and consumption, results for one week of winter and another of summer
are shown.
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Figure 36: Aggregated prediction for a winter week

Table 16: MAPE and EME (%) of the total forecast for the week shown on Figure 36.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 2,474 3,770 1,587 1,871 1,876 4,113 3,179

EME 2,455 3,709 1,572 1,860 1,863 3,273 2,566

As it can be seen, forecast is very accurate and error measures don’t surpass a 4%. Most of the
days, both MAPE and EME errors are below the 3%.
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Figure 37: Aggregated prediction for a summer week

Table 17: MAPE and EME (%) of the total forecast for the week shown on Figure 37.

error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

MAPE 1,407 2,045 2,013 2,545 1,521 5,074 3,360

EME 1,270 1,867 1,570 2,181 1,216 3,551 2,603

In the summer week, forecast results look even better, with the exception of some moments on
the 28th and 29th of July.
As it can be seen on Figures 36 and 37, consumption patters for winter and summer are quite
different. This can be appreciated better by plotting one weekday of winter and summer:
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Figure 38: Comparison between one weekday in winter and summer.

The differences between the two profiles are due to the following factors:

• In winter, public lightning needs to be on for longer during the night. That way, in the
summer profile can be appreciated a decrease on the consumption at 6:00 am that can’t be
seen on the winter profile. This is because in summer lights are turned off earlier.

• Again, since in summer there are more sun hours, a delay in the increase of the electricity
consumption can be seen in the afternoon. Winter consumption increase starts at 18:00
approximately while summer increase starts at 20:00.

• Climate equipment consume more in cooling mode (summer) than in heating mode. That’s
why a higher consumption can be seen during summer in the working hours. However,
difference it’s not very noticeable.

As results show, forecast of the electricity consumption of the Valencia municipality is quite
accurate. As it was commented before, by adding the individual MSP groups forecast results,
errors are considerably reduced. That way, by plotting the MAPE and EME errors for a sample
week of every MSP, it is possible to appreciate the improvement:
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Figure 39: MAPE error for the different MSP groups.

One of the values is out of the graph because it was so high that including it would have done
difficult to see the others. As Figure 39 shows, when performing the total forecast by adding
the results of the different MSP groups, errors decrease significantly. The only MSP group that
has a lower error by itself than the total forecast is the TL MSP group, although difference is
negligible.

Jul 23 Jul 24 Jul 25 Jul 26 Jul 27 Jul 28 Jul 29

2018   

0

5

10

15

20

25

30

35

40

45

50

E
M

E
 (

%
)

LM

SC

PO

PM

PG

PL

TL

CM

TOTAL

Figure 40: EME error for the different MSP groups.
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EME error also decreases when performing the total forecast of the Valencia municipality
electricity consumption. Both Figures 39 and 40 show that even though the forecast of some of
the MSP groups is poor, it doesn’t affect the total forecast. This is because, as it was explained,
these MSP groups don’t represent a significant level of electricity consumption in comparison
with MSP groups like PL, PO or TL.

7.3 Justification of the methodology

To justify the MSP classification in groups that share a similar consumption scheme and variables
influencing consumption, a comparison between the results with and without classifying the
MSP into groups is done. Again, to appreciate the effects of seasonality, one week of winter
and summer has been analysed. This has been done by programming a script in Matlab. The
script takes as inputs all the variables on Table 6 and receives also the total consumption of the
Valencia Municipality, without classifying MSP into groups. For the Et−1 variable, it takes the
total consumption of the previous hour. The same goes to TAvg,t−3. Type of day classification is
also done. To do so, days have been classified in all the different days specified on Table 6. The
types of day finally used are the following ones:

Table 18: Types of day used on the non-classified ANN’s

n Type of day

Type 1 Working days except Tuesdays

Type 2 Tuesday working days

Type 3 Saturdays

Type 4 Sundays, August and general holidays

Type 5 Working days that are not school days

The ANN’s architecture and training methodology is the same explained on Section 6.2 but
without previously classifying MSP into groups and using as inputs all the variables on Table 6
and types of day adapted.
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Figure 41: Total forecast results for a winter week without classifying consumption into MSP
groups

