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Abstract—Type 1 Diabetes patients have to control their blood
glucose levels using insulin therapy. Numerous factors (such as
carbohydrate intake, physical activity, time of day, etc.) greatly
complicate this task. In this article we propose a modeling method
that will allow us to make predictions of blood glucose level
evolution with a time horizon of 24 hours. This may allow the
adjustment of insulin doses in advance and could help to improve
the living conditions of diabetes patients. Our approach starts
from a system of finite difference equations that characterizes
the interaction between insulin and glucose (in the field, this is
known as a minimal model). This model has several parameters
whose values vary widely depending on patient characteristics
and time. Thus, in the first phase of our strategy, We will enrich
the patient’s historical data by adding white Gaussian noise,
which will allow us to perform a probabilistic fitting with a 95%
confidence interval. Then, the model’s parameters are adjusted
based on the history of each patient using a genetic algorithm and
dividing the day into 12 time intervals. In the final stage, we will
perform a whole-day forecast from an ensemble of the models
fitted in the previous phase. Th e validity of our strategy will be
tested using the Parkers’ error grid analysis. Our experimental
results based on data from real diabetic patients show that this
technique is capable of robust predictions that take into account
all the uncertainty associated with the interaction between insulin
and glucose.

Index Terms—Diabetes, Glucose prediction, genetic algorithms,
Evolutionary computation

I. INTRODUCTION

Diabetes mellitus is a disease characterized by the detection
of very high blood glucose (sugar) levels in the patient. Blood
glucose is obtained from the food we eat and is absorbed by
the cells thanks to the action of insulin. In this context, the
pancreas is of vital importance as it is responsible, among
other things, for generating insulin. Without insulin, glucose
remains in the blood and does not reach the cells properly.
Prolonged excess of glucose in the blood (hyperglycemia)
can lead to diseases affecting different organs and tissues.
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In type 1 diabetes, the beta cells of the pancreas produce
virtually no insulin, so glucose accumulates in the bloodstream
and can only be reduced by injecting artificial insulin. It is
important to underscore that the use of synthetic insulin is not
without risk since an excessive dose causes a low glucose
level (hypoglycemia) that can lead to the patient’s loss of
consciousness and even coma.

The goal of this study is to predict blood glucose levels in
patients with Type 1 Diabetes Mellitus from a personalized
study, analysis and adjustment of historical data including:
glucose, carbohydrates and insulin. The mathematical mod-
eling of diabetes is a very active research topic with many
studies published [1], [2] In many cases, mathematical models
are used to measure and predict glucose levels in the human
body and help the patient avoid the hyperglycemia issue
by using synthetic insulin without reaching the dangerous
hypoglycemia threshold. We start from what is known in this
field as a minimal model [3]. The minimal model is a system
of finite difference equations that characterizes the interaction
between insulin and glucose from the parameters normally
used in regular therapy: insulin sensitivity, glucose sensitivity,
instant glucose level, etc. These parameters vary considerably
throughout the day. For this reason, and in order to achieve
a finer adjustment, we have divided the samples taken in one
day into 12 equally sized sections. Thus, when forecasting a
complete day, we will do so based on the models of each of
these twelve sections.

The adjustment of the parameters of the system of equations
is performed using a genetic algorithm. First, the amount
of initial data is enriched using a basic data augmentation
technique: the addition of white Gaussian noise. This allows
us to perform a probabilistic fitting on the results of the genetic
algorithm that will provide us with an ensemble of many
models for each of the sections into which we have divided
the day. Lastly, the final prediction for each of the sections is
obtained by averaging the predictions of the models.

The remainder of the paper is organized as follows: section



IT places our work in the context of other related state-of-
the-art research in this field. Section III elaborates on the
methodology used. Subsection III-A details the process for
obtaining data from actual diabetes patients. Subsection III-B
explains the minimal model and all its parameters. Subsections
II-C and HI-D, respectively, will give us an insight into
the genetic algorithm and the probabilistic fitting technique
used to obtain the models. In Section IV we will present the
experimental results and their discussion. Finally, in Section
V we present the conclusions of this study and the planned
future work.

