
Further Details on Predicting IRT Difficulty
Fernando Martı́nez-Plumed1,2, David Castellano-Falcón2, Carlos Monserrat2,
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This supplementary material serves as technical appendix
of the paper When AI Difficulty is Easy: The Explana-
tory Power of Predicting IRT Difficulty (Martı́nez-Plumed
et al. 2022), published in The Thirty-Sixth AAAI Confer-
ence on Artificial Intelligence (AAAI-22). The following sec-
tions give detailed information about 1) data gathering for
benchmarks; 2) IRT properties and methodology followed;
3) learning models configuration and hyperparameter set-
ting; 4) differences between difficulty prediction and class
prediction; 5) the deployment and results of alternative ap-
proaches for difficulty estimation; 6) specifics and results us-
ing a generic difficulty metric in different applications and
7) extended IRT applications.

Benchmarks
As an exception to the instance-wise result problem, we
find platforms such as OpenML (Vanschoren et al. 2014),
a repository in which AI researchers and practitioners can
share data sets and results in as much detail as possible.
The platform also provides several sets of curated, reference
datasets. OpenML-CC18 is one of those reference sets that
meet several requirements in order to compile a carefully cu-
rated selection from the thousands of datasets on OpenML.
From this set in OpenML, we extracted the benchmarks that
had instance-wise results of a good number of models, lead-
ing to the first 14 rows in Table 1.

For other AI domains analysed in this work (automated
reasoning and NLP), we relied on data scraping techniques
and personal communications in order to gather the data.
Concretely, for the tptp benchmark, we obtained the data
from The CADE ATP System Competition website2, which
evaluates the performance classical logic order ATP sys-
tems. The evaluation is in terms of the average runtime
for problems solved and the data we extracted included the
number of formulae, atoms, connectives, predicates, func-
tors and variables, and maximum depth for formulas and
terms. For its part, for the sat benchmark, we extracted the
data from the Pseudo-Boolean Competition website3, also
via data scraping techniques. The data extracted include syn-
tactic elements (number of variables, number of constraints,
clauses, coefficients, etc.), whether the problem is satisfiable
or not and the category to which it belongs. Finally, for the

2http://www.tptp.org/CASC/
3http://www.cril.univ-artois.fr/PB10/

NLP bechmarks SST2 and IMDB), we got the data by con-
tacting the authors in (Mishra and Arunkumar 2021), who
kindly provided instance level results for the test sets of the
previous benchmarks.

IRT for difficulty estimation
In general, IRT has certain properties appropriate to our ob-
jectives:

• Consistent and independent ability estimation. IRT as-
sumes that the ability of respondents does not change
while taking a test, and each problem is independent of
other problems in the same test (De Ayala 2013).

• Great explanatory capabilities. IRT parameters allow to
describe both the difficulty (and discrimination) of prob-
lems and a latent parameter of the respondents (ability).

• Independency from the problems/respondents. IRT
works well regardless of the difficulty of problems and
the ability of respondents.

At the same time, IRT overcomes certain limitations of other
approaches for difficulty estimation such as Classical Test
Theory (Magno 2009) (e.g., inconsistency across samples
of items and less stability), pretesting and expert judgement
(Attali et al. 2014) (e.g, subjectivity, inefficiency and item
exposure), the proportion of correct responses (e.g., very
sensitive to abstruse respondents and the sample choice) or
the Elo rating system (Elo 1978) (e.g., useful for system
pairs, matches, but not for problem-system characterisation).

Note that the estimation of item difficulty can be derived
intrinsically from the properties of an instance (e.g., size,
number of components, noise, distortions, etc.) or the re-
sources that are expected to solve it (e.g., working mem-
ory, primitives, etc.); or it can also be derived extrinsically
from —and so being dependent on— the results of one or
more systems. When only one system is used, then difficulty
is just the probability of failure for that system on the in-
stance. When several systems are used —and IRT follows
this approach—, easy instances are those that are solved
by most of the systems in a population. That still allows a
particular system to fail on a pocket of easy instances, or
succeed on a pocket of difficult instances. These insightful
situations would not be possible if difficulty were only de-
rived from the system we want to analyse. The IRT-based
approach followed in this paper to infer difficulty depends
on the other items and systems. The more diverse the data



and systems are used in the analysis the more generic the
difficulty will be, and more independent of any new system
we would like to analyse with that difficulty metric.

