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A B S T R A C T   

Fire is one of the main hazards that can affect steel buildings and bridges and was responsible, e.g., for the 
collapse of the Plasco building in Tehran, Iran, and the I-65 bridge in Birmingham, Alabama, USA. This 
vulnerability has motivated the development of advanced computational models to predict the response of steel 
structures to fire accurately. The mechanical response of slender steel members to fire is especially important 
because they fail prematurely by buckling at load values below their elastic strength. However, the structural 
analysis of these members typically requires advanced and complex FE models with shell elements, including 
initial geometric and material imperfections. These shell models are computationally expensive, complicating the 
carrying out of parametric and probabilistic studies. Therefore, there is a need to develop simple, accurate, and 
low-cost computational models as reliable as shell-type models. To overcome this knowledge gap, this paper 
presents two new modeling strategies that simulate the mechanical response of class-4 steel members subjected 
to lateral-torsional buckling in fire using Timoshenko beam-type finite elements, which significantly simplify the 
structural modeling. These strategies are called Fiber Beam Model (FBM) and Cruciform Frame Model (CFM) and 
include initial geometric and material imperfections and thermal strains. In the FBM, the steel member is rep-
resented by a single fiber of I-section beam elements, whereas in the CFM, a cruciform arrangement of rectan-
gular beam finite element fibers idealizes it, making the CFM more complex to build than FBM. Both strategies 
were satisfactorily validated with experimental and numerical results of Test-1 and Test-3 carried out in the “Fire 
design of steel members with welded or hot-rolled class-4 cross-section” (FIDESC4) research project on a slender 
beam of class-4 section. Although both FBM and CFM correctly captured the LTB resistance of the tested beam, 
CFM can, in addition, adequately reproduce the local buckling failure and significantly reduced the computa-
tional time. That means complex fire engineering problems such as probabilistic and optimization analyses of 
thin-walled beams can be addressed more easily and accurately, representing an important step towards applying 
performance-based approaches in slender steel structures under fire.   

1. Introduction 

Current requirements for building structures and large-scale 
roadway structures, such as bridges, are becoming increasingly 
demanding, requiring elements of larger dimensions that make them 
more costly [1]. On the other hand, current trends in the construction of 
large-scale projects have made steel structures a major construction 
alternative [2]. The inevitable need to optimize costs under allowable 
performance levels has greatly interested in using lighter sections. 
Recent cases demonstrated it. For example, in the Wirkowice bridge in 
Poland (2020), hot-rolled high-strength lightweight steel sections were 

used to reduce the weight and increase the bridge span [3]. Another 
illustrative case is Chicago’s Union Station Tower (2020). In this 51- 
floor office steel building, designers reduced the total structural steel 
in the upper perimeter columns by almost 20% using stronger but lighter 
steel elements (552 MPa), creating more open space in upper floors [4]. 

However, the decrease in the amount of material in the fabrication of 
steel members to make them lighter also makes them slenderer. That 
condition may compromise the structure’s stability because of the 
possible activation of global or local buckling failure phenomena that, in 
practice, are more critical when the structure is in a fire situation [5]. 
Examples of such failures have been observed in buildings (e.g., the 
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2001 fire in New York City’s World Trade Centre 7 [6,7] or the 2017 fire 
in Tehran’s Plasco building [8,9]) and bridges (e.g., the I-65 overpass 
fire in Birmingham, Alabama, USA [9] and similar cases reported in 
[10–14]). 

The trend towards cost-benefit optimization has led to increasing the 
use of lightweight and slender sections classified by Eurocode as class-4 
[15] in construction projects. Class-4 cross-sections are those in which 
local buckling will occur before attaining yield stress at any cross-section 
point because its parts have a minimal thickness compared to the width 
[16]. Therefore, the analysis is limited to the elastic range (see Fig. 1, 
which illustrates the ideal plastic behavior achieved for compact class-1 
and class-2 sections but not for the non-compact class-3 and slender 
class-4 sections). These welded or hot-rolled class-4 cross-sections usu-
ally are built to safely cope with possible Lateral-Torsional Buckling 
(LTB) phenomena in beams and flexural buckling in columns at room 
temperature [17,18]. However, it is also essential to know the perfor-
mance of these sections when the adverse effects of imperfections and 
fires are present [5] because they may compromise the stability of the 
structure and, ultimately, its safety. 

The Geometrically and Materially Non-linear Mechanical Analysis 
with Imperfections (GMNIA, henceforth) is the most advanced and ac-
curate method to solve the LTB problem in steel members [20]. GMNIA 
can predict the structural member critical loads considering local and 
global buckling failures (buckling loads), which can appear even before 
the cross-section plastifies, and define the actual load-bearing capacity 
of the member [21,22]. The geometrical nonlinearity in the GMNIA is 
due to large displacements, which are especially important under fire. 
The material nonlinearity is caused by the creep and the elastoplastic 
behavior of steel. The imperfections of welded class-4 cross-section steel 
members come from geometrical and material defects appearing in the 
plate fabrication process and later in the cut and welding process [23]. 
Geometrical imperfections can be measured on trajectories along the 
flange and web plates of the steel member. They can then be drawn to 
define longitudinal imperfection profiles that approximate the imperfect 
shape of the flanges and web [24]. These imperfection profiles resemble 
sinusoidal shapes and provide an approximated idea of the number of 
undulations in a steel member area. The measured amplitude is the 
maximum imperfection value of the profile. For modeling purposes, the 
assumed shape of the initial global and local geometric imperfections 
can be obtained from combining elastic buckling mode shapes. This 
method enables the calculation of the amplitude of imperfections in 
slender steel members [25]. On the other hand, structural (or material) 
imperfections in steel members with class-4 cross-sections are caused by 
the high temperatures applied in the welding process that induce a state 
of residual stresses that remains in the whole section of the unloaded 
member, even after cooling [23]. Thus, these residual stresses are pre-
sent before beam loading as an initial condition at room temperature in 
the modeling. 

Several numerical studies have considered that the increase of tem-
peratures in steel members caused by fires relaxes the residual stresses 

and makes its influence on failure loads small or even neglectable. For 
example, in a study for predicting the plastic capacity of axially loaded 
steel beam columns with thermal gradients, Quiel et al. [26] did not 
consider residual stresses in the computational models because it was 
assumed that these stresses relaxed due to increasing steel temperature. 
In an experimental study of the strength of wide flange columns at 
elevated temperature, Yang et al. [27] concluded that the initial residual 
stresses affected significantly less the local and global buckling failure 
modes in fire situations than at room temperature. Heidarpour and 
Bradford [28] showed similar results in a separate parametric compu-
tational study of the effects of residual stresses in heated steel members. 
The initial LTB numerical models of class-4 tested beams under bending 
carried out in the “Fire design of steel members with welded or hot- 
rolled class-4 cross-section” (FIDESC4 henceforth) research project 
[24] neglected thermal expansion as well as residual stresses [26]. 
However, Couto et al. [29], in a later study based on the LTB results of 
FIDESC4, concluded that residual stresses negatively influence the LTB 
strength under fire of beams with slender cross-sections with LTB 
strength reductions under fire of a maximum of 15%. 

Practically all of the LTB numerical simulations of slender section 
steel members under fire have used models with shell elements (see, e.g., 
those of the FIDESC4 report [24] and later works based on the FIDESC4 
test results [30–33] as well as other LTB assessment of steel beams 
included in [34,35]). Nguyen and Park [36] also used shell elements in 
numerical simulations to evaluate the LTB resistance of steel H-beams 
exposed to a localized fire considering the combined effects of initial 
geometric imperfections and residual stresses. Kucukler [37] used shell 
elements to study LTB in steel beams not susceptible to local buckling, 
without local imperfections, and under the combined effects of fire and a 
constant bending moment. Based on the results of an extensive para-
metric study, Kucukler [37] also proposed an equation for the LTB 
assessment, which can only be applied to steel beams with class 1 and 2 
cross-sections because only global buckling was studied. 

Typical shell models naturally capture buckling (local and global) in 
slender steel section members but at high modeling and CPU time costs, 
making them difficult to use in parametric and probabilistic studies 
[38]. Thus, it is necessary to devise simpler beam-type models as reliable 
as shell-type models to carry out these analysis types at lower costs. This 
type of model has eventually been used in the bridge deck analysis. For 
example, Hambly [39] explains the use of grillages and space frames to 
calculate bridge decks subjected to bending, shear, and torsion. In these 
methods, the structure is represented by equivalent beam elements. 
Following this trend, some LTB simulations have been carried out using 
beam-type finite elements. Quiel et al. [26] evaluated the fire response 
of beam-columns with an I-section subjected to flexural compression 
under non-uniform temperature gradients with a fiber model of beam 
elements without including global imperfections and residual stresses, 
finding a good correlation with the experimental results. These re-
searchers concluded that the added computational cost and complexity 
of a shell model were unnecessary to predict fire-exposed behavior when 
the failure mode is entirely plastic. Smyrnaios et al. [40] applied an 
Equivalent Truss Model proposed in [39,41] to determine the LTB 
resistance of I-section beams at room temperature. The Truss Model 
idealizes the beam through an equivalent system where two T-sections 
represent the upper and lower third parts of the beam connected through 
X-bracing truss elements representing the remaining part of the web. 
This technique was satisfactorily verified at room temperature with shell 
models through a parametric study for different geometric imperfection 
levels. Still, it was not validated with experimental results and was not 
tested at high temperatures. The Truss Model disadvantage is the 
impossibility of including the residual stresses in the X-bracing elements, 
which are naturally present in localized zones of the I-section. Possi-
dente et al. [42] developed a 3D-beam finite element for modeling the 
fire behavior of open cross-section steel elements subjected to torsional 
effects. Displacement predictions in the LTB behavior of an L-frame 
carried out with a typical beam discretization model indicated a good 

Fig. 1. Moment-deflection relationship for a simply supported steel beam ac-
cording to cross-section class. Adapted from [19]. My is the cross-section elastic 
bending moment, and Mp is the cross-section plastic moment. 
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agreement with shell-based models if local buckling, residual stresses 
and imperfections are not present. This work does not contain any 
validation of the 3D-beam element with experimental results and local 
buckling was not considered. Franssen et al. [43] proposed an effective 
stress-based method for slender steel members exposed to high tem-
peratures, which was implemented on fiber-type beam finite elements in 
SAFIR. This model is a constitutive law of steel that considers the local 
instabilities in slender steel sections in numerical models based on 
Bernoulli finite beam elements. The method was validated against 
experimental results from three FIDESC4 column tests at high temper-
atures [24]. The validation of the results was satisfactory, although 
conservative. Maraveas et al. [44] refined the methodology and revised 
some assumptions [45–47] to improve the original model proposed by 
Franssen et al. [43]. As a result, they developed an equivalent law to be 
used in the nonlinear numerical analysis of the fire resistance of thin- 
walled steel members. The constitutive model was implemented in 
SAFIR and validated against experimental results of columns subjected 
at elevated temperatures (FIDESC4 Test-3 [24] and others column tests 
reported in [48]). Although the simulation results revealed good 
agreement with the tests, the improved model still gave conservative 
results for large compressive load eccentricities, so the model is 
currently still under development. 

