
Modeling Uncertainty for
Reliable Probabilistic Modeling
in Deep Learning and Beyond

November, 2021

Autor: Juan Maroñas Molano

Directores: Roberto Paredes Palacios
Daniel Ramos Castro

This dissertation is submitted for the degree of
Doctor of Philosophy

Department of Computer Science

I received a new Ballade from Chopin. It seems to be a work closest to his
genius (although not the most ingenious) and I told him that I like it best of
all his compositions. After quite a lengthy silence he replied with emphasis, ’I
am happy to hear this since I too like it most and hold it dearest.

Robert Schumann

iii

Summary

This thesis is framed at the intersection between modern Machine Learning
techniques, such as Deep Neural Networks, and reliable probabilistic model-
ing. In many machine learning applications, we do not only care about the
prediction made by a model (e.g. this lung image presents cancer) but also
in how confident is the model in making this prediction (e.g. this lung image
presents cancer with 67% probability). In such applications, the model assists
the decision-maker (in this case a doctor) towards taking the final decision. As
a consequence, one needs that the probabilities provided by a model reflects
the true underlying set of outcomes, otherwise the model is useless in practice.
When this happens, we say that a model is perfectly calibrated.

Bayes Decision Rule provides a principled framework for decision making under
uncertainty and guarantees optimal performance (i.e. minimum error proba-
bilities). For Bayes Decision Rule to work, one needs to use a calibrated model
since that implies that the model has (better) recovered the data generating
distribution. Calibration is not the only thing that matters, but also the re-
finement which is the ability of the classifier to recover how the data of the
different classes are separated.

However, modern machine learning techniques, such as Deep Neural Networks,
are uncalibrated, which compromises their deployment in high-risk applica-
tions. Many works have attempted to solve the miscalibration of modern Deep
Neural Networks, and this is one of the main objectives of this thesis.

v

This thesis starts by reviewing the elements involved in Bayes Decision Rule,
through the lens of Proper Scoring Rules. This let us introduce one of the key
concepts, at least in my personal opinion, that one should take into considera-
tion in order to train a machine learning model. This is the data uncertainty in
the target distribution, i.e. how the different samples from the different classes
overlap. This observation is used in the first contribution of this thesis to
justify why any Data Augmentation techniques will not guarantee calibrated
distributions, even though empirical evidence has been provided in the oppo-
site direction. We show how a proposed loss function that takes into account
data uncertainty solves the miscalibration introduced by Mixup training, a
state-of-the-art Data Augmentation technique.

However, since Deep Neural Networks are expensive models to train, techniques
that aim at implicitly calibrate these models are costly to be deployed in prac-
tice since one has to deal with model selection techniques. To this end, the
second contribution proposes to recalibrate the output of a Deep Neural Net-
work using a Bayesian Neural Network. With this, we show that one can use
expressive models as long as uncertainty is incorporated, which contrasts with
many of the recent contributions that hypothesize that the calibration space is
inherently simple because simpler techniques work better than their complex
counterparts. We also show that the main criticism of Bayesian techniques,
when applied to modern Neural Networks, is overcome by combining the capa-
bilities of Deep Neural Networks with the proposed decoupled Bayesian Neural
Network.

One of the problems of Bayesian Neural Networks is the specification of a mean-
ingful prior in the parameter space that induces a useful prior in the function
space. A bad specified prior will wrongly bias the way we quantify uncertainty
with the posterior, leading to suboptimal Bayesian predictions. In the final
contribution of this thesis, we introduce a new prior that directly applies to
the function space, named the Transformed Gaussian Process. This new prior
over functions is constructed by warping samples from a Gaussian Process
using an invertible transformation. These warping functions are parameter-
ized by Bayesian Neural Networks, which allow us to model non-stationary
processes accounting for parameter uncertainty, clearly improving the perfor-
mance over the point estimate counterpart. We introduce a sparse variational
inference algorithm that allows us to lighten the computational burden that
we would inherit from standard Gaussian Processes, to target the intractable
posterior, to train the model using Stochastic variational inference and to use
any observation model; among other nice properties.

vi

Resumen

Esta tesis se enmarca en la intersección entre las técnicas modernas de Machine
Learning, como las Redes Neuronales Profundas, y el modelado probabilístico
confiable. En muchas aplicaciones, no solo nos importa la predicción hecha por
un modelo (por ejemplo esta imagen de pulmón presenta cáncer) sino también
la confianza que tiene el modelo para hacer esta predicción (por ejemplo esta
imagen de pulmón presenta cáncer con 67% probabilidad). En tales aplica-
ciones, el modelo ayuda al tomador de decisiones (en este caso un médico) a
tomar la decisión final. Como consecuencia, es necesario que las probabilidades
proporcionadas por un modelo reflejen las proporciones reales presentes en el
conjunto al que se ha asignado dichas probabilidades; de lo contrario, el mod-
elo es inútil en la práctica. Cuando esto sucede, decimos que un modelo está
perfectamente calibrado.

La regla de decisión de Bayes proporciona un marco fundamentado para la
toma de decisiones en condiciones de incertidumbre y garantiza un rendimiento
óptimo (es decir, probabilidades mínimas de error). Para que funcione la regla
de decisión de Bayes, es necesario utilizar un modelo calibrado, ya que eso
implica que el modelo ha recuperado (approximado mejor) la distribución de
generación de datos. La calibración no es lo único que importa, sino también
el refinamiento que es la capacidad del clasificador para recuperar cómo se
separan los datos de las diferentes clases.

Sin embargo, las técnicas modernas de aprendizaje automático, como las re-
des neuronales profundas, no están calibradas, lo que compromete su imple-
mentación en aplicaciones de alto riesgo. Numerosos trabajos han intentado

vii

solucionar el error de calibración de las redes neuronales profundas modernas,
y este es uno de los principales objetivos de esta tesis.

Esta tesis comienza revisando los elementos involucrados en la regla de decisión
de Bayes, a través de las denominadas Proper Scoring Rules. Esto nos permite
introducir uno de los conceptos clave, al menos en mi opinión personal, que se
debe tener en cuenta para entrenar un modelo de aprendizaje automático. Esta
es la incertidumbre de los datos en la distribución objetivo, es decir, cómo se
superponen las diferentes muestras de las diferentes clases. Esta observación se
utiliza en la primera contribución de esta tesis para justificar por qué cualquier
técnica de aumento de datos no garantizará distribuciones calibradas, a pesar
de que la evidencia empírica se ha proporcionado en la dirección opuesta.
Mostramos cómo una función de pérdida propuesta que tiene en cuenta la
incertidumbre de los datos resuelve el error de calibración introducido por el
entrenamiento Mixup, una técnica de aumento de datos de última generación.

Sin embargo, dado que las redes neuronales profundas son modelos costosos
de entrenar, las técnicas que tienen como objetivo calibrar implícitamente es-
tos modelos son costosas de implementar en la práctica, ya que uno tiene que
lidiar con técnicas de selección de modelos. Para ello, la segunda contribución
propone recalibrar la salida de una Red Neural Profunda usando una Red Neu-
ral Bayesiana. Con esto, mostramos que se pueden usar modelos expresivos
siempre que se incorpore la incertidumbre, lo que contrasta con muchas de las
contribuciones recientes que plantean la hipótesis de que el espacio de cali-
bración es inherentemente simple porque las técnicas más simples funcionan
mejor que sus contrapartes complejas. También mostramos que la principal
crítica de las técnicas bayesianas, cuando se aplican a las redes neuronales mod-
ernas, se supera combinando las capacidades de las redes neuronales profundas
con la red neuronal bayesiana desacoplada propuesta.

Uno de los problemas de las redes neuronales bayesianas es la especificación
de un prior significativo en el espacio de parámetros que induce un prior útil
en el espacio funcional. Un priori mal especificado sesgará erróneamente la
forma en que cuantificamos la incertidumbre con el posterior, lo que conducirá
a predicciones bayesianas subóptimas. En la contribución final de esta tesis,
presentamos un nuevo previo que se aplica directamente al espacio funcional,
denominado Transformed Gaussian Process. Esta nuevo prior sobre el espa-
cio de funciones se construye deformando muestras de un proceso gaussiano
utilizando una transformación invertible. Estas funciones de deformación es-
tán parametrizadas por redes neuronales bayesianas, que nos permiten modelar
procesos no estacionarios que tienen en cuenta la incertidumbre de los parámet-
ros, mejorando claramente el rendimiento sobre La estimación puntual. Intro-

viii

ducimos un algoritmo de inferencia variacional escasa que nos permite aligerar
la carga computacional que heredaríamos de los procesos gaussianos están-
dar, aproximar al posterior intratable, entrenar el modelo usando inferencia
variacional estocástica y usar cualquier modelo de observación; entre otras
propiedades.

ix

Resum

Aquesta tesi s’emmarca en la intersecció entre les tècniques modernes d’aprenentatge
automàtic, com les xarxes neuronals profundes, i el modelatge probabilístic fi-
able. En moltes aplicacions, no només ens preocupa la predicció feta per un
model (aquesta imatge pulmonar presenta càncer), sinó també la confiança del
model per fer aquesta predicció (aquesta imatge pulmonar) presenta càncer
amb probabilitat de 67 %). En aquestes aplicacions, el model ajuda el que
pren la decisió (en aquest cas un metge) a prendre la decisió final. Com a
conseqüència, cal que les probabilitats que proporciona un model reflecteixin
el veritable conjunt subjacent de resultats, en cas contrari, el model no serà
inútil a la pràctica. Quan això passa, diem que un model està perfectament
calibrat.

La regla de decisió de Bayes proporciona un marc de principis per a la presa de
decisions sota incertesa i garanteix un rendiment òptim (és a dir, probabilitats
mínimes d’error). Perquè la regla de decisió de Bayes funcioni, cal utilitzar
un model calibrat, ja que això implica que el model ha recuperat (millor) la
distribució que genera dades. La calibració no és l’únic que importa, sinó
també el refinament que és la capacitat del classificador per recuperar la forma
en què es separen les dades de les diferents classes.

Tot i això, les tècniques modernes d’aprenentatge automàtic, com les xarxes
neuronals profundes, no estan calibrades, cosa que compromet el seu desplega-
ment en aplicacions d’alt risc. Molts treballs han intentat resoldre l’error de
calibració de les xarxes neuronals profundes modernes, i aquest és un dels
principals objectius d’aquesta tesi.

xi

Aquesta tesi comença revisant els elements implicats en la regla de decisió de
Bayes, a través de la lent de les regles de puntuació adequades. Això ens per-
met introduir un dels conceptes clau, almenys en la meva opinió personal, que
s’hauria de tenir en compte per formar un model d’aprenentatge automàtic.
Aquesta és la incertesa de les dades en la distribució objectiu, és a dir, com
se superposen les diferents mostres de les diferents classes. Aquesta observació
s’utilitza en la primera contribució d’aquesta tesi per justificar per què qual-
sevol tècnica d’augment de dades no garantirà distribucions calibrades, tot i
que s’han aportat proves empíriques en la direcció contrària. Mostrem com
una proposta de funció de pèrdua que té en compte la incertesa de les dades
resol el mal calibrat introduït per l’entrenament Mixup, una tècnica d’augment
de dades d’última generació.