II. RELATED WORK

The problem of modeling and predicting blood glucose
levels has been an area of intensive research in recent years.
These studies have two main objectives:

o Some of them attempt to predict glucose levels with a
time horizon of up to two hours, the usual time for the
normal course of digestion of a meal and for the action
of synthetic insulin to reach its peak.

o There are also some researchers interested in identifying
24-hour models. The usefulness of this approach, on
which the present study is focused, is different and is
usually more effective when programming an automatic
insulin pump or establishing an insulin profile for longer
periods. In the literature, we can find some approaches
that provide models for the average case [4]. However,
there are hardly any approaches adapted to the particular-
ities of each patient. Most of the articles in the literature
apply classical modeling techniques, resulting in models
or profiles defined by linear equations with a limited set
of input [5], [6].

Other personalized control approaches have been presented
by the main research groups studying artificial pancreases
projects [7]-[10]. They are proposals following clinical prac-
tice and therefore produce models which are often inaccurate,
since clinical data in type 1 diabetes are not extensive enough
to identify exact models [11]. There are also some models used
in artificial pancreas systems [12], [13]. They are based on the
assumption that it is possible to reach a correct control with
approximate models [14]. Our experimental results suggest
that in this line of research there is a significant risk of
excessive insulin administration that could drive the patient
into the hypoglycemic zone. This danger has convinced us of
the need to develop accurate individualized models. Therefore,
in this article we propose our probabilistic models as a means
of dealing with the uncertainty inherent in the evolution of
blood glucose levels.

The use of the probabilistic fitting technique is more
widespread in the social sciences [15]. In this work, it has
been applied to the problem of fitting minimal models for
glucose prediction.

In order to perform the probabilistic fitting we need large
amounts of data. The process to increase the amount of data
available in a synthetic way is known as data augmentation and
the original idea is due to Tanner and Wong [16]. It relates

to methods for constructing iterative sampling algorithms that
introduce unobserved data or latent variables, although more
advanced approaches include simulation of data based on
dynamic systems [17]. Variations of this technique have been
applied to evolutionary strategies for predicting short-term
blood glucose levels [2], [18].

1II. METHODOLOGY

In Figure 2 we can see the complete workflow performed in
this research. A database has been recorded from real diabetes
patients equipped with an insulin pump and a continuous
glucose monitor. Subsection III-A describes this process in
more detail. The data collected is preprocessed and enriched
by adding white Gaussian noise (see Figure 1). In our work-
flow this is an important step since this augmented data will
be used to perform a probabilistic fitting that will provide
us with the final prediction models. All data (original and
augmented) are used to feed the genetic algorithm (section
III-C) that customizes the parameters of the minimal model
(section III-B). Once the minimal model is customized, the
probabilistic fitting (section III-D) technique selects models
within the confidence interval and we obtain an ensemble
of models. The training and testing process has been carried
out using the cross-validation technique (section III-F). The
final prediction is achieved by averaging the predictions of an
ensemble of between 30 and 50 models.

series g d by Data A

200

Glucose mg/dl

. . .
100 150 200
time steps (5 minutes each)

300

Fig. 1: An example of data augmentation of glucose values.
Figure shows 30 glucose time series generated by adding white
noise to the original glucose time series.

A. Data

It is important to highlight that here we are using our own
dataset, collected by our team thanks to the collaboration of
four patients and their medical staff from the public hospital
Principe de Asturias, located in the Spanish city of Alcald de
Henares. The ethical committee of the hospital approved the
collection of the data for our studies.
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Fig. 2: Full Workflow

TABLE I: Example of recorded data from a patient

# Date Hour Glucose Ch. Ins S. Ins. L
16/05/2020  0:00:00  80.0 0.0 0.0125 0.0
16/05/2020  0:01:00  80.0 0.0 0.0125 0.0
16/05/2020  0:02:00  80.0 0.0 0.0125 0.0
16/05/2020  0:03:00  80.0 0.0 0.0125 0.0
0.0125 0.0

16/05/2020  0:04:00  80.0 0.0

Obtaining this data is not an easy task due to different
reasons. First, we are dealing with sensitive information, so
patients and medical staff have to be closely involved in this
task. Patient have to wear devices, take notes and register
information over several days with as few disturbances as
possible. It is usual to discard part of the data due to patients’
mistakes or failures of the electronic devices. Studies in the
field usually deal with small datasets, with around ten patients
or even fewer.

