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Abstract 

Heavy metal(loid)s are a group of elements present commonly in the environment, including 

Cr, Ni, Cu, Zn, Cd, Hg, Pb, and As elements, among others. While these elements could have 

their origins in natural sources, anthropogenic activities, such as mining, agriculture, industry, 

etc., are also responsible for enhancing the concentration of these elements in the ecosystems 

up to undesirable levels. A few of these metal(loid)s serve as necessary micronutrients for life, 

while the others are extremely harmful and might affect the entire trophic chain upon 

entering the natural ecosystems due to their mobility and toxicity characteristics. Most of 

these heavy metal(loid) pollutants are already recognized for their harmful effects; 

nevertheless, their environmental control encounters obstruction due to various factors. In 

this context, the present report details the key points regarding the anthropogenic sources of 
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heavy metal(loid) pollution, which are increasing rapidly with time due to the emerging 

industry practices and processes, the elements causing this kind of pollution, and the 

physicochemical processes of these elements occurring in the environment–air interface, soil, 

and water-air interface. These elements exert a severe impact on the environment, which 

could be mitigated through the development and application of various remediation 

techniques. Therefore, the present report concludes with a final discussion on the various 

remediation treatments currently available for reducing the heavy metal(loid) contamination 

level in both water and soil.  

Keywords 

Heavy metal(loid)s; pollution; anthropogenic sources; remediation techniques; 

environmental impact 

 

1. Introduction 

Heavy metals and metalloids attract the interest of the current scientific community due to their 

toxic effects and their persistence in the environment [1]. The heavy metals, such as mercury (Hg), 

lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), etc., and metalloids such as arsenic (As), cause 

a huge threat to the environment due to their non-biodegradable nature and their ability to 

bioaccumulate [2].  

The natural source of these elements is the minerals present in the Earth’s crust. Human activities, 

such as agricultural, industrial, and mining activities, have, however, led to a significant increase in 

the concentrations of heavy metals and metalloids in all kinds of environments (including terrestrial, 

aquatic, and atmospheric ecosystems) and/or the modification of the physicochemical status of 

these elements by increasing their toxicity. Therefore recognizing the origin, natural or anthropic, 

of the heavy metals and metalloids present in the environment is a key factor for managing the 

“actions” to reduce or minimize the environmental levels of these pollutants. Moreover, it is also 

important to determine the chemical characteristics of these elements in different environmental 

compartments (water, soil, and air) as the toxicity, mobility, and bioavailability of these pollutants 

are determined by their component chemical species. 

Once these elements reach the natural ecosystems, they could occur in the form of free ions 

(metal hydroxides) as an organic or inorganic metal(loid) complex or in association with colloidal 

material. Metal(loid)s may be present in both dissolved and suspended particle forms in the aquatic 

systems or might be adsorbed onto solid elements that would ultimately settle into the sediments 

or transform into volatile forms that would spread all around along with the prevailing winds.  

Upon entering the food chain, these heavy metals and other elements affect the cellular 

organelles and components of living organisms, including the cell membrane, mitochondria, 

lysosomes, endoplasmic reticulum, nuclei, and certain enzymes involved in metabolic, 

detoxification, and damage repair processes [3]. These elements may disrupt the metabolic 

activities of living organisms. For instance, since arsenic is similar to phosphorous, the former 

interferes with the metabolic processes of phosphate, which is widespread in the biosphere. Cd is 

the element that is most readily absorbed by organisms directly from water, where it is present in 
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its free ionic form of Cd(II). Since Cd is not an essential element, there is no homeostatic control 

process for it in the body of organisms, which implies that the Cd element may accumulate inside 

the organisms. Cd is recognized for having a high affinity for Ca binding sites, which is assumed to 

be one of the main reasons causing Cd accumulation in tissues [2]. Moreover, at extremely low 

concentrations, Cd exerts a small influence on both replicative and repair DNA syntheses [4]). 

It is noteworthy that a few of these elements, such as cobalt (Co), copper (Cu), chromium (Cr), 

iron (Fe), nickel (Ni), zinc (Zn), etc., are essential micronutrients for plants or animals, and their 

deficiency leads to different diseases or syndromes. On the other hand, an excess of these 

compounds may also cause adverse effects in living organisms. Therefore, it is necessary to evaluate 

the range of concentrations in which these elements would produce beneficial or necessary effects 

and the concentrations that would be toxic [5]. 

The current concern regarding the concentrations of heavy metals and metalloids in the 

environment is reflected in the development of protective legislation and also in the development 

of remediation techniques for soil, sediments, and water (both surface water and groundwater) that 

are based on physicochemical and biological processes. Such remediation techniques must be 

economically viable and environment-friendly so that no further environmental problems are 

caused. 

In this regard, the present report summarizes the existing knowledge on heavy metals and 

metalloids in the environmental context to facilitate the understanding of the behavior of these 

elements in various natural ecosystems. First, the main sources, natural as well as anthropogenic, 

of the compounds of each of these elements are discussed, with a particular focus on the transport 

agents in the biosphere. Finally, the physicochemical processes involving heavy metal(loid)s and 

occurring in the aquatic and soil ecosystems are described to better understand the remediation 

techniques that have been developed in the past few decades and thus better manage the soil 

pollution problems. 

2. Heavy Metals, Trace Metals, Metals, or Elements? 

In the literature, certain elements of environmental concern are grouped together and assigned 

various designations, such as metals, heavy metals, trace metals, toxic metals, etc. These groups of 

elements of environmental concern mostly include metals such as Zn, Ni, Cd, Cu, Sn, Pb, Fe, and Hg, 

although a few metalloids, such as As, and even non-metals, such as Se, are also included (Figure 1). 
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Figure 1 The metals, metalloids, and non-metals in the periodic table. 

The use of various terms, including metals, heavy metals, elements, etc., for a group of chemical 

elements of biological and environmental concern creates confusion as each of these terms is based 

on a strict definition, due to which a few elements are left out of the group. For instance, when 

using the term ‘heavy metals’, As and Se should not be included as these are not metals; however, 

most environmental studies include these two elements in the ‘heavy metals’ group. 

The term “heavy metal” refers to the metallic elements having a density above a certain 

threshold value. However, no consensus has been reached on a particular density value to be used 

as the threshold for this distinction in the literature so far, and different studies have considered 

different values as the threshold in their analyses, such as 4, 4.5, 5, and 7 g cm–3 [6, 7]. Nonetheless, 

even the elements that have a density below the above-stated density values, which are designated 

as light metals (e.g., Li, Be, and B), are also of environmental concern. 

Another approach to classifying a metallic element as a heavy metal involves the atomic number 

and atomic weight of the element, such as the elements with atomic number greater than 20 

(metals beyond calcium in the periodic table) or the elements with atomic weight greater than that 

of sodium (23) [8]. 

Authors such as Duffus (2002) [9] and Hodson (2004) [10] have defended that the term ‘heavy 

metals’ should be eliminated from the literature as this term is being used as a synonym for “bad” 

metals. Hodson, (2004) [10] stated that “whenever one encounters research manuscripts titled 

“Distribution of heavy metals in…”, “Effects of heavy metals on…”, or “Uptake of heavy metals by…”, 

one understands that this manuscript would be on pollution and its environmental impact or 

anthropogenic influences. The authors recommend that the lack of a clear criterion for using these 

terms should be overcome by the correct grouping and defining of these elements based on their 

properties according to the periodic table. 
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On the contrary, authors such as Batley (2012) [11] are in favor of accepting and continuing the 

use of the term ‘heavy metals’ for a group of common elements and compounds of environmental 

concern, such as the ones composed of the following metals: V, Zn, Cr, Ag, Fe, Co, Ni, Cu, Mo, Mn, 

Cd, Au, Hg, Sn, and Pb. In a manner, the author recommends the use of this term from an 

environmental-chemistry and ecotoxicological perspective. While Batley (2012) [11] admits that this 

definition is not accurate, the author defends that the term serves a practical and profitable purpose. 

According to Batley, a further precise definition would include transition metals, certain metalloids, 

lanthanides, and actinides, in addition to just metals. Babula et al. (2008) [12] also share the same 

opinion and agreed that the term “heavy metals” should include all the above-stated groups of 

elements. 

Furthermore, this group of elements is also, at certain times, designated as "trace elements" or 

"trace metals", which creates further confusion as not all of such elements of environmental 

concern meet the criterion of being present in "trace" amounts. An element is considered as a trace 

element when its presence in the environment is in trace concentrations, i.e., in the range of ppb to 

less than 10 ppm, in different environmental matrices and a few specified sources, such as soil, plant, 

living organism, groundwater, etc. [13]. However, metals such as Fe and Zn might be present in the 

soils and/or sediments at concentrations greater than 10 ppm (in the gram range), thereby defying 

the criterion of trace concentration. Therefore, not all elements/metals of environmental concern 

could be universally referred to as trace metals or trace elements.  

In the field of toxicology and human health, the terms "trace metals" and “trace elements” 

acquire a further confusing connotation of being related to a low nutritional requirement in a 

specified organism [9]. The examples of trace metals necessary for good health in humans are listed 

in Table 1. 

Table 1 The metals and metalloids required in nutrition for good health in humans [14]. 

 Toxic metals Probably essential Proven essential 

Trace (mg kg–1)   Fe, Zn, Cu 

Ultratrace (µg kg–1) As, Cd, Au, Pb, Hg, Si Ni, V, Sb Mn, Co, Se, Mo, Cr 

It is true, as Batley (2012) stated [11], that the terms "heavy metals" and "metals" are widely 

accepted in the scientific community working on environmental research for defining a range of 

elements with different characteristics. However, in other fields of chemistry, such as analytical 

chemistry, biochemistry, organic chemistry, inorganic chemistry, etc., it is important to adjust the 

terms strictly in accordance with the characteristics of an element according to the periodic table, 

selecting distinct and precise terms that best fit the requirements.  

Since most of the environmental studies consider metals with densities above 7 g∙cm–3
, the term 

“heavy” would be acceptable for these studies. However, in the studies involving As and Se, these 

elements should be referred to using their chemical names, separately and distinctly from the 

“heavy metals”, as these elements are metalloid and non-metal, respectively. Therefore, it appears 

suitable to use the term heavy metal(loid)s, which would include heavy metals and the other most 

common compounds/elements of environmental concern, such as As and Se. In the oral speech, the 

group corresponding to the above term could be referred to as the “heavy metals and metalloids”. 
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3. Sources of Heavy Metal(loid)s Present in the Environment 

The heavy metal(loid)s present in the environment might have origins in natural and/or 

anthropogenic sources (Figure 2). In addition, certain natural agents, such as wind, vegetation, etc., 

could serve as effective pathways for the mobility and transport of these metal(loid)s in the 

biosphere. Since the characteristics of these sources vary widely, these must be treated separately. 