Tanmateix, atès que les xarxes neuronals profundes són models cars per entre-
nar, les tècniques que volen calibrar implícitament aquests models costen de
desplegar-se a la pràctica, ja que s’ha de fer front a tècniques de selecció de
models. Per a això, la segona contribució proposa recalibrar la sortida d’una
xarxa neuronal profunda mitjançant una xarxa neuronal bayesiana. Amb això,
demostrem que es poden utilitzar models expressius sempre que s’incorpori
la incertesa, cosa que contrasta amb moltes de les recents contribucions que
hipoteten que l’espai de calibratge és intrínsecament senzill perquè les tècniques
més senzilles funcionen millor que les seves contraparts complexes. També de-
mostrem que les principals crítiques a les tècniques bayesianes, quan s’apliquen
a les xarxes neuronals modernes, es superen combinant les capacitats de les
xarxes neuronals profundes amb la xarxa neuronal bayesiana desacoblada pro-
posada.

Un dels problemes de les xarxes neuronals bayesianes és l’especificació d’un
prior significatiu a l’espai de paràmetres que indueix un prior útil a l’espai de
funcions. Un anterior especificat malament esbiaixarà erròniament la manera
de quantificar la incertesa amb el posterior, la qual cosa conduirà a predic-
cions bayesianes subòptimes. En la contribució final d’aquesta tesi, introduïm
un nou prior que s’aplica directament a l’espai de funcions, anomenat Procés
Gaussià Transformat. Aquest nou anterior sobre funcions es construeix mit-
jançant la deformació de mostres d’un procés gaussià mitjançant una trans-
formació inversible. Aquestes funcions de deformació estan parametritzades
per les xarxes neuronals bayesianes, que ens permeten modelar processos no
estacionaris que tinguin en compte la incertesa dels paràmetres, millorant clara-
ment el rendiment respecte a la contrapart estimada per punts. Introduïm un
algorisme d’inferència variacional escassa que ens permet alleugerir la càrrega
computacional que heretaríem dels processos gaussians estàndard, orientar-nos

xii

a la part posterior intractable, entrenar el model mitjançant la inferència varia-
cional estocàstica i utilitzar qualsevol model d’observació; entre altres boniques
propietats.

xiii

Acronyms

MLE: Maximum Likelihood Estimation.

ERM: Empirical Risk Minimization

VRM: Vicinal Risk Minimization

KLD: Kullback Leibler Divergence

DNN: Deep Neural Network

CNN: Convolutional Neural Network

BNN: Bayesian Neural Network

DA: Data Augmentation

TS: Temperature Scaling

NE: Network Ensembles

MAP: Maximum A Posterior

SGD: Stochastic Gradient Descent

RHS: Right Hand Side

ARC: Auto Regularized Confidence

ARC_V1: Version 1 of Auto Regularized Confidence

xv

ARC_V2: Version 2 of Auto Regularized Confidence

CCE: Categorical Cross Entropy

MMCE: Maximum Mean Calibration Error

ELBO: Evidence Lower Bound

ELL: Expected Log Likelihood

VUE: Variance Under Estimation

VI: Variational Inference

MFVILR: Mean-field Variational Inference with Local Reparameterization

MFVI: Mean-field Variational Inference

GP: Gaussian Process

DSVI: Double Stochastic Variational Inference

DGP: Deep Gaussian Process

WGP: Warped Gaussian Process

V-WGP: Variational Warped Gaussian Process

SVGP: Sparse Variational Gaussian Process

TGP: Transformed Gaussian Process

BATGP: Input-dependent Bayesian Transformed Gaussian Process

PETGP: Input-dependent Point Estimate Transformed Gaussian Process

MCMC: Markov Chain Monte Carlo

HMC: Hamiltonian Monte Carlo

NUTS: No U-Turn Sampler

MC: Monte Carlo

BDR: Bayes Decision Rule

BRisk: Bayes Risk

xvi

PSR: Proper Scoring Rule

BS: Brier Score

LS: Logarithmic Score

ECE: Expected Calibration Error

MCE: Maximum Calibration Error

ACC: Accuracy

RMSE: Root Mean Squared Error

NLL: Negative Log-likelihood

SAL: Sinh-Arcsinh-Linear

MCDROP: Monte Carlo Dropout

VWCI: Variance-Weighted Confidence-Integrated Loss

SP: Softplus

xvii

Acknowledgments

First, I will like to acknowledge my family, since that is the most important
thing one has in any step taken during his life.

On the other hand, I thank Roberto and Daniel for being my advisors and
giving me the opportunity to pursue a PhD, and obviously to the PRHLT
research center. They support me and provide advice in different ways, which
have made me a better researcher, and even more important, a better person.
I thank Jose Miguel Benedí as well for opening the doors of his office each time
I needed.

Moreover, I am super proud of having such wonderful research internship ad-
visors: Costantino Grana and Theo Damoulas. Both gave me the opportunity
to feel part of his group during my collaborations and I am really happy with
the results obtained during these internships.

During my PhD, I met wonderful people like Mario Parreño, Salva, Federico
Bolleli, Federico Pollastri, Laura, Michele, Stefano, Jeremias, Patrick, James,
Ayman, Virginia, Maud, Kangrui, Deniz, Ollie and many more both in the
Warwick Machine Learning group, the AimageLab and the PRHLT.

Finally, I really thank all the people involved in this thesis review period either
as a principal or substitute reviewer, since in any case, they allocated time for
being able to review this manuscript. This includs Daniel Hernandez Lobato,
Luciana Ferrer, Thang D. Bui, Arno Solin, Stefanos Eleftheriadis, Francois-
Xavier Briol, Carlos Alaiz, Mauricio Alvarez, Paco Casacuberta, Jose Miguel
Benedí and Michael Thomas Smith.

xix

Contents

Summary v

Contents xxi

1 Introduction 1
1.1 Motivation . 2

1.1.1 Intuition behind the necessity of having calibrated classifiers. 3
1.2 Overview of Contributions . 4
1.3 Thesis Structure . 5

2 Background 7
2.1 Bayes Decision Rule . 7

2.1.1 Classification . 7
2.1.2 Regression and Unconditional Modeling 10

2.2 Calibration and Refinement . 12
2.2.1 Proper Scoring Rules . 12
2.2.2 Decomposing Proper Scoring Rules 16
2.2.3 Illustrating PSR decomposition with an example 17
2.2.4 Calibration, Refinement and Bayes Decision Rule 21
2.2.5 Measuring Calibration . 23

2.3 How does learning techniques meet model calibration and refinement . . . 24
2.3.1 Maximum Likelihood Estimation 24
2.3.2 Empirical Risk Minimization 26
2.3.3 Divergence Minimization and Overfitting 27
2.3.4 Regularization . 29

xxi

Contents

2.3.5 Bayesian Learning . 30
2.3.6 Model misspecification . 33

3 Implicit Calibration of Deep Neural Networks using Mixup
Training 35
3.1 From Empirical to Vicinal Risk minimization 35

3.1.1 Mixup Training . 37
3.2 Does Mixup Training really achieves Model Calibration? 37

3.2.1 Data Augmentation and Model Calibration 38
3.2.2 Mixup and Model Calibration 39

3.3 The Auto Regularized Confidence Loss Function 42
3.3.1 Proposed Solution . 43
3.3.2 Motivation behind the two loss variants 45

3.4 Experimental Evaluation . 45
3.4.1 Experimental Details . 45
3.4.2 Reported Results . 47
3.4.3 Analysis of Results . 48
3.4.4 A final insight on the experiments 50

3.5 Conclusions . 51

4 Recalibration of Deep Probabilistic Models using Bayesian
Neural Networks 53
4.1 Introduction to Post Calibration . 54

4.1.1 Deep Neural Networks are Uncalibrated 55
4.1.2 The benefits of post-calibration techniques 56

4.2 Bayesian Neural Networks as Post-Calibration technique 56
4.2.1 Bayesian Modeling and Calibration 59
4.2.2 Proposed Solution . 60
4.2.3 Chapter Summary . 69

4.3 Experiments . 70
4.3.1 Experiments set up . 70
4.3.2 Bayesian vs Non-Bayesian Linear Regression 72
4.3.3 Selecting optimal K on validation 73
4.3.4 Calibration performance of BNN 73
4.3.5 Comparison Against state-of-the-art calibration techniques 76
4.3.6 Qualitative Analysis . 80

4.4 Discussion . 81
4.5 Conclusions and Future Work . 81

5 Transformed Gaussian Process as a new prior over functions 83
5.1 Standard Gaussian Process . 84

xxii

Contents

5.1.1 Introduction . 84
5.1.2 Bayesian predictions using GP 86
5.1.3 Bayesian Model Selection 87
5.1.4 Benefits of Bayesian Learning Using Gaussian Processes . 88
5.1.5 Drawbacks of Bayesian Learning Using Gaussian Processes 88

5.2 Sparse Gaussian Process . 89
5.3 Transformed Gaussian Processes . 92

5.3.1 Model Description . 93
5.3.2 Input-dependent Flows 94
5.3.3 Bayesian Priors on Flows 96
5.3.4 Induced Distributions . 97

5.4 Inference in the Transformed Gaussian Process 98
5.4.1 Sparse Prior . 98
5.4.2 Choice of the Variational Distribution 100
5.4.3 Evidence Lower Bound 100
5.4.4 Input Dependent Flows 103
5.4.5 Computational benefits of the approximate posterior . . . 105

5.5 Warped Gaussian Processes . 105
5.6 Predictions . 107
5.7 Experimental Evaluation . 108

5.7.1 Bayesian Input Dependent TGP 108
5.7.2 Calibration Properties of the TGP 109
5.7.3 Computational Performance of the TGP 116
5.7.4 Uncertainty handled by the GP and TGP 117
5.7.5 Applications . 118

5.8 Conclusions and Future work . 120

6 Conclusions and Future Work 121

A Additional Calibration Results in Chapter 3 123
A.1 Additional Loss Analysis . 123

A.1.1 Accuracy Improvement 123
A.1.2 Further discussion about hyperparameter search 124

A.2 Additional Results . 125

B Experimental Details of the Transformed Gaussian Process 127
B.1 Flow Parameters Initialization . 127

B.1.1 Initializing Flows from Data 128
B.1.2 Initializing Flows approximately to Identity 129
B.1.3 Initialization of Input-dependent flows 129

B.2 Experiment Details . 129

xxiii

Contents

B.2.1 Regression and Classification 129
B.2.2 Real World Experiments 131

Bibliography 133

xxiv

List of Figures

1.1 Figure obtained from (Pollastri et al. 2021b) showing images of a renal
biopsy captured with a fluorescence microscope presenting mesangial (a),(b)
and parietale (c),(d) patterns. Its labeling is ambiguous among experts. . . 3

2.1 Toy example illustrating the concept of refinement and resolution for differ-
ent prior probabilities and different data generating distribution p(X|Y). . 18

2.2 This figure illustrates the concept of calibration. 20
2.3 Comparison of decision rule obtained with the data generating distribution

and a model that is uncalibrated. 22

3.1 This figure illustrates the effect of Mixup on the data distribution showing
that the generated samples can or cannot be representative of the data
generating distribution. 40