Forecast without classifying in the winter week is inaccurate, specially during the moments
of maximum consumption, where a lot of peaks appear. The peak that happens on the 9th
of January is very high and introduces an error in terms of energy of more than 1500 kWh,
which can have severe consequences if the forecast methodology is used to buy electricity in the
wholesale market, for example.
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Figure 42: Total forecast results for a winter week classifying consumption into MSP groups
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The improvement when classifying consumption into groups is obvious. On Figure, the errors
are much more moderate 42. Later, the differences will be quantified.
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Figure 43: Total forecast results for a summer week without classifying consumption into MSP
groups

Forecast without classifying is much better in the summer week than in the winter one. However,
some peaks still appear. Even though they happen just on some particular hours, they could
have severe consequences depending on the use given to the forecast methodology.
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Figure 44: Total forecast results for a summer week classifying consumption into MSP groups
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Again, the improvement is obvious. What’s observed mainly is that the forecast is smoother
when the classification is done, instead of having a more saw-shape like the one observed on
Figures 41 and 43.
The improvement on the forecast when MSP are classified by groups can be observed visually
and easily by comparing Figures 41, 42, 43 and 44. When not performing the previous MSP
classification, the model takes as inputs some variables that for most of the types of consumption
of the Valencia Municipality can act as noise in the training process. That would be the case of
the tsr and tss variables that would only be necessary in the case of public lightning. The same
goes the other way around: variables related with temperature are totally unnecessary to study
the consumption of public lightning, causing the ANN training process to be more erratic and as
a consequence, obtaining worse results:

Table 19: Comparison between the results performing or not a MSP classification

Season MSP classification Error Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Summer

NO
MAPE 2,540 5,179 1,823 2,177 1,748 7,573 4,479

EME 2,342 5,057 1,672 2,111 1,555 5,844 4,878

YES
MAPE 1,407 2,045 2,013 2,545 1,521 5,074 3,360

EME 1,270 1,867 1,570 2,181 1,216 3,551 2,603

Winter

NO
MAPE 5,457 7,485 4,010 3,466 3,123 6,553 4,890

EME 5,489 8,379 4,132 3,265 3,144 6,338 4,212

YES
MAPE 2,474 3,770 1,587 1,871 1,876 4,113 3,179

EME 2,455 3,709 1,572 1,860 1,863 3,273 2,566

In the following figures, the increase of error measures when not classifying into MSP groups
can be appreciated better. The difference is specially noticeable in the displayed winter week,
when maximum EME error is reduced from 8% to 4% for January 9.
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Figure 45: Comparison between the results performing or not a MSP classification in winter
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Figure 46: Comparison between the results performing or not a MSP classification in summer

Definitively, it has been proven that performing a MSP classification improves the results
significantly. Depending on the use given to the methodology, it could be discussed if accuracy
could be sacrificed in order to decrease the amount of efforts put into the classification of the
MSP.
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7.4 Discussion of results

Once seen the results of the methodology, in this section, the possibilities of the forecast procedure
will be explained together with the risks that its implementation might have.
The methodology has been though mainly to provide municipalities with a tool to forecast its own
consumption a day-ahead, to buy their own electricity in the daily wholesale market, whether
they do it through starting a municipal retail company or by becoming wholesale consumers. In
the daily market, as it was explained on Section 2.2.2, the electricity used in the day D must be
purchased on day D-1. Hence, a procedure to forecast the consumption a day-head accurately
is helpful and necessary. In (Mateo Barcos et al., 2020), the risks of not counting on a good
forecast system to purchase electricity in the wholesale markets were studied and remarked on
Section 3.1. It was seen that forecast error could lead to economic losses overcoming 500.000 €
and even 1M € in more pessimistic scenarios (Figure 6).
Even though the methodology is applied and designed for the Valencia municipality, one of the
advantages is that it can be replicated relatively easily to other municipalities. Results will vary
depending on a lot of factors:

• The number of MSP that the municipality has. As bigger the municipality is, more
consumption points can be added to the analysis, reducing considerably the error, as it
was seen on Section 7.1, where the MSP groups where less load curves were available
had way worse results. Hence, methodology will work better for big cities than for little
ones. A good possibility for little cities or towns would be to aggregate their demand and
purchasing electricity together in the wholesale markets. That way, data available would
be higher and the results of their forecasts would improve, allowing smaller consumers to
eliminate the cost of the retailing services.