Item difficulty and confidence measures It is also worth
paying attention to the relationship between item difficulty
and the confidence of a learning system. Confidence should
usually be high for very easy and very difficult items, and
low for items of intermediate difficulty. This is actually ex-
ploited by IRT and its applications, such as adaptive test-
ing, which focuses on the examples of intermediate diffi-
culty. But the relation may be less straightforward in prac-
tice and may deserve a deeper analysis, especially if we also
want to analyse how the reliability of the difficulty estima-
tor relates to the confidence of the system. Both confidence
and unknown unknowns can be analysed under the umbrella
of aleatoric uncertainty (i.e., uncertainty due to the natural
stochasticity or noise of observations) and epistemic uncer-
tainty (i.e., uncertainty due to limited data or knowledge).
Unknown unknowns are an extreme case of epistemic un-
certainty, and they affect the systems themselves from which
IRT difficulties (1) are derived, and also the difficulty es-
timator (2) that we build from this data. We may use use
this distinction between aleatoric and epistemic uncertainty
to clarify the connection between difficulty (at moments 1
and 2), confidence and unknown unknowns. For instance,
we may gauge the ability of a model to predict difficulty.
This is what (2) is about and depends more on epistemic un-
certainty.

Specific IRT methodology
In practice, for generating the IRT models, we used the
MIRT R package (Chalmers 2012), using Birnbaum’s
method (Birnbaum 1968). The package MIRT (as many
other IRT libraries) outputs indicators about the goodness
of fit which can be used to quantify the discrepancy between
the values observed in the data (items) and the values ex-
pected under the statistical IRT model. Item-fit statistics may
be used to test the hypothesis of whether the fitted model
could truly be the data-generating model or, conversely, we
expect the item parameter estimates to be biased. An IRT
model may be rejected on the basis of bad item-fit statistics,
as we would not be reasonably confident about the valid-
ity of the inferences drawn from it (Maydeu-Olivares 2013).
In the present case, none of the estimated models were dis-
carded because of bad item-fit statistics or inconsistency in
their results.

Following the recommendations from (Martı́nez-Plumed
et al. 2019) for the sake of result variability, apart from
the original AI systems in each benchmark, we also intro-
duced some artificial systems: (1) an always-wrong model,
(2) an always-right model and, in classification problems,
(3) a model that predicts a random class using the class prior.
These synthetic systems, for which we know their abilities,
are very useful as indicators (e.g., to see how calibrated dif-
ficulty and ability are).

Also, it should be noted that the inference in IRT does not
scale well for many instances and/or respondents (i.e., the
algorithm may not finish or estimates may not be accurate).

While variational inference-based IRT approaches (Wu et al.
2020) have proven useful in scenarios dealing with tens or
hundreds of thousands of respondents (such as in the PISA
international assessments), this is not our case. On the con-
trary, we are dealing with benchmarks up to tens of thou-
sands of items (and up to a few thousands of AI systems as
respondents). In this regard, IRT assumes that the ability of
respondents and the difficulty of problems are invariant to
respondents and problems being used in estimation (De Ay-
ala 2013). That means we may iterate over subsets of items
because the population of AI systems does not change and
thus we can estimate the item parameters more efficiently.
We actually do this for all the folds, so that we cover the
whole benchmark dataset.

Difficulty estimation model configurations
Feature-value becnhmarks We trained five different
classical and state-of-the-art regression techniques using
default hyperparameters (Fernández-Delgado et al. 2014).
Namely, we used stepwise regression as a mere baseline
(Derksen and Keselman 1992), elastic nets (elasticNet) (Zou
and Hastie 2005), gradient boosting machines (gbm) (Fried-
man 2002), k-nearest neighbours (knn) (Fix and Hodges
1989) and random forests (rf ) (Breiman 2001). We used the
caret R package (Kuhn 2008) to streamline the process
for learning and evaluating the above predictive models.

Image-based benchmarks We tried several modern CNN
architectures, finetuning and making custom adjustments for
each model and benchmark (since each model architecture
is different, there is no boilerplate finetuning code that will
work in all scenarios). We finally selected a subset of CNN
architectures pretrained on the 1000-class Imagenet dataset
(Deng et al. 2009) such as VGG16 (Simonyan and Zisser-
man 2015), ResNet-50 (He et al. 2016) and Densenet121
(Huang et al. 2018) because of their performance. As we
are dealing with a regression task, apart from updating all
of the model’s parameters for the new tasks at hand, we
changed also the output layer by a 2-layer Multilayer per-
ceptron (MLP) as projection head (with an intermediate di-
mension of 64 neurons) as non-linear function approximator
for regression. This last part improves and adds stability to
the predictions (Chen et al. 2020). We used smooth L1 as
loss function, optimised using the Adam algorithm (Kingma
and Ba 2014) with learning rates between 0.001, and 0.1
depending of the benchmark and model used. We used a
batch size of 1024 and 50 epochs. Furthermore, we start
with a linear warm up procedure until reaching the maxi-
mum learning rate in the the first 5 epochs. Afterwards, we
apply a cosine decay schedule without restarts until conver-
gence (Loshchilov and Hutter 2017). For each image-based
benchmark, we followed the same preprocessing for the in-
put data. We normalised the data either using the mean and
the standard deviation per image when using 1-channel im-
ages. For 3-channel images, the normalisation process is
computed per image channel (red, green and blue) using the
whole input dataset (Imagenet in this case). We did not use
any data augmentation approach since this would modify the
estimation of the difficulty values.