4.1 A graphical description of the proposed architecture 57
4.2 Decision thresholds learned by a Neural Network on a 2-D toy dataset prob-

lem where four classes are considered. The plots compare predictions done
with a MAP estimation of the parameters and Bayesian predictions using
samples drawn via HMC . 58

4.3 This figure shows the prior over functions that different BNN likelihood
models induce when a standard Gaussian prior is placed over its parameters. 63

4.4 Comparison of ECE performance between TS and BNN in test and valida-
tion sets, showing the robustness to hyperparameters in the BNN training
algorithm. 78

xxv

List of Figures

5.1 This figure illustrates samples drwan from a Gaussian Process using different
covariance functions. 85

5.2 Graphical depiction of a Deep Gaussian Process with one GP per layer. The
output of one GP is the input to the next GP in the hierarchy. 92

5.3 Illustration of a flow constructed as in Equation 5.11 with K = 3. The
parameters of the flow were obtained from one of the experiments ran in
this work. 94

5.4 This figure illustrates the effect of an input dependent flow on the resulting
marginal distributions. 95

5.5 A pictorial representation of our general formulation that highlights the role
of the Neural Network in the Transformed Gaussian Process. 96

5.6 Comparison of NLL and RMSE between the different TGP parameteriza-
tions and the SVGP. 109

5.7 Example of Bayesian and non-Bayesian warping functions obtained with
input-dependent flows. 110

5.9 Comparing NLL accross 9 regression datasets for several number of inducing
points. 113

5.10 Comparing RMSE accross 9 regression datasets for several number of in-
ducing points. 114

5.11 Results for the TGP evaluated in classification datasets. 115
5.12 Average clock times for 100 runs comparing TGP, SVGP and DGP. . . . 116
5.13 This figure shows the mean and covariance from the GP variational distri-

bution q(f0) evaluated at 100 training points of the TGP model. 117
5.14 Model fits on PM25 with 5% of inducing points comparing the TGP with

the V-WGP and SVGP. 119
5.15 RMSE results evaluating the TGP against SVGP and V-WGP on the Air

quality and Rainfall application. 119
5.16 Spatial median predictions from a V-WGP, TGP and SVGP on the Switzer-

land daily rainfall dataset (units in 10 µm). 120

xxvi

List of Tables

3.1 Table showing average accuracy and ECE in (%) of all the models considered
in this work . 48

3.2 Table showing the accuracy and ECE in (%) of the best model per task and
technique. 48

3.3 This table shows the results of applying the ARC loss just to a validation set. 50

4.1 Calibration ECE (%), and accuracy (ACC) (%) performance for averages
of several logistic models trained for three of the databases considered in
this work. ACC the higher the better, ECE the lower the better.
. 72

4.2 Average ECE 15(%) and ACC (%) on the test set comparing the uncali-
brated model, and the model calibrated with MFVI and MFVILR for each
database. ECE the lower the better, ACC the higher the better. "degr"
means degraded
. 74

4.3 MFVI compared to MFVILR in CIFAR100. * means best model on validation 75
4.4 Average number of parameters (in thousands). 76
4.5 Average ECE results compared against explicit calibration techniques. . . 77
4.6 Average ECE results compared against implicit calibration techniques. *

indicates that the results are taken from the original works. We also include
TS. Results from TS and our approach differ from Table 4.5 as we only pick
the DNN used in the explicit techniques. 79

A.1 This table shows different calibration metrics for average results. ACC in
(%), MCE in (%), BS ×100 and LS 125

xxvii

List of Tables

A.2 This table shows different calibration metrics for the best model per task
and technique. ACC in (%), MCE in (%), BS ×100 and LS 125

xxviii

Chapter 1

Introduction

Describing the processes that drive the evolution of nature is one of the classical
concerns of human being. The field of Machine Learning or Pattern Recogni-
tion (which in my opinion are different ways of talking about the same thing)
addresses this objective from the perspective of assuming that the sources of
variation to be modeled can be described by some unknown function F∗ (that
usually represents some degree of uncertainty), which is learned by feeding
some data D into an algorithm A.
The success of the representation learned by F∗ mainly depends on the ex-
pressiveness and inductive bias from the set of possible F , the quality of D in
representing the task to learn, and the effectiveness and time required by A to
select the best possible F∗.
For this reason, it wasn’t until the introduction of the AlexNet in 2012 (Krizhevsky
et al. 2012), when practitioners realized that Machine Learning techniques
could suppose a breakthrough in the way we describe nature. Since then, Ma-
chine Learning algorithms have shown an outstanding representation power
in many areas of human understanding like for example Machine Translation
(Vaswani et al. 2017), Speech Recognition (Graves et al. 2013) or Computer
Vision (He et al. 2016a).

1

Chapter 1. Introduction

In my opinion, the contributions of this paper have also inspired ways of boost-
ing other classical branches from this field such as Gaussian Processes (GP)
(Rasmussen et al. 2005) or Markov Chain Monte Carlo (MCMC) algorithms
(Brooks et al. 2011); by the use of for example: parallel computations in mod-
ern GPUs, automatic differentiation, or the use of stochastic gradients to scale
computation to large datasets.

1.1 Motivation

Due to the versatility of these models, especially those parameterized by Deep
Neural Networks (DNN), practitioners use them in applications where we do
not only care about the decision to be taken but also about its reliability –
for example when using a Convolutional Neural Network (CNN) to provide a
confidence for an image presenting some form of disease (Pollastri et al. 2021b),
see Figure 1.1.

In such situations, optimal performance (w.r.t. some loss function) is guar-
anteed if one takes an action based on Bayes Decision Rule (BDR), where a
correct modeling of data uncertainty is mandatory. However, the expressive-
ness and inductive biases of DNN, which is what makes them an appealing tool
to represent high dimensional distributions in a successful way, is not accom-
panied by a correct modeling of this data uncertainty. In other words, DNN
are not well-calibrated. This fact limits their applicability in high risk decision
applications, such as medical diagnosis (Caruana et al. 2015), self-driving cars
(Bojarski et al. 2016), robotics (Kober et al. 2013), forensic science (Ramos
et al. 2021) and many more.

In other words, one can achieve optimal performance if decisions are taken
using the probability distribution that has generated the data. However, be-
yond simple cases1, characterizing a complete distribution requires storing an
infinity amount of samples. As a consequence, the goal of a practitioner is to
set a model F∗ as close as possible to this data generating distribution. To do
so, several strategies can be used, such as: encoding desirable inductive biases
in the set of possible F , optimizing the expected value of a proper scoring rule
(Degroot et al. 1983), minimizing a distance or divergence between the model
and the data distribution, account for epistemic uncertainty by integrating out
the model parameters (Wilson et al. 2020), encoding prior beliefs in the mod-
eling process (Rasmussen et al. 2005), combining several probabilistic models
(Dietterich 2000) etc.

1For example the trivial case in which data is generated from some known distribution.

2

1.1 Motivation

1.1.1 Intuition behind the necessity of having calibrated classifiers.

An intuitive motivation to the necessity of having calibrated classifiers is ex-
posed by considering a task where the reliability of the decision to be taken is
important.

Figure 1.1 shows a renal biopsy captured on a fluorescence microscope present-
ing mesangiale and parietale patterns. The labeling procedure of this pattern
is ambiguous among experts. Thus, in this task, our goal as machine learning
practitioners is not to provide the final decision on whether an image presents
the pattern or not, but to assist the medical expert giving a degree of belief (in
form of a probability distribution) towards the image presenting the possible
patterns. The medical expert uses our information and combines it with its
expert knowledge towards taking a final action, for example, perform or not
perform a surgery or perform or not perform additional costly diagnostic tests.

From this example, it is clear that our probability distribution will only be
useful if it reflects the true state of nature, i.e. if it is reliable. For example,
if we say that an image presents mesangiale patterns with 0.51 probabilitiy,
then the medical expert might decide not to make additional tests since the

Figure 1.1: Figure obtained from (Pollastri et al. 2021b) showing images of a renal biopsy
captured with a fluorescence microscope presenting mesangial (a),(b) and parietale (c),(d)
patterns. Its labeling is ambiguous among experts.

3

Chapter 1. Introduction

probability of the pattern being present is just 0.51. But if we then take
1000 images presenting similar patterns and 995 actually present a mesangiale
pattern, then the medical expert would have taken a decision with drastic
consequences since the real proportion of samples presenting the pattern is
0.995 and thus, for this particular case, the medical expert would have decided
to make additional checks. In this case, our confidence 0.51 is not reliable (is
not well-calibrated) since it does not represent the real proportion of 0.995.

When a probability distribution reflects this proportion (this data uncertainty),
we say that it is calibrated, but we will see later that calibration implies opti-
mality in a much deeper sense, through the lens of Bayes Decision Rule.

1.2 Overview of Contributions

This thesis is focused on the intersection between DNN and model calibration,
with a special emphasis on how accounting for different types of uncertainty
can help to yield more calibrated predictions. In particular, the contributions
of this thesis are three fold.

First, we make use of Bayes Decision Rule to justify why DNN trained with data
augmentation techniques are not necessarily calibrated, in contrast with recent
contributions. We show that a popular DA technique, named mixup, does not
necessarily provide calibrated distributions and we show how to fix this by
proposing a loss function that takes into account data uncertainty (Maroñas
et al. 2021a). This opens a new perspective to design new loss functions to
train reliable probabilistic models.

Second, we show how DNN can be calibrated by using an expressive post
calibration stage if one takes into account parameter uncertainty. So rather
than designing DNN that are explicitly calibrated, for example by using a
deep ensemble, a much lighter model is used to map the uncalibrated logits
from DNN into calibrated ones. For the purpose of this mapping we make
use of a Bayesian Neural Network (BNN) with mean-field variational inference
(Maroñas et al. 2020). We provide a wide analysis on the usage of BNN for
this task and open new perspectives for future improvements based e.g. on
robustness to prior misspecification.

Third, we propose a new non-parametric non-stationary prior over functions,
named the Transformed Gaussian Processes (TGP) (Maroñas et al. 2021b).
We show that, beyond other nice properties, TGP can provide much better
calibrated outputs than standard Gaussian Processes (GP), and similar pre-

4

1.3 Thesis Structure

dictions to Deep Gaussian Processes (DGP) (Damianou et al. 2013), but at
a much lower computational cost. Thus, the TGP is a candidate for further
exploration to be used as a post-hoc calibration stage, something to be done
in future work.

1.3 Thesis Structure

The remaining content of the thesis is organized as follows:

Chapter 2: this chapter serves as an introduction and motivation of the
concepts and techniques that are used in the subsequent chapters.

Chapter 3: this chapter introduces a new paradigm in designing loss
functions for probabilistic models that encourages the model to learn
calibrated distributions using the uncertainty presented in the data and
the learned representations.

Chapter 4: this chapter shows how can we can calibrate Deep Neural
Networks by mapping its uncalibrated logits using a Bayesian Neural
Network.

Chapter 5: this chapter introduces the Transformed Gaussian Process,
a non-parametric non-stationary function over priors that can correctly
model uncertainty at a fraction of the computational cost.

Chapter 6: this chapter presents conclusions and future lines of direc-
tion.

The complete list of references and contributions achieved during the three
year period of this thesis (February 2018 - November 2020) are listed below:

• Transforming Gaussian Processes with Normalizing Flows, AISTATS 2021,
(Maroñas et al. 2021b), First author.

• Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural
Networks, Neurocomputing 2020, (Maroñas et al. 2020), First author.

• On Calibration of Mixup Training For Deep Neural Networks, SSPR 2021,
(Maroñas et al. 2021a), First author.

• Confidence Calibration for Deep Renal Biopsy Immunofluorescence Image
Classification, ICPR 2020, (Pollastri et al. 2021b), Second author.

5

Chapter 1. Introduction

• Third position in 2019 ISIC cancer detection challenge, First Author.

• A Deep Analysis on High Resolution Dermoscopic Image Classification,
Revista. (Pollastri et al. 2021a) Third Author. This paper extends the
work and models used in the ISIC competition.

• Improving Calibration by Considering Uncertainty in Feature-Based LA-
ICP-MS Forensic Glass Comparison, (Ramos et al. 2021), First author.

• CULAYERS, a GPU library based on CUDA that is used in the EDDL
Library, a high performing computing library used within the Deep Health
European Project, https://deephealth-project.eu/

• Generative models for deep learning with very scarce data, CIARP 2018,
(Maroñas et al. 2019), First author.

6

https://deephealth-project.eu/

Chapter 2

Background

This chapter introduces the use of Bayes Decision Rule through
Proper Scoring Rules and information theory. We then show the
caveats of approximating data generating distributions with a model
and motivate the use of uncertainty quantification through Bayesian
modeling.

2.1 Bayes Decision Rule

We start by introducing Bayes Decision Rule (BDR) in the context of class
conditional probabilistic classifiers, although this exposition also holds for re-
gression and unconditional modeling. We briefly show the connection at the
end of this first subsection.

2.1.1 Classification

Throughout this exposition X ∈ X ⊂ Rd will refer to the input of a class
conditional probability distribution p(Y|X) and Y ∈ Y ⊂ N to its categorical
label with C possible states. We will refer to the probability assigned towards
a particular class c as p(Y = c|X). With D = {Xn,Yn}Nn=1 we denote a set of
N observations assumed to be drawn i.i.d. from p(Y|X)p(X).

BDR relies on taking the action α∗ that minimizes the conditional risk (BRisk):

7

Chapter 2. Background

BRisk(α|X,Y) =
C∑
c=1

L(α, c)p(Y = c|X)

α∗ = argmin
1≤c≤C

BRisk(α = c|X,Y)

(2.1)

where L(α, c) is a loss function which measures the discrepancy between the
action taken α and the true state of nature c. An example of a loss function
in a regression problem is the squared loss:

L(α, c) = (α− c)2 (2.2)

In classification scenarios, however, it is more intuitive to define loss functions
that directly penalize the action taken: assign class α when the value of the
ground truth class is c. One consequence is that this loss function can encode
background knowledge about the problem in which this probabilistic classifier
is being used, and we illustrate it through an example.

Example 2.1.1. Consider a binary classification problem in which a decision
maker1 receives an image X and has to decide if this image presents a lung
cancer Y = 1 or the patient is healthy Y = 0. Given the image, the posterior
probability p(Y|X) encodes the degree of uncertainty around the two possible
states. Note that, in this context, the goal of the probabilistic classifier is not
to decide which is the correct class, but to assist the oncologist by providing a
confidence that can be used towards making the final decision. For example,
if the probabilistic classifier assigns a confidence 0.99 towards Y = 1, then
the oncologist will be biased towards deciding action: decide cancer than if the
probability is 0.53. In this scenario, BDR allows the oncologist to encode his
expert knowledge in the loss function so that minimizing BRisk provides the
optimal action. A possible loss function for this problem can be:

L(α = 0,Y = 1): Decide no cancer when there is actually a cancer.

L(α = 1,Y = 0): Decide cancer when there is actually no cancer.

L(α = 0,Y = 0): Decide no cancer when there is actually no cancer.

L(α = 1,Y = 1): Decide cancer when there is actually cancer.

where reasonable values for these losses are given in the following table:
1An oncologist in this case.

8

2.1 Bayes Decision Rule

HH
HHHα

c 0 1

0 0.05 0.8
1 0.15 0.0

With these losses, being wrong when taking the action α = 0 (decide no cancer)
is much more penalized (0.8) than the opposite (0.0). This is to be expected
as it is undesirable to decide no cancer when there is a cancer. This is also
encoded through the loss L(α = 0,Y = 0) having a value different from 0.0,
because this penalizes deciding no cancer even when the patient image does not
present cancer. With this setting, the decision threshold to take action α = 0
is given by p(Y = 0|X) > 0.89, which is a much more restrictive probability
than the usual threshold α = 0.5, which is to be expected as deciding no cancer
can have drastic consequences.

It can be shown, that taking the action with lower BRisk guarantees optimal
performance (Duda et al. 2000), i.e. it minimizes the probability of error for a
given X. Thus, this decision procedure minimizes the expected Risk or error
probability, given by2:

p(error) =

∫
BRisk(α|X,Y)p(X)dX =∫ C∑

c=1

L(α, c)p(Y = c|X)p(X)dX
(2.3)

Note that in the case in which we use a zero-one Loss L(α, c) = 0, α = c and
L(α, c) = 1, α 6= c (the case in which each error is equally important), then
the optimal error probability is the minimum error rate of the classifier:

p∗(error) =

∫
[1− p(Y = α∗|X)] p(X)dX (2.4)

which is the common rule used when benchmarking models in the context of
e.g. image classification (Deng et al. 2009). In this case the conditional risk is

2This probability of error is known as Bayes Risk. We note that in this work, our notation
BRisk might led to confusion. However, we do so to differentiate it from the procedure of empirical
risk minimization discussed in subsequent chapters.

9

Chapter 2. Background

minimized by using the Maximum a Posterior (MAP) rule, i.e. select α∗ = c if
p(Y = c|X) > p(Y 6= c|X).

We shall note that one might not see the connection between minimum error
rate and optimal error probability directly. The error rate is commonly com-
puted by the proportion of incorrect samples over the total amount of samples,
while the error probability depends directly on the average of the probabilities
assigned to a set of samples; so we might initially think that these two concepts
are different. However, if we are given a set of 10 inputs X all of them belong-
ing to class c with 0.9 probability, then if this probability distribution reflects
the true state of nature, we would expect that 9 out of 10 samples belong to
class c. Thus, the accuracy of this classifier will be 9/10 (so the error rate is
0.1) which coincides with the optimal error probability, given by 1− 0.9 = 0.1.

2.1.2 Regression and Unconditional Modeling

To complete our introduction of BDR we shall briefly discuss the cases in which
rather than a class conditional probability we directly model p(X), and we do
it jointly with the discussion of a regression model where the dataX is modeled
as a Gaussian distribution: p(X) = N (X|µ, σ2).

Contrary to common text books (e.g. (Murphy 2021)) we derive the optimal
action using the absolute loss, and let the square loss derivation as an exercise.
This optimal action minimizes the error probability, which in this case is given
by:

p(error) =

∫
|α−X|p(X|µ, σ2)dX =∫ α

−∞
(α−X)p(X|µ, σ2)dX +

∫ ∞
α

(X − α)p(X|µ, σ2)dX (2.5)

We just have to check the following two conditions:

dp(error)
dα

= 0

d2p(error)
dα2

> 0

(2.6)

10

2.1 Bayes Decision Rule

Starting with the first derivative, we rely on Leibniz integral rule to obtain the
derivative of the integration limits. This yields, for the first term in the RHS
of Equation 2.5:

d
dα

∫ α

−∞
(α−X)p(X|µ, σ2)dX =

(α− α)p(α) +

∫ α

−∞

d
dα

(α−X)p(X|µ, σ2)dX =∫ α

−∞
p(X|µ, σ2)dX

(2.7)

Similarly, the second therm in RHS is given by −
∫∞
α
p(X|µ, σ2)dX. By plug

in this derivation in Equation 2.5, and then equaling 0, we arrive at:∫ α

−∞
p(X|µ, σ2)dX =

∫ ∞
α

p(X|µ, σ2)dX (2.8)

and the value at which both integrals are equal is the α = 0.5 quantile also
known as the median3. For the second derivative, we start from the result of
the first derivative obtained above. Now making use of the first fundamental
theorem in calculus:

d
dα

∫ α

−∞
p(X|µ, σ2)dX −

∫ ∞
α

p(X|µ, σ2)dX =

d
dα

∫ α

−∞
p(X|µ, σ2)dX −

[
1−

∫ α

−∞
p(X|µ, σ2)dX

]
=

2p(α|µ, σ2) ≥ 0

(2.9)

for any value of α, since the probability density function is always either zero
or positive. This shows that the optimal action to take given the absolute loss
is the median of the distribution, which is µ in this case since the median of
the Gaussian distribution is given by its mean µ.

A similar analysis shows that for the squared error loss in Equation 2.2, the
value of α that minimizes the error probability is given by the mean µ.

3Note that these integrals represent the definition of cumulative distribution functions.

11

Chapter 2. Background

2.2 Calibration and Refinement

In the introduction of BDR we have assumed that we have access to the data
generating distribution p(Y,X). However, in practice, since this distribution
p(Y,X) is unknown, a practitioner has to define a model pθ(Y,X) parame-
terized by θ and define A so that, in the ideal case, pθ(Y,X) = p(Y,X). The
trivial case, implies having an infinite amount of data, i.e. the entire distribu-
tion, where the model is given by the empirical distribution:

pθ(Y,X) = lim
N→∞

1

N

N∑
n=1

δ(X −Xn)δ(Y −Yn) = p(Y,X) (2.10)

with δ(X) being the Dirac measure. This is obviously impractical in real
scenarios.

In this subsection we introduce the concept of calibration and refinement
through the lens of Proper Scoring Rules and information theory and, at the
end of this section, we will show the relationship between many other tech-
niques used in the learning process e.g. maximum likelihood, Bayesian infer-
ence, divergence minimization or empirical risk minimization, among others;
showing they are all equivalent.

This calibration and refinement decomposition will allow us to analyze the pro-
cess of approximating a distribution p(X,Y) with a model pθ(X,Y), with the
purpose of being used as a motivation behind some of the techniques presented
later in this thesis.

2.2.1 Proper Scoring Rules

Let’s denote with t ∈ P to a probability distribution assigned to a particular
Xn, i.e. t = pθ(Y|Xn), where P is the set of all probability distributions on
Y. In this case, pθ(Y|Xn) just represents our guess about the probability
distribution over Y in form of a vector. So this can be, for example, the
output of a Deep Neural Network feed into a softmax activation function4.

(Informally5) a scoring rule is a function S : P×Y → R that provides a reward
based on your reported belief t and the true outcome Yn. Two examples of

4Note that we don’t assume that pθ(Y|Xn) is a probability distribution as the Categorical
likelihood, but just a vector of probabilities obtained by our model θ.

5See (Gneiting et al. 2007) for an exact definition.