• Distribution of the percentages of electricity consumption dedicated to the different MSP
groups. For example, if a municipality count on less public lightning MSP and more offices,
results could be a little bit worse, since PL is more stable along the year and is easier to
predict. However, approximately the 60% of the electricity consumption of a municipality
is dedicated to lightning. Percentages can vary but usually, the predominant consumption
is PL.

• Results can also be different from one municipality to another depending on the data acqui-
sition system that they have to measure temperature or other variables being introduced
in the model.

It is also important to take into account that, even though results are good, they could be
improved. Since this work is a master thesis, all has been done with the available data but in a
context of a real implementation of the methodology, data availability could be much higher. As
it was said on Section 6.1, from the 1.558 MSP points that the municipality had for the period
of analysis, only 525 load curves were collected and valid for the analysis. By increasing data
availability, more load curves could be included for every MSP group, improving its results. As
was seen on Section 7.1, forecast of MSP groups like SC, CM, LM and PM have a considerable
error that was assumed because of its low importance in relation to the total annual energy
consumption. However, with higher data availability, this MSP groups could represent a more
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important share of the total consumption and a much lower error could be achieved, improving
that way the model.
A forecast methodology like the one presented could also be used as a security tool to check that
any fault is happening at the municipality dependencies. If the forecast methodology predicts
a certain consumption on a MSP group in the day D-1 and then this consumption is highly
exceeded on day D, that could indicate that something is not working properly. Several things
could be happening like for example some problem with the installed equipment: malfunctioning
of cooling or heating installations, fault of any type of machinery...etc. But also, it could indicate
that the electricity meter is having some kind of issue and it is not giving a correct measure of the
consumption, what should be immediately corrected not only to avoid problems when paying the
bills but to avoid also training the ANN’s with incorrect values that could affect future forecasts.
However, the implementation of the presented forecast methodology could have some risk
associated:

• Changes in the analysed building or dependencies can affect considerably the forecast. If
new equipment is installed, ANN’s will have a certain delay in being able to forecast correctly
the new consumption. For example, if new offices are incorporated to the municipality
dependencies, that would introduce a higher consumption to the PO MSP group. If no
supervision or preparation of the forecast model is performed, prediction will work poorly
for some days until ANN’s are trained with enough days in the new situation to achieve
good forecast results.

• Introduction of efficiency measures. As in the previous point, efficiency measures can
also affect the performance of the forecast model. If for example all the public lightning
is changed to LED, consumption will be drastically affected, affecting also the relation
between inputs to the model and electrical consumption for some days. To avoid that,
model should be prepared with data corresponding to the new situations. Definitively,
every sudden change in the municipality dependencies can affect the performance of the
forecast. If no supervision of the model is done, this changes could lead to important losses
if electricity is being purchased in the wholesale markets, since imbalances could be high
during the first days after any important change. However, this changes are usually gradual,
so the model should be capable to adapt to new situations by itself.

• Need of reliable temperature data. Bad measures of temperature could lead to important
errors in the model, since almost all of the MSP groups use as input temperature at hour t
and temperature of the previous hours. If temperature measurement system has a failure
and is not able to measure any temperature for a certain moment and gives a 0 value,
forecast consumption will be much lower for almost all the MSP group, causing the total
forecast to have an important error. This could be corrected easily with human supervision
or by programming a security model to ensure that, if a situation like the one explained
happen, temperature value doesn’t drop to 0 but instead is calculated as the average of the
previous hours, for example.

• Need of other inputs. If the model wants to be used in other municipality, some consider-
ations should be taken into account. Other inputs could be needed. For example, some

72



Design and analysis of artificial neural networks for the prediction of the electricity demand of
public administrations based on type of consumption decomposition

municipality’s public lightning doesn’t work with a fixed schedule depending on the time
of the year, but instead has a system that measures solar radiation and if the measure
is lower than a certain value, lights are tuned on. If that was the case for a municipality
that wanted to use the forecast methodology, they should introduce to the model the solar
radiation, instead of the variables used in PL for the case of study of Valencia, which are
tsr and tss.