Within this context, this study proposes two new modeling strategies 
based on beam-type elements that reduce the high modeling and anal-
ysis time costs of shell models typically used to carry out the GMNIA 
analyses to determine the strength of class-4 steel members. These 
modeling strategies use 7-DOF second-order Timoshenko beam finite 
elements (ANSYS BEAM189) and include: a) geometrical and material 
nonlinearity, b) thermal strains, c) Poisson effect on the cross-section 
owing to mechanical and thermal loading (i. e., the cross-section is 
scaled as a function of axial stretch), d) imperfections and residual 
stresses as initial conditions, e) non-uniform temperature, f) preliminary 
thermal conditioning (perturbed shape and additional thermal stresses), 
g) self-weight, h) non-linear stabilization of non-linear buckling and 
post-buckling solution. The first strategy is called the Fiber Beam Model 
(FBM) and uses a single fiber of I-section BEAM189 elements located at 
the center of the bottom flange to represent the steel member. The 
second strategy is called the Cruciform Frame Model (CFM) and ideal-
izes the steel member with a cruciform grid of fibers, where rectangular 
BEAM189 finite elements make up each fiber. The CFM grid provides 
flexibility and enables capturing local buckling. 

These new numerical strategies are validated using the test results 
(Test-1 and Test-3) of the FIDESC4 research project reported in [24] 
conducted with built-up welded steel beams with class-4 cross-sections 
heated and loaded until LTB failure. To get additional information about 
the accuracy and advantages of the proposed strategies, a full GMNIA of 
a shell model of both tests, including the application of residual stresses 
as zero state, imperfections, and thermal strains, were also carried out in 
ANSYS. The numerical results and computational times of these shell 
models were compared with those of the FBM and CFM to analyze the 
performance of the proposed modeling strategies. In addition, FMB and 
CFM without residual stresses and thermal strains were also carried out 
to evaluate how the LTB response of the tested beams is affected by not 
including these two initial conditions. 

The paper is structured as follows: Section 2 describes the setup of 
the FIDESC4 Test-1 and Test-3 used to validate the proposed modeling 
strategies; Section 3 presents the FBM and CFM modeling strategies; 
Section 4 presents the implementation of the GMNIA in the FBM and 
CFM strategies; Section 5 presents the validation of the two strategies 
with experimental and numerical results of FIDESC4 Test-1 and Test-3. 
Section 5 also includes the numerical results of Test-1 and Test-3 sim-
ulations with the modeling strategies without residual stresses and 
thermal strains and their comparisons with those having them and some 
further important analyses of the LTB phenomenon in the FBM related to 
warping, bimoment, and bicurvature. Finally, Section 6 details the main 
conclusions and future works of the investigation. 

2. Description of the Fidesc4 tests used for validation 

The results of two fire experiments on constant cross-section beams 
(Test-1 and Test-3 of the FIDESC4 experimental and numerical investi-
gation of class-4 beams [24]) were used to validate the proposed 
modeling strategies. Therefore, this section describes the main features 
of these fire tests. Both experiments were carried out with slender, 
simply supported, built-up welded beams with constant cross-section 
representing structures with a class-4 cross-section (see Figs. 2 and 3 
for a detailed geometrical definition of the tests). The beams spanned 5 
m and were heated along the central part where the temperature was 
intended to be constant and uniform and then loaded until failure due to 
the local instability of the plates. The loading consisted of two equal 
concentrated loads applied symmetrically so that the bending moment 
in the central heated part was constant. Fig. 4 illustrates the test setup 
along with the ceramic pads used to heat the beam and the devices used 
to load it. Fig. 5 exemplifies the tested beam subjected to pure bending in 
the central heated zone. 

Before the tests, the steel properties of the beam plates were obtained 
at room temperature (see Table 1). According to EN 1993-1-2 [16], the 
slenderness of the web plate was λp = 1.33 for Test-1 and λp = 1.13 at the 
middle span for Test-3 [24]. After placing the beams on the supports, 
laser scanning and manual measurements established the initial geom-
etry with imperfections. For the measurement of the global imperfection 
amplitude, the deviation between the stiffeners was measured. In the 
central zone of the tested beams, local imperfections were measured on 
the web and the top flange. Local imperfections on the web were 
measured in points placed in the compression part. On the top flange, 
they were measured over the edges where the cut-off imperfections of 
the plates are expected to be higher. Then local imperfection profiles 
were drawn. The maximum values of these local imperfection profiles 
were assumed as the local imperfection amplitudes. Table 2 lists the 
amplitude of local and global imperfections for each test [24]. 

Fig. 6a shows the setup of the experiments. Point pinned supports 
were located at the end extremities of the beam, as shown in Fig. 6b and 
c. All rotations and transverse deflections between these point supports 
were allowed, except at the stiffener points where the lateral deflection 
was restrained. Displacements in all directions were restrained in the left 
support, while only the axial displacement was released in the right 
support. In addition, both supports allow free torsion of the end cross- 
section. The beam was heated with Manning heat power units and 
flexible ceramic pads (see Fig. 4). Temperatures were measured from the 
beginning of the heating to the end of the tests. For this purpose, ther-
mocouples along the beam according to the position of the ceramic pads 
were distributed. Both tests were set to be at 450 ◦C. However, the 
measured temperatures slightly varied during the tests and were not 
uniform for the whole section. The average measured temperatures at 
each part of the beam (top flange, web, bottom flange) used for nu-
merical modeling are shown in Fig. 7a. The load was applied through a 
hydraulic jack and introduced by a distributing beam at the edges of the 
heated central part, as shown in Figs. 4 and 6d. The two vertical load 
application points were laterally restrained by frames contacting the 
beam through gadgets, as shown in Fig. 6e. Four potentiometers were 
used to measure the displacements in the load application points and 
calculate the deflections in the bottom flange center and the lateral 
rotation of the beam at mid-span. The tests were deflection controlled 
with a vertical deflection rate of 3.5 mm per minute (see Fig. 7b). The 
final vertical deflection measured at mid-span at the end of the experi-
ments was 50 mm [24]. 

3. Proposed modeling strategies 

FIDESC4 investigation [24] used shell elements instead of beam el-
ements in the numerical models because local buckling was one of the 
dominant failure modes, and it depends on localized residual stresses 
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and imperfections that are difficult to include in beam elements. How-
ever, this paper proposes two new modeling strategies to analyze class-4 
beams subjected to LTB under elevated temperatures using ANSYS 3D 
beam finite elements. These modeling strategies are denoted by FBM 
(Fiber Beam Model) and CFM (Cruciform Frame Model). Both modeling 
strategies are made up of appropriate Timoshenko BEAM189 finite el-
ements available in ANSYS. This finite element is three-node quadratic 
(see Fig. 8a), with seven degrees of freedom at each node: 3 translations 
(Ux, Uy, Uz), 3 rotations about the x, y, z-global directions (ROTx, ROTy, 
ROTz), and the warping magnitude to represent the cross-section 

deformations due to high temperatures (WARP). Each section of the 
BEAM189 finite element is a predetermined set of cells with nine nodes 
and four integration points per cell (Fig. 8b). The number of cells in-
fluences the accuracy of the geometric and material properties and the 
ability to model the non-linear stress–strain relationship in the element 
cross-section. The calculations of the material inelastic behavior and the 
section temperature variation are performed at the section integration 
points. The element supports uniform temperatures and thermal gradi-
ents that vary linearly in the two cross-section directions and throughout 
the element [49]. BEAM189 also has a great capacity for static and 

Fig. 2. Dimensions and materials of tested beams. (a) Test-1. (b) Test-3 [24].  

Fig. 3. Dimensions of welded I-sections, in mm. (a) Test-1. (b) Test-3 [24].  

Fig. 4. Scheme of the experiment (based on [24]).  
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dynamic geometrical and material non-linear analysis, suitable for 
solving stability problems (buckling, post-buckling, and collapse). The 
Timoshenko theory of the BEAM189 element assumes a shear-state in 
the cross-section (not present in Euler-Bernoulli theory). This assump-
tion better approximates the cross-section deformation in deep beams, 
which is considered important given the great relevance of shear effects 
in fire-affected beams, where the material behaves as heterogeneous due 
to the effects of high temperatures on the steel mechanical properties 
[38,50], as it is in the present case study. Results such as deflections at 
the pseudo-mesh of the BEAM189 finite element cross-section are 
calculated in the post-processing stage from the node results and can be 
shown in extruded views. 

In the FBM, the tested beam is discretized as a fiber (see Fig. 9a) of I- 
section BEAM189 elements. In the CFM, the beam is represented as a 
cruciform arrangement of fibers (see Fig. 9b) to make the model more 
flexible with a greater number of degrees of freedom and thus be able to 
emulate the behavior of a model with shell elements at a lower 
computational cost, taking advantage of the extrusion of the BEAM189 
element. CFM can also be understood as a grid of rectangular BEAM189 
elements capable of reproducing the local buckling failure. In FBM, non- 
linear LINK180 compression truss elements are additionally included, 
just where the stiffeners are located, to reproduce the three- 
dimensionality of the test and the boundary conditions. In CFM, end-
plates and stiffeners are vertical fibers of rectangular BEAM189 ele-
ments, and boundary conditions can be easily applied to the model 
nodes. 