Text-based benchmarks We used the following pre-
trained transformer models (Vaswani et al. 2017): T5 (small)
(Raffel et al. 2019), an encoder-decoder model pretrained on
a multi-task mixture of unsupervised and supervised (text-
to-text format-transformed) tasks; BERT (sent) (Devlin et al.
2018), a BERT-based multilingual uncased model finetuned
for sentiment analysis on product reviews in different lan-
guages; and BERT (base) (Devlin et al. 2018), a pretrained
model on English language (uncased) using a masked lan-
guage modelling (MLM) (Sinha et al. 2021) objective. All
these models were used following the idea of using their en-
coder architecture to learn a semantically meaningful latent
space which will be then used by an MLP for obtaining the
difficulty estimation. In this case, the learning rate we used
was fixed to 5 × 10−5 and we followed the same warm-up
procedure as before. We set the batch size to 20. Finally, for
each model we tokenised the input text by using their own
default tokeniser approach.

Original task vs. difficulty estimation
In order to understand better the difference between solv-
ing the original problem and solving the difficulty estimation
problem, we are going to analyse how the features are used.
Let us choose the well-known letter benchmark (Frey and
Slate 1991), which has medium average 1PL difficulty ac-
cording to Fig. 2 for which the model is very successful (low
NRMSE and high correlation in Table 2a). We also choose a
feature vector representation because we can use exactly the
same technique for the difficulty estimation and the original
task, as well as the ease of analysis of the original features
(for images, we have that attention maps for regression are
different and more convoluted than those for classification,
see e.g., Gupta et al. 2021).

The goal of this benchmark is to identify the 26 capital
letters in the English alphabet from B/W rectangular pixel
displays, but images are converted into a feature-vector rep-
resentation with 16 numerical features. Since the best PL1
difficulty estimator according to Table 2a is rf, we use it
as well for generating a classifier for the problem, with the
same by-default hyperparameters. We use the Gini Impor-
tance or Mean Decrease in Impurity (MDI) (Breiman 2001)
to compute each feature importance.

If we look at most important features of the difficulty esti-
mator in Fig. 3 (left) (in the main paper), we see that the vari-
able y.ege (i.e., the mean edge count left to right) is more
than twice as important than x.ege or onpix (i.e., total
”on” pixels in the character image), and four times more
important than x2bar or y2bar (i.e., mean x/y variance)
when predicting difficulty. This means that the difficulty of
a character image heavily depends on the mean number of
edges (an “on” pixel immediately to the right of either an
“off” pixel or the image boundary) encountered when mak-
ing systematic scans from left to right at all vertical positions
within the box.

On the contrary, when analysing the variable importance
of the rf classifier on the original task in Fig. 3 (right), the
y.ege is no longer the most important variable but the sec-
ond one after x.ege. This time, the sum of the vertical po-
sitions of edges (y.ege) is the most important one for the

classification of character images. Also, it is noticeable that
the differences between the first five variables by importance
are not as prominent as in the previous case.

Similar discrepancies can be found in machine learning
benchmarks, which may partly explain why in some cases
the original task is easy but estimated difficulty is hard and
vice versa. It is also important to note that for many existing
datasets in the literature, the existing features have been cre-
ated or selected to be predictive for the task, but not neces-
sarily predictive for our new purpose of estimating difficulty.
For instance, the level of blur in an image may be a very dis-
tinctive feature for estimating difficulty but possibly useless
for classifying images. This suggests that datasets should be
enhanced in the future with difficulty-relevant features for
the sake of better evaluation.

Alternative approaches for difficulty estimation
Here we study the fits of alternative approaches to the One-
Parameter Logistic (1PL) model: the two-parameter logistic
(2PL) item response theory models, which estimates param-
eters for both the difficulty and discrimination of dichoto-
mous items; and, a straightforward alternative for estimating
item difficulty, the mean error per instance (AvE ).

Difficulty prediction In Fig. 7 we show the estimated dif-
ficulty distribution per benchmarks using 2PL models. As
explained in the experimental setting, we crop those abnor-
mal difficulty values (> |6|), removing, on average, 3%
of instance per benchmark which is higher than the 0.5%
removed when using 1PL models due an overall worse
goodness-of-fit. For its part, in Fig. 8 we show the difficulties
computed through AvE per instance and benchmark. In this
case, instances where the majority of AI systems address-
ing them fail (errors close to 1) are considered more difficult
than those where only a few systems get them wrong (errors
close to 0).
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Figure 7: 2PL difficulty distribution per dataset (percent-
age of difficulties outside the [−6, 6] range indicated in the
plots). Benchmarks sorted by average difficulty.

