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The weak core inverse

D.E. Ferreyra∗†, F.E. Levis†, A.N. Priori†, N. Thome‡

Abstract

In this paper, we introduce a new generalized inverse, called weak core inverse (or, in short, WC

inverse) of a complex square matrix. This new inverse extends the notion of the core inverse defined

by O.M. Baksalary and G. Trenkler in 2010. We investigate characterizations, representations, and

properties for this generalized inverse. In addition, we introduce weak core matrices (or, in short,

WC matrices) and we show that these matrices form a more general class than that given by the

known weak group matrices, recently investigated by H. Wang and X. Liu.
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1 Introduction

The classical Moore-Penrose inverse [22] and Drazin inverse [10] were defined in the fifties and have

been thoroughly studied since then. On the other hand, generalized inverses such as core inverses [2],

BT inverses [3], core EP inverses [18], DMP inverses [16], CMP inverses [19], WG inverses [27], etc.,

were introduced in the last decade and, nowadays, they attract the attention of many researchers. In

contrast to the classical ones, these recent generalized inverses (from 2010 onwards) allow us to tackle

new problems and are opening up new horizons in this field both theoretical and applied.

Generalized inverses of matrices are applied in areas as varied as Markov chains [4], coding theory

[29], chemical equations [23], robotics [9], geology [5], etc. Matrix partial orders is another important

area in which generalized inverses are an essential tool towards which attention is directed [7, 8, 20,

25, 32].
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Because the core inverse was defined only for the class of index-one matrices and since the afore-

mentioned extensions have enhanced their understanding, there is an obvious desire to extend it to

new arbitrary-index classes. Motivated by these facts, our main aim is to introduce and investigate a

new generalized inverse, namely the weak core inverse.

Let us now recall notions of several generalized inverses and notations.

We denote the set of all m× n complex matrices by Cm×n. For A ∈ Cm×n, the symbols A∗, A−1,

rk(A), N (A), and R(A) will stand for the conjugate transpose, the inverse (m = n), the rank, the

kernel, and the range space of A, respectively. Moreover, In will refer to the n × n identity matrix.

A matrix X ∈ Cn×m that satisfies the equality AXA = A is called an inner inverse or {1}-inverse

of A, and a matrix X ∈ Cn×m that satisfies the equality XAX = X is called an outer inverse or

{2}-inverse of A. An n×m matrix X satisfying AXA = A and XAX = X is called a reflexive inverse

or {1, 2}-inverse of A.

For A ∈ Cm×n, the Moore-Penrose inverse of A is the unique matrix A† ∈ Cn×m satisfying the

following four equations [1]

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Moore-Penrose inverse can be used to represent orthogonal projectors PA := AA† and QA := A†A

onto R(A) and R(A∗), respectively.

Let A ∈ Cn×n. The smallest nonnegative integer k for which R(Ak) = R(Ak+1) is called the index

of A and is denoted by Ind(A).

We recall that the Drazin inverse of A ∈ Cn×n is the unique matrix Ad ∈ Cn×n satisfying the

following three equations [1]

AdAAd = Ad, AAd = AdA, AdAk+1 = Ak,

where k = Ind(A).

The k = 0 case corresponds to nonsingular matrices. If k = 1, the Drazin inverse of A is called the

group inverse of A and is denoted by A#.

The well-known class of EP matrices is defined by the square complex matrix A that commutes

with its Moore-Penrose inverse A†, that is,

CEP

n = {A ∈ Cn×n : AA† = A†A}.

In 2010, the core inverse was introduced in the paper [O. Baksalary and G. Trenkler, Core inverse

of matrices, Linear and Multilinear Algebra, 58 (6) (2010) 681-697] (see [2]), which considerably
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revitalized this research area. For a given matrix A ∈ Cn×n, the core inverse of A is defined to be the

unique matrix A#© ∈ Cn×n satisfying the conditions

AA#© = PA, R(A#©) ⊆ R(A). (1)

It was proved that a matrix A is core invertible if and only if Ind(A) ≤ 1.

The symbol CCM
n denotes the set of so called core matrices (also referred to as group matrices),

which is given by all the n× n complex matrices for which A is core invertible, that is,

CCM

n = {A ∈ Cn×n : rk(A) = rk(A2)}.

In 2014, O. Baksalary and G. Trenkler also introduced the BT inverse of A ∈ Cn×n (originally referred

to as generalized core inverse) as the matrix

A� := (APA)†. (2)

Two other new generalizations of the core inverse for n×n complex matrices of arbitrary index k were

also introduced in 2014. K. Manjunatha Prasad and K.S. Mohana [18] defined the core EP inverse of

A ∈ Cn×n as the unique matrix A †© ∈ Cn×n satisfying

A †©AA †© = A †© and R(A †©) = R((A †©)∗) = R(Ak).

In addition, it was proved that A †© = Ak
(
(A∗)kAk+1

)†
(A∗)k. And, S. Malik and N. Thome [16]

introduced the DMP inverse of A ∈ Cn×n as the unique matrix Ad,† ∈ Cn×n satisfying

Ad,†AAd,† = Ad,†, Ad,†A = AdA, and AkAd,† = AkA†. (3)

Moreover, it was proved that Ad,† = AdAA†. The authors also introduced another outer inverse

associated with a square matrix, namely A†,d = A†AAd called the dual DMP inverse of A. For

computational aspects of core and core EP inverses, we refer the reader to [30] and for those of DMP

inverses to [15].