 

Figure 2 The sources and the mobilization and transport agents in the biosphere that 

contribute to metal(loid) pollution. 

3.1 Natural Sources 

Natural phenomena, such as weathering of rocks and volcanic eruptions, may release 

metal(loid)s into the environment to different extents. These natural sources seldom lead to huge 

impacts as their contributions are minor. Among these sources, rocks, soils, and volcanoes are the 

most relevant ones. 

3.1.1 Rocks and Soils  

Among the natural sources of metal(loid) release in the environment, rocks and soils are the two 

main contributors. The magmatic or igneous rocks are formed when the magma cools. These rocks 

contain various chemical elements in a crystalline network of primary minerals, including heavy 

metal(loid)s. Certain elements enclosed in the minerals that form these rocks may be released into 

the environment naturally, such as As is released from arsenopyrite (FeAsS), mercury from cinnabar 

(HgS), lead from galena (PbS), anglesite (PbSO4), and cerussite (PbCO3), and chromium which 

crystallizes as the mineral chromite (FeCr2O4), etc. [15]. Table 2 lists the most common chemical 

elements present in the magmatic minerals that are components of magmatic rocks. 

Table 2 The chemical elements present in the most common minerals that form 

magmatic rocks [15]. 

Mineral Trace element 

Olivine Ni, Co, Mn, Li, Zn, Cu, Mo 

Hornblende Ni, Co, Mn, Se, Li, V, Zn, Cu, Ga 
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Augite Ni, Co, Mn, Se, Li, V, Zn, Pb, Cu, Ga 

Biotite Rb, Ba, Ni, Co, Mn, Se, Li, V, Zn, Cu, Ga 

Apatite Rare earth elements, Pb, Sr 

Anorthite Sr, Cu, Ga, Mn 

Andesite Sr, Cu, Ga, Mn 

Oligoclase Cu, Ga 

Albite Cu, Ga 

Garnet Mn, Cr, Ga 

Orthoclase Rb, Ba, Sr, Cu, Ga 

Muscovite F, Rb, Ba, Sr, Cu, Ga, V 

Titanite Rare earth elements, V, Sn 

Ilmenite Co, Ni, Cr, V 

Magnetite Zn, Co, Ni, Cr, V 

Turmaline Li, F, Ga 

Zircon Hf, U 

Another natural source of heavy metal(loid)s is sedimentary rocks. These rocks are formed as a 

consequence of physical and chemical weathering that leads to the disintegration of rocks into 

particles (sediment) and ions. Sedimentary rocks are then formed gradually over extended 

geological periods through the processes of accumulation of these sediments followed by chemical 

alterations. The third type is metamorphic rocks. Metamorphic rocks are formed in a process 

characterized by the reorganization and recrystallization of the rock-forming minerals [15]. 

When the above-stated rocks undergo a gradual disintegration over long periods, it results in the 

formation of soil. The disintegration process may be physical (such as the weathering process due 

to the influence of temperature, water, ice, etc.), chemical (soluble minerals are dissolved due to 

interactions between carbonic acid and water), or even biological (due to the action of 

microorganisms and plants) [16]. In the disintegration process, the chemical elements that once 

constituted the original rocks are released into the soil. Therefore, the composition and 

concentration of heavy metal(loid)s in the soil depend on the parent rock type and the 

environmental conditions [17] and, as a consequence, are highly varied. The chemical composition 

of heavy metal(loid)s in the soil reflects the chemistry of the parent rock from which these were 

released. For instance, the soils containing high levels of Mn, Co, Ni, and Cu could have originated 

from igneous rocks, such as olivine, augite, and hornblende, while the soils originating from 

sedimentary rocks, such as shale (mainly), limestone, and sandstone, exhibit the highest 

concentrations of Cr, Mn, Co, Ni, Cu, In, Cd, Sn, Hg, and Pb [18]. If, on the other hand, the soil has 

been formed from basalt (Table 3), a rock type with high levels of Cr, Co, and Ni, it would contain 

higher concentrations of these elements compared to the soil formed from the granite rock.  

Table 3 The average values of metal(loid)s and non-metals (in ppm) contents in certain 

rocks types [15]. 

Metal(loid) 

(ppm) 

Granite [a] Basalt [a, b] Shale [c] Ocean 

Clay [c] 

Limestone Deep-Sea 

Carbonate 

Al (%) 7.2 8.2 8.0 8.4 0.42 2.0 
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As 2 2.2 13 13 1 1 

Be 3 0.7 3 2.6 0.X 0.X 

Cd 0.13 0.21 0.3 0.03 0.3 0.0X 

Co 4 47 20 74 0.1 7 

Cr 10 185 100 90 11 11 

Cu 20 94 50 250 4 30 

Fe (%) 1.42 8.6 5.1 6.50 0.38 0.9 

Hg (ppb) 0.03 0.09 0.4 0.03 0.04 0.0X 

Mn (%) 0.045 0.18 0.09 0.07 0.11 0.1 

Mo 1 1.5 2.627 0.4 3  

Ni 10 145 60 230 20 30 

Pb 17 7 20 30 9 9 

Sb 0.22 0.6 1.5 1 0.2 0.15 

Sc 7 27 16 19 1 2 

Se 

Sn 

Ti (%) 

0.05 

3 

0.12 

0.05 

1.5 

1.14 

0.6 

6 

0.60 

0.17 

1.5 

0.46 

0.08 

0.X 

0.04 

0.17 

0.X 

0.08 

Tl 2.3 0.21 1.4 0.8 0.0X 0.16 

V 50 225 140 120 20 20 

Zn 50 118 85 200 20 35 

(a) [19]; (b) [20]; (c) [21] 

3.1.2 Volcanoes 

Volcanoes are another natural source from where toxic elements are released into the 

environment. While the volcanic material expelled during a volcanic eruption also releases nutrients, 

such as nitrogen, phosphorus, potassium, calcium, sodium, magnesium, etc., into the environment, 

the levels of toxic elements released, such as heavy metals and metalloids (Al, In, Mn, Pb, Ni, Cu, As 

and Hg, etc.), are higher [22]. 

Volcanic ash flies in the air and is spread around along with the wind, thereby reaching larger 

distances and affecting sites situated far away from the site of the volcanic eruption. Ochota et al. 

(2012) [23] conducted a study to determine the contents of Pb, Cd, Zn, Fe, Mn, Cu, and Cr in the 

samples of moss bags exposed to atmospheric dust containing volcanic ash in Sosnowiec (Poland) 

after the eruption event of the Eyjafjallajökull volcano (the last eruption occurred on March 20, 

2010) in Iceland. The results revealed a great increase in the content of heavy metal(loid)s in most 

of the samples exposed to environmental dust after the volcanic eruption in Iceland. 

3.2 Anthropogenic Sources 

The heavy metal(loid)s present naturally in the environment do not cause much environmental 

pollution. The pollution in soil, water, and/or the atmosphere is rather due to anthropogenic 

activities, which disrupt the geochemical cycle of the elements, thereby leading to the accumulation 

of toxic elements in any of the matrices. For instance, mining activities bring to the surface the 

minerals, which also contain heavy metal(loid)s, that are located at great depths within the earth in 

nature. The other reported anthropogenic sources of the heavy metals and metalloids existing in 
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the environment include industrial, agricultural, domestic, traffic, pharmaceutical, and atmospheric 

sources. 

The release of these elements from anthropogenic sources into the environment might be 

punctual (factories effluents, sewage waste, etc.) or diffuse (runoffs from land, roads, and roofs, 

etc.). 

3.2.1 Industrial Sources 

Most of the existing industries utilize heavy metal(loid)s in their production processes, thereby 

yielding harmful waste. Despite improvements in the process technologies, which have improved 

and maximized the efficiency of the industrial processes, a state of zero waste production has not 

been reached so far. The conventional water and solid waste management techniques are 

inadequate to eliminate the entire pollution load, and a certain amount of waste material is released 

into the environment. Moreover, there are a few industrial sources that dump their waste straight 

into the environmental matrices. Environment pollution has, as a consequence, reached a level that 

is threatening to human health, plants, animals, as well as aquatic biota [24].  

The anthropogenic sources of heavy metal(loid)s in the environment mainly include industrial 

emissions, such as those from transportation, coal combustion, and fugitive particulate emissions. 

Among the other sources is the urban and industrial waste treatment, incineration in particular. For 

instance, Cd and Ni are released into the environment due to the burning of residual municipal and 

sewage wastes, incineration, combustion of coal and fuel oil, urban refuse, mine tailings, and 

smelter slag and waste [25]. 

The mining activities generate huge amounts of metal(loid)s that are subsequently discharged 

into the environment. For instance, Cd is present in Zn ores as a guest-element and has a 

geochemical similarity and origin to Zn, due to which the extraction processes conducted for Zn 

inevitably release Cd into the environment [19]. In 1998, a spill of mine tailing occurred in Aznalcollar 

(Spain), causing negative effects that threatened the environment. In that accident, huge amounts 

of acidic water (pH ≈ 3) and sludge containing high levels of heavy metal(loid)s, including Zn, Cd, Ag, 

Pb, Cu, Sb, As, Co, Ti, Bi, Hg, and Se, were dumped into the surroundings of a natural park (Doñana 

Park). The short-term impacts caused by this dumping event included drastic changes in the 

properties of water (strong decrease in the water pH and reduced dissolved oxygen levels of 0.5–1 

g/L) and death of the local fauna due to blows and gill blocking. The long-term impacts included 

sublethal effects on the immune system, DNA damage, adrenocortical stress response, and bone 

development and metabolism in various organisms [20]. 

The use of Cd is common in various industrial processes, such as the production of alloys, 

pigments for plastic materials, coatings for steel and non-ferrous metals, etc. Moreover, Cd is 

essential for the production of electronic instruments and batteries. The current trend of increasing 

environmental awareness and responsibility in developed countries has triggered a reduced usage 

of Cd as well as an increase in the recycling of products. In effect, approximately 22% of the 

production of Cd comes from the recycling of Ni-Cd batteries [21]. 

The industrial sources of Cu include regular transportation, manufacturing, currency, 

construction (roofing, decoration, etc.), and electricity transportation such as conductive dyes. Cu 

is used in the production of brass alloys for vehicles and is present in cylinder head gaskets, oil leak 

sumps, and brake linings. Al-Khashman (2004) [26] reported high concentrations of Cu in street dust 
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in the Karak Industrial Estate (Jordan) and linked these elevated Cu concentrations with motor 

vehicles as the study region was close to a car service site. 