4. LTB-GMNIA of the tested beams 

The LTB problem of the beam with class-4 cross-section in fire is 
solved through a GMNIA in ANSYS, including a linear buckling analysis 
and the imperfection amplitudes measured to introduce the initial im-
perfections. GMNIA also involves non-linear buckling and post-buckling 
analyses. Non-linear buckling analysis is a static analysis with large 
deflections active, extended to a point where the beam attains its limit 
load or maximum load, including the material nonlinearity. Meanwhile, 
the post-buckling analysis is a continuation of the non-linear buckling 
analysis after the load attains its buckling value. A special non-linear 
stabilization technique is applied to overcome the local and global 
buckling instability problems due to the post-buckling stage is unstable 
[49]. Numerical instability matches the instability of the structure. 
When instability appears in the structure, large changes in displace-
ments occur with only small load perturbations. ANSYS program uses an 
internal non-linear stabilization technique to solve the numerical 
instability by applying artificial dampers to the nodes with unstable 
degrees of freedom. A damping force is calculated proportionally to the 
pseudo velocity at these nodes, which is determined as the displacement 
increment divided by the pseudo time increment of the sub-step. For 
nodes with practically stable degrees of freedom, the influence of 
damping is negligible since the displacements and stabilization forces 
are relatively small compared to the physical forces. Although the sta-
bilization forces (or damping factors) have the same unit and definition 
as the classical damping forces, the concept, in essence, is numerical and 
artificial for the calculation of non-linear stabilization [51]. The GMNIA 
steps applied in the FBM and CFM strategies are outlined below, fol-
lowed by an explanation of each step.  

1. Finite element model definition. Creation of the model and boundary 
conditions. 

Fig. 5. Tested beam subjected to pure bending (based on [24]).  

Table 1 
Steel properties at room temperature [24].  

Test/Part of beam Steel 
samples 

Average Yield Stress 
(MPa) 

Elastic Modulus 
(MPa) 

Test-1/Web 
Test-3/Web middle 
span 

S2  392.8 176,897 

Test-1/Flanges S5  381.5 209,988 
Test-3/Web side span S4  368.5 199,200 
Test-3/Flanges S6  421.5 208,900 
Stiffeners —  355.0 210,000  

Table 2 
Amplitudes of local and global imperfections, in mm [24]  

Imperfection Test-1 Test-3 

Local (Top flange)  2.27  0.69 
Local (Web)  7.36  5.80 
Global  2.50  1.50  

Fig. 6. (a) Test setup. (b,c) Pinned supports. (d) Application of load through a distribution beam. (e) Gadget on beam for lateral restrain [24].  
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2. Eigenvalue analysis (linear elastic buckling analysis).  
3. Implementation of initial imperfections.  
4. Implementation of internal residual stresses.  
5. Application of the first load phase called thermal conditioning, 

henceforth. This phase includes the progressive heating of the model 
up to the target temperature level and the activation of self-weight 
stresses. Additional thermal stresses and strains are generated in 
this phase.  

6. Application of the second load phase called post-conditioning, 
henceforth. This phase includes the application of loading by in-
crements maintaining the loads from the previous stage. 

7. Results of displacements, applied load, ultimate load, and the ulti-
mate moment of the section. 

4.1. Finite element model definition 

A fiber model (FBM) and a cruciform model (CFM) are created to 
simulate the LTB of FIDESC4 Test-1 and Test-3 following the idealiza-
tions shown in Fig. 9a and b. In the FBM, lateral restraint in the global y- 
y direction and torsional restraints to ensure stability are applied to the 
two nodes on the fiber axis, matching the location of stiffeners. Lateral 
restraint in the y-y direction and an axial restraint in the x-x direction are 
imposed on the LINK180 end nodes where the stiffeners are located, as 
shown in Fig. 9a. In CFM, y-displacements are null in the four nodes 
where the imposed lateral restraint is, as shown in Fig. 9b. In both FBM 
and CFM modeling strategies, displacements in all global axes are 
restrained in the first point pinned support, and displacements in global 
y-y and z-z axes are restrained in the second one. The stress–strain ratio 
(σ-ε) of steel at high temperatures and the reduction factors ky,θ, kp,θ and 

Fig. 7. (a) Average steel temperatures in the heated zone of the beam. (b) Test boundary conditions and loads.  

Fig. 8. (a) BEAM189 definition. (b) cells and nodes of the cross-section pseudo-mesh [49].  

Fig. 9. Idealization of the tested beam in each proposed modeling strategy. (a) FBM. (b) CFM.  
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kE,θ given by EN 1993-1-2 [16] were used in the models. The values of 
yield strength and elastic modulus of materials for flanges, web, and 
stiffeners at room temperature used for modeling were given in Table 1. 
A constant Poisson ratio (ν = 0.3) was also assumed. The creep effect on 
the deformation of steel was considered implicit in the material model. 
The ANSYS multi-lineal isotropic hardening with temperature depen-
dence model was used to adequately represent the stress–strain re-
lationships depending on temperature [52]. Variation of thermal 
expansion (α) of steel with temperature was also determined based on 
EN 1993-1-2 [16]. The geometric nonlinearity was activated to intro-
duce the formulations of large deformations and deflections. All nu-
merical model data were taken from the FIDESC4 investigation report 
[24], and some validation details were taken from Prachar et al. [29,30]. 

4.2. Eigenvalue analysis 

An eigenvalue analysis was carried out to establish the initial im-
perfections in the numerical models of the tested beams. The buckled 
mode shapes (global and local) resulting from eigenvalue analysis 
approximately represent the global and local imperfection shapes 
measured before the test. The eigenvalue buckling analysis process in-
cludes two steps: a linear static solution and an eigenvalue buckling 
solution. The first step involves a linear analysis with unit loads (Fz = 1 
kN in Fig. 9). In the second step, the eigenvalues are calculated, and the 
elastic buckling analysis is expanded to find the buckling mode shapes 
associated with each calculated eigenvalue. Two buckling mode shapes 
are selected adequately after that, i.e., one consistent with the measured 
global imperfection shape and the other congruent with the local 
imperfection profile on the web measured in the central part of the 
beam. According to [24], a simple lateral curvature in the y-y direction 
characterizes the global buckling mode shape, and the local buckling 
mode shape resembles well-defined undulations in the y-y direction in 
the central part of the beam. E.g., six undulations (three peaks and three 
valleys) on the web for Test-1 and eight undulations for Test-3 [24]. The 
nodal solution for the global and local buckling modes can be expanded 
to the pseudo-mesh nodes of the BEAM189 element cross-section in the 
post-processing stage. In the expansion, vertical undulations also appear 
in the top flange, which can be evidenced in the extruded view. These 
web and top flange undulations represent the shape of the initial geo-
metric imperfections measured on the tested beams used in the LTB 
simulations. The amplitude or absolute maximum value of the imper-
fections is extracted from the two selected buckling mode shapes in 
order to scale them to the size of the measured amplitudes. In the pro-
posed strategies, the global amplitude is the maximum lateral deflection, 
in the y-y direction, of the selected global mode shape. This global 
amplitude is extracted from the entire model. The local amplitude on the 
web is the maximum lateral deflection, in the y-y direction, of the 
selected local mode shape. The local amplitude in the top flange is the 
maximum vertical deflection, in the z-z direction, of the selected local 
mode shape. The local amplitudes are extracted from the heated zone 
(central part) of the beam model because this was the location where the 
imperfections were measured. 

4.3. Implementation of initial imperfections 

In order to simulate the initial shape with imperfections, the geom-
etry of the finite element model is updated according to the displace-
ment results of the global and local buckling mode shapes (obtained 
from the previous eigenvalue analysis) so that a modified geometry 
based on the deformed configuration of the previous analysis is created. 
In other words, the displacement results of the global and local buckling 
mode shapes on the original geometry are added. Before being added 
together, these displacements are multiplied by a factor that scales and 
weights them. This factor is responsible for adding a percentage of the 
displacements to the geometry of the finite element model (e.g., factor 
1.0 adds the full value of the displacements to the geometry of the finite 

element model). This factor results from multiplying two other factors, i. 
e., one for scaling and one for weighting. The scale factor is a multiplier 
that adjusts the displacements of each buckling mode shape to the size of 
the measured imperfection amplitude. The scaling factor is determined 
as the ratio of the measured imperfection amplitude (given in Table 2) to 
the simulated amplitude. Therefore, three scaling factors are defined, 
one to scale the y-y displacements of the global mode shape, and two for 
scaling the y-y and z-z displacements of the local mode shape. These 
simulated amplitudes are extracted after the local and global buckling 
mode shapes are carefully chosen. The simulated global amplitude in the 
y-y axis is extracted from the entire model, while the simulated local 
amplitudes (on the web about the y-y axis and the top flange about the z- 
z axis) are drawn from the central part of the beam. GSF is the global 
scale factor, and LSF1 and LSF2 are the local scaling factors on the web 
and top flange, respectively. They are calculated following Eqs. (1)–(3). 

GSF =
Measured global imperfection amplitude
Simulated global amplitude(y − y axis)

(1)  

LSF1 =
Measured web local imperfection amplitude

Simulated local amplitude (y − y axis)
(2)  

LSF2 =
Measured top flange local imperfection amplitude

Simulated local amplitude(z − z axis)
(3) 

The participation factor is responsible for weighting the displace-
ments of each buckling mode shape (global and local). It defines the 
portion of the displacements of each two buckling mode shapes 
contributing to the initial imperfect geometry. GPF denotes the partic-
ipation factor of the global mode shape displacements and, LPF1 and 
LPF2 are the participation factors of the web and top flange displace-
ments of the local mode shape, respectively. In the proposed numerical 
modeling strategies, each participation factor is assumed to be 1/3 due 
to the number of imperfection amplitudes measured, as shown in Eq. (4). 

GPF = LPF1 = LPF2 = 1/3 (4) 

In this way, the imperfections added to the original geometry are the 
scaled and weighted displacements of the global and local buckling 
mode shapes. The nodal x, y, z-displacement results of global and local 
mode shapes are stored in arrays denoted as GMS and LMS, respectively. 
Therefore, GMS contains the nodal displacements of the global mode 
shape, and LMS contains those of the local mode shape in the central 
zone of the beam. Thus, the imperfections added by the global mode 
shape (called GI) and those added by the local mode shape (called LI) 
result from scaling and weighting the GMS and LMS arrays with the 
scaling and participation factors, as shown in Eqs. (5) and (6). Therefore, 
GI and LI can be understood as arrays of nodal imperfections (equivalent 
to the scaled and weighted nodal displacements). GI stores the imper-
fections of each node of the finite element model, while LI stores the 
node imperfections in the central zone of the beam model. 