From 2018 onwards, three new generalized inverses were introduced for complex square matrices,

namely CMP inverses, WG inverses, and MPCEP inverses. Firstly, M. Mehdipour and A. Salemi [19]

introduced the CMP inverse of A ∈ Cn×n as the matrix

Ac,† := QAA
dPA. (4)

Secondly, H. Wang and J. Chen [27] by using the core EP inverse of a matrix, introduced the weak

group inverse (or, in short, WG inverse) of a matrix A ∈ Cn×n as the unique matrix Aw© ∈ Cn×n

satisfying

A(Aw©)2 = Aw© and AAw© = A †©A. (5)
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If k = 1, the WG inverse and the group inverse coincide.

Recently, H. Wang and X. Liu [28] introduced a new class of matrices defined by the square complex

matrix A that commutes with its WG inverse Aw©, that is,

CWG

n = {A ∈ Cn×n : AAw© = Aw©A}.

A matrix A ∈ CWG
n is called a WG matrix.

Finally, J. Chen, D Mosić, and S. Xu [6] defined the MPCEP inverse of A ∈ Cn×n as the matrix

A†, †© := QAA
†©. (6)

By using the core EP decomposition, in this paper we introduce one more generalization of the

core inverse of a square matrix. Note that, while the core inverse is restricted to index-one matrices,

this new generalized inverse exists for any square matrix. We also give some of its characterizations,

representations, properties and applications. Furthermore, by using this new notion of generalized

inverse we define and investigate a new class of matrices which extend the class of WG matrices.

This paper is organized as follows. In Section 2, some preliminaries are given. Section 3 introduces

the generalized core inverse. In Section 4, we derive some properties of WC inverses. Section 5 is

devoted to the study of weak core matrices. Section 6 offers some more characterizations of WC

inverses. Finally, Section 7 analyzes the WC binary relation.

2 Preliminaries

In this section, we present some preliminary results.

Lemma 2.1. [26, Core EP decomposition] Let A ∈ Cn×n with Ind(A) = k. Then there exists a unitary

matrix U ∈ Cn×n such that

A = A1 +A2, A1 := U

 T S

0 0

U∗, A2 := U

 0 0

0 N

U∗, (7)

where T is nonsingular with t := rk(T ) = rk(Ak) and N is nilpotent of index k. The representation of

A given in (7) satisfies Ind(A1) ≤ 1, Ak
2 = 0, and A∗1A2 = A2A1 = 0. Moreover, it is unique in this

last sense and is called the core EP decomposition of A.

In addition, the core EP inverse of A is

A †© = U

 T−1 0

0 0

U∗. (8)
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Notice that if A is nonsingular (that is, k = 0) in Lemma 2.1 then t = n. So, N and S are absent

in (7), and A = T (with U = In). Thus, (7) provides a powerful tool for analyzing singular matrices,

which are the object of study in this paper. Henceforth, we can assume Ind(A) = k ≥ 1 when the core

EP decomposition is applied.

From (7) and (8) it is easy to check that

A1 = AA †©A and A2 = A−AA †©A. (9)

Theorem 2.2. Let A ∈ Cn×n be a matrix written as in (7) and let ∆ := (TT ∗ + S(In−t −QN )S∗)−1

and T̃ :=
k−1∑
j=0

T jSNk−1−j. Then

(a) [12, Theorem 3.7] the Moore-Penrose inverse of A is

A† = U

 T ∗∆ −T ∗∆SN†

(In−t −QN )S∗∆ N† − (In−t −QN )S∗∆SN†

U∗,
(b) [12, Theorem 3.9] the Drazin inverse of A is

Ad = U

 T−1 T−(k+1)T̃

0 0

U∗,
(c) [12, Theorem 3.11] the DMP inverse of A is

Ad,† = U

 T−1 T−(k+1)T̃PN

0 0

U∗,
(d) [12, Corollary 3.12] the CMP of A is

Ac,† = U

 T ∗∆ T ∗∆T−kT̃PN

(In−t −QN )S∗∆ (In−t −QN )S∗∆T−kT̃PN

U∗,
(e) [27, Theorem 3.1] the weak group inverse of A is

Aw© = U

 T−1 T−2S

0 0

U∗,
(f) [6, Lemma 2.3] the MPCEP inverse of A is

A†, †© = U

 T ∗∆ 0

(In−t −QN )S∗∆ 0

U∗.
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From (7) and Theorem 2.2 (e) we derive the following expressions for the projectors AAw© and

Aw©A, which will be often used

AAw© = U

 It T−1S

0 0

U∗ and Aw©A = U

 It T−1S + T−2SN

0 0

U∗. (10)

Lemma 2.3. [14, Hartwig-Spindelböck decomposition] Let A ∈ Cn×n of rank r > 0. Then there exists

a unitary matrix U ∈ Cn×n such that

A = U

 ΣK ΣL

0 0

U∗, (11)

where Σ = diag(σ1Ir1 , σ2Ir2 , . . . , σtIrt) is the diagonal matrix of singular values of A, σ1 > σ2 > · · · >

σt > 0, r1 + r2 + · · ·+ rt = r, and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

Theorem 2.4. Let A ∈ Cn×n be a matrix written as in (11). Then

(a) [2, Formula (1.13)] the Moore-Penrose inverse of A is

A† = U

 K∗Σ−1 0

L∗Σ−1 0

U∗,
(b) [11, Formula (10)] the core EP inverse of A is

A †© = U

 (ΣK) †© 0

0 0

U∗.
3 Definitions and characterizations of generalized core inverses

In this section we introduce a new generalized inverse of A ∈ Cn×n by using the Drazin, the WG, and

the Moore-Penrose inverses of A. We begin with a definition and some properties.

Definition 3.1. Let A ∈ Cn×n. The weak core part of A, denoted by C, is defined to be the product

C := AAw©A.

We note that from (10) it is easy to obtain

C = AAw©A = U

 T S + T−1SN

0 0

U∗. (12)

Remark 3.2. Notice that if A ∈ CCM
n is written as in (7) then N = 0. Thus, the weak core part of A

is given by

C = U

 T S

0 0

U∗ = A1 = A.
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Now, we establish some interesting properties of the weak core part of A.