Pb is released to the environment from fossil fuels burning, mining, manufacturing, heavy metal 

products (solder and pipes), and devices to shield X-rays. Certain kinds of batteries also use Pb in 

their composition and are referred to as lead-acid batteries. Since the late 1970s, there has been an 

effort to reduce the use of Pb in various products, such as gasoline, paints for residential applications, 

cans for food products, and plumbing systems [3]. López et al. (2019) [27] detected high levels of Pb 

in the soil of an urban farm, which was attributed to the construction demolition wastes dumped 

into the soil at the site close to where the urban farm was located. These construction wastes 

contained white paints, which are characteristic of the Mediterranean countries. The white pigment 

in these paints contains Pb (hydrocerussite, 2PbCO3.Pb(OH)2) in a concentration range of 6.0%–

18.6%, which was the reason for the high lead concentration in the soil [28]. 

As is used as an alloying agent extensively in various industries, such as glass, pigment, textile, 

paper, adhesive, wood preservative, and ammunition production industries. In addition, As is used 

in the tanning of hides, pesticides, feed additives, and pharmaceuticals. In medicine and veterinary 

sciences, As is used in the treatment of various diseases, such as syphilis, amoebic dysentery, and 

trypanosomiasis, and even for the eradication of tapeworms in sheep and cattle [29]. 

Industrial chromium is released into the environment due to various activities, such as heavy 

metal processing, chromium production, stainless steel welding, ferrochrome production, and 

pigment production, etc. [3]. In addition, it is widely used in leather tanning [30], in which the 

chromium salts used are not chemically fixed during the processing of leather and are released as 

liquid effluents. So far, it has been nearly impossible to replace Cr in the leather tanning process. 

Therefore, a technology capable of cleaner production is being developed to reduce the load of 

chromium salts into the effluents [30]. Tariq et al. (2006) [31] studied the environment around the 

tanneries and reported contamination of the soil and water in the study region due to the release 

of effluents containing high levels of Cr, Fe, and Pb from the tanneries without any pretreatment. 

Ni and Zn have several industrial and commercial applications due to their high resistance to 

corrosion and temperature. Ni and its compounds are used in the production of stainless steel and 

other Ni alloys, as well as in chemical and food processing industries, particularly as catalysts and 

pigments [25]. Zn is used widely in the production of galvanized metals and metallic surfaces that 

are used as building materials (railings, chain-link fences, plumbing and stormwater drainage pipes, 

etc.) and the manufacturing of office furniture. Ni and Zn are also used in the motor vehicle industry, 

specifically in rubber tires, motor oil, hydraulic fluids, and brake pads (although a few authors have 

stated the brake pads as a source of copper rather than zinc [32]). 

Hg has been used extensively in the electrical industry (switches, thermostats, and batteries) and 

other industrial processes, such as caustic soda production, nuclear reactors, antifungal agents for 

wood processing, precious metals, and pharmaceuticals [3]. Hg was used as an ingredient in latex 

paints and other types of paint for a long time, which exerted negative effects on human health. 

Phenylmercuric acetate was used as a preservative to prolong the shelf life of the interior latex paint. 

According to a study, the topsoil in Beijing, which is one of the most populated cities in the world, 

has significant contamination of Hg and other polluting metals related to the use of paints in old 

constructions [33]. It is reported that the weathering of HgS used as a red pigment in ancient 

buildings and coal-burning are two significant contributors to the high concentrations of Hg in soils 

[34]. Exposure to Hg, either in soil or paints, is harmful to human health. Mercury poisoning 
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(acrodynia) has been detected in a child that was exposed to paint fumes with a mercury content of 

4.7 mmol/L [35]. The Environmental Protection Agency recommends a Hg content of 1.5 mmol/L or 

less in paints. 

3.2.2 Agricultural Sources 

Animal farming and intense agricultural practices use potentially toxic elements, such as 

inorganic fertilizers, liquid and solid manure (or their derivates, composts, or sludge), pesticides, 

insecticides, etc. 

For instance, Zn and its compounds (zinc oxide, zinc sulfate, and zinc oxysulfates) are used widely 

in agriculture as fertilizers, fungicides, or even pesticides [32]. The long-term use of these 

compounds in an intensive agriculture system might lead to the accumulation of the Zn element in 

the soil profile, from where the heavy metal(loid) pollution ultimately reaches the surface and/or 

groundwater and even the atmosphere [36]. 

Fertilizers and pesticides are responsible for Cd accumulation in the soil–plant environment. 

Since Cd is commonly present as an impurity in phosphatic rocks, when a phosphatic fertilizer is 

applied, Cd is released into the soil [37]. This Cd is then absorbed by crops, trees, and animals, where 

it accumulates and could later reach the humans via the food chain, threatening human health. One 

of the most common examples of this is the “Itai-Itai disease”, which occurred in Japan during the 

1950s. This disease manifested in the people who consumed rice and soybean contaminated with 

Cd. The high Cd contamination levels in the rice crops were a consequence of the uncontrolled 

discharge of Cd from mineral refinery factories into the Jenzu River basin [38]. 

Intensive agriculture is aimed at fighting plagues or undesirable vegetal species and maximizing 

crop production. This objective is achieved with the wide application of insecticide, herbicide, and 

fungicide solutions or even sheep dips, which contain several toxic elements in abundance. For 

instance, As is present in various inorganic compounds, such as calcium arsenate, lead arsenate, and 

sodium arsenate [37], and the application of such compounds to soil serves as, in addition to a 

source of nutrients, an important source of As to the soil. 

The antifungal and antimicrobial properties of Cu have also expanded its application range [39]. 

However, the misuse of such Cu-containing products might lead to high concentrations of Cu in the 

soil, which could affect the soil biota and even alter the C and N cycles in the soil, thereby leading 

to reduced soil fertility [40]. 

Since the aim of using Cu-containing fungicides is to extend the protection provided by these 

fungicides to fungal diseases as well, these fungicides contain Cu in its inorganic form. This inorganic 

Cu form is insoluble in water and is, therefore, not washed off easily by irrigation water or rainwater, 

thereby providing longer protection against diseases [41]. López et al. (2019) [27] detected high 

concentrations of Cu in the leaves of urban plants and linked it to the use of copper-based fungicides, 

even though traffic pollution is usually considered the main source of Cu released into the 

environment in urban regions.  

Lastly, another source of metal(loid)s released into soils is manure. Manure products contain 

elements, such as As, Co, Cu Fe, Mn, Se, and Zn, which serve as nutrients for the livestock and/or 

poultry, preventing the development of diseases, improving weight gains, and feed conversion 

efficiency, and increasing the egg production. The excess nutrients that are not assimilated by the 

organisms are excreted through the urine or feces, which is the reason for the high content of toxic 
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compounds in the manure [42]. For instance, in England and Wales, approximately 25%–40% of the 

total annual Cu, Ni, and Zn inputs to the agricultural lands were derived from animal manure [43]. 

Besides manure, the water used for irrigating the fields also serves as a source of certain 

elements that are released into the soil as the wastewater treatment process is not 100% efficient. 

For instance, the Pb content in the soil could be a consequence of the release of industrial 

wastewater into the soil, particularly in the soils of densely populated areas [44]. 

4. Mobility and Transport Agents in the Biosphere 

Environmental agents, such as the biota, air, and water, are involved in the mobility and transport 

cycles of metal(loid)s in the biosphere. For instance, plants absorb and accumulate heavy 

metal(loid)s and other toxic elements in their roots, shoot tissues, leaves, and stems. The 

subsequent decomposition and leaching of plant tissues then affect the soils, sediments, and water. 

Therefore, it is possible to utilize plants for removing heavy metal(loid)s and other toxic elements 

(phytoremediation) in water and soil treatments. In addition, atmospheric emissions of these toxic 

elements occur due to the transpiration process of plants. The toxic elements are first transformed 

into volatile forms within the plant and then released into the atmosphere via transpiration. This 

process, known as phytovolatilization, has been used for the remediation of soils polluted with Hg 

and Se [45]. 

The atmospheric emissions of volatile elements also occur during forest and prairie fires (e.g., 

elements, such as Hg and Se, are present in the carbonaceous matter released during forest fires) 

[46]. Finley et al. (2009) [47] estimated that the atmospheric emissions of Pb and Hg together with 

other metals during a forest fire were similar to those of anthropogenic origins, such as industrial 

processes and urban pollution. Moreover, Finley et al. (2009) [47] reported that the global Hg 

emissions from wildfires included an estimated 890,000 ±490 kg/year for gaseous elemental Hg and 

170 ±100 kg/year for particle-bound Hg. 

Deserts and coastal regions may also serve as the sources of metal(loid)s due to the action of 

various environmental agents, such as wind. In deserts, the wind currents may cause the dust 

containing toxic elements to reach the sites located at great distances from the original site.  

For instance, the Sahara dust has high levels of Fe and Mn, In, Cr, Ni, and Pb present in lesser 

amounts [46]. The nearby countries such as Spain and other Mediterranean nations, therefore, 

receive the “red rain”, which is a meteorological event involving the transport of the 

aforementioned dust from the North African sources. López et al. (2019) [27] reported that this dust 

deposition affected the crops in an urban farm located in the largest city of Sevilla (Spain). The 

sample crops of lettuce and broad bean exhibited high concentrations of crustal metals, including 

Fe, Co, Mn, and Cr, which was attributed to the Saharan dust deposition. Naderizadeh et al. (2016) 

[48] conducted studies in the province of Bushehr (southwestern Iran), where dust storms had 

become a major environmental concern, and demonstrated that atmospheric dust particles served 

as significant pollutants in the environment as these contained high levels of toxic metals, such as 

Fe, Ni, Cr, Co, and Mn, which originated from natural sources. 

In coastal areas, emissions of these pollutants occur due to ocean activity, which generates 

particles, aerosols, and sea sprays (approximately 5 mg∙m–2∙d–1 sea salt particles are released) [49]. 

The element and the transport agent (wind, rain, etc.) together determine the physical form in 

which these emissions would be transported. For instance, Cu, Pb, and Zn are transported as 
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particles, while volatile metals such as Hg and other elements such as Se, Sb, and As may be 

transported either in gaseous form or enriched in particles [15]. Irrespective of the form which is 

transported, the two-way sea–land transport via the atmosphere provides a mixed marine–

continental composition to these elements. The metal-enriched particles generated in the sea-spray 

increase the concentration of certain metals in the environment close to the marine environment, 

such as air, rain, seaside area, etc. This has been confirmed previously in 1974 by Peirson et al. [50], 

who reported a higher content of metals in the rainwater in the atmosphere above the North Sea. 

Another study conducted by Van Malderen et al. (1996) [51] over the southern bight of the North 

Sea revealed a higher content of Cr in the aerosols particles collected in the air mass of marine origin, 

which was attributed to the recycling of previously deposited material that was reinjected into the 

atmosphere due to sea-spray. 