GI = GMS(GSF × GPF)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Whole beam
(5)  

LI = LMS(LSF1 × LPF1
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

Web

+ LSF2 × LPF2)
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

Top Flange

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
Central zone

(6) 

However, in the FBM and CFM modeling strategies, the scaling factor 
over the local imperfection of the top flange (LSF2) cannot be considered 
in Eq. (6). That is because the simulated local imperfection amplitude in 
the z-z direction is on the fiber axis and not in the cross-section of the 
elements, so this amplitude cannot properly represent the maximum 
simulated imperfection at the top flange edges where the local imper-
fections were measured. Nevertheless, it was considered that the im-
perfections on the top flange could be approximately included through 
the local cumulative participation factor (LCPF) of 2/3, as shown in Eq. 
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(7), which compensates for the non-inclusion of the local top flange 
imperfection. In other words, the local mode shape contribution was 
increased by 1/3. Therefore, the local imperfection array (LI) results 
from scaling the nodal displacements (in the x, y, z-directions) of the 
local mode shape with the scaling factor LSF1 and weighting them with 
the local cumulative participation factor LCPF, as shown in Eq. (8). 

LCPF = LPF1+LPF2 = 2/3 (7)  

LI = LMS(LSF1 × LCPF)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

Web (Central zone)

(8) 

To approximate the imperfect initial geometry (IIG) of the model, 
first, the global imperfections (GI) are added to the node coordinates of 
the finite element model. Then, from this revised geometry, local im-
perfections (LI, in Eq. (8)) are added to the node coordinates of the 
central zone of the beam model, as illustrated in Eq. (9). The node co-
ordinate array of the model is denoted in Eq. (9) as FGC (Full Geometry 
Coordinates), and that of the beam central zone is denoted as CGC 
(Central Geometry Coordinates). The largest displacements of the global 
and local buckling mode shapes are in the y-y direction, and displace-
ments in the two other directions are too small (10E-13) so that the small 
displacements after scaling and weighting remain so. Therefore, x-x and 
z-z imperfections added to x , z-coordinates are too minor, so this 
methodology to create imperfections is correct. 

IIG = [FGC + GI]
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

Whole beam

+ [CGC + LI]
⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟

Central zone

(9) 

The web resulting shape in the central zone of the beam is a com-
bination of the global and local imperfections. Out of the central part of 
the beam, only global imperfections are present. After that, the resulting 
imperfect shape is expanded to the cross-section pseudo-mesh nodes of 
the BEAM189 elements in the post-processing. As a result of the 
expansion, undulations appear out of the beam axis on the top flange 
edges. The resulting undulations on the web and the top flange after 
expansion depict the initial imperfections of the model. 

4.4. Implementation of residual stresses 

According to how the test was carried out, initial axial residual 
stresses are incorporated into the proposed numerical models of the 
tested beams before applying thermal and mechanical loadings. Resid-
ual stresses at room temperature are relevant because they act as an 
initial stress condition (σx0). In the finite element formulation of the 
problem, initial stresses and initial strains (εo) represent elementary 
equivalent nodal forces in the equilibrium equations. Therefore, they are 
part of the total equivalent nodal forces integrated by other force com-
ponents such as body and surface forces and forces produced by initial 
strains coming from the thermal action [53]. In summary, the residual 
stresses are part of the global equilibrium of the finite element mesh and 
the stress field of the structure, so they must be considered. 

BEAM189 finite elements allow the application of these axial resid-
ual stresses in the cross-section pseudo-mesh cells. The cells are set so 
that the tensile and compressive residual stresses in the web and flanges 
can be applied as closely as possible over the cross-section regions where 
they are localized. Fig. 10 presents the residual stress pattern at room 
temperature for the welded I-section considered by FIDESC4 [24] based 
on [54], used in this study. In Fig. 10, the residual stresses act in the 
whole cross-section. The yield stress values fy are at room temperature, 
and red areas (T) represent tensile stress while blue areas (C) represent 
compressive stress. 

4.5. Application of the thermal conditioning 

In the experiments, progressive heating of the central zone of the 
beam is performed from 20 ◦C until the target temperature level at each 

part (top flange, web, and bottom flange) is attained before applying the 
mechanical load (thermal conditioning). This change in the temperature 
results in thermal strains (εo

x) [55]. The non-uniform temperature in the 
cross-section causes initial bending resulting in thermal stresses (σo

x) that 
combine with initial residual stresses (σx0) and self-weight stresses (σx) 
modifying the initial stress state. Moreover, the Poisson effect induces 
transverse thermal strains (εo

y, εo
z) in the central zone of the beam that 

intensifies the initial geometric imperfections; in consequence, a revised 
imperfect geometry is generated. Furthermore, the temperature de-
grades the material and changes the stiffness in the central zone. As the 
side spans are unheated, their stiffness is higher than the stiffness of the 
central zone, acting as semi-rigid boundaries over the middle span (see 
Fig. 11), causing some y-rotation restraints in these frontiers. Addi-
tionally, lateral stresses (σo

y) are induced on the stiffener ends (red points 
in Fig. 11) due to the lateral restriction imposed by the frameworks. As a 
result, axial and vertical strains (εo

x, εo
z) are generated by the Poisson 

effect. In summary, the thermal conditioning modifies the initial state of 
the tested beams, among others, for the following reasons: 1) the 
appearance of a thermal stress–strain state caused by the temperature 
rise from 20 ◦C to the target temperature in each part of the beam and 
bending due to non-uniform temperature distribution in the cross- 
section, 2) the Poisson effect, 3) the appearance of additional imper-
fections, 4) the formation of semi-rigid boundaries. It should be noted 
that the geometric imperfections are the result of thermal strains. The 
initial geometric imperfections come from the thermal strains produced 
in the manufacturing and cutting process of the plates. In the thermal 
conditioning stage of the tested beams, the additional geometric im-
perfections come from the thermal strains produced by the temperature 
increase and the temperature differential of the cross-section. Finally, 
thermal strains must be activated in the simulation of the tested beams 
to account for all the effects of high temperatures in the thermal con-
ditioning stage. 

According to how the test was carried out, the thermal condition is 
included in the numerical models of the tested beams before applying 
mechanical loadings. To do so, ramped temperature for a time t =
1E− 08 min is applied starting from the room temperature (20 ◦C) up to 
the target temperature at each part (top flange, bottom flange, and the 

Fig. 10. Residual stress pattern for welded I-section at room temperature. 
Above: for both top and bottom flanges. Right: Web [24,54]. 
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web) shown in Fig. 7a in which non-heated zones are assumed to have a 
room temperature of 20 ◦C. The time is arbitrarily chosen as a very small 
value close to zero because the analysis is static; therefore, the me-
chanical response in this stage is not dependent on time. Once the re-
sidual stresses, temperature from thermal conditioning, and self-weight 
loads are applied, a first GMNIA is done here. Results of deformed shape 
(perturbed shape) and all analysis results are the starting point for the 
second GMNIA carried out in the next phase, including the controlled 
displacement mechanical loading. 

4.6. Application of post-conditioning 

According to how the test was performed, this second loading phase 
starts from the deformed shape and the stress–strain results of the pre-
vious analysis. In this second phase, the self-weight and the tempera-
tures in each part of the beam (flanges, web, and stiffeners) remain 
applied. Additionally, the vertical load is applied to the upper nodes of 
the stiffeners through the displacement-controlled method at a rate of 
3.5 mm/min during 6.5 min. Therefore, Fz (see Fig. 9) is applied as a 
vertical displacement (Uz) until a target value of 22.75 mm. This target 

Fig. 11. Semi-rigid boundaries produced by stiffness change.  
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Fig. 12. Full LTB-GMNIA for the FIDESC4 tested beams.  
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displacement value is enough to evidence the load behavior, including 
the ultimate load and the load-bearing capacity decrease of Test-1 and 
Test-3. In the FIDESC4 simulations [24], the load capacity was regis-
tered up to 25 mm of mid-span vertical deflection for Test-1 and 30 mm 
for Test-3. Once loads in this phase are applied, the full GMNIA-LTB is 
done. 

4.7. Results 

At the end of the GMNIA, time history results of the top flange ver-
tical mid-span displacements, the applied load, ultimate load, and ulti-
mate bending moment are obtained. The full GMNIA procedure 
implemented in the proposed numerical modeling strategies (FBM and 
CFM) is illustrated in Fig. 12. 

5. Implementation of ltb-gmnia in the proposed modeling 
strategies 

Hereafter the implementation of the LTB-GMNIA in the proposed 
FBM and CFM modeling strategies is explained in detail for Test-1. The 
reason is that the methodology of each strategy is the same for the tested 
FIDESC4 beams whit constant cross-section. 

5.1. Fiber beam model (FBM) 

The tested beam subjected to LTB is idealized as a single fiber of 342 
BEAM189 finite elements with endplates and stiffeners included. In this 
model, each finite element has a cross-section and a material depending 
on the part of the beam it represents, e.g., web, flange, endplate, or 
stiffener. The beam is made of three distinct types of cross-sections 
(welded I-section, endplate, and stiffener) and three different types of 
materials (one for endplates and stiffeners, and two materials for flanges 
and web -S2 and S5, respectively as shown in Fig. 2a and Table 1). 
Therefore, three different sections and three different materials are 
defined in the model. Cross-sections are assigned to finite elements, 
while materials are assigned to the pseudo-mesh cells of the cross- 
section. This way to assign materials by cells enables differentiating 
zones with different materials in the steel member, i.e., flanges and web 
materials, and endplate and stiffener materials. The number of cells in 
the cross-section is set to apply the residual stress pattern shown in 
Fig. 10. For this purpose, 75 cells were defined at each flange and 50 
cells at the web, as shown in Fig. 13. 

The fiber axis is moved to the outer edge of the bottom flange, where 
the boundary conditions are applied, which means boundary conditions 
are eccentric. LINK180 truss elements between the two flanges transfer 
the load from the application points on the outer surface of the top 
flange to the outer surface of the bottom flange, where the fiber axis is 
located. Thus, LINK180 elements have the cross-section area of the 
stiffeners given in Fig. 2a. The meshing and boundary conditions in the 
fiber are shown in Fig. 14a, and the tested beam extruded in which all its 
components are visible is shown in Fig. 14b. 