In the first analysis we performed we used the estimated
difficulties per instance by these two approaches and, using
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Figure 8: AvE difficulty distribution per instance and
dataset. Benchmarks sorted by average accuracy.

the original observable features from the benchmarks, we
traiedn five different classical and state-of-the-art regression
techniques using default parameters. We followed the same
methodology explained in the experimental setting section.
We limited our analysis to those benchmarks in Table 1 fol-
lowing a feature vector representation for efficiency reasons.
In Tables 5 and 6 we show the NRMSE results for the val-
idation and test set for these benchmarks. We also compute
pairwise comparisons in the validation set to identify sig-
nificant differences between models (Wilcoxon test (Cuzick
1985)). As in the previous experiments using a 1PL model
for difficulty estimation (Table 2a), rf is again better than the
rest of models in most cases. However, the error obtained by
the models trained with difficulty values from 1PL models
are, overall, lower compared to those models trained with
difficulty values from 2PL models. Note that NRSME val-
ues between AvE and IRT models are not comparable. We
will analyse the results of the different approaches together
further on, looking at the correlations.

Dataset elasticNet gbm knn lm rf
NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr

diabetes 0.97±0.04 0.60 0.94±0.04 0.64 1±0.06 0.48 0.97±0.04 0.59 0.92±0.06 0.67
kc1 0.90±0.03 0.69 0.90±0.03 0.69 0.96±0.03 0.61 1.00±0.28 0.68 0.87±0.03 0.70
liver-disorders 1.01±0.05 0.64 1.01±0.05 0.68 1.10±0.07 0.77 1.00±0.04 0.64 1.01±0.05 0.88
japaneseVowels 0.90±0.05 0.71 0.87±0.05 0.73 0.96±0.03 0.56 0.90±0.05 0.71 0.67±0.05 0.85
letter 0.86±0.02 0.57 0.86±0.02 0.58 0.64±0.02 0.89 0.86±0.02 0.57 0.70±0.02 0.90
optdigits 0.94±0.07 0.00 0.96±0.07 0.09 0.86±0.06 0.04 0.94±0.07 0.00 0.85±0.07 0.55
pendigits 0.78±0.08 0.47 0.77±0.08 0.42 0.55±0.08 0.76 0.78±0.07 0.47 0.53±0.08 0.81
satimage 0.95±0.03 0.47 0.88±0.03 0.47 0.82±0.04 0.67 0.95±0.03 0.46 0.77±0.03 0.69
segment 0.92±0.04 0.70 0.90±0.04 0.67 0.83±0.05 0.68 0.92±0.04 0.69 0.63±0.03 0.82
vehicle 0.78±0.07 0.58 0.78±0.09 0.72 0.81±0.07 0.90 0.79±0.07 0.57 0.70±0.09 0.88
tptp 1.13±0.38 0.25 0.91±0.05 0.33 0.92±0.08 0.42 1.10±0.33 0.18 0.85±0.05 0.59
sat 0.78±0.11 0.75 0.75±0.08 0.75 0.72±0.08 0.72 0.85±0.24 0.75 0.58±0.08 0.84

Table 5: NRMSE results and Spearman correlations for
those benchmarks in Table 1. Interpretation as in Table 2.
Difficulty values obtained following a two-parameter IRT
model (2PL).

Discrimination analysis By taking advantage of the dis-
crimination parameter estimated by the 2PL models, we may
also analyse its possible impact on the learned difficulty
functions. The discrimination parameter (slope) is a mea-

Dataset elasticNet gbm knn lm rf
NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr

diabetes 1.06±0.04 0.52 1.03±0.06 0.56 1.11±0.05 0.40 1.07±0.04 0.50 1.01±0.05 0.60
kc1 1.00±0.05 0.62 1.00±0.05 0.62 1.05±0.06 0.54 1.01±0.05 0.61 0.96±0.05 0.63
liver-disorders 1.10±0.04 0.57 1.11±0.05 0.62 1.20±0.07 0.69 1.11±0.04 0.57 1.12±0.05 0.82
japaneseVowels 1.00±0.04 0.65 0.98±0.04 0.66 1.06±0.05 0.49 1.00±0.04 0.64 0.73±0.04 0.79
letter 0.97±0.01 0.50 0.96±0.01 0.51 0.75±0.01 0.82 0.97±0.01 0.50 0.74±0.01 0.83
optdigits 1.04±0.05 -0.02 1.06±0.06 0.02 0.91±0.06 -0.04 1.04±0.05 -0.11 0.91±0.06 -0.02
pendigits 0.88±0.06 0.40 0.87±0.06 0.34 0.55±0.06 0.69 0.88±0.05 0.40 0.60±0.07 0.74
satimage 1.05±0.02 0.41 1.00±0.02 0.42 0.87±0.02 0.59 1.06±0.02 0.41 0.86±0.02 0.62
segment 1.02±0.05 0.65 0.99±0.05 0.61 0.92±0.07 0.62 1.02±0.05 0.64 0.71±0.05 0.75
vehicle 0.90±0.12 0.42 0.88±0.15 0.57 0.94±0.11 0.77 0.91±0.11 0.41 0.75±0.17 0.75
tptp 1.23±0.38 0.18 1.01±0.05 0.26 1.02±0.08 0.35 1.20±0.33 0.11 0.92±0.05 0.44
sat 0.85±0.10 0.67 0.84±0.06 0.67 0.8±0.07 0.65 0.86±0.08 0.66 0.64±0.07 0.79