Proposition 3.3. Let A ∈ Cn×n with Ind(A) = k. Then the weak core part C of A satisfies the

following properties:

(a) A† is an inner inverse of C,

(b) Ad is an inner inverse of C,

(c) CAk = Ak+1,

(d) Ck = U

 T k T k−1S + T k−2SN

0 0

U∗,
(e) C = A †©A2,

(f) (I −AAd)C = 0,

(g) (I −A †©A)C = (I −AAw©)C = 0,

(h) C(I −QA) = 0.

As a consequence, C can be represented in terms of Ad, A †©, Aw©, and A† as C = AAdY , C =

A †©AZ = AAw©Z, and C = WQA, for arbitrary Y,Z,W of adequate sizes.

Proof. From [27, Remark 3.4 and Remark 3.5], we know that Aw© is an outer inverse of A and

R(Aw©) = R(Ak) and Aw©Ak+1 = Ak. (13)

(a) Now it is clear that CA†C = AAw©AA†AAw©A = AAw©AAw©A = AAw©A = C.

(b) We observe that R(AAw©) = AR(Aw©) = AR(Ak) = R(Ak+1) = R(Ak), from where AAw© = AkB

for some matrix B. Then

CAdC = AAw©AAd(AAw©)A = AAw©Ak+1AdBA = AAw©AkBA = AAw©AAw©A = AAw©A = C.

(c) It directly follows that CAk = (AAw©A)Ak = AAw©Ak+1 = Ak+1.

(d) It follows from (12) after a simple computation.

(e) From (5) we have that AAw© = A †©A, hence C = AAw©A = A †©A2.

(f) As in the proof of point (b) we obtain AAw© = AkB, for some matrix B. Pre- and postmultiplying

this last equality by AdA and A, respectively, we have AdAAAw©A = AdAAkBA = AkBA = AAw©A,

thus the result follows.

(g) and (h) are obvious.
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The consequences follow directly by solving (in C) the matrix equations from (f), (g), and (h) by

means of [1, Theorem 1, p. 52] and using that the projectors I − A †©A, I − AAw©, and I − QA are

{1}-inverses of themselves.

Let A ∈ Cn×n and let C be its weak core part. We consider the following system of equations:

XAX = X, AX = CA†, and XA = AdC. (14)

Theorem 3.4. Let A ∈ Cn×n and C as in Definition 3.1. The system (14) is consistent and its

unique solution is the matrix X = AdCA†.

Proof. It is easy to see that the matrix X := AdCA† satisfies the three equations in system (14). In

fact, Proposition 3.3 (f) implies AX = AAdCA† = CA†. On the other hand, Proposition 3.3 (h) yields

XA = AdCA†A = AdC. Finally, XAX = AdCX = AdAAw©AX = AdAAw©CA† = AdCA† = X,

where the last equality follows from Proposition 3.3 (g).

For the uniqueness, we assume that X1 and X2 are two solutions of the system (14). From AX1 =

CA† = AX2 and X1A = AdC = X2A, we have X2 = X2(AX2) = X2(AX1) = (X2A)X1 = X1AX1 =

X1.

Theorem 3.4 allows us to give the following definition.

Definition 3.5. Let A ∈ Cn×n with Ind(A) = k and C as in Definition 3.1. The weak core inverse

(or, in short, WC inverse) of A, denoted as Aw©,†, is defined to be the solution to the system (14).

Theorem 3.6. Let A ∈ Cn×n. Then

Aw©,† = Aw©AA†. (15)

Proof. From [27, Remark 3.4] we have R(Aw©) = R(Ak), and so Aw© = AkZ for some matrix Z. Then,

Aw©,† = AdCA† = AdAAw©AA† = AdAAkZAA† = AkZAA† = Aw©AA†.

In this way, the equality (15) justifies the notation Aw©,† for the WC inverse in Definition 3.5.

Remark 3.7. (a) Note that, if A ∈ CCM
n then the WC inverse coincides with the core inverse of A,

that is, Aw©,† = A#© (see [27, Remark 3.3]). This fact gives the name to the weak core inverse.

(b) If A ∈ Cn×n with Ind(A) = k then R(Aw©,†) = R(Ak). In fact, by (14) we obtain

R(Aw©,†) ⊆ R(Aw©,†A) = R(AdC) ⊆ R(Ad) = R(Ak).
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On the other hand, R(Ak) ⊆ R(Aw©,†) because applying (14) and using Proposition 3.3 (c) we

have

Aw©,†Ak+1 = (Aw©,†A)Ak = AdCAk = AdAk+1 = Ak. (16)

Hence, R(Ak) = R(Aw©,†).

(c) Notice that the expression A†CAd provides a new representation for the dual DMP inverse of A,

that is A†,d = A†CAd. In fact, we know that Ad = AkZ for some matrix Z and also Aw©Ak+1 = Ak

by (13). Thus,

A†CAd = A†AAw©AAd = A†AAw©AAkZ = A†AAkZ = A†AAd = A†,d.

We conclude that the expression A†CAd can not be considered as a new generalized inverse of

A. However, in view of Theorem 3.6, we can consider another (outer) inverse associated with a

complex square matrix A, namely A†,w© := A†AAw©. This new inverse will be called the dual weak

core inverse (or, in short, dual WC inverse) of A. In particular, if A ∈ CCM
n , this new generalized

inverse coincides with the well-known dual core inverse A#© of A [18, Remark 3.4].

Remark 3.8. From (16) we have that Aw©,† is a weak Drazin inverse of A (see [4, Definition 9.7.1,

p. 203]).

Remark 3.9. Notice that the weak core inverse is a particular case of the OMP inverse recently

introduced by Mosić and Stanimirović in [21].