For this paper, We worked with anonymized data from 4 real
patients. We will refer to them as patient{1..4}. The patients
are two women and two men with a mean age of 38 years. The
data have been acquired with a FreeStyle Libre Continuous
Glucose Monitor (CGM) system, and an insulin pump that
the patients wore strapped to their body. The sampling period
is five minutes. The amount of carbohydrate ingested by the
patient and the insulin injected (distinguished by insulin type)
were also noted (see Table I). The data consist of five complete
days for each patient. The days are not necessarily consecutive,
nor are they the same days for all 4 patients. The CGM used
is a flash monitoring system that measures interstitial glucose.
It should be noted that the values of blood glucose measures
(BGM) may differ from CGM measures, since the two are
obtained with different techniques and CGM has a delay of
approximately 10 to 15 minutes.

B. The Minimal Model

The mathematical model used is an adapted version of the
model proposed by Thierry Prud’homme, Alain Bock, Gregory
Francois and Denis Gillet [3], which is based on the original
model by Bergman et al [19] [20]. The model has the following
system of non-linear difference equations:

U1 =U +V;
Visi=Vi—2-ay-V; —ag® U+ Kg-ag® - Chy

Gt+1 :Gt—Xth—SgoGt+U8’I’LdO+C(Ut/M)

Xip1 =Xt —ay, - Xy +a, - X}
X} =X/} az X} + K, -a, - (I/M)

where the parameters are explained as follows:

e Uy: glucose absorption at minute t measured in g/min

o V;: variation rate of intestinal glucose absorption in
g/min?

o Gy: level of glucose at minute t measured in mg/dl

e X;: insulin action at instant t

o X/: intermediate insulin action at instant t

o k,: insulin sensitivity in kg/mU

e kg: bioavailability of the food (the proportion of the food
that is absorbed and utilized by the body). It is unitless.

e a,: inverse of insulin absorption/action time, it is constant
in min—1,

e ag4: inverse of the meal’s time, constant in min ™~

e Chy: ingested carbohydrates at instant t in g/min

o 5g0: glucose effectiveness in min~!

o I;: insulin injected at time t measured in mU/min

o Ucndo: endogenous glucose production in mg/(dl min)

o C': constant 50/9 (mg Kg/dl g)

o M: weight of the patient in kg

1



As we can see, this model uses parameters that are estimated
in daily therapy; for example, insulin sensitivity, bioavail-
ability of meals, insulin absorption and endogenous glucose
production for instance. Insulin sensitivity varies throughout
the day and has a lot of influence on the blood glucose level
variability of patients with diabetes. Both insulin sensitivity
and endogenous insulin production are difficult to estimate
since they vary significantly among different patients and day
periods.

C. Genetic Algorithm for Model Fitting

To obtain the customized parameters of the minimal model
explained in the previous section based on a patient’s historical
data, we implemented a genetic algorithm in Matlab [21].
The genetic algorithm uses real coding of individuals, a
representation widely used in numerical optimization problems
[22] [23]. In the next subsections, we are going to describe
the main aspects of this evolutionary algorithm:

« Representation of the solutions or individuals, subsection
II1-C1.

o Quality or fitness of the solutions, subsection III-C2.

o Operators and parameters used in the algorithm, subsec-
tion III-C3.