A remarkable atmospheric deposition of heavy metal(loid)s occurs in plants and soil, 

independent of the time scale. In effect, atmospheric deposition is responsible for over 90% of the 

total plant uptake of Pb [52] and over 50% of the plant uptake of Cd [53].  

In certain industrial activities, such as electricity generation based on coal burning, generate 

ashes rich in heavy metal(loid)s. The generated ashes are ultimately dumped on land, because of 

which the soils of the regions surrounding coal-fired electricity generator plants are contaminated 

with heavy metal(loid)s. Krishna and Govil (2007) [54] conducted a study on the soil in the city of 

Surat in Gujarat (India) and reported that the ashes generated in this activity increased the Cr levels 

in the soils of the regions close to the industry. 

5. Reactivity and Transport of Heavy Metal(loid)s in Soils and Aquatic Ecosystems 

The mobility of heavy metal(loid)s through the different “compartments” or components of an 

ecosystem involves various biological, geological, and chemical processes. Moreover, metal(loid)s 

may also become incorporated as components of the biota as essential elements necessary for the 

life cycle of the organisms. However, when these elements are present in high concentrations in the 

environment, the bioaccumulation of these elements in the tissues of certain organisms, such as 

filter organisms (e.g., bivalves) or microorganisms, may reach toxic/lethal concentrations or the 

elements might be adsorbed in the cell walls of the microorganisms, ultimately damaging the cells 

[30]. 

5.1 Heavy Metal(loid)s in Soils 

The metal(loid) concentration in a soil solution is calculated as the sum of the individual 

concentrations of different free ions in the solution, the concentration of soluble organic and 

inorganic metal(loid) complexes, and the concentration of heavy metal(loid) components of the 

mobile colloidal material [55]. 

In separate studies, Tangahu (1991) [56] and McLean and Bledsoe (1992) [57] established seven 

possible states in which these elements might be present in soils: 

(1) in the soil solution as free metal(loid) ions, in complexes or associated with moving colloids; 

(2) in exchange positions with the inorganic constituents of the soil; 

(3) adsorbed onto the insoluble organic matter; 

(4) specifically adsorbed onto the inorganic constituents (Fe and Mn oxides); 

(5) precipitated in the form of carbonates, phosphates, hydroxides, etc.; 
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(6) as the components of the structure of secondary minerals; 

(7) as the components of the structure of primary minerals. 

Heavy metal(loid)s of anthropogenic origin are usually present in the first five forms, while the 

ones originating from natural sources occur in any of the above-stated forms, depending on the 

process of soil formation and evolution. However, when the heavy metal(loid)s are present in the 

environment in states (1) and (2), their availability to the living organisms is high. 

Upon entering the soil system, the heavy metal(loid)s may undertake several different pathways 

(Figure 3). The heavy metal(loid)s may be stored or transported through internal mechanisms, which 

mainly include the formation of complexes with organic and inorganic ligands, oxide–reduction 

reactions, precipitation–dissolution reactions, immobilization by soil organisms, and adsorption–

desorption reactions [52]. 

 

Figure 3 Principal processes governing the concentrations of different metal(loid)s in the 

soil solution [55]. 

Heavy metal(loid)s undergo a series of chemical reactions involving solid and aqueous phases of 

the soil, which vary both spatially and temporally. Therefore, the chemical composition of the soil 

solution is dynamic and, therefore, influenced by the balance between these two phases. The solid 

phase is formed by phyllosilicates, which include clay minerals, oxy-hydrides such as Mn hydrides, 

Fe and Al oxides, and particulate organic matter. The aqueous phase comprises water and dissolved 

constituents, such as free metal(loid) ions, complexed metal(loid) ions, dissolved organic carbon, 

and other ligands [52], which provide a mobile medium for both chemical reactions and metal(loid) 

transfer and circulation from the soil to the organisms or even to the aquatic environment. 
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5.1.1 Complex Formation 

A complex is a molecule formed by a central atom or ion, which in this case would be a metal(loid) 

(e.g., Cd+2, Zn+2, Cr+3, etc.), bonded to other atoms or molecules surrounding the central atom in a 

specific geometric pattern (e.g., ZnSO4
0, CdHCO3

+, Cr(OH)4
–). These surrounding atoms or molecules, 

referred to as ligands, may be of inorganic (SO4
–2, HCO3

–, Cl–, OH–, PO4
–3, NO3

–
, and CO3

–2) or organic 

nature (compounds of low molecular weight, such as aromatic, aliphatic, and amino acids), or 

soluble constituents of fulvic acid (FA) and humic acid (HA).  

Humic acid is the most abundant natural ligand with a high affinity that enables it to chelate 

several metals ions present in the environment. The HA-metal(loid) complex is capable of modifying 

the properties of the metal(loid) ions. For instance, metal(loid) solubility may be increased when 

heavy metal(loid)s are present in a complex with free HA, while the solubility is decreased when 

heavy metal(loid)s are scavenged by humic films present on the mineral surfaces [58]. As a 

consequence, in reverse effect, the solubility of the metal(loid) affects its bioavailability and toxicity 

in the environment. In addition, these heavy metal(loid) complex species may determine the 

mobility of the metal(loid)s through the soil matrix via the modification of the transportation of the 

free ions. 

It is noteworthy that the formation of complexes with the metal(loid) ions produces charged 

species (positive, negative, or neutral), because of which the adsorption of the complexed ions is 

different from that of the free ions. For instance, the complexation of Cd2+ with the chloride ligand 

produces the following differentially charged species: Cd2+, CdCl+, CdCl20, CdCl3– [55]. 

Benjamin and Leckie (1982) [59] stated that the chemical compound resulting from the 

interaction between a metal(loid) ion and a ligand could be a complex species that is capable of 

adsorbing onto the soil relatively weakly or strongly compared to the free metal(loid). Generally, 

when the metal(loid) complex has a reduced positive charge, the adsorption of this complex on a 

negatively charged surface is also lower. 

5.1.2 Oxidation and Reduction 

Oxidation–reduction reactions (redox reactions) of metal(loid)s play a crucial role in governing 

the transformation, mobility, and toxicity of metal(loid)s in the environment as these allow the 

elements to occur in both oxidized and reduced forms. The oxidation–reduction reactions may occur 

through abiotic and biotic processes. The former may occur on the surfaces of humic substances, 

sulfides, ferrous species, and Fe(III) and Mn oxides. Redox reactions govern the reactivity of Fe and 

Mn oxides, which are the major sinks of heavy metal(loid)s in the soil. Mn oxides serve as electron 

pumps for a large number of redox reactions that are unique to common minerals in the soil [60].  

Metal(loid)s such as As, Cr, Hg, and Se (non-metal) are quite sensitive to the redox conditions in 

the soil. Cr is a suitable example of how a metal(loid) changes from being an essential nutrient to 

plants and even to animals when in the Cr (III) form to a toxic element when in the Cr(VI) form. The 

environmental behavior of these two forms of Cr is also different. While Cr(VI) in the soil is mobile 

and readily available, Cr(III) may be present in the adsorbed or precipitated condition. Since the 

toxicity and mobility of elements depend on their oxidation states, all reactions that reduce Cr(VI) 

to Cr(III) are of great importance. The dominant reductants in these processes are organic 

compounds, sulfides, agents such as Mn(IV), and ferrous species [61]. Another example of an 
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element for which the redox and adsorption reactions govern its mobility and distribution is As. The 

reduced form of As is As(III), which exhibits higher toxicity and mobility compared to As(V) [62]. 

Other species, such as elemental arsenic [As(0)] and/or arsine (H2As), may also be present in the soil 

and sediment. 

Another parameter that is affected by the oxidation status of the heavy metal(loid) is its solubility. 

Heavy metal(loid)s are less soluble when in a higher oxidation state and ionic form [63]. It is reported 

that Pb, Cd, and Zn exhibit increased solubility with diminishing redox potential under the same pH 

value [64]. Therefore, for the above-stated three heavy metal(loid)s, the redox potential values 

provide valuable information regarding their bioavailability in the soil. Oxidized soils have redox 

potential values ranging from +400 to +700 mV, while reduced soils present values in the range of 

–250 to –300 mV [65]. 

Moreover, biotic redox reactions are involved in biological activity, particularly for As, Cr, Hg, and 

Se. In the case of the Hg element, bacteria have a higher significance compared to the eukaryotic 

cells in the redox process. The mercury-resistant bacterial species Shewanella oneidensis transforms 

the reactive Hg(II) into metallic Hg(0) through an enzymatic reduction in a process that requires an 

electron donor [66]. In the case of the Hg element, this transformation might be subjected to 

volatilization losses. On the other hand, the As present in the soil and sediment, when oxidized to 

As(V) by bacteria [67], is strongly retained in the inorganic components of the soil. Therefore, the 

biotic oxidation of As leads to its immobilization in the soil or sediment, different from Hg. 

5.1.3 Methylation and Demethylation 

Methylation is a biological process that reduces the toxicity of heavy metal(loid)s in the soil and 

sediment. This process is mediated by microorganisms referred to as the methylators, which 

transform the heavy metals into their respective less-toxic hydride or methylated forms. The 

methylated or hydride compounds exhibit lower boiling points and/or higher vapor pressure, 

allowing rapid volatilization. This process involving methylation followed by volatilization of the 

metal(loid)s might lead to the elimination of, for example, As, Hg, and Se from the ecosystems [68] 

containing organic matter serves as a methyl group donor for the process [61]. The biochemical 

methylation and volatilization of inorganic As is considered to be a detoxification process of this 

element due to the formation of volatile compounds of As, such as alkylarsines, which are easily lost 

to the atmosphere [69]. 

Methylation of Se is also a major detoxification process of this element and is catalyzed 

biologically [70]. In the methylation process of Se in soils, fungi exhibit relatively higher activity 

compared to other microorganisms, although certain Se-methylating bacterial isolates have also 

been reported [52]. 

5.1.4 Adsorption and Desorption 

Adsorption may be defined as the interaction of an element or molecule that is in a liquid phase 

with the surface of a solid phase. This interaction occurring at the solid–liquid interface leads to the 

accumulation of ions or molecules. In soil, the adsorption and desorption phenomena are key 

processes governing both reactivity and bioavailability of heavy metal(loid)s. Therefore, the 

accumulation and removal of heavy metal(loid)s in the soil could be associated with the adsorption 

and desorption processes, respectively. 
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This process of adsorption of ions onto the soil and its constituents is influenced by several 

parameters, such as soil components, pH, the speciation metal(loid) ion involved, and metal(loid) 

competition.  