The rest of the paper is devoted to studying the WC inverse.

In the following example, we check that the WC inverse provides a different class than those of

Moore-Penrose, Drazin, BT, core EP, DMP, CMP, WG, and MPCEP inverses.

Example 3.10. Let

A =


1 1 1 0

0 1 1 3

0 5 2 6

0 −2 −1 −3

 .

It is easy to check that Ind(A) = 3. The Moore-Penrose inverse A† and the Drazin inverse Ad are

A† =


10
19

53
209 − 35

209 − 6
209

0 − 7
11

4
11

1
11

9
19

80
209 − 41

209 − 13
209

− 3
19

81
209 − 18

209 − 21
209

 and Ad =


1 10 7 18

0 0 0 0

0 0 0 0

0 0 0 0

 .
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Moreover, the BT inverse A�, the core EP inverse A †©, and the DMP inverse Ad,† are

A� =


10
19 0 − 27

190
9

190

0 0 3
10 − 1

10

9
19 0 − 3

19
1
19

− 3
19 0 − 9

190
3

190

 , A
†© =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 and Ad,† =


1 39

11
6
11 − 15

11

0 0 0 0

0 0 0 0

0 0 0 0

 .

In addition, the CMP inverse Ac,† and the WG inverse Aw© are

Ac,† =


10
19

390
209

60
209 − 150

209

0 0 0 0

9
19

351
209

54
209 − 135

209

− 3
19 − 117

209 − 18
209

45
209

 and Aw© =


1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Finally, the MPCEP inverse A†, †©, and the WC inverse Aw©,† are

A†, †© =


10
19 0 0 0

0 0 0 0

9
19 0 0 0

− 3
19 0 0 0

 and Aw©,† =


1 9

11
9
11 − 6

11

0 0 0 0

0 0 0 0

0 0 0 0

 .

In (14) we used three conditions to define the WC inverse. The next theorem provides a char-

acterization of the WC inverse requiring only two conditions and from a more geometrical point of

view.

Theorem 3.11. Let A ∈ Cn×n with Ind(A) = k and C as in Definition 3.1. The system of conditions

AX = CA† and R(X) ⊆ R(Ak), (17)

is consistent and it has the unique solution X = Aw©,†.

Proof. Let X = Aw©,†. Clearly, from (14) we obtain AX = CA†. On the other hand, according to

Remark 3.7 (b), we have R(X) ⊆ R(Ak). So, we deduce that Aw©,† satisfies the two conditions in (17).

In order to show that system (17) has a unique solution, assume that both X1 and X2 satisfy (17),

that is, AX1 = CA† = AX2, R(X1) ⊆ R(Ak), and R(X2) ⊆ R(Ak). Since A(X1 − X2) = 0, we

obtain R(X1 −X2) ⊆ N (A) ⊆ N (Ak). We also get R(X1 −X2) ⊆ R(Ak). Therefore, R(X1 −X2) ⊆

N (Ak) ∩R(Ak) = {0} because A has index k. Thus, X1 = X2.

Once again, we confirm that the WC inverse is a more general concept than that of the core inverse

in light of Theorem 3.11 and Remark 3.7 (a). Clearly, the systems (1) and (17) (replacing X with

Aw©,† in the second) coincide provided that A ∈ CCM
n .

Next, we present a representation for WC inverses by using the core EP decomposition.
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Theorem 3.12. Let A ∈ Cn×n be a matrix written as in (7). Then

Aw©,† = U

 T−1 T−2SPN

0 0

U∗.
Proof. From (7) and the expressions of A† and ∆ given in Theorem 2.2 (a), we have

AA† = U

 [TT ∗ + S(In−t −QN )S∗]∆ −[TT ∗ + S(In−t −QN )S∗]∆SN† + SN†

0 PN

U∗
= U

 It 0

0 PN

U∗.
Consequently, from (15) and Theorem 2.2 (e) we obtain

Aw©,† = Aw©(AA†)

= U

 T−1 T−2S

0 0

 It 0

0 PN

U∗
= U

 T−1 T−2SPN

0 0

U∗.

The following theorem shows the power of the above canonical form and allows us to give other

characterizations of the WC inverse.

Theorem 3.13. Let A ∈ Cn×n with Ind(A) = k and C as in Definition 3.1. The system of equations

XAX = X, XA = Aw©A, and CkX = CkA†, (18)

is consistent and X = Aw©,† is its unique solution.

Proof. Let A be written as in (7) and let X be partitioned as

X = U

X1 X2

X3 X4

U∗,
according to the size of blocks in A. From (10), direct calculations show that the equation XA = Aw©A

is satisfied if and only if X1 = T−1 and X2N = T−2SN , X3 = 0 and X4N = 0. Therefore,

X = U

T−1 X2

0 X4

U∗,
11



and so XAX = X is equivalent toT−1 X2 + (T−1S + T−2SN)X4

0 0

 =

T−1 X2

0 X4


from where X4 = 0. Hence,

X = U

T−1 X2

0 0

U∗.
On the other hand, by Proposition 3.3 (d) and Theorem 2.2 (a) we have that CkX = CkA† is equivalent

to

(i) T k−1 = T kT ∗∆ + T k−1S(In−t −QN )S∗∆,

(ii) T kX2 = −T kT ∗∆SN† + T k−1SN† − T k−1S(In−t −QN )S∗∆SN† + T k−2SPN .

Hence, by substituting (i) in (ii) we get

T kX2 = −[T kT ∗∆ + T k−1S(In−t −QN )S∗∆]SN† + T k−1SN† + T k−2SPN

= −T k−1SN† + T k−1SN† + T k−2SPN

= T k−2SPN .