• Need for technical experts. To check that everything works fine in the forecast, at least
one expert in electricity systems and artificial intelligence is needed to avoid problems with
the model and its possible consequences.
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8 Conclusions

8.1 Summary of the results

The results presented on Section 7 show that the forecast methodology works well for the case of
study of the Valencia municipality. The most accurate forecasts are those of the MSP groups that
have more data availability, since they are trained with more data and their consumption is more
aggregated, limiting the variance in the consumption patterns and facilitating the prediction of
future behaviours.
The results of the total forecast are the ones presented on the following table for two randomly
selected weeks of summer and winter:

Table 20: Results of the total forecast of the Valencia municipality consumption

Season Error (%) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Summer
MAPE 1,407 2,045 2,013 2,545 1,521 5,074 3,360

EME 1,270 1,867 1,570 2,181 1,216 3,551 2,603

Winter
MAPE 2,474 3,770 1,587 1,871 1,876 4,113 3,179

EME 2,455 3,709 1,572 1,860 1,863 3,273 2,566

As it can be seen, results are really good, with a maximum daily error of a 5% and a minimum
error of a 1,27%. Taking into account that the methodology has been designed mainly to forecast
the electricity consumption to purchase energy in the daily wholesale market, these results offer
an error pretty low.

8.2 Limitations of the approach

Even though the methodology works fine, if it is used to purchase electricity in the daily wholesale
market, it could have some limitations:

• The methodology is not ready yet for a real implementation of the prediction model. Even
though the conditions of a real situation have been simulated, all the code involved has
been done working with past data and it should be adapted if the methodology wanted to
be actually used.

• Before a real implementation, the methodology should be tested with all the MSP data
of a municipality. As seen on Table 5, for most of the MSP groups, few load curves are
available. A simulation with all the data from a municipality should be done to know how
different results are compared to the one presented on this work. However, error results
shouldn’t be much different, since most of the consumption for a municipality is PL, whose
forecast has been proven to be very accurate. Nevertheless, for a real implementation of
the methodology, this should be ensured.
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• The methodology is designed for short-term forecast. In particular, all has been designed
for a day-ahead prediction. If the methodology wanted to be used for another time horizon
like week-ahead or another time scope, it should be adapted. Also, results should be
checked since probably they would be worse. Probably, another forecast technique should
be used instead of ANN.

8.3 Further work

The presented methodology has a lot of potential and work that could be done in the future. The
following ideas are left to future development of the methodology and its possible applications:

• If the methodology has been mainly designed to give municipalities a tool to purchase
electricity in the daily wholesale market, a calculation of the penalties due to imbalances
should be done. To know exactly the penalties due to imbalances in the case of study, a
further analysis should be done. Hourly imbalances obtained with the forecast methodology
should be put in common with the hourly prices of the imbalances for the period of analysis.
Furthermore, it should also be calculated the status of the power system at every hour as
explained on Section 2.4.2, since depending on it, imbalances will result in losses or not.
That way, an accurate calculation of the cost overruns due to imbalances for municipalities
would be done, instead of an estimation based on a percentage of hourly imbalances
(Mateo Barcos et al., 2020).

• A more complex software could be developed to create a forecast system that was con-
tinuously training with new data. That way, ANN would always train with the most
recent data, adapting future forecast to changes in temperature, consumption patters...etc.
Furthermore, security mechanisms could also be incorporated to the model if it’s wanted
to be continuously training. For example, some mechanism should be added to avoid that
failures in the temperature data acquisition system had a major impact in future forecast
and as a consequence on the imbalances.

• A field test would be very important to validate if the forecast methodology developed
could have an implementation in the real world. That is, performing a forecast of some
municipality in real-time or with current data instead of doing it with past data.
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Mateo Barcos, S., Alcázar Ortega, M., & Ribó Pérez, D. (2020). Estudio de viabilidad de la
constitución de una comercializadora pública de energıa en la ciudad de valencia.

Mena, R., Rodrıguez, F., Castilla, M., & Arahal, M. R. (2014). A prediction model based on neural
networks for the energy consumption of a bioclimatic building. Energy and Buildings, 82,
142–155.
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10 Previous remarks

In this section the cost of performing the design and analysis of artificial neural networks for
the prediction of the electricity demand of public administrations based on type of consumption
decomposition is quantified. The study was performed over a period of approximately 1 year,
taking into account the literature review on the field of electricity load forecast, the data
acquisition, methodology design and development, study of the Spanish electricity market,
methodology application to the case study, writing of the report and supervision.