Both inorganic and organic elemental components of the soil are involved in the adsorption 

process. The most important inorganic components are colloids, such as clays (montmorillonite and 

kaolinite), iron and manganese oxides and hydroxides, metal carbonates, phosphates, and 

amorphous aluminosilicates [71]. The organic components include living organisms such as algae or 

bacteria, soluble biochemicals (carbohydrates, polysaccharides, lignin, proteins, amino acids, 

organic acids, etc.), and insoluble humic substances (insoluble polymers of aliphatic and aromatic 

substances produced due to microbial activity) that provide interfaces for metal(loid) adsorption 

[55]. 

The pH value also plays a role in the adsorption process. The adsorption of metals is higher when 

the soil has a higher pH value. This is because a high pH value increases the number of surfaces with 

a negative load, thereby increasing the affinity of the soil for the heavy metal(loid)s. Omar and Al-

Itawi (2007) [72] reported that pH determined the adsorption process of the lead ions on kaolinite. 

This effect might be explained by the influence of H+ ions on the formation of complex ions. The 

formation of complexes during the adsorption process occurs through the interaction of the 

metal(loid) ions with the negatively-charged sites (SiO−) and the lattice hydroxyl groups (Si-OH). For 

instance, the adsorption of Pb+2 onto the soil is due to its interaction with SiO− and Si-OH in the soil, 

and the reactions are represented by the following equations: 

2SiO– +  Pb+2 ↔  (Si-O)2 − Pb eq(1) 

2Si-OH + Pb+2 ↔  (Si-O)2 − Pb + 2H+2 eq(2) 

Therefore, metal(loid) ions are completely removed at higher pH values. The effect of lowering 

the pH on the adsorption process is associated with the increase in the H+ ions. These ions compete 

with the metal(loid) ions to bind to the negatively-charged sites (such as SiO−). If the number of 

negatively-charged sites available to form stable metal(loid) complexes is reduced, the adsorption 

rate of the metal(loid)s in the soil would also decrease. Another consequence of the increase in the 

H+ ions is that the equilibrium represented by equation (2) shifts to the left side, which leads to a 

decrease in the rate of adsorption of the metal(loid) ions. 

The adsorption of heavy metal(loid)s on oxides and humic compounds present in the soil follows 

the general trend of metal(loid) adsorption, i.e., higher adsorption at higher pH. Moreover, in oxide 

minerals, pH is a primary variable determining the adsorption of cations and anions. 

The adsorption of metal(loid)s is also affected by the competition between the amount of heavy 

metal(loid)s present and available for adsorption on the adsorbents. Zhang et al. (2016) [73] 

demonstrated experimentally that when two metals coexist (Cd and Hg), the adsorption capacity in 

activated carbon is higher for Cd(II) compared to Hg(II). However, this phenomenon was not 

observed if the concentrations of both metals are low as the adsorption sites available in the active 

carbon are, in such a case, sufficient for both metals. However, when the concentrations of both 

metals exceeded the adsorption capacity, Cd(II) was adsorbed preferentially over Hg(II). The authors 

stated that the higher adsorption capacity of Cd(II) compared to that of Hg(II) was due to a longer 

ionic radius [97 pm for Cd(II) and 110 pm for Hg(II)] corresponding to a shorter hydrated ionic radius, 
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which leads to a greater affinity of the metal ions toward the activated sites of the adsorbent 

(activated carbon).  

Moreover, Xie et al. (2018) [74] reported additional parameters that are also relevant in the 

competitive adsorption process. These authors studied the competitive adsorption of Cu(II) in the 

presence of Zn(II) and reported that Cu(II) exhibited a higher adsorption capacity for the following 

three reasons: 1) the greater electronegativity of Cu(II), which enhanced the ability of Cu(II) to 

adsorb the electrons of the ions; 2) the first-order hydrolysis constant of Cu(II), which is greater than 

that of Zn(II); 3) the greater ability of Cu(II) to form a covalent bond between the soil colloids and 

the metal ions. 

5.2 Heavy Metal(loid)s in Aquatic Ecosystems 

Heavy metal(loid)s are present naturally in aquatic ecosystems, although anthropic activities 

such as mining, navigation traffic, agricultural runoff, uncontrolled discharges of untreated 

industrial and domestic wastewater, etc., and floods contribute to increasing the levels of these 

elements in the aquatic environment. Moreover, Hg and Pb may enter aquatic environments 

through the atmosphere and as the fallout of insoluble precipitates, respectively [75].  

In aquatic ecosystems, heavy metal(loid)s are partitioned among water, suspended solids, 

sediments, and biota (Figure 4), causing these to exist in various forms: a) as a free ion which is the 

form most toxic to living organisms; b) as an ion bound to different ligands (complex compounds); 

c) as the precipitated molecule of a compound, suspended in the liquid phase or adsorbed onto the 

surface of suspended or colloidal matter [76]. 

 

Figure 4 The heavy metal(loid)s in aquatic ecosystems. 
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Sediments in the aquatic ecosystems are considered the main fate of heavy metal(loid)s as these 

elements exhibit extremely low solubility and are rapidly fixed on the solid material in the 

suspension. After the sinking process, the concentrations of these elements on sediments could be 

several orders of magnitude higher than those on the adjacent interstitial and overlying waters [77]. 

Once placed on sediments, the heavy metal(loid)s may be adsorbed onto several compartments, 

such as fine grains (<63 µm), organic matter, and clay minerals, because of their large surface area 

per unit mass and their high cation-exchange capacity [78]. Therefore, sediments, in addition to 

serving as an accumulation repository, may also serve as a source of heavy metal(loid)s. 

Moreover, the metal(loid)s dissolved in water are also absorbed by the fish and other aquatic 

organisms. Even when absorbed by organisms in small concentrations, the heavy metal(loid)s would 

undergo bioconcentration, i.e., their concentration in an organism becomes higher than that in 

water. Once inside the organism, the metal(loid)s exert their toxicity by producing adverse biological 

effects on the growth, metabolism, reproduction, or survival of these organisms.  

The interaction between the microorganisms and the heavy metal(loid)s may be categorized into 

three different processes of metal(loid) distribution: intracellular interactions, cell-surface 

interactions, and extracellular interactions [79]. The first category involves the assimilation of heavy 

metal(loid)s by microbial cells. The most widely recognized intracellular interaction of 

microorganisms is the microbial methylation of Hg, which leads to the volatilization and subsequent 

bioaccumulation of the lipid-soluble methylated form of Hg [80].  

The second category is the cell-surface interactions, which are related to metal(loid) binding. For 

instance, algal surfaces contain functional groups such as carboxylic, amino, thio, hydroxo, and 

hydroxy-carboxylic groups, which may interact with metal(loid) ions by providing electronegative 

sites for metal(loid) binding [81]. The last category involves extracellular interaction between the 

metal(loid) and the biopolymers secreted by microorganisms (Extracellular Polymeric Substances, 

EPS), with the latter mainly comprising extracellular proteins, polysaccharides, and humus acid 

substances. Since these EPS contain abundant negatively-charged functional groups, these are 

efficient in adsorbing the metal(loid) ions through electrostatic attraction, complexation, ion 

exchange, surface precipitation, and other types of interactions [82]. The ions of these 

ecotoxicological elements (Hg, As, Cr, Pb, Cd, Ni, and Zn) usually penetrate the cell through the same 

transport systems that use other physiologically important metal(loid) cations such as Ca, Mg, Cu, 

Zn. etc. [83]. 

Therefore, depending on the process and the biological characteristics, an aquatic organism may 

be grouped into one of the two categories – regulators and accumulators. The first group governs 

metal(loid) accumulation and maintains the intracellular metal(loid) concentrations within a narrow 

range over a broad concentration range of external heavy metal(loid)s. The second group is capable 

of adopting a detoxification process in the presence of elevated metal(loid) levels even in non-

contaminated environments.  

As a consequence, heavy metal(loid)s might be lethal or harmful to the organism without killing 

it directly and rather by causing sublethal effects on an organism's physiological activities such as 

growth, metabolism, and reproduction [84]. 

Several aquatics ecosystems across the world have been impacted by human activity. Tarras-

Wahlberg et al. (2011) [85] reported a fluvial ecosystem that had been highly impacted by the 

mining activities conducted in Portobelo-Zaruma. In this ecosystem, heavy metal(loid)s released due 

to the extraction works, rather than occurring in the soluble form (due to neutral-to-slightly alkaline 
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water), were associated with suspended particles, river sediments, and biota, which suggested their 

potential bioavailability. These authors also reported elevated levels of Hg in the fish, which 

indicates that the methylation of Hg was occurring. 

6. Techniques for the Removal of Heavy Metal(loid)s 

6.1. Removal of Heavy Metal(loid)s from Aqueous Effluents 

Traditionally, the heavy metal(loid)s present in industrial or domestic effluents were removed 

using different conventional techniques, such as chemical precipitation [86], ion flotation [87], ion 

exchange [88], coagulation/flocculation [89], adsorption [90], and electrochemical processes [91].  

Most of these disposal processes have the advantage of low cost. Nevertheless, certain 

drawbacks exist, such as high energy requirements, production of a huge amount of toxic sludge 

that requires further treatment and proper disposal, and inadequate removal of the target element 

as evidenced by the non-attainment of high removal rates [92]. Moreover, during the last decades, 

environmental regulations across the world have become further stringent, demanding 

improvement in the quality of the treated effluent.  

Therefore, to overcome these drawbacks of the conventional techniques and also to fulfill the 

regulatory requirements, novel technologies have been developed, which are based on the 

development of novel adsorbent compounds, the application of membrane separation, and other 

techniques [93] that are summarized in Figure 5.  

 

Figure 5 Technologies used for the removal of heavy metal(loid)s from aqueous effluents 

[92]. 

The techniques most studied in the literature, according to Qasem et al. (2021) [93], are chemical 

adsorption and membrane methods. However, these authors also stated that most of the reported 

studies were conducted with synthetic wastewater, which contains only one metal or a few metals. 

Therefore, although these novel technologies appear promising, further studies are required to 

assess and elucidate their feasibility as there remains a gap between the treatment of synthetic 

wastewater and the treatment of real wastewater. 

Currently, these techniques are being improved with the development of novel adsorbents with 

better adsorption properties, novel types of membrane separation techniques such as ultrafiltration 

and nanofiltration, or even reverse osmosis. In the first group, use the use of the waste generated 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 21/30 

in a prior activity as a material to remove metals appears promising and sustainable. In 2020, 

Hernández-Cocoletzi et al. [94] used the hydroxyapatite derived from fish bones (skeletons of red 

snapper fish obtained from seafood restaurants, household waste, and fishmongers) as adsorbent 

to remove metal ions (Ni+2, Cu+2, and Zn+2), achieving up to 95% elimination.  