Now, the nonsingularity of T implies X2 = T−2SPN , from where

X = U

T−1 T−2SPN

0 0

U∗.
Hence, from Theorem 3.12 we derive X = Aw©,†.

Remark 3.14. For A ∈ Cn×n and C as in Definition 3.1, we notice that:

(a) conditions in (18) are similar to those used to define the DMP inverse; we only have to change

Aw© and Ck with Ad and Ak in (3), respectively.

(b) AXA = C. In fact, it immediately follows by premultiplying by A both sides of the equation

XA = Aw©A in (18).

The next result shows that the role of A (close to X) in (14) can be changed with that of C. It

also provides a 2-condition algebraic characterization for WC inverses.

Theorem 3.15. Let A ∈ Cn×n and C as in Definition 3.1. Then the following statements are

equivalent:
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(a) X is the WC inverse of A, that is, X = Aw©,†,

(b) XCX = X, CX = CA†, and XC = AdC,

(c) AX = CA† and AX2 = X.

Proof. (a) ⇒ (b) Let X = Aw©,†. According to Proposition 3.3 (a) and (b) we have XCX =

Ad(CA†C)AdCA† = Ad(CAdC)A† = AdCA† = X, CX = (CAdC)A† = CA†, and XC = Ad(CA†C)

= AdC.

(b)⇒ (c) By hypothesis, X = X(CX) = (XC)A† = AdCA†. From Theorem 3.4, we get AX = CA†.

Finally, the equation AX2 = X follows from an easy computation by using Theorem 3.12.

(c) ⇒ (a) Since AX2 = X, [13, Lemma 4.1] yields R(X) ⊆ R(Ak). So, Theorem 3.11 assures that

X = Aw©,†.

Let A ∈ Cn×n of rank r. Let T be a subspace of Cn of dimension s ≤ r, and let S be a subspace

of Cn of dimension n − s. It is well known that A has an outer inverse X such that R(X) = T and

N (X) = S if and only if AT ⊕S = Cn, in which case X is unique and is denoted by A
(2)
T,S [1, Theorem

14, p. 72].

Recall that the Moore-Penrose inverse, the Drazin inverse, and the group inverse are outer inverses

of A with prescribed range and null space satisfying

A† = A
(2)
R(A∗),N (A∗), Ad = A

(2)

R(Ak),N (Ak)
, and A# = A

(2)
R(A),N (A).

Also, representations with prescribed range and null space for other recent generalized inverses are

known, such as for the core EP, DMP, and CMP inverses [13, Theorem 3.2]

A †© = A
(2)

R(Ak),N ((Ak)∗)
, Ad,† = A

(2)

R(Ak),N (AkA†)
, and Ac,† = A

(2)

R(A†Ak),N (AkA†)
. (19)

In the following result we give a new representation of the WC inverse as an outer inverse with

prescribed range and null space.

Theorem 3.16. Let A ∈ Cn×n with Ind(A) = k. Then

Aw©,† = A
(2)

R(Ak),N ((Ak)∗A2A†)
.

Proof. By Theorem 3.4 and Remark 3.7 (b) we have that Aw©,† is an outer inverse of A with R(Aw©,†) =

R(Ak). On the other hand, we are going to prove that N (Aw©,†) = N
(
(Ak)∗A2A†

)
holds. In fact, by

Theorem 3.4 and Proposition 3.3 (e) we get

N (Aw©,†) = N (AAw©,†) = N (CA†) = N (A †©A2A†).
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Then x ∈ N (Aw©,†) if and only if A2A†x ∈ N (A †©) = N ((Ak)∗), where the last equality is due to the

first representation in (19). Therefore, x ∈ N (Aw©,†) if and only if x ∈ N ((Ak)∗A2A†).

Corollary 3.17. [24, Remark 9, p. 301] Let A ∈ CCM
n . Then A#© = A

(2)
R(A),N (A∗).

Proof. It is evident thatN (A∗) = N (A†) ⊆ N (A∗A2A†). For the opposite inclusion, if x ∈ N (A∗A2A†)

then A∗A2A†x = 0, and thus A2A†x = AA†A2A†x = (A†)∗A∗A2A†x = 0, from where A†x ∈ N (A2) =

N (A) because A has index at most one, and thus, x ∈ N (AA†) = N (A†). This completes the

proof.

Next, we present another representation of the WC inverse by using the Hartwig-Spindelböck

decomposition.

Theorem 3.18. Let A ∈ Cn×n be a matrix written as in (11). Then

Aw©,† = U

 (ΣK)w© 0

0 0

U∗.
Proof. By Theorem 2.4 (a), we obtain that

AA† = U

 Ir 0

0 0

U∗. (20)

On the other hand, by [27, Theorem 3.8], we know that Bw© = (B †©)2B, for all square matrices B.

Thus, Theorem 2.4 (b) implies

Aw© = U

 ((ΣK) †©)2ΣK ((ΣK) †©)2ΣL

0 0

U∗ = U

 (ΣK)w© ((ΣK) †©)2ΣL

0 0

U∗. (21)

Finally, from (15) we have Aw©,† = Aw©AA†, and so the assertion follows directly from (20) and (21).

4 Properties of the WC inverse

The next results state some representations and properties that the WC inverse inherits from the core

inverse.

Theorem 4.1. Let A ∈ Cn×n with Ind(A) = k and C as in Definition 3.1. Then

(a) Aw©,† = (AA †©A)#PA,

(b) Aw©,† = (A †©)2APA = (A2) †©APA,
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(c) Aw©,† = Ak(Ak+2)#©APA,

(d) Aw©,† = (A2PAk)†APA,

(e) Aw©,† is a reflexive inverse of C,

(f) rk(Aw©,†) = rk(Ad) = rk(Ak).

Proof. Items (a)-(d) are direct consequences of (15) and [27, Theorem 3.8 and Theorem 3.9].