Figs. 15 and 16 show the global and local buckling mode shapes 
chosen from the eigenvalue analysis. In the extruded view of Fig. 15b, a 
simple lateral curvature in the y-y direction is clearly observed. In the 
local mode shape of Fig. 16b, the slight lateral undulations in the central 
part of the beam depict the local imperfections on the web. Although this 
is a single fiber model, the extruded local shape in Fig. 16b also shows 
undulations on the top flange, allowing for the simulation of the 
measured local imperfections. Undulations out of the central part of the 
beam in Fig. 16b are not considered because local imperfections are only 
applied to the central zone of the beam where they were measured. In 
the FBM, it is assumed that the displacements in the y-y direction are 
from the web. Therefore, the simulated amplitude in the y-y direction is 
the maximum lateral deflection obtained from the fiber nodes for the 
global buckling mode shape (in Fig. 15a) and from the nodes in the 
central part of the fiber for the local buckling mode shape (in Fig. 16a). 

The imperfect initial geometry is obtained by adding the imperfec-
tions to the node coordinates of the original model, according to Eq. (9). 
In both global and local mode shapes, x-displacements and z-displace-
ments are almost zero on the fiber axis, so that x-imperfections and z- 
imperfections adding to x-coordinates and z-coordinates of the FBM are 
also almost null. Consequently, the x-coordinates and z-coordinates of 
the FBM are practically identical in the original and imperfect geometry. 
As y-coordinates, in this case, are zero, the imperfections in the y-y di-
rection are equal to the y-coordinates of the FBM imperfect initial ge-
ometry. Since, in the FBM, the beam is modeled as a single BEAM189 
finite elements fiber, it is assumed that the displacements in the y-y di-
rection are from the web. Therefore, the y-y amplitude of the global and 
local mode shapes is used for calculating the global and local scale 
factor, GSF and LSF1, as shown in Eq. (1) and Eq. (2). Also, the global 
and local displacements occurring in the lateral direction are used to 
calculate the global and local y-imperfections, according to Eq. (5) and 
Eq. (8). The FBM y-y imperfections are plotted in Fig. 17. These are 
obtained from combining the scaled and weighted lateral displacements 
of both buckling mode shapes and are located in the central zone of the 
beam, as expected. The null imperfections in Fig. 17 match the points of 
the stiffeners and endplates where the y-displacement boundary condi-
tion is restrained in the model. Out of the central zone of the beam, very 
small imperfections are coming from global y-displacements. 

According to Fig. 10, compressive (blue) and tensile (red) axial re-
sidual stresses at room temperature in the web and flanges are applied to 
the cross-section pseudo-mesh cells of the BEAM189 element, as shown 
in Fig. 18. 

BEAM189 finite elements making up the fiber do not have temper-
ature degrees of freedom. However, they support uniform temperature 
loading and linearly varying thermal gradients within the cross-section 
[49]. These two components allow representing the non-uniform 
transverse temperature distribution in the element. For this reason, in 
the thermal conditioning stage of the LTB-GMNIA (see Fig. 12), the 
target temperature is established by a uniform temperature and a 

Fig. 13. I-cross-section discretization and cells for Test-1.  
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vertical gradient (in z-z axis) [38] to be attained in the BEAM189 ele-
ments in the central part of the beam following the procedure described 
in the thermal conditioning phase. Additionally, a target uniform tem-
perature equal to that of the web in the test (444.4 ◦C) is specified in the 
BEAM189 elements symbolizing the stiffeners and LINK180 elements 
representing the load axes. 

The two components approximating the non-uniform temperature in 
the cross-section are calculated by linear regression from the 

temperatures measured in the web and flanges (shown in Fig. 7a), as 
illustrated in Fig. 19. 

In this sense, the non-uniform temperature in the cross-section 
(Fig. 20a) is approximated by two components:  

– A uniform temperature component (Fig. 20b) equal to the linear 
regression intercept (367.02 ◦C in Fig. 19). 

Fig. 14. FBM meshing and boundary conditions for Test-1. (a) Non-extruded view. (b) Extruded view.  

Fig. 15. FBM global mode shape for Test-1. (a) Non-extruded view. (b) Extruded view.  

Fig. 16. FBM local mode shape for Test-1. (a) Non-extruded view. (b) Extruded view.  
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– A component of thermal gradient varying linearly on the z-z axis 
(Fig. 20c) equal to the slope of the regression line (0.23 ◦C/mm in 
Fig. 19). 

The uniform temperature component is applied at the lowest point of 
the BEAM189 cross-section since the fiber axis is at the outer edge of the 
bottom flange. So, the temperature at one point of the cross-section is 
approximated by Eq. (11). 

Temp(z) ≈ Unif Temp + Temp Grad(z) × Z (11) 

In Eq. (11), Unif. Temp is the approximate temperature value at the 

bottom flange (367.02 ◦C), Temp Grad(z) is the thermal gradient in the 
web direction (0.23 ◦C/mm), and Z is the coordinate of a section point. 
Z-coordinates are positive since the reference system origin is at the 
outer point of the section over the fiber axis. As the gradient line passes 
through the lowest point of the cross-section, the gradient component is 
null at that point. Consequently, the temperature applied at the lowest 
point of the section is equal to the uniform temperature. 

In the post-conditioning stage, the vertical load is applied at the 
upper-end nodes of the LINK180 elements by incremental displacements 
until the target value of 22.75 mm is attained. This target displacement 
value is adequate to record the ultimate load and the load-bearing ca-
pacity drop. A uniform temperature and a z-z gradient are instanta-
neously applied to BEAM189 elements in the central part of the beam in 
this phase. The web temperature (444.4 ◦C) is also instantly applied as a 
uniform temperature in the BEAM189 elements representing the stiff-
eners and LINK180 elements. Fig. 21 shows a detail of the extruded 
stiffener displaying the controlled-displacement boundary condition. 
Time histories of vertical deflection (Uz) at the midpoint of the fiber and 
the force (Fz) in the top-end node of LINK180 elements are obtained at 
the end of the GMNIA. 

5.2. Cruciform Frame model (CFM) 

In the CFM, the tested beam subjected to LTB is idealized as a 
cruciform arrangement of fibers, where each fiber is made up of 
BEAM189 elements with rectangular cross-sections. This grid arrange-
ment enables considering two bending directions for the web and better 
predicts the localized buckling produced by the high compressions on 
the thin web plate. The discretization consists of a grid of BEAM189 
elements representing the web (illustrated in Fig. 22a in purple). Above 
and below the grid are grid lines idealizing the top and the bottom flange 
(cyan colored in Fig. 22a). The number of grid divisions in the vertical 
direction (ndv) is taken as 10, and the number of grid divisions in the 
longitudinal direction (ndl) is taken as 106. Therefore, the web is 
modeled with a grid with 11 horizontal fibers and 107 vertical fibers. In 
total, the web is made up of 1166 horizontal elements and 1070 vertical 
elements cruciform arranged. In turn, each flange is a fiber of 106 finite 
elements. Endplates and stiffeners are also vertical fibers of BEAM189 
elements (red-colored in Fig. 22a), and they have the material and the 
cross-section indicated in the test (see Fig. 2a and Table 1). The cross- 
section dimensions of the flange elements are the width and thickness 
of the thin plate defining the flanges (150.0 × 5.0 mm, in Fig. 3a). Be-
sides, the material of the flange elements is that of the test (S5, in 
Fig. 2a). The cross-section dimensions of the web elements are 45.5 ×
4.0 mm for the horizontal elements and 50.0 × 4.0 mm for vertical 

Fig. 17. Imperfect initial geometry of FBM for Test-1 (mm).  

Fig. 18. FBM tensile and compressive residual stresses in the welded I-section 
for Test-1 [MPa] 

Fig. 19. Approximation of non-uniform temperature in the BEAM189 cross- 
section (Test-1). 
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elements (4.0 mm is the thickness of the web plate, in Fig. 3a). The 
material of the web elements is the same as the web plate in the test (S2, 
in Fig. 2a). Lateral restraints in the global y-y direction are applied to the 
two nodes of the upper fiber where the load is applied and the two nodes 
of the lower fiber where the stiffeners are. Fig. 22b shows the finite 
element mesh extruded, showing all the components and the boundary 
conditions. Fig. 23 shows one vertical and one horizontal web fiber and 
the dimensions of their constituent BEAM189 elements. 

The welded I-section is represented by the rectangular cross-sections 
of all its component elements, as shown in Fig. 24. The cross-sections of 
horizontal grid elements constitute the web. Each I-section flange is the 

cross-section of a BEAM189 finite element in the upper or lower fiber as 
appropriate. The number of cells in the cross-section of elements form-
ing the welded I-section is set to apply the pattern of residual stresses. 

Figs. 25 and 26 show the global and local buckling mode shapes 
chosen from the eigenvalue analysis, respectively. In Fig. 25b, the simple 
lateral curvature in the y-y direction typical of the global mode shape 
can be appreciated. In the local mode shape of Fig. 26a, the lateral un-
dulations allow depicting the local web imperfections. Vertical un-
dulations in the top flange in the extruded view of Fig. 26b are not 
visible in the non-extruded view of Fig. 26a. This occurs because, in the 
non-extruded deformed shape, only the fiber axes are shown. It means 
the fiber axis representing the top flange is not deformed, but its edges 
do, as expected. In the central zone of the beam, the extruded deformed 
shape of the top flange resembles a saddle surface containing various 
saddle points. The undulations of this surface depict local imperfections 
on the top flange. In the CFM, it is assumed that the displacements in the 
y-y direction are from the web. Therefore, the simulated amplitude in 
the y-y direction is the maximum lateral deflection obtained from the 
grid nodes for the global mode shape (in Fig. 25) and the grid nodes of 
the central part of the grid for the local buckling mode shape (in Fig. 26). 

The imperfect initial geometry is obtained by adding the imperfec-
tions to the node coordinates of the original finite element model, ac-
cording to Eq. (9). In both local and global mode shapes, x- 
displacements and z-displacements are almost zero on the CFM fiber 
axes, so that x-imperfections and z-imperfections adding to x-co-
ordinates and z-coordinates of the CFM are neglected. Consequently, the 
x-coordinates and z-coordinates are practically identical in the original 
geometry and the imperfect geometry. In the y-y direction, the imper-
fections are non-zero, but the y-coordinates of the original model, in this 
case, are zero. Therefore, the y-y imperfections are equal to the y-co-
ordinates of the initial imperfect geometry. The global and local scale 

Fig. 20. Temperature components related to BEAM189 element axes (Test-1).  