Furthermore, extensive research has been conducted on the treatment of aqueous effluents 

using agricultural residues or natural materials as low-cost adsorbent materials [95]. It has been 

revealed that after appropriate modifications (chemical or thermal), the agricultural residues exhibit 

a high capacity for metal removal. For instance, the use of natural adsorbents from coconut peels, 

neem leaves, and mango peels was demonstrated to achieve optimal levels of elimination [96]. This 

finding could be beneficial for the poor countries, which have limited access to high-cost advanced 

techniques, in deploying affordable treatment techniques for wastewater and also for the 

treatment of water meant for human consumption.  

The membrane separation techniques (ultrafiltration and nanofiltration) have been 

demonstrated to achieve metal-removal percentages close to 100% [97]. Ultrafiltration which uses 

membranes with a nominal pore size of 2–100 nm, has been demonstrated to achieve elimination 

efficiencies above 90% [98]. The main disadvantage of this technique is the fouling of the membrane, 

which has several adverse effects, such as flux reduction, increase in the transmembrane pressure, 

and membrane biodegradation [99]. The nanofiltration systems, which also use membranes with a 

nominal pore size of 1–2 nm, require working pressures noticeably higher than those required in 

ultrafiltration, because of which the energy consumption is larger in nanofiltration than in 

ultrafiltration. The technique of reverse osmosis involves the use of membranes with a nominal pore 

diameter of <1 nm, which allows the efficient removal of most inorganic contaminants and the 

elimination of all polluting and undissolved ions, although extremely high working pressures are 

required. As a consequence, this membrane technology involves higher investment and operational 

costs [100]. Although the application of membrane-based techniques is expensive, it is important 

to highlight that wastewater could be utilized as a material resource for other purposes, thereby 

promoting a circular economy.  

6.2. Removal of Heavy Metal(loid)s from Contaminated Soils 

Soil pollution due to heavy metal(loid)s is a global concern. The concentrations of heavy 

metal(loid)s have increased dramatically in the last few decades, which has increased the 

environmental and human health-related risk. It is reported that over 10 million contaminated sites 

exist worldwide, with over 50% of these sites contaminated with heavy metal(loid)s [101]. 

The metal(loid)s released into the system become a threat to the environment and public health 

because of their persistence, non-biodegradability, and a tendency for bioaccumulation at different 

levels in the food chain. Moreover, polluted soil increases the risk of groundwater contamination. 

Therefore, the development and application of clean technologies are in high demand. Several 

technologies with promising results are emerging these days. Table 4 summarizes the most common 

techniques applied and the treatment methods these use.  

Table 4 Techniques for the recovery of contaminated soil [102]. 

Technique  Treatment Application 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 22/30 

Decontamination Physico-

Chemical 

Extraction In-situ 

Washing Ex-situ 

Flushing In-situ 

Electrotechnical In-situ 

Addition of amendments In-situ 

Active permeable barriers In-situ 

Biological Assisted biodegradation In-situ 

Biotransformation of Heavy 

metals 

In-situ 

Phytoremediation In situ 

Thermic Thermic desorption Ex-situ 
Containment  Vertical barriers In-situ 

Horizontal barriers In-situ 

Dry soil barriers In-situ 

Deep sealing In-situ 

Hydraulic barriers In-situ 
Confinement  Physico-chemical stabilization Ex-situ 

Injection of solidifiers In-situ 

Vitrification Ex-situ/In-situ 

These soil treatment technologies are based on the following three principles: a) to contain the 

pollutant in the soil, b) to confine or isolate the pollutant by changing its physicochemical properties, 

and c) to reduce the concentration of the pollutant through different treatments. These three 

approaches may be categorized into in-situ or ex-situ types, depending on whether these are applied 

on-site or off-site, respectively. 

Among the three groups of techniques listed in Table 4, two techniques are aimed at diminishing 

the flux of pollutants in the soil (containment and confinement), while the remaining one 

(decontamination) involves appropriate treatment of the pollutants to reduce their concentration. 

The selection of the technique is based on the soil properties, pollutant chemistry, and soil–

pollutant interaction. The physicochemical techniques of flushing and washing are applied widely 

to reduce contamination, although these generate secondary waste, which has to be treated further. 

Gusiatin et al. (2020) [103] analyzed the sources and characteristics of a few novel washing agents 

that could substitute ethylenediaminetetraacetic acid (EDTA) as the washing compound as the latter 

is toxic and requires treatment. Currently, the low-cost and environmentally friendly novel washing 

agents are being developed from geochemical sources, organic waste material, and compost.  

The flushing technique is conducted in situ using an injection/recirculation system that pumps a 

washing solution through wells or using the infiltration processes. This enables the mobilization of 

the contaminants, which are removed from the soil by pumping the washing solution containing 

dissolved contaminants. The most widely used washing solutions are mineral acids (hydrochloric, 

sulfuric, and nitric acids), organic acids (oxalic acid and citric acid), synthetic organic chelating agents 

(EDTA, Diethylene triaminepentaacetic acid, DTPA, and Ethylene diaminodisuccinic acid, EDDS), and 

biosurfactants (saponin and rhamnolipids). In order to perform the washing technique, it is first 

necessary to separate the coarse soil particles from the and fine ones as the latter is the fraction 

containing the highest contamination values. Subsequently, these fine particles are treated with an 
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appropriate washing solution containing water and chemicals followed by sonication or mechanical 

agitation. 

In addition, biological methods are used to remediate soils, sediments, surface water, and even 

groundwater. In these methods, the pollutants are reduced due to the activity of microorganisms 

and/or plants and the associated rhizospheric microorganisms. These treatment methods are low 

in cost, and a few are even eco-friendly as these do not destroy the structure of the soil. For instance, 

Lofty and Mostafa (2014) [104] studied the use of different plant species in the extraction of Co and 

Cr from contaminated soils using two different wastewaters (sewage and industrial effluent). The 

results demonstrated that the shoots and roots of sunflower plants exhibited the highest Co and Cr 

uptake, suggesting that these approaches could play a crucial role in cleaning contaminated sites. It 

is important to highlight that these biological methods are environmentally friendly as they retain 

the physicochemical properties of the soil, such as soil structure. In addition, these methods are 

potentially cost-effective, although the time required to achieve the desired objective is longer.  

In the case of applying these treatments to remove the metal(loid)s present in the aquatic matrix 

(wastewater, marine or freshwater, and groundwater), the results are varied. While several of these 

techniques, such as chemical precipitation, chemical coagulation and flocculation, electrochemical 

methods, membrane filtration, ion exchange, bioremediation, and adsorption process, have been 

successful, the adsorption process has demonstrated the highest efficiency, specificity, and cost-

effectiveness in removing heavy metal(loid)s from wastewater. An adsorbent agent used widely in 

wastewater treatment is activated carbon which has a greater surface area and affinity for heavy 

metal(loid)s [105]. However, the cost of this adsorbent is high, and its regeneration capacity is low, 

which limits its application. Nowadays, activated carbon is being replaced by other biomaterials 

derived from agricultural residues, such as rice husk, wheat residues, clay materials, etc., and 

industrial waste products, such as lignin, blast furnace sludge, slag, fly ash, red mud, etc. [96]. 

However, these techniques based on physicochemical treatments are either inefficient or 

expensive if the heavy metal(loid) concentration is under 100 mg/L [106]. Therefore, biological 

methods such as biosorption and phytoremediation emerge as attractive alternatives. Among the 

biological methods, filtration organisms such as mussels appear promising in cleaning small aquatic 

systems. In addition, the waste produced in this biological technique may be used in a second-step 

process involving anaerobic digestion for producing biogas. Therefore, it becomes possible to 

transform the soft tissues and shells into valuable materials that are rich in carbonates and oxides, 

such as the resulting calcined mussel shell, which has proved to be of value for soil amendment [107] 

that fosters the following circular economy principle: wastes serve as a resource for producing novel 

products. 

7. Conclusion and Scope for Further Research 

Although heavy metal(loid)s have origins in nature, human activities, such as rapid 

industrialization and technological development, have increased and mobilized these polluting 

elements in the environment. The generated heavy metal(loid)s adversely affect the soil, water, 

atmosphere, and even the health of animals and humans. This is preventable if industrial and 

technological development is conducted in parallel with the development and use of adequate 

treatment processes for the removal of the pollutants discharged into the environment. 
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Although the currently existing technologies allow the removal of heavy metal(loid)s from soils 

and aquatic ecosystems, the applied treatment processes generate waste that requires appropriate 

treatment prior to discharge. Therefore, economic factors and the waste volume generated must 

be considered when selecting the most appropriate treatment technique.  

Biological methods are a suitable option for cleaning and protecting the environment. The use of 

filtering organisms, such as bivalves, to remove contaminants and “clean” the water masses is 

beneficial as it reduces the higher costs involved in the conventional physicochemical treatment 

techniques while also generating residues that could later be utilized as raw materials for biogas 

production via anaerobic digestion of the soft tissues and shells to transform these into valuable 

materials. The use of wastes as raw materials for other processes is an important component of the 

circular economy, in which wastes serve as a resource for producing novel products.  

Research has confirmed the efficiency and low cost of biological methods in the removal of heavy 

metal(loid)s. Therefore, further research should be conducted in this regard to extend the 

application of this technology, particularly to larger water bodies, such as lakes and/or rivers, for 

which the application of physicochemical methods is economically unfeasible. Achieving large-scale 

economic viability with a robust biological treatment process is essential to ensure its widespread 

application. 

Author Contributions 

Remedios Martinez-Guijarro conceived the review, carried out the literature search, and 

prepared the manuscript. Maria Pachés conceived the review, worked on the manuscript, and 

provided critical feedback. Daniel Aguado contributed to the final manuscript and provide critical 

feedback. Inmaculada Romero provided critical feedback.  

Competing Interests 

The authors have declared that no competing interests exist. 

References 

1. Upadhyay AK, Gupta KK, Sircar JK, Deb MK, Mundhara GL. Heavy metals in freshly deposited 

sediments of the river Subernarekha, India: An example of lithogenic and anthropogenic effects. 

Environ Geol. 2006; 50: 397-403. 

2. Shah SB. Heavy metals in scleractinian corals. 1st ed. Cham: Springer; 2021. 

3. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. 

In: Molecular, clinical and environmental toxicology. 1st ed. Basel: Springer; 2012. 

4. Bánfalvi G. Cellular changes in mammalian cells induced by cadmium. In: Cellular effects of 

heavy metals. 1st ed. Dordrecht: Springer; 2011. 

5. Tchounwou PB, Newsome C, Williams J, Glass K. Copper-induced cytotoxicity and 

transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. Met Ions Biol 

Med. 2008; 10: 285-290. 

6. Grant R, Grant C. Grant and Hackh’s chemical dictionary. 5th ed. New York: McGraw-Hill; 1987. 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 25/30 

7. Kushwaha A, Hans N, Kumar S, Rani R. A critical review on speciation, mobilization and toxicity 

of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf. 2018; 

147: 1035-1045. 