1) Representation of individuals: Individuals are repre-
sented as a sequence of 50 real values corresponding to the
parameters used in the model. These 50 parameters are:

o kg, with i =1 to 12, and k,, € [0.01, 500]

o kg, with i =1 to 12, and k,, € [0.01,500]

e a,, with i =1 to 12, and a,, € [0.01, 5]

o ag4, with i =1 to 12, and a4, € [0.01, 5]
s4 € 10.01, 5]

o Uendo € [0.01, 10]

Four of these fifty-one parameters are further fine-tuned
in two-hour sections. This way, we provide the model with
the ability to vary insulin sensitivity according to the time of
day. This emulates the specialists’ practice and their ability
to program different injection patterns and different levels of
insulin sensitivity throughout the day. The parameters affected
are k., kg, a, and ag4. For the algorithm to work, we set a lower
and upper limit for each of the 50 parameters.

2) Fitness Function: To obtain the quality or fitness of a
solution we use the value of the mean square error (MSE)
calculated by comparing the result obtained in the model
(optimized with the evolutionary algorithm) against the real
value obtained with the patient’s data. Equation 1 shows the
calculation of the MSE, where Yi are predicted values, Xi
original values of glucose and n is the number of samples. We
can think of it as the average of the squares of the Euclidean
distance between the prediction time series and the actual data
time series.

1 n
MSE ==Y (X; -Y;)? 1
. ;( ) (1)
3) Parameters: Table Il lists the parameters used to run the
genetic algorithm employed to fit the minimal model.

TABLE II: Experimental Parameters

Parameter Value
Population 200
Generation 1200
Selection 25%

Crossover probability 0.8

0.15

Mutation probability

D. Probabilistic fitting

The first part of the probabilistic fitting process consists of
fitting a series of model parameters, which can be done by
different techniques and for which we have used a genetic
algorithm. At the end of this first stage, we have the list of
model parameters that have been fitted to a sample of the data,
ordered by their fitness (here, the mean squared error). In the
left column of Figure 3 we can see the result of this phase. As
we can see, the output of the model still does not accurately
fit the real data from the patient. To achieve a much finer fit
we decided to extend the workflow by adding a stage with
probabilistic fitting.

Now, starting from the patient data we resample each
glucose value using a Gaussian distribution centered on the
glucose value at each instant and with a standard deviation of
5%. This 5% corresponds to the error added by the glucose
sensor. Thus we have new time series with glucose values that
follow the behavior of the patient’s original time series. The
result of this stage is shown on the center and right columns of
Figure 3. As can be seen in the figure, the fit is now much more
accurate and we can say that the twelve models throughout the
day are able to capture the general trend and patient-specific
temporal behaviors.

E. Farkers’ Grid Analysis

Predicting the glucose level in a diabetes patient is a
special case of forecasting because forecasting errors can
have a very different impact depending on whether the actual
blood glucose level is in the hypoglycemic, hyperglycemic, or
healthy range.

If our prediction points to the hyperglycemic zone, the
patient will inject a higher insulin dose. If this prediction
is wrong and the patient actually has a glucose level close
to the hypoglycemic zone, that higher insulin dose can have
catastrophic consequences. To study this type of situation, two
options are available in the literature: the Clarke’s error grid
[24] and the Parkes’ error grid (PEG) [25] [26] . In this study
we have opted for the PEG as a way of measuring the accuracy
of the predictions produced by our method since it is the one
advised in the guidelines of the ISO15197:2013 [27].
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Fig. 3: Example of Model fitting (left) and Probabilistic Fitting (right) for four days from patientl

Following the PEG method we draw a scatterplot of the
experimental results, Figure 4. On one axis, we have the real
observations and on the other, the values obtained through a
forecasting method. The main diagonal represents the perfect
prediction and depending on the severity of the misprediction,
the rest of the points can fall into five regions:

o Region A (dark green color) are those values within 20%

of the actual values,

« Region B (bright green color) contains errors that are
greater than 20% but would not lead to inappropriate
treatment,

o Region C (orange color) are those points leading to
unnecessary treatment,

e Region D (pink color) are those points indicating a
potentially dangerous failure to detect hypoglycemia or
hyperglycemia, and

o Region E (red color) are those points that would confuse
treatment of hypoglycemia with hyperglycemia.

Therefore, the fewer points that appear in the C area, the
better, it being of utmost importance to avoid areas D and E.