(e) We must prove that CAw©,†C = C and Aw©,†CAw©,† = Aw©,†. In fact, by parts (a) and (b) of

Proposition 3.3 we have

CAw©,†C = CAd(CA†C) = CAdC = C.

The other equality can be proved similarly.

(f) It is well known that rk(Ad) = rk(Ak). On the other hand, rk(Aw©,†) = rk(Ak) is a direct conse-

quence of Remark 3.7 (b).

This completes the proof.

Notice that item (d) in Theorem 4.1 allows us to obtain the WC inverse only by means of the

Moore-Penrose inverse, which is included in every computational package.

Theorem 4.2. Let A ∈ Cn×n with Ind(A) = k and C as in Definition 3.1. Then

(a) AAw©,† is the oblique projector onto the column space of Ak along the null space of (Ak)∗A2A†

satisfying AAw©,† = CAw©,†;

(b) Aw©,†A is the oblique projector onto the column space of Ak along the null space of (Ak)∗A2

satisfying Aw©,†A = Aw©,†C;

Proof. Since, by definition, Aw©,† is an outer inverse of A, we obtain that AAw©,† and Aw©,†A are

idempotents and N (AAw©,†) = N (Aw©,†) and R(Aw©,†A) = R(Aw©,†). Therefore, Theorem 3.16 implies

N (AAw©,†) = N
(
(Ak)∗A2A†

)
and R(Aw©,†A) = R(Ak).

(a) According to Remark 3.7 (b) we have R(AAw©,†) = AR(Aw©,†) = AR(Ak) = R(Ak+1) = R(Ak).

On the other hand, by the definition of the WC inverse and Proposition 3.3 (b) we obtain AAw©,† =

CA† = CAdCA† = CAw©,†.

(b) First, we are going to prove that N (Aw©,†A) = N ((Ak)∗A2) holds. In fact, x ∈ N (Aw©,†A)

if and only if Ax ∈ N (Aw©,†) = N
(
(Ak)∗A2A†

)
. Therefore, x ∈ N (Aw©,†A) if and only if x ∈

N ((Ak)∗A2A†A) = N ((Ak)∗A2).

Finally, by the definition of the WC inverse and Proposition 3.3 (a) we get Aw©,†A = AdC = AdCA†C =

Aw©,†C.
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5 Weak core matrix

In this section, we investigate a new class of matrices that is more general than that known as weak

group matrices (that is, AAw© = Aw©A or equivalently Aw© = Ad). Using the notion of weak core

inverses we introduce and study this new class of matrices by extending the results given in [28].

As we will see in this Section 5 and in Section 6, extensions of the above equivalence can be done in

two directions. Firstly, inspired by the equality Aw© = Ad, we start with Definition 5.1. In Section 6,

we will find equivalent conditions that extend the equality AAw© = Aw©A by giving characterizations

of AAw©,† = Aw©,†A.

Definition 5.1. A matrix A ∈ Cn×n is called a weak core matrix (or, in short, WC matrix) if

Aw©,† = Ad,†.

The set of all n× n WC matrices is denoted by CWC
n , that is

CWC

n = {A ∈ Cn×n : Aw©,† = Ad,†}.

The following proposition shows that the class CWC
n contains at least all matrices having index at

most 2.

Proposition 5.2. Let A ∈ Cn×n with Ind(A) = k. If k ≤ 2 then A ∈ CWC
n .

Proof. If k = 0, that is, A is nonsingular, clearly Aw©,† = Ad,† = A−1, and so A ∈ CWC
n . Otherwise, the

equality Aw©,† = Ad,† is a direct consequence of Theorem 3.18 and [16, Theorem 2.5, Lemma 2.8].

The next theorem offers a characterization of WC matrices by using the core EP decomposition.

Theorem 5.3. Let A ∈ Cn×n be a matrix written as in (7). Then A ∈ CWC
n if and only if SN2 = 0.

Proof. First of all, we observe that the matrix N in (7) satisfies N = 0 and N2 = 0 for k = 1 and

k = 2, respectively. Then, the result clearly holds for these two cases considering Proposition 5.2.

Assume k ≥ 3. From Theorem 3.12 and Theorem 2.2 (c) we obtain that Aw©,† = Ad,† is equivalent

to T−2SPN = T−(k+1)T̃PN which, in turn, is valid if and only if T k−1SN = T̃N holds. Now, we are

going to prove that T k−1SN = T̃N is equivalent to SN2 = 0, for which it is worth recalling that

T̃ = SNk−1 + TSNk−2 + T 2SNk−3 + · · ·+ T k−3SN2 + T k−2SN + T k−1S. (22)

It is obvious that SN2 = 0 implies T k−1SN = T̃N . In order to establish the opposite implication, we

assume that T k−1SN = T̃N holds. From (22) and using that Nk = 0 and T is nonsingular, we get

SNk−1 + TSNk−2 + T 2SNk−3 + · · ·+ T k−2SN2 = 0. (23)
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Postmultiplying by Nk−3 both sides of (23), we have SNk−1 = 0. If k = 3, we get SN2 = 0 as desired.

Otherwise, it follows from (23) that

SNk−2 + TSNk−3 + · · ·+ T k−3SN2 = 0.

Multiplying by Nk−4 on the right of the equation above and applying SNk−1 = 0 we have SNk−2 = 0.

Following in this way, we arrive at SNk−3 = · · · = SN2 = 0.

It is well known that CEP
n ⊆ CCM

n . Recently, the relationship CCM
n ⊆ CWG

n was proved in [28, Theorem

4.7]. Next, we obtain a relationship between WG matrices CWG
n and WC matrices CWC

n . Before giving

our next result, we recall the following one.

Lemma 5.4. [27, Corollary 3.12] Let A ∈ Cn×n be a matrix written as in (7). Then A ∈ CWG
n if and

only if SN = 0.