12

2.2 Calibration and Refinement

well known scoring rules for classification scenarios are the Brier Score (BS)
and the Log Score (LS):

LS = log pθ(Y = Yn|Xn)

BS =
C∑
c=1

(1[c=Yn] − pθ(Y = c|Xn))2
(2.11)

Given another distribution q(Y) ∈ P, we can define the expected score as:

S(t, q(Y)) =
C∑
c=1

q(Y = c)S(t, c) (2.12)

where q(Y) is an object representing optimality in some sense, in this case
being the proportion of true outcomes6. So this is, basically, the average of all
your scoring rules weighted by the frequency of a particular label Y. It must
hold that:

S(t, q(Y)) ≤ S(q(Y), q(Y)) (2.13)

for the scoring rule to be proper and positive oriented. This means that the
value at which the scoring rule is maximum is the value in which your predicted
probabilities t are equal to the ground truth distribution q(Y). If the Proper
Scoring Rule (PSR) is negatively oriented then the above inequality changes
the direction. The PSR is said to be strictly proper if the above inequality is
strict. An example of a negative and positive oriented scoring rules are the
Brier Score and the Logarithmic Score respectively.

Note that if we want to consider all possible inputs X then we must take the
expected value, yielding the final expected score defined as:

S(t, q(Y)) =

∫
p(X)

C∑
c=1

q(Y = c|X)S(t, c)dX (2.14)

Since in practice we don’t have access to the true state of nature represented
by p(X)q(Y|X) we approximate the above expectation by taking the expected

6This has been so far denoted by p(Y|X) but we change the use of p by q to make the difference
between the model and the data distribution more visually clear.

13

Chapter 2. Background

value over the empirical distribution q(Y|X)p(X) = 1
N

∑N
n=1 δ(Y−Yn)δ(X−

Xn)7, yielding the usual definition we see of these scoring rules in the literature:

LS ≈ 1

N

N∑
n=1

log pθ(Y = Yn|Xn)

BS ≈ 1

N

N∑
n=1

C∑
c=1

(1[c=Yn] − pθ(Y = c|Xn))2

(2.15)

On the other hand, if for each sample X, we are directly given the vector of
probabilities q(Y|Xn)8, then the expected score is given by:

LS ≈ 1

N

N∑
n=1

C∑
c=1

q(Y = c|Xn) log pθ(Y = c|Xn)

BS ≈ 1

N

N∑
n=1

C∑
c=1

q(Y = c|Xn)
C∑
c′=1

(1[c′=c] − pθ(Y = c′|Xn))2

(2.16)

Note moreover that from Equation 2.13 one could be tempted to think that a
PSR can be derived from a statistical divergence such as the Kullback-Leibler
divergence (KLD). This is because statistical divergences are a measure of sim-
ilarity between two probability distributions (q(Y) and t here), which is only
0 when both distributions are the same. In fact, the reader is not misguided
since Proper Scoring Rules are Bregman Divergences (Gneiting et al. 2007),
being the KLD a member of this family. In fact the LS is derived from the
KLD, while the Brier score is derived from the Euclidean distance. This gen-
eralization of scoring rules give us a way to generalize the concepts of entropy,
cross-entropy and divergence, but more important, it allows us to construct
any scoring rule from a Bregman Divergence of interest. For example since the
KLD is non robust to outliers, we can use a robust divergence such as the β
divergence that since it is also a Bregman Divergence, it allows us to construct
a robust scoring rule.

From the definition of PSR, we can see that it is a way to evaluate the goodness
of the predictions w.r.t. the target distribution, because the PSR is optimum
if your predicted probabilities t equal the ground truth q(Y). In practice, and

7This is equivalent to say that we approximate the expectation by a Monte Carlo where samples
are obtained from p(X,Y).

8For example X is a tweet that has probability 0.8 of being misogynist and 0.2 of being racist.

14

2.2 Calibration and Refinement

in this particular discussion, t refers to the model probability pθ(Y|X) while
the target distribution q(Y) will be given by the data distribution p(Y|X).
Thus it seems reasonable to optimize the expected score in order to learn a
model that parameterizes our probability distribution of interest, because the
optimal value of the PSR is the value at which your model has recovered the
data distribution, and hence our decisions will be optimal attending to Bayes
Decision Rule.

One of the interesting properties of PSR is that this goodness can be measured
by three quantities into which the PSR can be decomposed, see Theorem 4
from (Degroot et al. 1983) and (Bröcker 2009). Due to their connection with
information theory, we first define three information theory concepts:

Entropy: The entropy of a distribution p(X) measures the information about
the random variable X, taking a minimum value of 0 when there is no ran-
domness in X. This quantity is defined as:

H(X) = −
∫
p(X) log p(X)dX (2.17)

Conditional Entropy: The conditional entropy of a random variable Y given
a realization of another random variable X measures the information about
the random variable Y once we observe X. If knowing X give us all the
information about Y then the conditional entropy is minimum and takes a
value of 0. It is defined as:

H(Y|X) = −
∫
p(Y,X) log

p(Y,X)

p(X)
dXdY (2.18)

Mutual Information: The mutual information measures the dependence be-
tween two random variables X,Y. In other words, it measures the amount
of information obtained about one random variable when observing the other
one. For example, if X,Y are independent then the mutual information is
zero. It can be decomposed as:

I(Y,X) = H(Y)−H(Y|X) (2.19)

15

Chapter 2. Background

2.2.2 Decomposing Proper Scoring Rules

We can now define the three quantities into which a PSR can be decomposed,
see (Bröcker 2009):

Uncertainty : The uncertainty measures the inherent lack of knowledge around
the label Y, in other words, it is the entropy of the prior probability over the
labels. Note that in the extreme case in which p(Y = c) = 1, then our lack of
knowledge is zero and the prediction done by a classifier will always be class c.

Resolution / Sharpness: The resolution measures how the probability assigned
to a particular sample, given by p(Y|Xn), differs from the average probability
of the ground truth, i.e. from the prior probability p(Y). In other words, if
after observing X we don’t get more information about our label Y beyond
that provided by the prior probability, then our resolution will be zero. This
gives us an interpretation of the resolution as the mutual information between
Y and X. The case in which the resolution is zero can be seen as a case
in which knowing X does not provide further information about Y, i.e. both
random variables are independent and as a consequence do not share mutual
information. An example of resolution being zero could be a case in which
the prior probability of observation p(Y = 1) = 0.8, and our model always
predicts probability p(Y|X) = 0.8 for any input X.

Calibration / Reliability : The calibration measures how the probability as-
signed by the model towards a class c, pc = p(Yn = c|Xn), differs from the
frequency of ground truth outcomes with assigned probability pc. For example
if given a set {Xn}Nn=1 the ground-truth outcome {Yn = 1}Nn=1 is given with
0.8 frequency (i.e. out of N = 10 samples 8 belong to class 1) then a model is
calibrated if p(Yn = 1|Xn) = 0.8, ∀n ∈ {1, . . . , N}.
From this decomposition, we can introduce the concept of refinement. The
refinement is the difference between the uncertainty H(Y) and the resolution
I(Y,X), so it can be seen as the posterior entropy H(Y|X) about the label Y,
once the dataX is observed. In other words, it measures how much uncertainty
do we reduce about Y once X is observed. Thus, the refinement measures
how separated the distributions are. For example, if the distributions being
considered are totally overlapped (bad refinement), then observing a sample
X will not provide any information about Y and hence our best guess is the
prior probability about the labels Y. In such a case, the refinement of our
classifier cannot be better than the uncertainty because the mutual information
between the variables is 0 as knowing X does not tell anything about Y, due
to the complete overlapping. On the other hand, if our distributions are totally

16

2.2 Calibration and Refinement

separated, then observing a sample X will provide us all the information about
which class this sample belongs to, which means H(Y|X) = 0. In this case, all
the uncertainty is reduced, i.e. the information gain I(X,Y) is maximal (equal
to the entropy of the label Y), which means that we gain all the information
around our label Y once we observed X, by reducing our prior uncertainty
encoded in H(Y). In this case, the refinement is the best possible. Finally,
note that there would not be a way to completely define the label Y if there is
some kind of overlap between the distributions, because in the regions where
the distributions overlap, we would lose information (i.e.H(Y|X) > 0) and the
refinement is affected. In this case, the mutual information could not reduce
all the entropy over the labels. Another case in which the refinement is the
best possible is when the entropy over the marginal distribution p(Y) is zero,
because in such a case only one class is presented and our lack of knowledge is
zero (H(Y|X) = 0) even-though the mutual information is also 0.

2.2.3 Illustrating PSR decomposition with an example

The following visual example introduces the three concepts just discussed,
in order to provide some light into the descriptions provided above. To do
so we use a binary classification problem where p(X|Y = c) is a Gaussian
distribution. We also vary the prior over the classes p(Y). In the case in which
p(Y = 1) = 0 then H(Y) = 0 while H(Y) ≈ 0.69 when uncertainty around a
label is maximal p(Y = 1) = 0.59. We have assumed a BDR in which a zero-one
loss is used, which corresponds to the MAP decision threshold. In the Binary
classification problem this corresponds to a threshold set by p(Y = 1|X) = 0.5.
The entropy is computed analytically while the rest of the quantities, posterior
entropy and posterior distribution, are computed numerically, using 1 million
samples drawn from both distributions. We only display a subset of these
samples in the figures. Note that the following example will hold for any
number of arbitrary classes.

Resolution and Refinement

We start by providing some light into the concept of refinement and resolution.
Figure 2.1 shows the toy example introduced above with different configura-
tions, where one class is represented with red crosses and the other is repre-
sented with blue circles. On the top row the prior probability p(Y = 1) = 0.5,
while in the middle p(Y = 1) = 0.999 and the bottom row is the case in which
p(Y = 1) = 1. From left to right we show distributions in which the class con-

9The values of entropies provided in the example are measured in nats.

17

Chapter 2. Background

H(Y) = 6.93e-01
H(Y|X) = 9.14e-07
p(Y = 1) = 0.500

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 6.93e-01
H(Y|X) = 3.56e-02
p(Y = 1) = 0.500

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 6.93e-01
H(Y|X) = 6.93e-01
p(Y = 1) = 0.500

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 7.91e-03
H(Y|X) = 3.79e-10
p(Y = 1) = 0.999

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 7.91e-03
H(Y|X) = 8.28e-04
p(Y = 1) = 0.999

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 7.91e-03
H(Y|X) = 7.91e-03
p(Y = 1) = 0.999

Y = 1

Y = 0

p(Y = 1|X) = 0.5

H(Y) = 0.00e+00
H(Y|X) = 0.00e+00
p(Y = 1) = 1.000

Y = 1

Y = 0

p(Y = 1|X) = 0.5

Figure 2.1: Toy example illustrating the concept of refinement and resolution for different
prior probabilities and different data generating distribution p(X|Y). From left to right we
present a figure showing good, bad and worst possible refinement.

ditional probability p(X|Y = red) has been varied in order to be more or less
separated from the blue distribution. In black we show the decision threshold
obtained by the optimal rule w.r.t. the zero-one loss function. In a box, we
display the value of the entropies and conditional entropies. As will become
clear later, it is important to note that the posterior probabilities used to com-
pute these quantities has been obtained numerically using the data generating
distributions p(Y) and p(X|Y = c).

First, note that the refinement measures how separated both distributions are.
On each row, we can see that the refinement from the left plot is better than
from the right, as measured by H(Y|X). This is because for a particular value
of X, we will be placed in one of the two distributions. When the distributions
are very separated, there is no uncertainty around which label Y the feature X
belongs to, i.e. we have removed all our lack of knowledge encoded in H(Y),

18

2.2 Calibration and Refinement

while this uncertainty grows when the distributions start to overlap. When
there is a total overlapping, the refinement is given by the uncertainty because
in this case knowing X will not tell anything about Y beyond what the prior
probability says and our refinement is the worst possible, given by H(Y).

