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Acoustics in 2D Spaces of Constant Curvature

Michael M. Tung, José M. Gambi, and Marı́a L. Garcı́a del Pino

Abstract Maximally symmetric spaces play a vital rôle in modelling various phys-
ical phenomena. The simplest representative is the 2-sphere S2, having constant
positive curvature. By embedding it into (2+1)D spacetime with Lorentzian signa-
ture it becomes the prototype of homogeneous and isotropic spacetime of constant
curvature with constant scale factor: the Einstein cylinder R×S2. This work out-
lines a variational approach on how to model acoustic wave propagation on this
particular curved spacetime. On the Einstein cylinder, the analytical solutions of
the wave equation for the acoustic potential are shown to reduce to solutions of a
differential equation of Sturm-Liouville type and simple harmonic time and angular
dependence. Moreover, we discuss the implementation of such an underlying curved
spacetime within an acoustic metamaterial—an artificially engineered material with
remarkable properties exceeding the possibilities found in nature.

1 Introduction

The principal aim of metamaterial research is the theoretical design and conception
of artificial materials followed by its industrial engineering. Metamaterials possess
remarkable properties which by far exceed the ones found in nature. This makes
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them not only attractive for fundamental research but they will certainly provide
useful future applications in all sectors of living.

The theoretical framework for designing advanced devices with acoustic meta-
materials belongs to so-called analogue models of gravity [18]. Its idea is to model
physical phenomena as close as possible to general relativity without giving up too
much of its underlying differential-geometric structure. Obviously classical acous-
tics is not a relativistic theory—in acoustics there is no such equivalent as a constant
speed of light, independent of the observer’s reference frame—but certain features
can be adapted and carried over with the prime objective to emulate acoustic wave
propagation in curved spacetime.

By implementing specific spacetimes in acoustics, transformation acoustics [2,
4, 11, 16] can be used, for example, to design perfect acoustic lenses with unlim-
ited resolution (see e.g. [15]), to construct ships and submarines invisible to sonar
detection, to improve concert halls, and to devise applications involving acoustic
cloaking [2, 5, 14].

Spaces of constant curvature are maximally symmetric spaces (see e.g. [19])
which explains their importance in a variety of important applications in physics
and engineering, such as e.g. the description of uncharged, perfect relativistic flu-
ids [8] and standard cosmological models [6]. Moreover, in the past years, quantum
mechanical phenomena in spaces of constant curvature have attracted the focus of
intense investigation [12], raising critical fundamental questions beyond their pos-
sible experimental verification. However, the simulation of acoustic phenomena [4]
in such spaces has so far been vastly neglected.

Among the most significant spaces of constant curvature are the n-spheres em-
bedded in (n + 1)-dimensional Euclidean space, denoted by Sn(K), where K >
0 is the curvature. The corresponding m-dimensional spacetime consists of the
Lorentzian manifold R×Sm−1(K). It is the simplest non-Euclidean geometry with
elliptic geometry, that is, a homogeneous and isotropic spacetime of Robertson-
Walker type with positive curvature and constant scale factor. In this sense, it may
be considered as the counterpart of flat Minkowski space for the sphere.

In 2012, we proposed a general framework for transformation acoustics [14] us-
ing a variational principle for the acoustic potential in order to model acoustic wave
propagation with a curved background space. We also obtained the general constitu-
tive equations, linking a chosen spacetime with the relevant physical parameters for
the acoustic metamaterial. So far several applications of interest already have been
studied [14–17]. Here we shall examine and implement in transformation acoustics
the static spacetime R×S2—sometimes called the Einstein cylinder [3].

In the following, we demonstrate how this approach yields a partial differential
equation for the acoustic potential, which leads to a classical Sturm-Liouville prob-
lem for the radial isotropic coordinates that can be tackled analytically. This will
make further investigations and expected wave predictions possible. We also com-
ment on the design and implementation of such spacetime with suitable acoustic
metadevices.
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2 Variational Principle and Constitutive Equations

Hamilton’s or Fermat’s variational principle are powerful methods in classical me-
chanics and optics to describe in a very concise manner the laws which govern
the physical phenomena for these respective fields. In this formalism the solutions
which extremize the postulated action integral yield the equations of motion that
completely determine the system in question. Variational principles owe much of
their elegance due to their coordinate-frame independence and because symmetry
properties are easily revealed by Noether’s theorem. Moreover, in this approach a
physical law manifests itself in a self-adjoint differential operator acting on the phys-
ical fields in question [9]. As a consequence the equations of motion are typically
separable partial differential equations which include a Sturm-Liouville problem
for one of the variables (see also [7]). This dramatically simplifies the analytical or
semi-analytical treatment of these solutions.