Table 6: NRMSE results and Spearman correlations those
benchmarks in Table 1. Interpretation as in Table 2. Diffi-
culty values obtained following the AvE approach.

sure of the capacity of an item to differentiate between in-
dividuals (AI systems). Therefore, when applying IRT to
evaluate AI systems, the slope of an instance can be used
to indicate if the instance is useful to distinguish between
strong or weak classifiers for a problem. From the bench-
marks analysed in this work, 6.8% ± 13.8 instances have
negative discrimination values (negative slope) when using
2PL models. In these cases, the probability of correct re-
sponses is negatively related to the estimated ability of the
classifiers. This means that these instances are most fre-
quently succesfully addressed by the weakest AI systems.
These cases are anomalous in IRT (usually referred to as
“abstruse” or “idiosyncratic” items). But in the context of
AI, these are precisely the instances that may be most use-
ful to identify particular situations. For example, if two in-
stances 1 and 2 in a binary classification problem have ex-
actly the same features but belong to different classes, then
P (U1j = 1|Θj) = 1 − P (U2j = 1|Θj). In this situation,
one of the instances may have been wrongly labelled, which
can result in a negative-slope ICC.

Dataset elasticNet gbm knn lm rf
NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr

diabetes 1.02±0.12 0.69 0.99±0.13 0.69 0.93±0.08 0.65 1.02±0.13 0.69 0.89±0.10 0.72
kc1 1.01±0.05 0.62 1.01±0.05 0.62 1.06±0.06 0.54 1.08±0.16 0.61 0.98±0.05 0.63
liver-disorders 1.05±0.15 0.58 0.99±0.12 0.63 1.01±0.09 0.72 1.06±0.14 0.58 0.94±0.10 0.82
japaneseVowels 1.01±0.08 0.64 0.98±0.08 0.66 1.07±0.07 0.49 1.01±0.08 0.64 0.74±0.08 0.80
letter 0.97±0.02 0.50 0.97±0.02 0.51 0.75±0.02 0.82 0.97±0.02 0.50 0.74±0.01 0.83
optdigits 1.04±0.05 0.25 1.07±0.05 0.42 0.89±0.05 0.40 1.05±0.05 0.22 0.90±0.05 0.53
pendigits 0.87±0.04 0.41 0.86±0.04 0.35 0.49±0.05 0.69 0.87±0.04 0.40 0.54±0.05 0.74
satimage 1.05±0.04 0.39 0.98±0.05 0.40 0.78±0.05 0.59 1.05±0.04 0.39 0.79±0.05 0.62
segment 1.03±0.07 0.63 1.00±0.07 0.60 0.91±0.07 0.61 1.03±0.07 0.62 0.71±0.07 0.75
vehicle 0.86±0.13 0.55 0.87±0.13 0.66 0.92±0.07 0.84 0.85±0.12 0.54 0.71±0.14 0.82
tptp 1.24±0.38 0.18 1.02±0.05 0.26 1.03±0.08 0.35 1.21±0.33 0.11 0.93±0.05 0.44
sat 0.89±0.11 0.67 0.86±0.08 0.67 0.83±0.08 0.66 0.96±0.24 0.67 0.67±0.08 0.80

Table 7: NRMSE results and Spearman correlations for
those benchmarks in Table 1. Interpretation as in Table
2. Difficulty values obtained following a 2PL IRT model.
Training instances with a negative discrimination parameter
have been removed from the training sets (2PL (¬abs)).