Fig. 21. FBM stiffener detail for Test-1.  

Fig. 22. CFM meshing and boundary conditions for Test-1. (a) Non-extruded view. (b) Extruded view.  

M.R. Pallares-Muñoz et al.                                                                                                                                                                                                                   



Structures 34 (2021) 3508–3532

3521

factors, GSF and LSF1, are calculated according to Eqs. (1) and (2), and 
the global and local y-imperfections are calculated as shown in Eqs. (5) 
and (8). The y-y imperfections plotted in Fig. 27 show similar positive 
and negative values. The imperfection values are obtained from 
combining the scaled and weighted lateral displacements of both 
buckling modal shapes and are present in the central zone of the beam, 

as expected. Out of the central zone of the beam and in the flanges, the y- 
y imperfections are null. 

Compressive (blue) and tensile (red) residual stresses at room tem-
perature in the web and flanges are applied to the cross-section cells of 
the BEAM189 elements that comprise the welded I-section, as shown in 
Fig. 28. 

For the thermal conditioning stage of the LTB-GMNIA, the target 
temperature at each part (top flange, bottom flange, and web) in the 
central zone of the beam (show in Fig. 7a) is directly specified as a 
uniform temperature to be attained in the BEAM189 elements of the top 
and bottom fibers (flanges) and the grid elements (web). Additionally, 
the web temperature (444.4 ◦C) is directly specified as a uniform tem-
perature to be attained in the BEAM189 elements representing the 
stiffeners. In the post-conditioning stage, the vertical load is applied at 
the top ends of the stiffeners by incremental displacements until the 
target value of 22.75 mm is attained. Uniform temperatures measured at 
each part of the beam are again applied instantaneously in this phase. 
Fig. 29 shows a detail of the extruded stiffener with the controlled- 
displacement boundary condition indicated. Time histories of vertical 
deflection (Uz) at the mid-point of the grid lower fiber and the force (Fz) 
in the top-end node of BEAM189 stiffeners are obtained at the end of the 
GMNIA. 

The summary of the full LTB-GMNIA implemented in both proposed 
ANSYS modeling strategies for Test-1 and Test-3 is shown in the charts of 
Fig. 30a and b. The procedures are compatible with beams of constant 
cross-section. 

Fig. 23. Details of the CFM web fibers and dimensions of the fiber elements for Test-1, in mm. (a) Vertical fiber. (b) Horizontal fiber.  

Fig. 24. CFM cross-section discretization and element cells for Test-1.  

Fig. 25. CFM global mode shape for Test-1. (a) Non-extruded view. (b) Extruded view.  
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5.3. Shell models for numerical validation 

Simulations of the tested FIDESC4 beams do not include residual 
stresses and thermal strains [24,29,30]. Therefore, they do not consider 
the same conditions as the FBM and CFM, making it challenging to 
compare numerical results directly. Consequently, new models with 
ANSYS SHELL181 finite elements for Test-1 and Test-3, called Shell 
Models (SM, hereafter), were built to compare computation times. 
SHELL181 is a linear element with four nodes and six degrees of freedom 
at each node: three translations (Ux, Uy, Uz), and three rotations about 
the x, y, z-global directions (ROTx, ROTy, ROTz). This finite element is 
suitable in non-linear analyses of large rotations and large deformations 
where the thickness of the plates can change. It follows the first-order 
shear deformation theory of Reissner-Mindlin. A brief explanation of 
the LTB-GMNIA procedure implemented in a shell model is presented 
only for Test-1 because the methodology is the same for Test-3. 

The shell model for Test-1 is based on a geometry of 79 areas shown 
in Fig. 31a. The discretization is carried out with 14,596 SHELL181 
finite elements following the area distribution of Fig. 31a. The areas of 
the geometric model match the areas where the residual stresses are 
present, allowing their application to the shell elements following the 
tensile and compressive stress pattern of Fig. 10. According to the test 
setup, displacements in the global y-y axis are restrained at the eight 
points where the lateral restraint was applied (see Fig. 7b). The load is 
applied at the edges where internal stiffeners are located. Finally, the 
boundary conditions of the tested beam are imposed and shown in 
Fig. 31b together with the model mesh. 

Fig. 32 shows the global and local mode shapes chosen from the 
linear buckling analysis. It can be seen that the global and local mode 
shapes exactly match those of the CFM modeling strategy shown in 
Figs. 25 and 26. For the global mode shape, the amplitude in the y-y 

Fig. 26. CFM local mode shape for Test-1. (a) Non-extruded view. (b) Extruded view.  

Fig. 27. Imperfect initial geometry of CFM for Test-1 (mm).  

Fig. 28. CFM tensile and compressive residual stresses in the I-section for Test- 
1 [MPa] 

Fig. 29. CFM stiffener detail for Test-1.  
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direction is the maximum lateral deflection calculated at all nodes. For 
the local mode shape, the amplitudes are extracted from the nodes of the 
central part of the beam. Thus, the y-amplitude on the web is the 
maximum lateral deflection calculated at web nodes, and the z-ampli-
tude on the top flange is the maximum vertical deflection calculated at 
top flange nodes. 

The SM discretization allows the scaling and combination of the two 
selected buckling modes considering the amplitudes of the measured 
and calculated imperfections in each beam region. Thus, the scaling 
factors (GSF, LSF1, and LSF2) are calculated by Eq. (1) to Eq. (3). In this 
model, the global and local buckling mode shapes contribute in half to 

the initial imperfect geometry of the web, meaning the participation 
factors GPF and LPF1 taking values of ½. On the other hand, the 
contribution of the local buckling mode shape to the initial imperfect 
geometry of the top flange is full, meaning the local participation factor 
LPF2 is 1. Therefore, the global and local imperfections (GI and LI) are 
estimated according to Eqs. (5) and (6), respectively. Finally, the 
imperfect initial geometry (IIG) can be approximated by adding the 
imperfections to the node coordinates of the original model, according 
to Eq. (9). The web and top flange imperfections are plotted in Fig. 33a 
and b, respectively. After revising the geometry, these imperfections are 
obtained by combining the scaled and weighted displacements of the 

Fig. 30. Full LTB-GMNIA flowchart. (a) FBM. (b) CFM.  

Fig. 31. ANSYS-SM for Test-1. (a) Geometrical model: division into areas. (b) Meshing and boundary conditions.  
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global and local buckling mode shapes. 
The target temperature of the top and bottom flanges and the web in 

the thermal conditioning phase correspond to the measured tempera-
tures. It is directly specified as a uniform temperature to be attained into 
the shell elements discretizing each part of the beam. The shell elements 
representing the stiffeners have the web temperature. In the post- 
conditioning stage, the controlled displacement mechanical load is 
directly applied at the top flange nodes on the top edge of the stiffeners 
until a vertical displacement target value of 22.75 mm is attained. The 
applied load is shown in Fig. 31b as green displacement boundary 
conditions. In this phase, measured temperatures are applied to the shell 
elements representing each part of the beam. 

6. Validation of the proposed strategies 

The proposed modeling strategies are validated using the experi-
mental results of FIDESC4 Test-1, and Test-3 and compared to the results 
of the SAFIR and ABAQUS numerical simulations reported in [24]. 

6.1. Test-1 validation 

Fig. 34 shows the total force applied (P) versus the beam mid-span 
vertical deflection (Uz) at the bottom flange mid-point for Test-1, 
FIDESC4 simulations, and the proposed modeling strategies. Fig. 34 
also includes the P-Uz relationships of the simulations carried out in 
ANSYS without residual stresses and thermal strains to observe how 

these affect the force and displacement predictions. The total force P 
acting on the beam is obtained by adding the force in each stiffener. The 
P-Uz curves for Test-1, FIDESC4 simulations, and CFM and SM are drawn 
up to 25 mm of vertical deflection because it was the maximum 
deflection reported in the FIDESC4 numerical simulations included in 

Fig. 32. ANSYS-SM for Test-1. (a) Global mode shape. (b) Local mode shape.  

Fig. 33. (a) Imperfections added to y-coordinates of the web for Test-1 (mm). (b) Imperfections added to z-coordinates of the top flange for Test-1 (mm).  

Fig. 34. Total applied load versus vertical deflection at the bottom flange mid- 
point in the beam mid-span for Test-1. 
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[24]. The P-Uz relationship of the FBM is drawn up to 35 mm because 
the ultimate load is reached at 31.03 mm. The curves of ANSYS simu-
lations without residual stresses and thermal strains (indicated as 
FBM**, CFM**, and SM** in Fig. 34) are drawn at deflections higher 
than 25 mm because they all are advanced from those including them. 
The total force and vertical deflection results show that both proposed 
modeling strategies (FBM and CFM) are validated satisfactorily against 
Test-1 results. Simulation results also reveal that CFM gets better 
deflection predictions than the FBM. Comparing the results of the FBM 
and CFM simulations with and without residual stresses and thermal 
strains shows that it is necessary to include these initial conditions in the 
GMNIA because they correct the force and deflection predictions, 
resulting in a P-Uz curve closer to the test. Including these initial con-
ditions in the simulations significantly improve the P-Uz curve trajec-
tory. It is noted that the predictions of the ANSYS models without 
residual stresses and thermal deformations underestimate the stiffness 
for the early force values and overestimate the ultimate load and the 
deflections. Incorporating these initial conditions is manifested in an 
additional stiffness towards the first part of the P-Uz curve and a 
decrease of the ultimate load and the ultimate deflection. Since the beam 
is allowed axial displacement, the extra stiffness may be due to the 
tensile pre-stressing introduced by the initial thermal strains. The 
decrease in LTB strength is due to a mixture of the unfavorable effects of 
residual stresses and the adverse effects of geometric imperfections 
increased by thermal strains. In conclusion, modeling with residual 
stresses and thermal strains reproduces the conditions of tested FIDESC4 
beams subjected to LTB since these are problems with initial stresses and 
initial strains. 