Hamilton’s variational principle in transformation acoustics for a smooth space-
time M (with Lorentzian metric g so that g = detg < 0) only requires to postulate
the explicit form of the Lagrangian density function L : M×T P→ R, where P is
the ambient space defined by the acoustic potential φ : M→R. In a fixed laboratory
frame the gradient1 satisfies [14]

φ;µ = φ,µ =

(
p/cρ0
−v

)
, (1)

where in the acoustic metamaterial v denotes the local fluid velocity, p the acoustic
pressure, and ρ0 its density. As usual, c > 0 is the time-independent acoustic wave
speed [10].

In general, the Lagrangian may be a function of xµ , φ , and φ,µ as well as higher-
order derivatives. However, physical symmetry constraints as energy-momentum
conservation, locality and free-wave propagation restrict the acoustic Lagrangian to
take the following simplest possible form [14], containing only a covariant kinetic
term:

L (φ,µ) =
1
2
√
−ggµν

φ,µ φ,ν . (2)

Thus, the associated action integral is given by

A [φ ] =
∫

dvolgL (φ,µ) (3)

and its functional derivative with respect to the field variable φ must vanish [14]:

δ

δφ
A [φ ] = 0 ⇒ δ

δφ

∫
Ω

dvolg gµν
φ,µ φ,ν = 0. (4)

1 Greek tensor indices indicate the full range of spacetime values, whereas Latin will only refer to
the spatial values. Comma and semicolon are standard notation for partial and covariant derivatives,
respectively. For scalars, partial and covariant derivative are identical.
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The integration Ω domain is a bounded, closed set of spacetime and dvolg =√
−gdx0 ∧ . . .∧ dx3 is the invariant volume element (see e.g. [13, pp. 14]). Eq. (4)

produces the Euler-Lagrange equation for the acoustic potential, which is sufficient
to fully describe the dynamics of the acoustic system with underlying spacetime
metric g.

The constitutive equations describe how to precisely implement the acoustic
system in the laboratory—this is physical space and denoted by unbarred quan-
tities. Virtual space, on the other hand, is the space with known acoustic wave
propagation and denoted by barred quantities. The relation of mass-density tensor
ρ = ρi j dxi⊗dx j and bulk modulus κ in both transformation spaces are determined
by [14]

κ =

√
−g√
−ḡ

κ̄, ρ0ρ
i j =

√
−ḡ√
−g

ḡi j, (5)

where without loss of generality ρ̄/ρ0 ≡ 1. Moreover, for simplicity κ̄ may be set
to unity,

2.1 The Einstein Cylinder and Its Acoustic Implementation

The spacetime line element for the Einstein cylinder R×S2 may be written in terms
of the solid angle dΩ 2 = dϑ 2 + sin2

ϑ dϕ2, with constant a > 0, so that

ds2 =−c2dt2 +a2dΩ
2. (6)

It will be convenient to use isotropic radial coordinates, taking r = asinϑ , in which
the line element takes the form:

ds2 =−(cdt)⊗ (cdt)+
dr√

1− r2/a2
⊗ dr√

1− r2/a2
+(rdϕ)⊗ (rdϕ). (7)

Then, we may identify the nonholonomic (noncoordinate) basis 1-forms as θ 0 =
cdt,θ 1 = dr/

√
1− r2/a2, and θ 2 = r dϕ . Cartan’s structure equations readily yield

the only independent curvature 2-form in this frame as Ω̂ 1
2 = R̂1

212 θ 1∧θ 2, where
the only independent component of the Riemann tensor is R̂1

212 = 1/a2 =−R̂2
112.