A common practice in IRT is to remove the items with low
or negative discrimination, leaving only the items that are
useful to evaluate respondents for exams and tests. In order
to check whether this procedure may result in improved ac-
curacy of the learned difficulty functions, we have removed
all instances with negative discrimination from the valida-
tion set (but not in the test set) before training the different
regression models. Table 7 shows that there is no improve-



Dataset elasticNet gbm knn lm rf
NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr NRMSE Corr

diabetes 0.99±0.06 0.49 0.93±0.06 0.53 1.01±0.05 0.37 0.97±0.04 0.47 0.91±0.05 0.57
kc1 0.90±0.05 0.59 0.90±0.05 0.59 0.95±0.06 0.51 0.91±0.05 0.58 0.86±0.05 0.60
liver-disorders 1.00±0.04 0.54 1.01±0.05 0.59 1.10±0.07 0.66 1.01±0.04 0.54 1.02±0.05 0.79
japaneseVowels 0.90±0.04 0.62 0.88±0.04 0.63 0.96±0.05 0.46 0.90±0.04 0.61 0.63±0.04 0.76
letter 0.87±0.01 0.47 0.86±0.01 0.48 0.65±0.01 0.79 0.87±0.01 0.47 0.64±0.01 0.80
optdigits 0.94±0.05 -0.05 0.96±0.06 -0.01 0.81±0.06 -0.07 0.94±0.05 -0.14 0.81±0.06 -0.05
pendigits 0.78±0.06 0.37 0.77±0.06 0.31 0.45±0.06 0.66 0.78±0.05 0.37 0.50±0.07 0.71
satimage 0.95±0.02 0.38 0.90±0.02 0.39 0.77±0.02 0.56 0.96±0.02 0.38 0.76±0.02 0.59
segment 0.92±0.05 0.62 0.89±0.05 0.58 0.82±0.07 0.59 0.92±0.05 0.61 0.61±0.05 0.72
vehicle 0.80±0.12 0.39 0.78±0.15 0.54 0.84±0.11 0.74 0.81±0.11 0.38 0.65±0.17 0.72
tptp 1.13±0.38 0.15 0.91±0.05 0.23 0.92±0.08 0.32 1.10±0.33 0.08 0.82±0.05 0.41
sat 0.75±0.10 0.64 0.74±0.06 0.64 0.70±0.07 0.62 0.76±0.08 0.63 0.54±0.07 0.76

Table 8: NRMSE results and Spearman correlations for
those benchmarks in Table 1. Interpretation as in Table
2. Difficulty values obtained following the AvE approach.
Training instances with a negative discrimination parameter
have been removed set (AvE (¬abs)).

ment (where, again, rf obtain the best results overall): the
results are less robust compared to the setting using the 2PL
approach that does not eliminate abstruse examples (Table 5)
and the setting 1PL approach (Table 2a). We have also per-
formed the same procedure but using the AvE approach (re-
moving the same examples as with the 2PL approach from
the validation set), also obtaining poorer results (see Table
8) than in the original version of the experiment (Table 6 ).

Applications
Explainable AI As we explained in the main text, the use
of a generic difficulty metric ℏ is very useful to understand
where and how a system fails, and can be applied to any
area in AI. Although it is important that the metric is system-
independent (i.e., we analyse the problem instances, not a
particular system), the use of a attribute-based ℏ̂ increases
the applications. First, there is no need to manually extract
what makes instances hard, we can inspect what attributes
make it hard, as we did with Fig. 3 (left). In that figure we
see that onpix is very relevant, which is somewhat related to
the density of the image, how much information or clutter it
has.

While the range of applicability in Explainable AI is huge,
in terms of understanding a problem and whether a system
is conformant to this difficulty, the difficulty estimator can
be applied to individual decisions or solutions. Many of the
applications included in the main text are related to cases
where we get a successful result for a hard instance or an
unsuccessful result for an easy instance. This situation just
triggers the analysis, but the difficulty estimator (and using
XAI techniques on it, such as determining why a particular
instance is difficult) can be very enlightening.

Robust evaluation and deployment For producing the
SCC, we divide the instances in bins of the same length ac-
cording to difficulty. For each bin, we plot on the x-axis the
average difficulty of the instances in the bin and on the y-
axis we plot the frequency of correct responses of the clas-
sifier (accuracy).

Figure 5 (left) shows the SCC obtained with the 70% of
the letter benchmark using ℏ. We created 10 bins based on
quantiles (but similar curves may be obtained varying this
number or using same-length bins). Also, in Figure 5 (right)

we use a test dataset (30% of unseen examples) to simulate a
situation where we use the models in order to show whether
the previous SCC can be used to select the (set of) best clas-
sifier(s) according to the difficulty ranges of the instances.
Since we do not know the difficulty values of these unseen
examples, we predict them using the best difficulty estima-
tor ℏ̂ obtained in the above experiments (see Table 2a). Then,
we classify these instances (Table 9) by using the previous
set of classifiers and plot the results in a new SCC according
to the estimated difficulties. This way, we can decide which
classifiers are preferable for a particular instance according
to the estimated difficulties.

Table 9 shows the classifiers of interest and their accuracy
for the letter benchmark (Frey and Slate 1991). Classifiers
have been trained using their default hyperparameters.