On the other hand, when the prior probability is more informative (middle
row) the values of the posterior entropy H(Y|X) are lower than those of the
top row comparing each of the columns. This is because the information that
observing a particular value of X provides is the same for both rows, but
because the prior in the middle row is more informative, there is an extra
lowering of uncertainty coming from this knowledge and the overall refinement
is better.

We can also see the connection between uncertainty, resolution and refinement
from this example. The resolution measures how much information we gain
about Y once X is observed. When the refinement is better, the resolution
is also better because knowing X is more informative about Y. When the
distributions overlap the resolution of the classifier is 0 as we cannot do better
than predict the prior probability, which is the reason why uncertainty and
refinement are the same. When the distributions start to overlap (middle
column), we lose resolution due to the lack of knowledge about which is the
ground truth Y once X is observed.

The last case is the one given in the bottom row. Note that when the prior
probability over one class is 1.0, then the refinement is perfect although the
resolution is the worst possible. In this particular case knowing X does not
provide information aboutY because all the uncertainty in Y has already been
reduced.

Finally, it is worth mentioning that a good or bad refinement implies that
the error probability of our classifier is different. Even in the particular case
in which we classify correctly all of our test data (100% accuracy) a better
refinement implies a lower probability of error as can be seen by solving Equa-
tion 2.4. This is a very important fact when evaluating the performance of a
classifier, as a finite test sample size can bias the conclusions we draw.

19

Chapter 2. Background

Calibration

Figure 2.2 illustrates the concept of calibration. To do so, we rely on the
same example as above. In this case we pick the slice in which the posterior
probability is within a confidence range, for example 0.9 ≤ p(Y = 1|X) ≤ 1.0.
Then we pick all the samplesX that lie in this range and compute the frequency
of those with Y = 1. Note that we can say that a model is calibrated when
P (Y = 1|t) = t, ∀t ∈ [0, 1], where remember t denotes the probability assigned
by the classifier t = pθ(Y|X). Thus, a model is calibrated if this equality holds
in expectation:

Ep(t) [P (Y = 1|t)− t] = 0 (2.20)

Accuracy 0.126
Confidence 0.123

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.1 ≤ p(Y = 1|X) ≤ 0.15

Accuracy 0.516
Confidence 0.500

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.475 ≤ p(Y = 1|X) ≤ 0.525

Accuracy 0.766
Confidence 0.776

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.75 ≤ p(Y = 1|X) ≤ 0.8

Accuracy 0.658
Confidence 0.124

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.1 ≤ p(Y = 1|X) ≤ 0.15

Accuracy 0.866
Confidence 0.500

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.475 ≤ p(Y = 1|X) ≤ 0.525

Accuracy 0.946
Confidence 0.775

Y = 1

Y = 0

p(Y = 1|X) = 0.5

0.75 ≤ p(Y = 1|X) ≤ 0.8

Figure 2.2: This figure illustrates the concept of calibration. From left to right, we eval-
uate the proportion of samples with Y = 1 and the corresponding average confidence. We
highlight the samples that belong to a posterior confidence region, marked in gray. The
background color indicates the posterior probability assigned by the classifier. Top row il-
lustrates a calibrated classifier while bottom row an uncalibrated one. We can see that when
the model is perfectly calibrated (up to error introduced by finite sample estimation) for any
t the proportion of samples with Y = 1 equals t.

As we can see, calibration is a way to measure how accurately do we model
the uncertainty in our data distribution. When this uncertainty is correctly
modeled, the calibration is perfect. This means that a model is calibrated
when the probability assigned to the different regions in the input space X
reflect the inherent overlapping of our data distributions. This is the same as

20

2.2 Calibration and Refinement

saying that a model is calibrated when the probability assigned by a model in
a region reflects the proportion of samples of each class in that region. As will
become clear in the next section, it is important to note that the confidences
in the calibrated plot are computed using the posterior probability obtained
by the data generating mechanism given by p(Y) and a Gaussian distribution
for p(X|Y) while the posterior confidences of the uncalibrated plots (bottom
row) has been obtained by a non linear transformation applied to the posterior
confidences: we have raised them to the power of 5 and then renormalize.

2.2.4 Calibration, Refinement and Bayes Decision Rule

We started section 2.2 by noting that the goal of a practitioner is to set a
model pθ(Y|X) that should recover the data generating distribution p(Y|X).
We have also seen that the refinement and the calibration are properties that
characterize p(Y|X). Given some data, the best possible refinement we can
have is given by the overlapping between the different classes, while the cal-
ibration error can always be reduced to zero as this just implies assigning
probabilities that reflect this degree of overlapping. As highlighted previously,
the refinement computation and the calibrated picture in the toy example was
done using a numerical approximation to the data generating posterior distri-
bution i.e. pθ(Y|X) = p(Y|X) while the uncalibrated one was computed using
pθ(Y|X) 6= p(Y|X). This shows that when we use the PSR as our training
objective, in its maximum S(q(Y), q(Y)), i.e. when pθ(Y|X) = p(Y|X) the
calibration will be reduced to zero while the refinement will be intrinsic to
p(Y|X).

Our goal is then, to set a model pθ(Y|X) that can separate the classes, i.e. it
can recover the refinement, and that is able to assign the probabilities depend-
ing on the degree of uncertainty between our classes, i.e. it is able to have zero
calibration error. When this is achieved, we know that our model will have re-
covered the data generating distribution and thus taking decisions using BDR
will provide optimal performance. Figure 2.3 shows the decision thresholds,
given a zero-one loss, obtained with a model where the calibration has been
affected.

It is clear then that a model that recovers the refinement but has a bad cali-
bration, will not provide the optimal model in order to make decisions. This
means that by calibrating a model we can improve the error probability and
thus the accuracy of our classifier. A nice example of this effect is provided by
(Cohen et al. 2004).

21

Chapter 2. Background

Bayes Threshold

Model Threshold

Figure 2.3: Comparison of decision rule obtained with the data generating distribution
and a model that is uncalibrated. The uncalibrated model has been obtained by taking the
data generating distribution and shifting the probabilities. Hence the refinement remains
unaltered.

This contrasts with the common motivation in the recent literature of the
necessity of having a calibrated classifier. Due to the overconfidence in DNN
(Zhang et al. 2017) which has been shown to affect the calibration of these
models (Guo et al. 2017), practitioners usually motivate the need of having
a calibrated classifier in order to provide reliable predictions that reflect the
proportion of outcomes, an attempt to reduce this overconfidence. However,
calibrating a model implies both: having reliable predictions but also improving
the accuracy of your classifier, since it implies approaching the data generating
distribution and thus obtaining minimum error probability. In other words,
calibration implies optimality.

Finally, it is important to note that the refinement and the calibration are
decoupled properties, as having a good/bad calibration does not imply having
a good/bad refinement. For example, a model with perfect calibration and
worst refinement is a prior classifier, i.e. when the distributions totally overlap,
while a distribution that has perfect refinement and worst possible calibration
could be a model where the classes are totally separated but the probabilities
assigned by the model have been rotated. It shall be noted that both properties
must be recovered by our model, with the difference that the refinement can
only be the best possible if the distributions are separated in origin, while
the calibration error can always be reduced to 0. This point is the central
observation of the contribution in chapter 3.

22

2.2 Calibration and Refinement

2.2.5 Measuring Calibration

Once the concepts of calibration and refinement have been introduced, we now
present different ways of measuring both properties.

As we can deduce from this chapter, we can measure the calibration and the re-
finement by using a PSR. To this end in this thesis we use both the Logarithmic
Score (LS) and the Brier Score (BS) given by Equation 2.15.

These PSR measure calibration and refinement in different ways. For example,
the LS heavily penalizes strong errors. Note that just one totally incorrect
sample (assign class c′ with probability 1 when the true label is c) will make the
LS saturate to −∞, no matter if the rest of the samples are perfectly classified
with confidence 1.0 (i.e. perfect calibration and refinement). This means that
the LS is suitable for tasks in which making a very wrong prediction is highly
risky. On the other hand, this effect is not present in the BS, as this scoring
rule is bounded between 0 and 1.

In addition to these PSR we need a metric that only measures the calibration
error. Note that, knowing that a PSR can be decomposed into calibration and
refinement does not mean we can actually compute both quantities separately.
For some cases, like the BS this is possible, but not for other PSR. For this
reason, in this thesis we also use two ways of measuring calibration that have
been proposed in the literature. These correspond to the Expected Calibration
Error (ECE) and the Maximum Calibration Error (MCE) (Naeini et al. 2015).

The ECE is derived by discretizing Equation 2.20. To do so the expectation
over p(t) is approximated by partitioning the confidence range into M bins
Bm each one having |Bm| samples with confidence lying in that bin. On each
of the bins, the average confidence avgconf(Bm) approximates t while the
accuracy acc(Bm) approximates p(Y = c|t). Then, a weighted sum of each of
these bins is taken. Thus for a total of N samples:

ECE =
M∑
m=1

|Bm|
N
|avgconf(Bm)− acc(Bm)| (2.21)

On the other hand, in high risk applications rather than taking the expectation
as in Equation 2.20, we might want the maximum of such difference. The MCE
approximates this quantity as follows:

MCE = max
1≤m≤M

|avgconf(Bm)− acc(Bm)| (2.22)

23

Chapter 2. Background

It shall be noted that these calibration metrics are not perfect but they have
been widely adopted in the literature. For a discussion on its caveats and
possible solutions see (Nixon et al. 2019).

Finally, note that in the four calibration metrics, the closer the value to 0, the
better-calibrated model.

2.3 How does learning techniques meet model calibration
and refinement

We end this chapter by showing the connection between PSR, refinement and
calibration, with common techniques used to learn model parameters. We
then briefly introduce the caveats of these techniques, motivating the use of
uncertainty quantification around the parameters of the model.

2.3.1 Maximum Likelihood Estimation

One traditional way of learning the parameters of a model is by maximizing the
log-likelihood function, a technique known as Maximum Likelihood Estimation
(MLE). By specifying the probability distribution that Y follows given X, for
example a Student-t likelihood if Y is assumed to be some point corrupted
with heavy-tailed noise, the log-likelihood function is given by:

log
N∏
n=1

pθ(Yn|Xn) (2.23)

where D = {Yn,Xn}Nn=1 is assumed to be drawn i.i.d. from the model distri-
bution, allowing the factorization above. The use of the log function serves for
several purposes such as allowing unbiased gradient estimates through mini
batching, well-behaved gradients, numerical stability etc.