Theorem 5.5. It verifies that CWG
n ⊆ CWC

n .

Proof. It follows directly from Remark 3.7 (a), Proposition 5.2, Theorem 5.3, and Lemma 5.4.

The following example shows that the class CWG
n is a proper subset of CWC

n .

Example 5.6. Let

A =


1 1 0 0

0 1 1 3

0 5 2 6

0 −2 −1 −3

 .

It is easy to see that Ind(A) = 3. Since T = 1, S =
[

1 0 0
]
, and N =


1 1 3

5 2 6

0 −2 −3

, we have

SN =
[

1 1 3
]
6=
[

0 0 0
]

and SN2 =
[

0 0 0
]
.

The next (proper) inclusions collect the information about EP matrices, core matrices, weak group

matrices, and weak matrices

CEP

n ( CCM

n ( CWG

n ( CWC

n .

6 Further characterizations of the WC inverse

In the previous section we found necessary and sufficient conditions under which the WC inverse

coincides with the DMP inverse. These equivalences allowed us to define the class of WC matrices
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that is wider than that of WG matrices. Now, it is of interest to inquire when the WC inverse coincides

with another generalized inverse known in the literature.

Let the core EP decomposition of A be as in (7). A straightforward computation shows that

Ak = U

 T k T̃

0 0

U∗, (24)

where T̃ is defined as in Theorem 2.2.

Theorem 6.1. Let A ∈ Cn×n be a matrix with Ind(A) = k written as in (7). Then

(a) Aw©,† = A† if and only if S = 0 and N = 0.

(b) Aw©,† = Ad if and only if T̃ = T k−1SPN (or equivalently T̃ (In−t − PN ) = 0 and SN2 = 0).

(c) Aw©,† = A †© if and only if SN = 0.

(d) Aw©,† = Aw© if and only if S(In−t − PN ) = 0.

(e) Aw©,† = Ac,† if and only if S(In−t −QN ) = 0 and SN2 = 0.

(f) Aw©,† = A†, †© if and only if S(In−t −QN ) = 0 and SN = 0.

Proof. (a) According to Theorem 3.12 and Theorem 2.2 (a) we have that Aw©,† = A† if and only if the

following conditions simultaneously hold:

(i) T−1 = T ∗∆,

(ii) T−2SPN = −T ∗∆SN†,

(iii) 0 = (In−t −QN )S∗∆,

(iv) 0 = N† − (In−t −QN )S∗∆SN†.

Now, we will show that (i)-(iv) hold if and only S = 0 and N = 0. In fact, (iii) and (iv) yield N† = 0,

whence N = 0. Thus, (iii) and the nonsingularity of ∆ imply S∗ = 0, and so S = 0. Conversely, if

S = 0 and N = 0, clearly (i)-(iv) are true.

(b) From Theorem 3.12 and Theorem 2.2 (b) we have that Aw©,† = Ad is equivalent to

T̃ = T k−1SPN . (25)

Next, we are going to prove that (25) holds if and only if T̃ (In−t − PN ) = 0 and SN2 = 0. Firstly, we

assume that (25) holds. Postmultiplying by In−t−PN both sides of (25), we get T̃ (In−t−PN ) = 0. In
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order to prove the equality SN2 = 0, we only consider the case k ≥ 3; otherwise, it satisfies N2 = 0.

Thus, postmultiplying by N both sides of (25) we derive the equation (23). Now, the same reasoning

as in the proof of Theorem 5.3 yields SN2 = 0. Conversely, if T̃ (In−t−PN ) = 0 and SN2 = 0, clearly

T̃ = T̃PN = T k−1SPN .

(c) From Theorem 3.12 and (8), Aw©,† = A †© if and only if T−2SPN = 0 if and only if SN = 0.

(d) It is an immediate consequence of Theorem 3.12 and Theorem 2.2 (e).

(e) From Theorem 3.12 and Theorem 2.2 (d) it is easy to see that Aw©,† = Ac,† if and only if the

following conditions simultaneously hold:

(i) T−1 = T ∗∆,

(ii) T−2SPN = T ∗∆T−kT̃PN ,

(iii) (In−t −QN )S∗∆ = 0,

(iv) (In−t −QN )S∗∆T−kT̃PN = 0.

Hence, (iii) implies S(In−t −QN ) = 0 since ∆ is nonsingular. Also, ∆ = (TT ∗)−1, and by (ii) we get

T k−1SN = T̃N because T is nonsingular. As mentioned in part (b), to prove the equality SN2 = 0,

we only consider the case k ≥ 3. Now, by using the expression of T̃ we obtain (23). Now, proceeding

as in part (b), we get SN2 = 0. Conversely, since S(In−t −QN ) = 0 we have (In−t −QN )S∗ = 0 and

so ∆ = (TT ∗)−1. Thus, (i), (iii), and (iv) hold. Furthermore, since by hypothesis SN2 = 0, it is easy

to check that (ii) is also true.

(f) It is an immediate consequence of Theorem 3.12 and Theorem 2.2 (f).

In [2, Theorem 3] the following equivalence was proved for index-one matrices:

AA#© = A#©A ⇐⇒ A#© = A#.

For A being a matrix of arbitrary index, in the following result we show that this statement remains

valid when the superscripts #© and # are replaced with w©, † and d, respectively.

Corollary 6.2. Let A ∈ Cn×n with Ind(A) = k. Then the following statements are equivalent:

(a) AAw©,† = Aw©,†A;

(b) AkAw©,† = Aw©,†Ak;

(c) Aw©,† = Ad.
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Proof. Assume that A ∈ Cn×n is written as in (7).

(a)⇒ (b) It is obvious.