F. Cross-validation

We have chosen the K-fold cross-validation technique be-
cause it usually results in a less biased estimate of the model’s
performance than a simple train/test division. It could be
argued that the random partitioning of the training set into
much smaller subsets to be validated would produce models
with a high variance, but recent research has not found
empirical proof of this [28]. After shuffling the data, the total
data set is divided into K subsets. Over k iterations, the models
are tested on one of the subsets and trained on the other (k-1)
subsets. The final results are averaged over the k iterations.
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In this article K is equal to the number of days recorded for
each patient, i.e. five. Thus, in each iteration, each model is
trained using the data corresponding to four days and tested
using the remaining day.

IV. RESULTS AND DISCUSSION

As we have seen in section III-F, to test the validity of our
proposal we have used the k-fold cross-validation technique,
where k = 1 day of data. Thus, we have iteratively tested on
each of the five days of the dataset and trained the models on
the remaining four days.

In Figures 5 to 8 we post the results obtained for the four
patients shown within the PEG (for reasons of space we only
show four days). Let us analyze these plots for each patient:

« Patient 1 (Figure 5) shows excellent results. All the points
fall into A and B areas. In addition, we have a majority
of points that follow the bisector that represents a perfect
prediction. The only exception is an isolated point in the
leftmost plot that is located in zone D .

« In Patient 2 (Figure 6) we find a very different situation.
As can be observed, this patient monitors his glucose
level very well and, in fact, has a clear tendency to be
close to hypoglycemia. Although our models manage to
be in zones A and B for a high percentage of time, we
also find a considerable percentage of points in zone C
(unnecessary treatment) and on the border of this area
and zone D (erroneous treatment).

« Patient 3 (Figure 7) has a similar behavior to patient2;
however our models achieve much more optimal results.
Most of the points are located in zone B, with a small
percentage of points on the border between zones B and
C.

o The high variability of Patient 4’s behavior (Figure 8) is
similar to patientl’s. However, in this case, our models
are not able to predict glucose level excursions with
sufficient reliability. This is attested to by the considerable

percentage of points in zone C and by the majority of
points far from the perfect prediction line.

In view of these results, we can draw several conclusions
and at the same time raise several questions:

The results of our strategy differ greatly for similar patient
behaviors. This suggests the need to include new variables
representing latent factors in the models.

For some patients, the daily time division into twelve
time slots seems to be sufficient to capture patient-specific
peculiarities in the daily behavior of their glucose levels.
But for other patients, this division is clearly insufficient. To
remedy this situation, we can map out two options:

o Increase the number of time slots into which to divide

the hours of the day.

« Make a flexible division with a variable number of time
slots and/or with time slots of variable length. The latter
approach seems to be perfectly suited to an evolutionary
strategy.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper we have presented a strategy for 24-hour time
horizon prediction of blood glucose levels in patients with
Type 1 Diabetes Mellitus. Our proposal consists of several
stages:

o Data are augmented using white Gaussian noise.

« Daily samples are divided into 12 identically sized slots.

« Using real data from diabetic patients, a genetic algorithm

adjusts the parameters of a minimal model that character-
izes the interaction between glucose and insulin based on
parameters such as: insulin sensitivity, glucose sensitivity,
instant glucose level, etc, for each of the 12 time slots.

o All the time series resulting from the previous stage are

adjusted using Probabilistic Fitting in order to produce
an ensemble of models for prediction.

o The final prediction is obtained by averaging the individ-

uals’ predictions of the ensemble’s models.

Experimental data have been gathered using a k-fold cross-
validation technique and the results have been analyzed using
the Parkes’ Error Grid framework. The discussion of the latter
has draw the following conclusions:

o The division of the daily glucose samples into 12 time
intervals has produced a very significant improvement
in the final adjustment of the minimal model used. For
some patients, this has proven to be a good technique for
capturing the uncertainty of their daily glucose evolution.

« However, for other patients this division seems insuffi-
cient. To remedy this situation and as future work, we
plan to test a larger number of slots, time intervals of
varying length and other evolutionary algorithms such as
Particle Swarm Optimization.
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