8. Lyman WJ. Transport and transformation processes. In: Fundamentals of aquatic toxicology. 

2nd ed. Boca Raton: CRC Press; 1995. 

9. Duffus JH. " Heavy metals" a meaningless term? (IUPAC technical report). Pure Appl Chem. 2002; 

74: 793-807. 

10. Hodson ME. Heavy metals - geochemical bogey men? Environ Pollut. 2004; 129: 341-343. 

11. Batley GE. ‘‘Heavy metal’’-a useful term. Integr Environ Assess Manag. 2012; 8: 215. 

12. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R. Uncommon heavy metals, 

metalloids and their plant toxicity: A review. In: Organic farming, pest control and remediation 

of soil pollutants. 1st ed. Dordrecht: Springer; 2009. 

13. Kabata-Pendias A. Trace elements in soils and plants. 3rd ed. Boca Raton: CRC press; 2000. 

14. Brady JP, Ayoko GA, Martens WN, Goonetilleke A. Development of a hybrid pollution index for 

heavy metals in marine and estuarine sediments. Environ Monit Assess. 2015; 187: 306. 

15. Bradl HB. Sources and origins of heavy metals. Interface Sci Technol. 2005; 6: 1-27. 

16. Burghelea CI, Dontsova K, Zaharescu DG, Maier RM, Huxman T, Amistadi MK, et al. Trace 

element mobilization during incipient bioweathering of four rock types. Geochim Cosmochim 

Acta. 2018; 234: 98-114. 

17. Arunakumara KK, Walpola BC, Yoon MH. Current status of heavy metal contamination in Asia’s 

rice lands. Rev Environ Sci Biotechnol. 2013; 12: 355-377. 

18. Sharma RK, Agrawal M. Biological effects of heavy metals: An overview. J Environ Biol. 2005; 26: 

301-313. 

19. Khan MA, Khan S, Khan A, Alam M. Soil contamination with cadmium, consequences and 

remediation using organic amendments. Sci Total Environ. 2017; 601: 1591-1605. 

20. Grimalt JO, Ferrer M, Macpherson E. The mine tailing accident in Aznalcollar. Sci Total Environ. 

1999; 242: 3-11. 

21. Morrow H. Cadmium and cadmium alloys. In: Kirk-Othmer encyclopedia of chemical technology. 

5th ed. Hoboken: Wiley Blackwell; 2004. 

22. Ma Q, Han L, Zhang J, Zhang Y, Lang Q, Li F, et al. Environmental risk assessment of metals in 

the volcanic soil of Changbai Mountain. Int J Environ Res Public Health. 2019; 16: 2047. 

23. Ochota P, Prokopowicz A, Kośmider L, Choina M, Stebel A, Sobczak A. Heavy metals in moss 

samples exposed to the atmospheric dust after eruption of Eyjafjallajökull volcano. Med Srod. 

2012; 15: 21-26. 

24. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, et al. Bioremediation of heavy 

metals from soil and aquatic environment: An overview of principles and criteria of 

fundamental processes. Sustainability. 2015; 7: 2189-2212. 

25. Cempel M, Nikel GJ. Nickel: A review of its sources and environmental toxicology. Pol J Environ 

Stud. 2006; 15: 375-382. 

26. Al-Khashman OA. Heavy metal distribution in dust, street dust and soils from the work place in 

karak industrial estate, Jordan. Atmos Environ. 2004; 38: 6803-6812. 

27. López R, Hallat J, Castro A, Miras A, Burgos P. Heavy metal pollution in soils and urban-grown 

organic vegetables in the province of Sevilla, Spain. Biol Agric Hortic. 2019; 35: 219-237. 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 26/30 

28. Walraven N, Bakker M, Van Os B, Klaver G, Middelburg JJ, Davies G. Pollution and oral 

bioaccessibility of Pb in soils of villages and cities with a long habitation history. Int J Environ 

Res Public Health. 2016; 13: 221. 

29. Centeno JA, Tchounwou PB, Patlolla AK, Mullick FG, Murakat L, Meza E, et al. Environmental 

pathology and health effects of arsenic poisoning: A critical review. In: Managing arsenic in the 

environment: From soil to human health. Handcover ed. Enfield: Science Pub Inc; 2006.  

30. Mishra S, Chen S, Saratale GD, Saratale RG, Ferreira LF, Bilal M, et al. Reduction of hexavalent 

chromium by microbacterium paraoxydans isolated from tannery wastewater and 

characterization of its reduced products. J Water Process Eng. 2021; 39: 101748. 

31. Tariq SR, Shah MH, Shaheen N, Khalique A, Manzoor S, Jaffar M. Multivariate analysis of trace 

metal levels in tannery effluents in relation to soil and water: A case study from Peshawar, 

Pakistan. J Environ Manage. 2006; 79: 20-29. 

32. Sires J. A review of potential zinc and copper pollution sources in the kenai river watershed. 

[Internet]. Juneau: Alaska Department of Environmental Conservation; 2017. Available from: 

https://dec.alaska.gov/.  

33. Chen H, Teng Y, Lu S, Wang Y, Wu J, Wang J. Source apportionment and health risk assessment 

of trace metals in surface soils of Beijing metropolitan, China. Chemosphere. 2016; 144: 1002-

1011. 

34. Cheng H, Zhao C, Liu F, Yang K, Liu Y, Li M, et al. Mercury drop trend in urban soils in Beijing, 

China, since 1987. J Geochem Explor. 2013; 124: 195-202. 

35. Agocs MM, Etzel RA, Parrish RG, Paschal DC, Campagna PR, Cohen DS, et al. Mercury exposure 

from interior latex paint. N Engl J Med. 1990; 323: 1096-1101. 

36. Acosta JA, Faz A, Martinez-Martinez S. Identification of heavy metal sources by multivariable 

analysis in a typical Mediterranean city (SE Spain). Environ Monit Assess. 2010; 169: 519-530. 

37. Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML. Source identification of heavy 

metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater. 2009; 165: 1008-

1015. 

38. Kobayashi E, Suwazono Y, Dochi M, Honda R, Kido T. Influence of consumption of cadmium-

polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai 

disease. Biol Trace Elem Res. 2009; 127: 257-268. 

39. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN, et al. Comparative 

environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017; 7: 28-40. 

40. Bretzel F, Calderisi M, Scatena M, Pini R. Soil quality is key for planning and managing urban 

allotments intended for the sustainable production of home-consumption vegetables. Environ 

Sci Pollut Res. 2016; 23: 17753-17760. 

41. Fishel FM. Pesticide toxicity profile: Copper-based pesticides [Internet]. Gainesville: UF/IFAS 

Electronic Data Information System; 2005. Available from: 

https://www.mendeley.com/catalogue/342b6b28-095b-319f-a4da-00567cb611e8/. 

42. Park JH, Bolan NS. Potential value of biowastes in the remediation of toxic metal (loid)-

contaminated soils. In: Soil and groundwater remediation technologies. 1st ed. Boca Raton: CRC 

Press; 2020. 

43. Hejna M, Moscatelli A, Onelli E, Baldi A, Pilu S, Rossi L. Evaluation of concentration of heavy 

metals in animal rearing system. Ital J Anim Sci. 2019; 18: 1372-1384. 

https://dec.alaska.gov/
https://www.mendeley.com/catalogue/342b6b28-095b-319f-a4da-00567cb611e8/


Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 27/30 

44. Cai L, Xu Z, Bao P, He M, Dou L, Chen L, et al. Multivariate and geostatistical analyses of the 

spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, 

Southeast China. J Geochem Explor. 2015; 148: 189-195. 

45. Marques AP, Rangel AO, Castro PM. Remediation of heavy metal contaminated soils: 

Phytoremediation as a potentially promising clean-up technology. Crit Rev Env Sci Tec. 2009; 

39: 622-654. 

46. Ross SM. Sources and forms of potentially toxic metals in soil-plant systems. In: Toxic metals in 

soil-plant systems. 1st ed. New York: Wiley; 1994. 

47. Finley BD, Swartzendruber PC, Jaffe DA. Particulate mercury emissions in regional wildfire 

plumes observed at the Mount Bachelor Observatory. Atmos Environ. 2009; 43: 6074-6083. 

48. Naderizadeh Z, Khademi H, Ayoubi S. Biomonitoring of atmospheric heavy metals pollution 

using dust deposited on date palm leaves in southwestern Iran. Atmosfera. 2016; 29: 141-155. 

49. Salomons W, Bayne BL, Duursma EK, Förstner U. Pollution of the North Sea - an Assessment. 

1st ed. Berlin, Heidelberg: Springer; 1998.  

50. Peirson DH, Cawse PA, Salmon L, Cambray RS. Trace elements in the atmospheric environment. 

Nature. 1973; 241: 252-256. 

51. Van Malderen H, Hoornaert S, Van Grieken R. Identification of individual aerosol particles 

containing Cr, Pb, and Zn above the North Sea. Environ Sci Technol. 1996; 30: 489-498. 

52. Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS. Role of assisted natural remediation in 

environmental cleanup. Geoderma. 2004; 122: 121-142. 

53. Cao X, Tan C, Wu L, Luo Y, He Q, Liang Y, et al. Atmospheric deposition of cadmium in an 

urbanized region and the effect of simulated wet precipitation on the uptake performance of 

rice. Sci Total Environ. 2020; 700: 134513. 

54. Krishna AK, Govil PK. Soil contamination due to heavy metals from an industrial area of Surat, 

Gujarat, Western India. Environ Monit Assess. 2007; 124: 263-275. 

55. Draszawka-Bolzan B. Heavy metals in soils. World News Nat Sci. 2015; 2: 20-37. 

56. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. A review on heavy metals (As, 

Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011; 2011: 939161. 

57. McLean JE, Bledsoe BE. Behaviour of metals in soils [Internet]. Washington DC: Environmental 

Protection Agency; 2021. Available from: https://www.epa.gov/remedytech/behavior-metals-

soils. 

58. Calace N, Deriu D, Petronio BM, Pietroletti M. Adsorption isotherms and breakthrough curves 

to study how humic acids influence heavy metal–soil interactions. Water Air Soil Pollut. 2009; 

204: 373-383. 

59. Benjamin MM, Leckie JO. Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior 

of Cd on oxide surfaces. Environ Sci Technol. 1982; 16: 162-170. 

60. Caporale AG, Violante A. Chemical processes affecting the mobility of heavy metals and 

metalloids in soil environments. Curr Pollution Rep. 2016; 2: 15-27. 

61. Kunhikrishnan A, Seshadri B, Choppala G, Shankar S, Thangarajan R, Bolan N. Redox reactions 

of heavy metal (loid) s in soils and sediments in relation to bioavailability and remediation. In: 

Trace elements in waterlogged soils and sediments. 1st ed. Boca Raton: CRC Press; 2016. 