All other components vanish.
From this the only non-zero components of the Ricci tensor in the nonholonomic

frame are computed as R̂11 = R̂22 = 1/a2. Therefore the associated Einstein tensor
also has only the following non-zero components

G00 = Ĝ00 = R̂00−
1
a2 η00 =

1
a2 , (8)

a result which equally holds for both frames, nonholonomic or coordinate frame.
Comparing Gµν with the stress-energy tensor of a perfect fluid (being shear-free
and isotropic), we conclude that an observer falling along a geodesic in spacetime
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R×S2 is pressure-free and only has constant mass-energy density ρ0 = c2/8πGa2,
where here c is the speed of light and G is the gravitational constant. It is just this
mass-energy distribution which generates R×S2.

For the implementation of the equivalent acoustic space and its relevant physical
parameters, we only require the components of metric g implicit in Eq. (7), namely

gµν =


−1 0 0

0
1

1− r2/a2 0

0 0 r2

 . (9)

Substituting this metric into the constitutive equations, Eqs. (5), immediately gives
the prescription

κ =
1√

1− r2/a2
, ρ0ρ

i j =
√

1− r2/a2

(
1 0
0 1/r2

)
. 0 < r < a. (10)

2.2 Acoustic Wave Propagation on the Einstein Cylinder

The variational principle, Eq. (4), with underlying metric, Eq. (9), generates the
acoustic wave equation as geodesics for field φ on the Einstein cylinder R×S2. The
associated Euler-Lagrange equation is

∆R×S2φ =− 1
c2

∂ 2φ

∂ t2 +

√
1− r2/a2

r
∂

∂ r

(
r
√

1− r2/a2 ∂φ

∂ r

)
+

∂ 2φ

∂ ϕ2 = 0, (11)

where ∆R×S2 is the Laplace-Beltrami operator on manifold R×S2. For the deriva-
tion in the general case with pseudo-Riemannian manifold M see [14].

The solution φ(t,r,ϕ) for wave equation, Eq. (11), displays a harmonic depen-
dence in the time variable t and for azimuthal angle ϕ . All of the non-trivial be-
haviour is contained in the radial dependence, as expected. Employing the standard
technique, separation of variables [7] yields a solution of the general form

φ(t,r,ϕ) = φ1(r)
[
Acos

(√
λct
)
+Bsin

(√
λct
)][

C cos
(√

µ ϕ

)
+Dsin(

√
µ ϕ)

]
(12)

with
(

1− r2

a2

)
φ
′′
1 +

(
1
r
− 2r

a2

)
φ
′
1 +(λ −µ)φ1 = 0, (13)

where φ1 = φ1(r) is the radial function, λ ,µ > 0 are the harmonic eigenvalues, and
A, . . . ,D are integration constants. The general analytic solutions of Eq. (13) can be
expressed in terms of a hypergeometric series and Meijer-G functions. (see e.g. [1]).
In practice, however, a semi-numerical approach is advisable, where Eq. (13) is
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assessed numerically. Of significant interest are also certain limiting cases; e.g note
that for r→ a the r-dependent solution approaches φ1(r)∼ ea(λ−µ)r.

3 Conclusions

The acoustic analogue of the Einstein cylinder is a particularly intriguing model for
transformation physics as it was the first and simplest cosmological model to be
formulated within Einstein’s geometric gravity.

Whereas in gravity the Einstein-cylinder world requires space to be filled with
a uniform static mass-energy distribution, we have shown that its acoustic pendant
requires for its metamaterial implementation a bulk modulus and isotropic density
which display a specific radial dependence, viz. Eq. (5).

We have also outlined how a covariant variational principle gives rise to the
wave equation for the acoustic potential which provides the complete description of
acoustic free-wave phenomena with the underlying spacetime of an Einstein cylin-
der. Although fully analytic solutions are available in terms of hypergeometric series
and Meijer-G functions, it might be more practicable to numerically approximate
the radial dependence of the potential via the derived second-order linear differen-
tial equation of Sturm-Liouville type. Time and azimuthal angular dependence are
harmonic and pose no difficulties.

The variational spacetime approach to transformation acoustics supplies a pow-
erful tool for the study and design of acoustic metadevices. It may help to open up
new research pathways in this field, overcoming challenges in the engineering of
acoustic phenomena with curved background spacetimes.
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