(b) ⇒ (c) By Theorem 3.12 and (24) we obtain T̃ = T k−1SPN . So, from Theorem 6.1 (b) we get

Aw©,† = Ad.

(c)⇒ (a) It is evident.

Corollary 6.3. Let A ∈ Cn×n with Ind(A) = k. Then AAw©,† = Aw©,†A if and only if A ∈ CWC
n and

AkAd,† = Ad,†Ak.

Proof. Let A ∈ Cn×n be a matrix written as in (7). By [13, Theorem 3.13], we have that AkAd,† =

Ad,†Ak is equivalent to T̃ (In−t − PN ) = 0. So, Corollary 6.2, Theorem 6.1 (b), and Theorem 5.3

complete the proof.

Remark 6.4. In [13], the authors introduced k-DMP matrices by extending the concept of k-EP

matrices (that is, AkA† = A†Ak) studied in [17] and extended in [31]. We recall that a matrix

A ∈ Cn×n of index k is called a k-DMP matrix if Ak commutes with the DMP inverse Ad,† of A, that

is,

Ck,d
n =

{
A ∈ Cn×n : AkAd,† = Ad,†Ak

}
.

From Corollary 6.3 we can deduce that AAw©,† = Aw©,†A is equivalent to Aw©,† = Ad,† whenever

A ∈ Ck,d
n .

Corollary 6.5. Let A ∈ Cn×n. The following conditions are equivalent:

(a) AAw©,† = Aw©,†A,

(b) N
(
(Ak)∗A2A†

)
= N ((Ak)∗A2). In particular, N ((Ak)∗A2) is a A†-invariant subspace,

(c) CAw©,† = Aw©,†C.

Proof. It follows directly from Theorem 4.2.

Corollary 6.6. Let A ∈ Cn×n. Then

(a) Aw©,† = Ad,† = Ad = A †© = Ac,† = Aw© = A†, †© if and only if Ak ∈ CEP
n , where Ind(A) = k.

(b) Aw©,† = A† if and only if A ∈ CEP
n .

(c) Aw©,† = A †© if and only if A ∈ CWG
n .
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Proof. Assume that A ∈ Cn×n is written as in (7).

(a) If Ak ∈ CEP
n , by [28, Theorem 2.3] we have S = 0, and by definition, T̃ = 0. Hence, Theorem 5.3

and Theorem 6.1 imply Aw©,† = Ad,† = Ad = A †© = Ac,† = Aw© = A†, †©. Conversely, we suppose that

A †© = Aw© then by applying (8) and Theorem 2.2 (e) we have S = 0. Thus, again by [28, Theorem

2.3], we obtain that Ak ∈ CEP
n .

(b) If Aw©,† = A†, then S = 0 and N = 0 by Theorem 6.1 (a). Now, by applying Theorem 2.2 (a) it is

easy to check that AA† = A†A, that is, A ∈ CEP
n . The converse follows from Remark 3.7 (a) and [2,

Theorem 2 (iii)].

(c) It is an immediate consequence of Lemma 5.4 and Theorem 6.1 (c).

7 The WC binary relation

This paper concludes with a remark that deals with matrix partial orders. Recall that a binary relation

on a nonempty set which is reflexive and transitive is called a pre-order. A partial order is a pre-order

that also satisfies the antisymmetric property.

As it was noted in [2, Section 3] when A,B ∈ CCM
n , the binary relation

A
#©
≤B if and only if A#©A = A#©B and AA#© = BA#©,

define a matrix partial ordering, which was called the core ordering.

In this section, we introduce the binary relation, called the WC relation, defined by

A
w©,†
≤ B if and only if Aw©,†A = Aw©,†B and AAw©,† = BAw©,†,

where A and B are square matrices of the same size.

It is of interest to inquire whether the binary relation also becomes a matrix partial order or not.

The answer to this question is negative, and this can be confirmed by means of the following

example.

Example 7.1. Let

A =


1 0 0 1

0 0 1 0

0 0 0 1

0 0 0 0

 and B =


1 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 .
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Since

Aw©,† = Bw©,† =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

Aw©,†A = Aw©,†B = Bw©,†B = Bw©,†A = B and AAw©,† = BAw©,† = BBw©,† = ABw©,† = Bw©,†. Clearly,

A
w©,†
≤ B and B

w©,†
≤ A hold. However, the WC relation is not antisymmetric because A 6= B.

Furthermore, the WC relation is not a pre-order; the following example shows that it is not tran-

sitive.

Example 7.2. Let

A =


1 1 1

0 0 1

0 0 0

 , B =


1 1 2

0 0 0

0 1 0

 , and C =


1 1 4

0 −1 1

0 1 −1

 .
It is easy to see that Ind(A) = Ind(B) = 2, Ind(C) = 1,

Aw©,† =


1 1 0

0 0 0

0 0 0

 , and Bw©,† =


1 0 2

0 0 0

0 0 0

 .
Moreover,

Aw©,†A = Aw©,†B =


1 1 2

0 0 0

0 0 0

 , AAw©,† = BAw©,† =


1 1 0

0 0 0

0 0 0

 ,

Bw©,†B = Bw©,†C =


1 3 2

0 0 0

0 0 0

 , BBw©,† = CBw©,† =


1 0 2

0 0 0

0 0 0

 .
Then A

w©,†
≤ B and B

w©,†
≤ C. However, the inequality A

w©,†
≤ C is false since

Aw©,†A 6= Aw©,†C =


1 0 5

0 0 0

0 0 0

 .

Thus, the relation
w©,†
≤ is not transitive.
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We conclude this section by remarking that the WC relation is only reflexive. Consequently, we

infer that, in general, the WC relation is neither a pre-order nor a partial order on Cn×n. Even more,

the above examples and Proposition 5.2 allow us to derive that the WC relation is not a pre-order

either on CWC
n .
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