When the likelihood function is the categorical distribution, it can be eas-
ily shown that the log-likelihood function is proportional to the Logarithmic
Scoring rule, while when pθ(Y|X) is a multivariate factorized Gaussian distri-
bution, with the mean bounded between 0 and 1 (using a sigmoid link function
for example), the log-likelihood function is proportional to the Brier Scoring

24

2.3 How does learning techniques meet model calibration and refinement

Rule (both defined in Equation 2.15), see (Bishop 1995)10. This can be easily
shown as follows. Let’s assume pθ(Y|X) is given by a categorical likelihood
where the parameters µ of the categorical likelihood are given by some model
(the output of a softmax function applied to the logit computed with a DNN).
The log-likelihood function is given by:

log
N∏
n=1

pθ(Yn|Xn)

log
N∏
n=1

C∏
c=1

µc(Xn, θ)
1[Yn=c] =

N∑
n=1

C∑
c=1

1[Yn=c] logµc(Xn, θ) =

N∑
n=1

logµYn
(Xn, θ) ∝ LS

(2.24)

showing the equivalence with the LS, since in Equation 2.15 pθ(Y|X) referred
directly to a vector of probabilities. Note that since the LS is scaled by a
constant 1/N, then it does not affect the result of the optimization so optimizing
the LS is equivalent to maximizing the log likelihood function assuming a
categorical likelihood. In a similar fashion, if pθ(Y|X) is given by a multivariate
Gaussian distribution11 with the mean vector µ given by the output of a model
which is then bounded between 0 and 1 using for example the sigmoid function
applied independently over each logit, and a constant diagonal covariance Σ ,
then the log function is given by:

log
N∏
n=1

pθ(Yn|Xn)

log
N∏
n=1

C∏
c=1

1√
2πσ

exp

(
−(1[c=Yn] − µc(X, θ))2

2σ2

)
=

10It shall be noted that in Equation 2.15, pθ(Y|X) refer to a general probability bounded between
0 and 1, without assuming any density function, which didn’t need to be defined to write the PSR.
In this paragraph, however, pθ(Y|X) refer to a specific density form.

11Clearly, this noise model does not make sense for discrete/classification problems.

25

Chapter 2. Background

N∑
n=1

C∑
c=1

log
1√
2πσ︸ ︷︷ ︸

Constant w.r.t. θ

+
N∑
n=1

C∑
c=1

(
−(1[c=Yn] − µc(X, θ))2

2σ2

)
=

−
N∑
n=1

C∑
c=1

(
1[c=Yn] − µc(X, θ

)2 ∝ −BS

where we have remove constants that does not affect the optimization beyond
scaling the gradients, something that is absorbed into the learning rate of the
optimizer. Note that maximizing this log-likelihood function is equivalent to
minimizing the BS.

Hence, in many common situations, maximizing the log-likelihood function will
optimize a PSR, providing calibrated outputs with a proper refinement. From
an intuitive point of view that is to be expected: if we assume that our data
follows a categorical distribution, then maximizing the log probability will be
achieved when the samples are assigned with confidence 1.0 to their correct
class. It is clear that if possible, the model will have a perfect refinement (all
the samples are correctly separated) with perfect calibration (all the samples
are classified with 1.0 confidence).

2.3.2 Empirical Risk Minimization

Another view point of this learning procedure is through the lens of empirical
risk minimization (ERM). Remember from the beginning of this section that
our goal is to minimize the error probability w.r.t. some loss function:

p(error) =

∫
L(X,Y, α)dP (X,Y) , (2.25)

Then it seems reasonable to learn a model that directly minimizes this error
probability. In other words, the model learns to take actions α based on the
target distribution and the loss associated with the predictions. However,
since we only have access to a sample which we assume belongs to P (X,Y),
the above integral can be approximated with the empirical loss:

1

N

N∑
i=n

L(X,Y, α, θ)δ(X −Xn)δ(Y −Yn). (2.26)

26

2.3 How does learning techniques meet model calibration and refinement

Empirical Risk Minimization is the name given to the learning procedure that
minimizes the empirical loss. If, for example, the loss function is the squared
loss: (α(Xn, θ) − Yn)2 then minimizing this objective is equivalent to maxi-
mizing the log Likelihood when we assume a factorized Gaussian observation
model pθ(Y|X) with constant variance, hence equivalent to minimizing the
Brier Scoring Rule if the mean is bounded between 0 and 1, as shown in the
previous subsection. This states a clear connection between ERM and MLE for
different loss functions and likelihood models (up to a 1/N factor).

Note that, in general, if we choose the loss function to be a PSR then ERM will
provide a model where both the refinement and the calibration are optimized
since optimum will occur at pθ(Y|X) = p(Y|X).

2.3.3 Divergence Minimization and Overfitting

When using an overparameterized model, such as a DNN, both MLE and ERM
can suffer from overfitting, unless: 1) the model parameterized by θ is well-
specified (i.e. it can parameterize the data generating distribution) and 2) we
have access to an infinite amount of samples from P (X,Y)12.

My favorite way of explaining the source of this overfitting is by noting that
both ERM and MLE are a surrogate of minimizing the Kullback–Leibler diver-
gence (KLD) between the data generating distribution and the model distribu-
tion:∫

p(X,Y) log
p(X,Y)

pθ(X,Y)
dXdY =∫

p(X,Y) log p(X,Y)dXdY︸ ︷︷ ︸
Entropy

−
∫
p(X,Y) log pθ(X,Y)dXdY︸ ︷︷ ︸

Cross-entropy

(2.27)

We can then minimize this divergence w.r.t. θ, and since the entropy is con-
stant w.r.t. θ and by approximating the expectation of the cross-entropy with
the empirical distribution we arrive at the empirical loss or the MLE criteria,
showing this equivalence.

12We obviously need, for example, a well-behaved learning algorithm, but these are the minimum
requirements to recover the data generating distribution.

27

Chapter 2. Background

argmin
θ

∫
p(X,Y) log p(X,Y)dXdY −

∫
p(X,Y) log pθ(X,Y) ≈

argmin
θ
− 1

N

N∑
n=1

δ(X −Xn)δ(Y −Yn) log pθ(Y|X)

(2.28)

On the other hand, instead of directly sampling from p(Y,X) to approximate
the empirical loss, we might be given for each sampleX the probability p(Y|X)
this X belongs to. For example X might represent a tweet and p(Y|X) is a
vector saying this tweet has 0.8 probability of being misogynist and 0.2 of being
racist. In this case the empirical loss is approximated by:

argmin
θ

∫
p(X,Y) log p(X,Y)dXdY −

∫
p(X,Y) log pθ(X,Y) ≈

argmin
θ
− 1

N

N∑
n=1

δ(X −Xn)
C∑
c=1

p(Y = c|X) log pθ(Y|X)

(2.29)

If pθ(Y|X) is a categorical likelihood an with a similar derivation as that in
Equation 2.24, we show this is equivalent to the LS when a vector of probabil-
ities is given, as in Equation 2.16.

It is well known that this form of KLD force the model pθ(X,Y) to cover
all the target distribution, see (Bishop 2006, p. 469), which includes outliers
or any unrepresentative source of variation from the objective p(Y|X). Other
ways of explaining overfitting include, e.g. the Vapnik–Chervonenkis dimension
(Vapnik et al. 1971). Obviously one can use a robust divergence to outliers,
such as the β divergence, so that the model is not forced to cover the tails of
the distribution. With this, we will arrive at a different training criteria.

To finish, we noted in a previous subsection that PSR are Bregman Divergences.
From the KLD divergence we can derive the LS, while with the euclidean dis-
tance we arrive at the BS. It is important to note that we have arrived at
both the LS and the BS through a different path by the maximum likelihood
training criteria (equivalent to KLD minimization) by assuming two different
observation models. As we noted, the difference between the Scoring rule and
the maximum likelihood paths is the model θ being a probability vector or a
probability density. Thus, in both cases, we can use alternatives to the KLD
to create robust scoring rules, which again are derived or can be justified via
different paths. What is important is that since all these different training

28

2.3 How does learning techniques meet model calibration and refinement

criteria are the same, all the ideas from scoring rules can be extrapolated into
maximum likelihood and vice-versa. In other words, the refinement and cali-
bration are things being optimized when doing maximum log likelihood, and
so any reasoning around these two concepts extrapolates.

2.3.4 Regularization

One way to avoid overfitting and improve generalization is by employing a set of
techniques known as regularization. This set of techniques can be divided into
groups. For example parameter sharing, Convolutional Neural Networks (and
more in general: inductive bias), max-norm etc. are techniques that restrict
the set of possible functions that the model can parameterize. On the other
hand, different stochastic optimization techniques can also improve generaliza-
tion by performing a better search over the parameter space. This includes
gradient clipping, learning rate scheduling, early stopping etc. Another way
to improve generalization is by employing data augmentation, which aims at
extending the set of samples used for training. This can be done by employing
transformations that are likely to produce samples representative of p(X,Y),
transformations that include samples in the vicinal of the empirical distribu-
tion (Chapelle et al. 2001) or transformations that include directions in the
data space in which the model drastically change its predictions (Szegedy et
al. 2014).

One of the most popular techniques to improve generalization relies on modi-
fying the objective function by adding a regularizer. Norm penalties (such as
the L1 or L2) over the parameters are quite popular choices. Depending on the
norm we can induce a different effect. For example, the L1 norm tends to shrink
the parameters of the model towards zero, and thus have been popularized as a
technique for model pruning, although is not a very good one and hierarchical
priors have shown an improvement upon them (Louizos et al. 2017a). These
norm penalties have a direct connection with Bayesian inference, perhaps one
of the (in theory) greatest and best founded ways of regularizing our model.

29

Chapter 2. Background

2.3.5 Bayesian Learning

We have seen so far that our goal is to approximate a target distribution
p(X,Y) with a model pθ(X,Y). However, the traditional learning techniques
introduced above will provide a single optimal θ̂ which represents all our knowl-
edge about the target distribution. In theory, the information contained in θ̂
will be enough under an ideal setting: 1) when the model is not misspecified
and 2) when we have an infinite amount of data, which is not true in practice.

Then since we won’t be able to characterize all our knowledge using a single θ̂,
it seems reasonable to model the degree of uncertainty around the parameter
θ, given the data. Bayes theorem provides all the theory we need to represent
this degree of uncertainty. For that, we can introduce a prior distribution
p(θ|γ) over the parameters θ, where γ parameterizes the prior. The purpose of
this prior is to encode our prior beliefs about the parameters. If for example
θ represents the mean of a population and we know that mean is within some
range, the prior distribution can restrict the set of values that θ can have.

By combining the prior and the likelihood, we can compute the posterior dis-
tribution, given by:

p(θ|Y,X, γ) =
pθ(Y|X)p(θ|γ)∫
pθ(Y|X)p(θ|γ)dθ

, (2.30)

which will represent the degree of uncertainty around the parameter, given
the data. Note that the combination of the likelihood and the prior leads
to a proper quantification of uncertainty. For ease of understanding, suppose
that our lack of knowledge about the parameter θ is maximal, i.e. we choose a
uniform distribution over the parameter13. Then it is clear that the posterior
will concentrate more density on parameters that agree more with the data,
i.e. that explains better the data.

On the other hand, we can interpret the effect of the prior as being a regu-
larizer. Thus, we could optimize this objective w.r.t. θ, a technique known as
Maximum a Posterior optimization, which is equivalent to L2 regularization
for the choice of a (centered) Gaussian prior, and L1 regularization for the
choice of a (centered) Laplace prior.

13We won’t discuss the particularities of improper priors and assume we always have a proper
posterior.