The ultimate load (Pult) and the ultimate vertical deflection (Uzult) at 
the bottom flange mid-point in the beam center from the test, FIDESC4 
simulations, and the proposed modeling strategies with and without 
residual stresses and thermal strains are compared in Table 3. The ul-
timate cumulative strain energy (Eε

ult) associated with the mechanical 
work in the beam is also included as a criterion to complement the 
evaluation of the simulation results. This mechanical work is related to 
the deformation (elastic and plastic) accumulated until the ultimate load 
capacity is reached; therefore, ultimate cumulative strain energy (Eε

ult) 
is calculated as the area under the curve P vs. Uz up to the ultimate load 
in Fig. 34. In Table 3, the best result of the two proposed modeling 
strategies, FBM and CFM, is underlined and bold. It can be seen that CFM 
adequately predicts both total force and vertical deflection. FBM pre-
dicts the ultimate load value well, but its ultimate deflection is larger 
than the measured, so its ultimate cumulative strain energy is over-
estimated by 1.13 times regarding the test. It means FBM does not fully 
represent the beam buckling scenario since the ultimate load occurs at a 
higher deflection value than the actual one. Table 3 also lists the ulti-
mate flexural moment (Mult) in the heated part of the beam in pure 
bending, which is calculated as half the ultimate load (½Pult) multiplied 
by the distance from the end support to the load application point (L2) 
(see Fig. 5). Again, FBM has a slightly better prediction of Mult than CFM, 
but CFM better reproduces the structure’s response up to the end of the 

test. 
Table 4 shows the percentage overestimation of Pult, Uzult, and Eε

ult by 
the modeling strategies without residual stresses and thermal strains 
compared to those including them. Not considering these initial condi-
tions in the models leads to overestimates of all three predictions, with 
the overestimation of the Uzult being higher. SM** makes the highest 
overestimates in all three predictions, followed by CFM** and the lowest 
by FBM**. 

Table 5 shows the ratio of Test-1 ultimate moment (Mult) to the 
elastic bending moment of the section under non-uniform temperature 
(Myfire). The ratio indicates that the buckling limit state controlling 
failure occurs at an ultimate load (Pult) equal to 46.8% of the elastic load 
(Py = 305.43 kN). 

Fig. 35 compares the buckling shape (failure mode) of Test-1 with 
those obtained in previous FIDESC4 numerical simulations (Fig. 35e and 
f) included in [24,29] and with those obtained with the proposed 
modeling strategies. At the beginning of the experiment, a white-colored 
grid of 18 equal spaces was drawn on the top flange (in the heated 
central zone) to evidence the site of the local failure. The experimental 
deformed shape (Fig. 35a) shows that the local failure in the top flange is 
offset from the beam mid-span section, i. e., at the end of the first third of 
the heated zone over the 5th grid line drawn on the top flange. The FBM 
deformed shape (Fig. 35b) represents the global LTB failure in the 
heated central part of the beam but cannot capture the local failure 
shape in the top flange. However, vertical deflection isocontours on the 
web (blue colored) evidence the high compressions taking place in the 
failure zone. The CFM deformed shape (Fig. 35c) correctly reproduces 
the site where the local buckling on the top flange occurs and shows the 
web local buckling depicted by some web undulations in the middle 
span and the typical curvature characterizing the global LTB. The local 
buckling phenomena of the top flange and the web reproduced by CFM 
and ANSYS-SM are shown in Figs. 35c, d, and 36. Images are practically 
identical, and both reproduce well the experimental failure, 

Table 3 
Comparison of results between FIDESC4 simulations, experimental test, and proposed modeling strategies with and without residual stresses and thermal strains.   

Pult 

(kN) 
Uzult 

(mm) 
Eε

ult(J)  Mult 

(kN-m) 
PNum

ult

PExp
ult  

UzNum
ult

UzExp
ult  

ENum
ult

EExp
ult   

BEAM MODELS TEST 1 FIDESC4  142.96  17.13  1635.63  78.63  —  —  — 
ANSYS FBM**  144.93  35.79  3599.20  79.71  1.01  2.09  2.20 
ANSYS FBM  141.61  31.03  3485.31  77.89  0.99  1.81  2.13 
ANSYS CFM**  146.88  24.95  2322.34  80.79  1.03  1.46  1.42 
ANSYS CFM  139.05  21.10  2147.61  76.48  0.97  1.23  1.31 

SHELL MODELS ANSYS SM**  148.96  21.78  2040.44  81.93  1.04  1.27  1.25 
ANSYS SM  139.85  18.37  1877.84  76.92  0.98  1.07  1.15 
ABAQUS SM FIDESC4  107.26  13.02  756.48  58.99  0.75  0.76  0.46 
SAFIR SM FIDESC4  106.26  13.23  757.50  58.44  0.74  0.77  0.46 

** indicates that residual stresses and thermal strains are not included. The best result of the two proposed modeling strategies, FBM and CFM, is underlined and bold. 

Table 4 
Overestimation of the predictions of the proposed models without residual 
stresses and thermal strains for Test-1.   

Pult 

[%] 
Uzult 

[%] 
Eε

ult[%]  

ANSYS FBM**  2.34  15.34  3.27 
ANSYS CFM**  5.63  18.25  8.14 
ANSYS SM**  6.51  18.58  8.66  

Table 5 
Relationship between the ultimate moment in the heated part of the beam and 
elastic bending moment.  

MTest
ult (kN-m)  MyTheor.

fire [19,21](kN-m)  
⃒
⃒
⃒
⃒
⃒

MTest
ult

MyTheor
fire

⃒
⃒
⃒
⃒
⃒

78.60  167.98  0.468  
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demonstrating that CFM can correctly reproduce the global and local-
ized LTB failures. The advantage of CFM over ANSYS-SM is its simplicity 
and the significant reduction of the number of elements used for the 
discretization, which reduces the computational cost. These advantages 
(accuracy and simplicity) make CFM a simple and low-cost alternative 
for simulating LTB in class-4 steel members under fire. 

Since the bending generates compression stresses in the top flange 
and most of the web, the occurrence of tensile stress patterns in these 
areas demonstrates that some tensile residual stresses remain after the 
LTB failure. This phenomenon can be observed in Fig. 37, where general 
and detailed views of the axial stress isocontours at the simulation end 
time for each ANSYS modeling strategy are shown. The details in 

Fig. 37d–f show red and yellow tension stress bands in the top welded 
zone at the simulation end time, demonstrating the existence of tensile 
residual stresses in the top compressed part of the beam. Fig. 37 also 
shows that tensile residual stresses in the top compressed part, in the 
unheated zone of the beam, are less dissipated than in the heated zone. 
This behavior indicates that residual stresses should not be neglected in 
the structural analysis of steel members with class-4 cross-sections under 
localized fire scenarios where the temperature along the members is 
non-uniform. On the other hand, the tensile stresses localized on the web 
come from high web compressions produced by bending that generate 
buckling in the compressed zone of the web. Thus, the web behaves like 
a thin, slender plate subjected to compression, causing typical buckling 

Fig. 35. Deformed shapes of Test-1 models. (a) FBM Uz deflection. (b) CFM Uz deflection. (c) ANSYS-SM Uz deflection (d) FIDESC4 Test-1 [24]. (e) FIDESC4 SAFIR- 
SM [24]. (f) FIDESC4 ABAQUS-SM [24] 

Fig. 36. Top flange and web local buckling detail. (a) CFM. (b) ANSYS-SM.  
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undulations in the longitudinal direction, as shown in Fig. 37e, f. In 
other words, bending induces local buckling on the web. In Fig. 37, the 
compressive stresses are negative, and the tensile stresses are positive. 

Some additional results at the end of the simulation related to 
torsional phenomena such as warping, bimoment, and bicurvature are 
shown in Fig. 38–40. These additional results are given only for FBM 
because they are easily available from the single fiber representing the 
tested beam. Figs. 38 and 39 show that the warping degree-of-freedom is 

null, and the bicurvature is significant at the beam mid-span where the 
maximum torsion occurs. The minimum (MN) and maximum (MX) 
warping points on the deformed shape (in Fig. 38) match the zero- 
bicurvature points (see Fig. 39). The changes of sign in the bicurva-
ture diagram of Fig. 39 indicate warped torsion direction changes. The 
jumps in bicurvature and bimoment diagrams in Figs. 39 and 40 occur 
by the torsional resistance in the stiffener points. In turn, Fig. 41 shows 
the bicurvature-bimoment relationship representing the LTB evolution 

Fig. 37. Axial stresses at the end of the analysis [MPa]. (a,d) FBM. (b,e) CFM. (c,f) ANSYS-SM.  
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at mid-span. Initially, the bimoment is negative and then becomes 
ascending, indicating that the twisting direction of the cross-section 
changes during the test. The increase of the bimoment in the section is 
consistent with the LTB failure occurring at the beam mid-span. 

Although FBM cannot capture the local failure shape in the top flange, 
torsional results show that it simulates well the LTB phenomenon. 

6.2. Test-3 validation 

Fig. 42 shows the total force applied (P) versus the beam mid-span 
vertical deflection (Uz) at the bottom flange mid-point for Test-3, 
FIDESC4 simulations, and the proposed modeling strategies. Fig. 42 
also presents the P-Uz curves of the simulations carried out in ANSYS 
without residual stresses and thermal strains. The P-Uz curves for Test-3, 
FIDESC4 simulations, and CFM and SM are drawn up to 30 mm of ver-
tical deflection according to FIDESC4 numerical simulations reported in 
[24]. The P-Uz relationship of the FBM is drawn past 35 mm because the 
ultimate load is only reached at 35.03 mm. The curves of ANSYS sim-
ulations without residual stresses and thermal strains are drawn at de-
flections higher than 30 mm because they are advanced from those 
including them. Results indicate that the two proposed modeling stra-
tegies (FBM and CFM) validate satisfactorily against Test-3. Once more, 
CFM gets better deflection predictions than the FBM. Moreover, pre-
dictions of the ANSYS models without residual stresses and thermal 
deformations again tend to underestimate the stiffness for the early force 
values and overestimate the ultimate load and defections. All other 
comments presented in Test-1validation are confirmed in Test-3 
validation. 

In Table 6, the best result of the two proposed modeling strategies, 
FBM and CFM, is underlined and bold. Once again, FBM predicts the 
ultimate load value well, but its ultimate deflection is larger than the 

Fig. 38. Warping on the deformed shape.  

Fig. 39. Bicurvature.  

Fig. 40. Bimoment.  

Fig. 41. Bimoment-bicurvature relationship.  