62. Mahimairaja S, Bolan NS, Adriano DC, Robinson B. Arsenic contamination and its risk 

management in complex environmental settings. Adv Agron. 2005; 86: 1-82. 

https://www.epa.gov/remedytech/behavior-metals-soils
https://www.epa.gov/remedytech/behavior-metals-soils


Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 28/30 

63. Ross SM. Retention, transformation and mobility of toxic metals in soils. In: Toxic metals in soil-

plant systems. 1st ed. New York: Wiley; 1994.  

64. Chuan MC, Shu GY, Liu JC. Solubility of heavy metals in a contaminated soil: Effects of redox 

potential and pH. Water Air Soil Pollut. 1996; 90: 543-556. 

65. Patrick WH, Gambrell RP, Faulkner SP. Redox measurements of soils. In: Methods of soil analysis, 

part 3: Chemical methods. 1st ed. Madison: Soil Science Society of America, Inc and American 

Society of Agronomy, Inc; 1996. 

66. Wiatrowski HA, Ward PM, Barkay T. Novel reduction of mercury (II) by mercury-sensitive 

dissimilatory metal reducing bacteria. Environ Sci Technol. 2006; 40: 6690-6696. 

67. Bachate SP, Khapare RM, Kodam KM. Oxidation of arsenite by two β-proteobacteria isolated 

from soil. Appl Microbiol Biotechnol. 2012; 93: 2135-2145. 

68. Roane TM, Pepper IL, Gentry TJ. Microorganisms and metal pollutants. In: Environmental 

microbiology. 3rd ed. Cambridge: Academic Press; 2015.  

69. Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG. Biotransformation and volatilization of arsenic 

by three photosynthetic cyanobacteria. Plant Physiol. 2011; 156: 1631-1638. 

70. Okuno T, Kubota T, Kuroda T, Ueno H, Nakamuro K. Contribution of enzymic α, γ-elimination 

reaction in detoxification pathway of selenomethionine in mouse liver. Toxicol Appl Pharmacol. 

2001; 176: 18-23. 

71. Kerndorff H, Schnitzer M. Sorption of metals on humic acid. Geochim Cosmochim. Acta. 1980; 

44: 1701-1708. 

72. Omar W, Al-Itawi H. Removal of Pb+ 2 ions from aqueous solutions by adsorption on kaolinite 

clay. Am J Appl Sci. 2007; 4: 502-507. 

73. Zhang X, Hao Y, Wang X, Chen Z, Li C. Competitive adsorption of cadmium (II) and mercury (II) 

ions from aqueous solutions by activated carbon from Xanthoceras sorbifolia Bunge hull. J 

Chem. 2016; 2016; 4326351. 

74. Xie S, Wen Z, Zhan H, Jin M. An experimental study on the adsorption and desorption of Cu (II) 

in silty clay. Geofluids. 2018; 2018: 3610921. 

75. Pachana K, Wattanakornsiri A, Nanuam J. Heavy metal transport and fate in the environmental 

compartments. NU Int J Sci. 2010; 7: 1-11. 

76. Namieśnik J, Rabajczyk A. The speciation and physico-chemical forms of metals in surface 

waters and sediments. Chem Speciat Bioavailab. 2010; 22: 1-24. 

77. Wang WX. Interactions of trace metals and different marine food chains. Mar Ecol Progress 

Series. 2002; 243: 295-309. 

78. Larsen O, Davison W, Vamvakopoulos K, Møhlenberg F. Fine sediment particles. In: Sediment 

dynamics and pollutant mobility in rivers. 1st ed. Berlin and Heidelberg: Springer; 2007. 

79. Ford T, Maki J, Mitchell R. Metal-microbe interactions. In: Bioextraction and biodeterioration of 

metals. 1st ed. Cambridge: Cambridge University Press; 1995. 

80. Bustamante P, Lahaye V, Durnez C, Churlaud C, Caurant F. Total and organic Hg concentrations 

in cephalopods from the North Eastern Atlantic waters: Influence of geographical origin and 

feeding ecology. Sci Total Environ. 2006; 368: 585-596. 

81. Cao X, Tan C, Wu L, Luo Y, He Q, Liang Y, et al. Atmospheric deposition of cadmium in an 

urbanized region and the effect of simulated wet precipitation on the uptake performance of 

rice. Sci Total Environ. 2020; 700: 134513. 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 29/30 

82. Yan P, Xia JS, Chen YP, Liu ZP, Guo JS, Shen Y, et al. Thermodynamics of binding interactions 

between extracellular polymeric substances and heavy metals by isothermal titration 

microcalorimetry. Bioresour Technol. 2017; 232: 354-363. 

83. Castañé PM, Topalián ML, Cordero RR, Salibián A. Influencia de la especiación de los metales 

pesados en medio acuático como determinante de su toxicidad. Rev de Toxicol. 2003; 20: 13-

18. 

84. Wright DA, Welbourn P. Environmental toxicology. 1st ed. Cambridge: Cambridge University 

Press; 2002. 

85. Tarras-Wahlberg NH, Flachier A, Lane SN, Sangfors O. Environmental impacts and metal 

exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: The Puyango 

river basin, southern Ecuador. Sci Total Environ. 2001; 278: 239-261. 

86. Benalia MC, Youcef L, Bouaziz MG, Achour S, Menasra H. Removal of heavy metals from 

industrial wastewater by chemical precipitation: Mechanisms and sludge characterization. Arab 

J Sci Eng. 2021. DOI: 10.1007/s13369-021-05525-7.  

87. Hoseinian FS, Rezai B, Kowsari E, Chinnappan A, Ramakrishna S. Synthesis and characterization 

of a novel nanocollector for the removal of nickel ions from synthetic wastewater using ion 

flotation. Sep Purif Technol. 2020; 240: 116639. 

88. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, et al. Removal of heavy metal ions 

from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett. 2019; 17: 

729-754. 

89. Sun Y, Zhou S, Pan SY, Zhu S, Yu Y, Zheng H. Performance evaluation and optimization of 

flocculation process for removing heavy metal. Chem Eng J. 2020; 385: 123911. 

90. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, et al. Adsorption 

of heavy metals on conventional and nanostructured materials for wastewater treatment 

purposes: A review. Ecotox Environ Safe. 2018; 148: 702-712. 

91. Muddemann T, Haupt D, Sievers M, Kunz U. Electrochemical reactors for wastewater treatment. 

Chem Bio Eng Rev. 2019; 6: 142-156. 

92. Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari AP, et al. Technological trends in heavy 

metals removal from industrial wastewater: A review. J Environ Chem Eng. 2021; 9: 105688. 

93. Qasem NA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: A 

comprehensive and critical review. NPJ Clean Water. 2021; 4: 36. 

94. Hernández-Cocoletzi H, Salinas RA, Águila-Almanza E, Rubio-Rosas E, Chai WS, Chew KW, et al. 

Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of 

aqueous effluent. Environ Technol Innov. 2020; 20: 101109. 

95. Joseph L, Jun BM, Flora JR, Park CM, Yoon Y. Removal of heavy metals from water sources in 

the developing world using low-cost materials: A review. Chemosphere. 2019; 229: 142-159. 

96. Abdulraheem FS, Al-Khafaji ZS, Hashim KS, Muradov M, Kot P, Shubbar AA. Natural filtration 

unit for removal of heavy metals from water. IOP Conf Ser: Mater Sci Eng. 2020; 888: 012034. 

97. Garba MD, Usman M, Mazumder MA, Al-Ahmed A. Complexing agents for metal removal using 

ultrafiltration membranes: A review. Environ Chem Lett. 2019; 17: 1195-1208. 

98. Wang J, Chen C. The current status of heavy metal pollution and treatment technology 

development in China. Environ Technol Rev. 2015; 4: 39-53. 

99. Kurniawan TA, Chan GY, Lo WH, Babel S. Physico–chemical treatment techniques for 

wastewater laden with heavy metals. Chem Eng J. 2006; 118: 83-98. 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104033 

 

Page 30/30 

100. Atab MS, Smallbone AJ, Roskilly AP. An operational and economic study of a reverse osmosis 

desalination system for potable water and land irrigation. Desalination. 2016; 397: 174-184. 

101. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. A comparison of technologies for 

remediation of heavy metal contaminated soils. J Geochem Explor. 2017; 182: 247-268. 

102. Ortiz Bernard I, Sanz García J, Dorado Valiño M, Villar Fernández S. Técnicas de recuperación de 

suelos contaminados [Internet]. Madrid: Community of Madrid; 2007. Available from: 

https://www.madrimasd.org/cultura-cientifica/ciencia-cultura/ensayo/tecnicas-recuperacion-

suelos-contaminados. 

103. Gusiatin ZM, Kulikowska D, Klik B. New-generation washing agents in remediation of metal-

polluted soils and methods for washing effluent treatment: A review. Int J Environ Res Public 

Health. 2020; 17: 6220. 

104. Lotfy SM, Mostafa AZ. Phytoremediation of contaminated soil with cobalt and chromium. J 

Geochem Explor. 2014; 144: 367-373. 

105. Kaveeshwar AR, Kumar PS, Revellame ED, Gang DD, Zappi ME, Subramaniam R. Adsorption 

properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater 

using pecan shell based activated carbon. J Clean Prod. 2018; 193: 1-3. 

106. Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from 

wastewater. Bioresour Technol. 2007; 98: 2243-2257. 

107. Álvarez E, Fernández-Sanjurjo MJ, Seco N, Núñez A. Use of mussel shells as a soil amendment: 

Effects on bulk and rhizosphere soil and pasture production. Pedosphere. 2012; 22: 152-164. 

 

 

Enjoy AEER by:  

1. Submitting a manuscript  

2. Joining in volunteer reviewer bank 

3. Joining Editorial Board 

4. Guest editing a special issue 

 

For more details, please visit:  

http://www.lidsen.com/journals/aeer 

 

 

AEER 

 

https://www.madrimasd.org/cultura-cientifica/ciencia-cultura/ensayo/tecnicas-recuperacion-suelos-contaminados
https://www.madrimasd.org/cultura-cientifica/ciencia-cultura/ensayo/tecnicas-recuperacion-suelos-contaminados
http://www.lidsen.com/account-login
mailto:aeer@lidsen.com
mailto:aeer@lidsen.com
http://www.lidsen.com/journals/aeer/aeer-editorial-board
http://www.lidsen.com/journals/aeer/aeer-editorial-board
http://www.lidsen.com/journals/aeer/aeer-special-issues
http://www.lidsen.com/journals/aeer/aeer-special-issues
http://www.lidsen.com/journals/aeer
http://lidsen.com/journals/aeer