11 Budget

11.1 Human resources

The human resources involved in this TFM were a junior engineer (JE), a doctoral student in
electrical engineering (DS) and a specialist professor in electricity systems and markets (SP). The
tasks developed by the junior engineer include all the literature review, the data acquisition, the
methodology design, development and application to a case of study and writing. Tasks carried
by the doctoral student include the conceptualization of the work and continuous supervision on
all the aspects of the TFM. Lastly, the specialist professor has provided feedback at different
stages of the TFM and has suggested important changes in the methodology, results delivery and
structure of the final document. The following table summarizes the total human resources costs:

Table 21: Human resources costs

Task Dedicated time Position Unit cost Cost

Literature review 100 h Junior engineer 30 €/h 3.240

Data acquisition 100 h Junior engineer 30 €/h 3.240

Methodology design 280 h Junior engineer 30 €/h 9.750

Simulation (application) 350 h Junior engineer 30 €/h 12.960

Writing 54 h Junior engineer 30 €/h 1.620

Revision and feedback 65 h Doctoral student 55 €/h 3.575

Revision and feedback 25 h Professor 70 €/h 4.550

TOTAL 974 h – – 31.845

11.2 Software and hardware amortization costs

The hardware equipment used in this TFM consists of a computer and a laptop belonging to the
junior engineer and two more computers belonging to the doctoral student and the specialist
professor. Engineer’s equipment has been amortised in 12 months, while the remaining equipment
has been amortised for the hours of use remarked on Table 21, which have been approximated to
one month.
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The software used in the project consists of a Microsoft 365 Personal package for the three people
working on the TFM and a Matlab license for the junior engineer, together with the Matlab’s
Deep Learning Toolbox, used to program the ANN’s. Also, the document has been written in
Latex trough the editor Overleaf. However, this editor is free nowadays so no cost is associated
to it.

Table 22: Software and hardware costs

Equipment Price Amortization period Time of use Cost

PC de sobremesa LG con procesador Intel Core 2 Duo (JE) 600 € 6 years 12 months 100 €

Lenovo ideapad 3i5 (JE) 950 € 6 years 12 months 158 €

Macbook Pro13’ (DS) 1.000 € 6 years 1 months 14 €

PC Pentium IV2 GHz (SP) 1.500 € 6 years 1 months 21 €

Microsoft 365 Personal (JE) 62 €/year – 12 months 62 €

Microsoft 365 Personal (DS) 62 €/year – 1 month 5,17 €

Microsoft 365 Personal (SP) 62 €/year – 1 month 5,17 €

MATLAB and Simulink Student Suite (JE) 69 € 2 years 12 months 34,5 €

MATLAB’s Deep Learning Toolbox (JE) 7 € 2 years 12 months 3,5€

TOTAL 403,34 €

11.3 Other costs

Here, the following costs have been considered:

• The cost of transport to the workplace. The unit cost of the transport has been calculated
taking into account that the junior engineer travels to its workplace by car, the average
diesel price in 2022 and the distance from the engineer’s home to the workplace. Also, the
transport cost of the Doctoral student and the Specialist professor has been calculated as a
10% of the student’s transport cost.

• The cost of the workplace itself (office material, cost of the rent...etc). This will be
calculated as a 1% of previous costs.

• Indirect costs like internet bills, heating and cooling in the offices...etc. This will be
calculated as a 0,5% of the previous costs.

Table 23: Transport cost

Component Unit cost Cost

Transport to workplace (JE) 0,091 €/km 874 €

Transport to workplace (DE and SP) 87,4 €

TOTAL 961,4 €
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11.4 Budget summary

Now all the costs explained in the previous sections are added to obtain an aggregated gross
budget. A profit margin is also calculated, considering a realistic commercial situation. Also,
taxes are included in the budget. The final budget is eighty thousand seven hundred and fifty
euros with fifty cents.

Table 24: Final budget

Component Cost

Human resources 31.845 €

Software and hardware 403,34 €

Transport 961,4 €

Workplace costs 332 €

Indirect costs 166 €

Industrial margin (6%) 2.022,5

Taxable budget 35.730,4

IVA (21%) 7.503,4

TOTAL BUDGET 80.750,5
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