Fig. 42. Total applied load versus vertical deflection at the bottom flange mid- 
point in the beam mid-span for Test-3. 
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measured. FBM also has a slightly better prediction of Mult than CFM, but 
CFM better reproduces the structure’s response up to the end of the test. 
Finally, Table 7 shows the percentage overestimation of Pult, Uzult, and 
Eε

ult by the modeling strategies without residual stresses and thermal 
strains. Again, it is found that not considering these initial conditions in 
the simulations leads to overestimating all three predictions. SM** and 
CFM** make the highest overestimations for Uzult and Eε

ult. 
All discussions given of the simulation results of Test-1 are confirmed 

in the validation of Test-3, demonstrating that the proposed modeling 
strategies correctly simulate the LTB response of steel members with 
class-4 cross-sections under fire conditions with constant cross-section. 
On the other hand, the ratio of Test-3 ultimate moment (Mult) to the 
elastic bending moment of the section under non-uniform temperature 
(Myfire) shown in Table 8 points out that the buckling limit state con-
trolling failure occurs at an ultimate load (Pult) equal to 45.4% of the 
elastic load (Py = 416.56 kN). 

Fig. 43 compares the buckling shape (failure mode) of Test-3 with 
those obtained in previous FIDESC4 numerical simulations (Fig. 43e and 
f) included in [24,29] and with those obtained with the proposed 
modeling strategies. The experimental deformed shape (Fig. 43a) shows 
that the local failure in the top flange is near the beam mid-span section, 
i.e., over the 9th grid line drawn on the top flange. The FBM deformed 
shape (Fig. 43b) reproduces the global LTB failure in the heated central 
part of the beam but cannot capture the local failure shape in the top 
flange while the CFM deformed shape (Fig. 43c) correctly reproduces 
the place where local buckling occurs. The CFM deformed shape re-
sembles that of ANSYS-SM (Fig. 43d) and accurately represents the web 
undulations in the central part of the beam and the local buckling of the 
top flange. Details of the failure mode for CFM and ANSYS-SM 
evidencing their similarity are shown in Fig. 44. 

Finally, the CPU times spent for each modeling strategy to carry out 
the full-GMNIA in ANSYS for Test-1 and Test-3, are shown in Fig. 45. It 
can be seen that the best computation time is for CFM due to the 
reduction in the degrees of freedom and the complexity level achieved 

by discretizing with BEAM189 elements making it the best alternative to 
model the LTB problem in class-4 beams. In Fig. 45, the number of 
nodes, elements, and degrees of freedom is related to the CPU. For 
example, in Test-1 (Fig. 45a), it is observed that correct results can be 
achieved with a low-cost CFM of 2488 BEAM189 finite elements, 3413 
nodes, and 23,891 degrees of freedom instead of a high-cost SM of 
14,596 SHELL181 finite elements, 14,789 nodes, and 88,734 degrees of 
freedom. In Test-3 (Fig. 45b), the CFM nodes are slightly high (2508), 
whereas SM is still the same size. The time reduction of CFM versus SM is 
52.2% in Test-1 and 46.7% in Test-3. Low-cost of CFM is caused by the 
quadratic interpolation of the BEAM189 finite element, which reduces 
the number of elements without losing the accuracy of results. On the 
other hand, the high refinement requirements in the cross-section 
pseudo-mesh to achieve the accuracy of the ultimate load increase the 
FBM computational cost, penalizing the advantage achieved by saving 
the number of elements making it the highest computational cost. CPU 
times are calculated in ANSYS using parallel distributed memory-MPI 
calculation in 6 physical cores on a Dell Mobile Workstation 7530/64 
bits, Intel Xeon Processor-2.71 GHz, and Ram-32 GB. 

7. Conclusions and future work 

This paper proposes two new methodologies implemented in ANSYS 
to predict the LTB strength in steel beams with class-4 cross-sections 
subjected to fire action. The procedures use beam-type finite elements 
with the Timoshenko formulation and are based on a GMNIA that in-
cludes imperfections, residual stresses, and thermal strains. In the first 
modeling strategy (FBM), the beam is represented by a beam-type finite 
element fiber. In the second modeling strategy (CFM), the beam is 
represented by a beam-type finite element grid arrangement. Both 
modeling strategies are validated with experimental and numerical 
simulations of Test-1 and Test-3 carried out in the FIDESC4 [24] 
investigation on a slender beam of class-4 section and with a specific 
shell model of the same test built whit ANSYS. In all three cases, the 
validation of the ultimate load capacity of both tests was satisfactory. 
From the studies performed, the following conclusions can be drawn:  

– Both methodologies correctly predict the ultimate load of the class-4 
steel members under fire and avoid using more complex finite 
element models. This simplification of the structural model is an 
important advantage over strategies that use shell elements (see, e.g., 
those included in [36,37]) and allows for full 3D analyses adapted to 
the 3D nature of the LTB phenomenon in real beams. 

– The FBM strategy discretizes the steel member using a fiber repre-
senting the beam axis located at the outer edge of the beam where the 
boundary conditions are applied. Two types of elements are used to 
build the model: BEAM189 elements to model the fiber axis and 
LINK180 elements to transfer the load from the application points to 
the fiber axis representing the beam. FBM correctly predicts the ul-
timate load and is easy to build, and the number of elements and 
model building time is small, which is useful for quickly building 

Table 6 
Comparison of results between FIDESC4 simulations, experimental test, and proposed modeling strategies with and without residual stresses and thermal strains.   

Pult 

(kN) 
Uzult 

(mm) 
Eε

ult(J)  Mult 

(kN-m) 
PNum

ult

PExp
ult  

UzNum
ult

UzExp
ult  

ENum
ult

EExp
ult    

TEST 3 FIDESC4  189.06  19.82  2410.10  103.99  —  —  — 
BEAM MODELS ANSYS FBM**  193.82  39.99  5397.66  106.60  1.03  2.02  2.24 

ANSYS FBM  188.03  35.06  5040.72  103.42  0.99  1.77  2.09 
ANSYS CFM**  210.01  29.04  3794.94  115.50  1.11  1.47  1.57 
ANSYS CFM  192.01  20.85  2684.44  105.61  1.02  1.05  1.11 

SHELL MODELS ANSYS SM**  212.15  24.31  3125.80  116.68  1.12  1.23  1.30 
ANSYS SM  189.23  17.91  2165.47  104.07  1.00  0.90  0.90 
ABAQUS SM FIDESC4  151.95  13.71  1075.23  83.57  0.80  0.69  0.45 
SAFIR SM FIDESC4  168.92  14.60  1263.17  92.91  0.89  0.74  0.52 

**Indicates that residual stresses and thermal strains are not included. The best result of the two proposed modeling strategies, FBM and CFM, is underlined and bold. 

Table 7 
Overestimation of the predictions of the proposed models without residual 
stresses and thermal strains for Test-3.   

Pult 

[%] 
Uzult 

[%] 
Eε

ult[%]  

ANSYS FBM**  3.08  14.07  7.08 
ANSYS CFM**  9.37  39.27  41.37 
ANSYS SM**  12.11  35.71  44.35  

Table 8 
Relationship between the ultimate moment in the heated part of the beam and 
elastic bending moment.  

MTest
ult (kN-m)  MyTheor.

fire [19,21](kN-m)  
⃒
⃒
⃒
⃒
⃒

MTest
ult

MyTheor
fire

⃒
⃒
⃒
⃒
⃒

103.99  229.11  0.454  
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multi-member models. Furthermore, its nodal results are easy to 
process. Although FBM is easier to build than CFM, its main disad-
vantages are that (a) FBM does not reproduce the local buckling 
shape and (b) FBM has a higher computational cost than CFM. 
Therefore, its use is not recommended for (a) post-buckling perfor-
mance analyses and for (b) LTB analyses in steel beams requiring a 
large number of simulations as it would be the case of probabilistic 
and optimization analyses and involving knowledge of the collapse 
load. However, FBM can be very useful when the designer is inter-
ested only in the ultimate load as in the LTB analysis under fire of 
multi-member steel structures belonging to industrial facilities or 
building frames.  

– The CFM strategy discretizes the web and flanges of the steel member 
using a cruciform arrangement of BEAM189 element fibers to cap-
ture local buckling. This strategy is proposed to simplify the con-
struction and reduce the computational cost of the shell models 
typically used for LTB analyses. CFM correctly predicts the structural 
response, the ultimate load, and even the local buckling failure of the 
tested beams. In addition, it is simpler, less computationally expen-
sive than shell models. This reduction in computational cost opens 
the path for a wider application of probabilistic models to complex 
structures under fire and represents a significant step towards the 
generalized application of performance-based approaches to address 
fire effects. Therefore, CFM is recommended for evaluating the 

Fig. 43. Deformed shape of Test-3 models. (a) FBM Uz deflection. (b) CFM Uz deflection. (c) ANSYS-SM Uz deflection (d) FIDESC4 Test-3 [24]. (e) FIDESC4 SAFIR- 
SM [24]. (f) FIDESC4 ABAQUS-SM [24] 

Fig. 44. Top flange and web local buckling detail. (a) CFM. (b) ANSYS-SM.  
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complete performance of the structure up to the collapse, as well as 
for optimization and probabilistic analyses.  

– The simulation of the configuration and the conditions of the 
FIDESC4 experiments in slender beams of class-4 cross-section at 
high temperatures constitutes a modeling problem where initial 
stresses and initial strains are present. Therefore, both are indis-
pensable for the proper calculation of the global response to the 
problem. The results of simulations carried out to validate the tests 
with and without residual stresses and thermal strains point out that 
the inclusion of these two initial conditions favorably modifies the 
LTB response of the tested beams. As a result, substantial improve-
ments are evident in the evaluation of the initial stiffness of the 
beams and also in the calculations of ultimate load, ultimate 
displacement, and strain energy accumulated up to the ultimate load. 
In addition, it was verified that some tensile residual stresses 
remained after LTB failure, especially in the unheated part of the 
beam. This is another reason for including them in the LTB analysis 
of class-4 steel members in localized fire scenarios where the tem-
perature along the member is not uniform  

– This study verified that the class-4 steel member strength under fire 
is significantly smaller than its elastic strength because buckling 
appears early [19,21]. In both tests, the buckling limit state estab-
lished the ultimate load (Pult) at approximately 46% of the theoret-
ical elastic load (Py).  

– Future works should be addressed to adapt these modeling strategies 
to: (1) the analysis of lateral-torsional buckling in steel beams (with 
variable cross-section), (2) the analysis of torsional flexural buckling 
phenomena in steel columns (with constant and variable cross- 
sections) as a previous step to their implementation in the analysis 
of complete frames, (3) the optimization and probabilistic design of 
class-4 steel members under fire. 
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