ID Classifier Train Test
rf Random forest 1.00 0.98
c50 C5.0 decision tree 1.00 0.97
knn k-nearest neighbours 0.98 0.96
jrip Prop. rule learner 0.94 0.87
svm Support vector machine 0.90 0.89
nb Naı̈ve Bayes 0.74 0.72
fda Flexible discrim. analysis 0.68 0.68
nnet Neural network 0.28 0.27
ada Adaptive Boosting 0.29 0.28
rpart Rec. part. and reg. tree 0.24 0.24

Table 9: Classifiers (using default parameters) and their ac-
curacy for the letter benchmark (Frey and Slate 1991).

Analysing AI progress Figure 6 presents the SCCs for a
subset of well-known CNN architectures designed to recog-
nise visual patterns directly from pixel images (AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), GoogLeNet
(Szegedy et al. 2015), VGG (Simonyan and Zisserman
2014), ResNet (He et al. 2016) DenseNet (Huang et al.
2017)) and EfficientNet (Tan and Le 2019). The architec-
tures range from 2012 to 2019 and have been applied to the
CIFAR-10 benchmark (Krizhevsky, Hinton et al. 2009).

We have chosen CIFAR-10 because despite having an es-
timator with poor Spearman correlation, in this application
we do not use the estimated difficulties but the original IRT
ones, as an example of a use case of difficulty metrics for
which we do not even need a (good) difficulty estimator.

Distributional and perturbational phenomena Table 10
shows the results for the study of problem shift: how does the
difficulty estimator changes when we apply it to instances
that come from a different problem (but share the features).
We analyse this with 1000 random instances from MNIST
compared to 1000 random instances from Fashion-MNIST.
The estimator for MNIST, when applying to Fashion-MNIST
gives higher difficulty (from -3.10 to -2.75). Note that -3.30
and -2.27 were the original average difficulties for MNIST
and Fashion-MNIST respectively, but this is not necessar-
ily calibrated for different problems. The comparison of the
same estimator for two problems indicates that if these new
1000 instances were to be labelled with the original MNIST
labels (independently of whether this makes sense), they
would be more difficult than the original ones.



Sorig Sshft

ℏ (mean) -3.30 -2.27
ℏ̂ (mean) -3.10 -2.75

Table 10: Problem shift, between Sorig (1000 examples from
MNIST) and Sshft (1000 examples from Fashion-MNIST).
The first row shows the original difficulties using MNIST and
Fashion-MNIST. The bottom row shows the mean difficulty
using the MNIST difficulty estimator.

For the second batch of experiments where we study sev-
eral kinds of perturbations, we implement the following pro-
cedures for the generation of the different samples:

• Sadvl: we generate adversarial examples following the
elastic-net regularized optimization (EAD) approach
from (Chen et al. 2018). We focus on the L2 distortion
metric for the total variation for creating the adversarial
examples. See Fig. 10 for a visual illustration of adver-
sarial examples crafted by EAD.

• Shans: we introduce simple watermarks (following a bi-
nary system) at the corners of each input image that help
the classifier to predict the real class, emulating a Clever
Hans phenomenon. Fig. 11 shows the watermarking sys-
tem followed for each class.

• Slow
blur, Smed

blur and Shigh
blur : we introduce increasing degrees

of distortion to the input images using a Gaussian Blur
filter, varying the kernel size (5, 9 and 13) and the vari-
ance in the intervals [0.1,2], [2,10] and [10,20] for low,
mid and high distortion blur respectively. Fig. 12 shows
the different levels of blur on the same image from
MNIST.

Figure 9: Selection of illustrative examples for each class in
MNIST benchmark.

Figure 10: Visual illustration of adversarial examples crafted
by EAD. Original examples in Fig. 9.

Figure 11: Visual illustration of images from MNIST with
watermarks (binary symbols at the corners) for testing the
Clever Hans phenomena.

Figure 12: Example from MNIST with low, mid and high
distortion (blur) levels applied. Original image on the left.

As we have seen in Table 4, the adversarial attack and
Clever Hans phenomena have no effect on the difficulty es-
timator. However, performance is very different, going from
almost total success for in Sorig to 0% in Sadvl, or the the
classifier succeeding for all of them in Shans. It is only when
we apply different levels of blur that we have an effect on the
estimated difficulties and the error. More blur makes images
more difficult (from -3.05 to -2.45), as expected, and the
classifier has higher error (from 0.80% to 76.5%). In gen-
eral, if the difficulties change in the new samples as does the
performance, we can calculate whether the performance cor-
responds to the ability of the model. In order to do this, we
derive the ability by inverting the logistic model given the
average difficulty and performance (correct response per-
centage) in Sorig and then we apply the logistic model for-
ward given the ability and the average difficulty in Sadvl to
get the expected performance (correct response percentage).
If this deviates from the observed performance significantly,
then we fire the alarm.

IRT in AI
One of the first approaches in which IRT is applied to
machine learning and artificial intelligence can be found
in (Martı́nez-Plumed et al. 2016; Martınez-Plumed and
Hernández-Orallo 2016; Martı́nez-Plumed et al. 2019). In
this paper, authors explain IRT and how can it be applied
to evaluate machine learning algorithms performance. Au-
thors evaluate different families of machine learning mod-
els (respondants) on different classification problems (items)
showing how IRT works in that context and what their pa-
rameters mean when it is applied to machine learning evalu-
ation.

The application of IRT to evaluate ML algorithms is
mainly used in classification problems. However, some ad-
vances have been applied in IRT computation to allow ap-
plying this approximation not limited to logistic curves



(Chen et al. 2019). In this way, in (Moraes et al. 2020), au-
thors apply IRT directly for regression. In this case, a new
parameterisation is proposed based on the normalised errors
produced by the respondents.

We can also find researches that use IRT to predict the
minimum performance of AI agents (Chmait et al. 2017). In
this approximation, authors propose the use of the tasks’ dif-
ficulty measure and the agents’ ability to guarantee the min-
imum accuracy that these agents can achieve in each task.
But not only IRT has been applied recently in predicting per-
formance of AI algorithms, it is also applied in explainable
machine learning. In this subject, Kline et al (Kline et al.
2020) successfully apply IRT and the discriminant capacity
of features to explain the feature importance in ML models
to predict the mortality in intensive care units.

In (Lalor 2020), author demonstrates that exists certain
correlation of the IRT latent parameters between human and
DNNs (Lalor et al. 2018). However, the most interesting re-
sults are related to curriculum learning of DNN based on
IRT measures. In this thesis, the author demonstrates that
progressive learning accelerates and increases the efficiency
of DNN learning process by increasing progressively the dif-
ficulty of the examples depending on the acquired abilities
of the DNN being trained. Both latent parameters, difficulty
and ability, are extracted from IRT approximation. This ap-
proach works in a similar way to Competency introduced
by Platanios et al (Platanios et al. 2019). Nevertheless, un-
like Competency approximation, in (Lalor 2020) the skill
of the DNN model is dynamically computed using IRT as
the model learns. In this way, the examples provided during
learning are adapted to the abilities of the model, improving
the speed and efficiency of learning. However, the difficul-
ties of the examples are computed a priori using human re-
sponses or ”artificial crowds” (a set of DNNs with different
skill levels).

One of the greatest handicaps that must face IRT is its
scalability. Therefore, high dimensional and large datasets
reduces the speed and accuracy of algorithms that tries to fit
IRT models. In case of high dimensional dataset (high num-
ber of items), the problem can be solved by batching the
IRT computation. However, in case of large datasets, the so-
lution is no so easy. In (Wu et al. 2020), authors proposes the
use of variational Bayesian inference to allow obtaining IRT
parameters for large datasets (high number of respondants).
In this case, variational inference demonstrates its power to
perform fast inference for complex Bayesian models like
IRT. Authors demonstrate its applicability in real scenarios
and large datasets like PISA, DuoLingo and Gradescope.

Finally, it is worth to mention a couple of papers that pro-
pose an approximation similar to the one deployed in this
paper but with a completely different scope. In this case,
they do not aim to evaluate Machine Learning algorithms
but to predict students performance in a test. In the first pa-
per (Yeung 2019), authors propose the use of a deep learning
approximation based on recursive neural network (RNN) to
predict the probability that a student give a correct answer
based on past interactions. The RNN is used to predict the
ability of the student and the difficulty of the item. Then,
they use these predicted values to calculate the probability

that the student gives a correct answer using IRT. In the sec-
ond paper (Cheng et al. 2019), authors use a proficiency vec-
tor (representing the degree a student masters each concept
knowledge) of one student, the text of the exercise and the
concepts included in this text as input to their approxima-
tion. With that information, they apply two DNNs to predict
the ability of the student and the discriminatory capacity of
the item (e.g. a math exercise) and an LSTM to calculate
the difficulty of the item. The ability, discrimination and dif-
ficulty obtained are used in the IRT formula to predict the
probability that the mentioned student gives a correct answer
to that item.

Finally, With the purpose of better analysing the result
of AI benchmarks, (Martı́nez-Plumed and Hernández-Orallo
2020) extends IRT to one further indicator on the side of
the AI systems: generality. While difficulty, discrimination
and ability latent parameters are adapted from psychomet-
ric models in IRT, generality is defined as a new metric that
evaluates whether an agent is consistently good at easy prob-
lems and bad at difficult ones. Generality is thus useful to de-
termine whether the new AI techniques, especially those that
rely on long training stages, are coping well a wide range
of problems (with different difficulties), and not only for a
pocket of problems, but failing in some situations.
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