30

2.3 How does learning techniques meet model calibration and refinement

Furthermore, we can extend this formulation, by additionally placing a prior
over γ, leading to a hierarchical latent variable model. This allows us to encode
uncertainty on the prior as well. For example, if we know that our prior should
be a Gaussian distribution but we are not sure about the parameters that this
Gaussian should have, then we can impose a hyperprior distribution on the
parameters of this prior (that can be made uninformative). We can keep
increasing the hierarchy as desired.

Bayesian Predictions

In this subsection we are not interested in how we can compute this posterior
distribution (see chapter 4), but what are the appealing properties of using
Bayesian Learning. The first one is that it allows us to make predictions taking
into consideration the uncertainty around the set of possible parameters (also
known as epistemic uncertainty), encoded through the posterior distribution.

This is a direct consequence of applying the product rule and the marginal-
ization rule from probability theory. We start with the posterior predictive
distribution p(Y∗ |X∗ ,X,Y), which encodes the degree of uncertainty around
a prediction Y∗ given a test input X∗ , and the observed data X,Y14. We then
incorporate the parameters as a random variable and apply the product rule.
This is summarized in the following expression:

p(Y∗ |X∗ ,X,Y) =

∫
p(Y∗ , θ|X∗ ,X,Y)dθ =∫

p(Y∗ |X∗ , θ)p(θ|X,Y)dθ.
(2.31)

In this way, the prediction is based on the entire parameter space, where each
of the conditional probabilities p(Y∗ |X∗ , θ) are weighted according to the pos-
terior distribution. The parameters that explain the data better have a greater
influence on the final prediction because the posterior distribution will assign
high density to them.

This way of making predictions have several advantages. First note that be-
cause all the parameters (each one representing a model) contribute to the
prediction, the posterior predictive distribution is more robust to overfitting
and more representative of the data distribution than a point estimate selection

14Note that we are considering a class conditional setting but similar holds for unconditional
modeling.

31

Chapter 2. Background

of θ. Moreover, the model will make more reliable predictions in underrepre-
sented parts of the input space (where no data is available for learning), because
the posterior distribution will assign low density to parameters that explain
these regions in different ways, hence canceling the contributions between each
of them ending up with a high entropy class conditional probability.

Regarding this last paragraph, note that models that are likely to represent a
region of the input space where only samples from a particular class are present
will end up assigning high confidence to that particular class in that region,
because increasing the density towards other classes will not raise the likelihood
from the numerator in Equation 2.30. On the other hand, models that are likely
to explain regions where features from two or more classes overlap will be forced
to increase the probability density of both classes, thus relaxing the ultimate
confidence provided to those classes in that region of the input space15. This
behavior will favor probabilities that closely reflect the patterns shown in the
data, i.e. that are more representative of the data distribution. As we already
know from the discussion previous to this subsection, this better representation
leads to a better-calibrated model. This is the central point of the contribution
in chapter 4.

Bayesian Model Selection

The second appealing property of Bayesian learning is that it gives a principled
way for Model selection, which I prefer over the typical cross validation. Let’s
denote a model with M1 (for example an 18-layer Residual Network) and with
M2 a different model (a fully connected Neural Network). We could use the
posterior probability to choose which model to use, i.e. model the data with
M1 if p(M1|X,Y) > p(M2|X,Y). Assuming that we impose the same prior
over choosing any of the models p(M1) = p(M2) = 1/2. Then the model chosen
will be that in which p(X,Y|Mx) is greater.

Note that this probability is the denominator in Equation 2.30, which is known
as the marginal likelihood. As with any probability distribution, the marginal
likelihood must integrate to 1. This means that highly parameterized mod-
els will have to spread their probability between the different datasets it can
represent; and only when the given dataset is really well represented by this
particular model (for example images and Convolutional Neural Networks),
then the marginal likelihood of an expressive model will be greater than a
simpler one. In other words, using the marginal likelihood for model selection

15Note that this total confidence must sum up to 1.

32

2.3 How does learning techniques meet model calibration and refinement

implies selecting a model using a trade off between fitting the data and model
expressiveness, favoring simpler models. This implies a form of automatic
Occam’s Razor (MacKay 1992).

2.3.6 Model misspecification

So far in this chapter, we have assumed that either we have access to the data
generating distribution p(Y|X) or that our model pθ(Y|X) is well specified
in the sense that under some conditions previously outlined, the model can
recover the data generating distribution.

In practice, however, this is far from being true, and the model is usually
misspecified. This misspecification can happen at many levels. For example,
the likelihood might be misspecified w.r.t. the data generating distribution:
in practice, classifiers are usually trained by assuming that the observation
model follows a categorical (multiclass) or a Bernoulli (binary) likelihoods,
which impose independence between the classes, which is far from being true.
On the other hand, beyond regularization, one can derive training criteria from
robust divergences. This can make the model robust to outliers (Jewson et al.
2018), which is something a categorical likelihood in the absence of infinity
data and/or being a misspecified model will suffer from.

In terms of Bayesian inference, model misspecification clearly affects the perfor-
mance one can obtain when making predictions using the posterior predictive.
In fact, the Bayesian arguments that make Bayesian inference the (probably
best) tool to make predictions are only justified if the model is well specified
(Walker 2013; Knoblauch et al. 2019). In other words, inferences using uncer-
tainty quantification about a parameter θ are only justified if the prior and the
likelihood are well specified, as we will discuss further in this thesis.

It turns out that modern machine learning techniques are usually misspecified,
since they are complex black-box function approximators difficult to inter-
pret i.e. it is difficult to understand which types of functions a given black-
box approximator parameterizes. Hence, this lack of interpretability implies
that specifying meaningful prior/likelihoods for our application remains a chal-
lenging task. On the other hand, high dimensional distributions are hard to
analyze, which complicates the understanding of what kind of function param-
eterizes the distribution that represents this data.

Many alternatives have been proposed to overcome these limitations. On the
side of misspecified priors, one of my favorites is accounting for uncertainty in a
different way by changing the uncertainty quantifier, which is given by the KLD

33

Chapter 2. Background

in standard Bayesian inference (Knoblauch et al. 2019). This will be discussed
later in this thesis. On the side of likelihood misspecification perhaps the work
from (Bissiri et al. 2016) is one of the most prominent approaches. (Bissiri
et al. 2016) shows that one can properly account for parameter uncertainty by
defining loss functions that target our ultimate source of interest when making
predictions. For example, if we are concerned with making predictions about
the median, then rather than modeling the whole distribution (which can be
very difficult), (Bissiri et al. 2016) shows that we can obtain proper uncertainty
quantification in form of posterior distributions by just conducting inferences
about the median, i.e. by defining a likelihood and a prior on this quantity of
interest.

In any case, even in the misspecified setting being Bayesian usually provides
better predictions than using a point estimate of the parameters. Figure 4.2
compares the predictions of a Bayesian Neural Network where samples from the
posterior have been drawn using Hamiltonian Monte Carlo, vs the predictions
performed by a Neural Network where a single parameter θ̂ is obtained by
optimizing this posterior distribution. As discussed in subsection 4.2.1 we
can see how the probabilities of the Bayesian Neural Network better reflect
the data distribution, something not present in the point-estimate. In this
problem the Neural Network has a great chance of being misspecified w.r.t. the
data generating distribution since this data has been obtained using the same
procedure as the examples in this chapter and the observation model of this
Neural Network is categorical16.

16Remember samples from this toy problem are drawn by assuming that p(X|Y) is a Gaussian
distribution and p(Y) is a Categorical distribution. With these choices, we cannot compute the
posterior p(Y|X) analytically and hence we cannot assume is Categorical (the prior is not conjugate
of the likelihood), which is what I have assumed to train/perform-inference over the Neural Network.

34

Chapter 3

Implicit Calibration of Deep
Neural Networks using Mixup

Training

The third chapter of this PhD thesis is focused on the dis-
cussion around model calibration and data augmentation. We first
build upon the introduction about ERM and formally introduce Vic-
inal risk minimization and Mixup. Then we use the ideas of chapter
2 to justify why Mixup, and any Data augmentation technique in
general, will not provide calibrated distributions. We use these ideas
to propose our solution which is finally evaluated. All the content
in this chapter corresponds to (Maroñas et al. 2021a).

3.1 From Empirical to Vicinal Risk minimization

In chapter 2 we have introduced Empirical Risk Minimization (ERM) as a
learning technique of model parameters θ that minimize an empirical estimate
of the error probability w.r.t. a loss function, which we know is the target of
Bayes Decision Rule:

35

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

p(error) =

∫
L(X,Y, α, θ)dP (X,Y) ≈

1

N

N∑
n=1

L(X,Y, α, θ)δ(X −Xn)δ(Y −Yn).

(3.1)

One of the consequences of ERM is that it clearly lacks of support in many
different parts of the data distribution p(Y,X), which makes this learning
paradigm present some limitations such as overfitting, memorization (Zhang
et al. 2017), bad calibration (Guo et al. 2017), or sensitivity to adversarial
examples (Szegedy et al. 2014).

In fact this is to be expected. Remember that optimizing a PSR aims at
setting pθ(Y|X) = q(Y). So if q(Y) is a empirical distribution given by
Dirac measures, an overparameterized model pθ(Y|X) can learn this empirical
distribution so that pθ(Y|X) = q(Y) which in turns implies that it learns
to perfectly separate (perfect refinement) and assign extreme 1.0 confidences
(perfect calibration).

Vicinal Risk Minimization (VRM) (Chapelle et al. 2001) is proposed to solve
this lack of support in the input manifold. The idea is that the Dirac Delta
empirical distribution 1/N

∑N
n=1 δ(X−Xn)δ(Y−Yn) is replaced by a vicinity

distribution, which aims at exploring different parts of the input space in the
vicinity of the observed samples Xn,Yn. An example of a vicinity distribution
could be a Gaussian centered at each sample Xn. In practice, we then sam-
ple from this Gaussian distribution and recover an unbiased estimate of the
empirical loss.

1

N

N∑
n=1

∫
L(X,Yn, αn, θ)N (X|Xn, σ

2)δ(Y −Yn)dX ≈

1

N

N∑
n=1

L(Xnj,Y, αn, θ)δ(Y −Yn),Xnj ∼ N (X|Xn, σ
2).

(3.2)

Thus, note that any Data Augmentation (DA) technique can be understood
through the lens of Vicinal Risk Minimization.

36

3.2 Does Mixup Training really achieves Model Calibration?

3.1.1 Mixup Training

Many common DA techniques assume that the samples in the vicinity distri-
bution belong to the same class. The idea behind Mixup (Zhang et al. 2018)
relies on defining a vicinity distribution over the inputs X and over the labels
Y. This vicinity distribution is defined as the expected value of a linear inter-
polation between two input samples and their corresponding labels, where the
parameter of the linear interpolation γ follows a beta distribution parameter-
ized by ν:

p(X,Y|Xn,Yn) =

1

J

J∑
j=1

Eγ [δ(X − [γ ·Xn + (1− γ) ·Xj])δ(Y − [γ ·Yn + (1− γ) ·Yj])]
(3.3)

The empirical loss is now evaluated by drawing samples from this vicinity
distribution as follows:

Xn,Yn,Xj,Yj ∼ p(X,Y)

γ ∼ Beta(ν, ν)

X̃ = γ ·Xn + (1− γ) ·Xj

Ỹ = γ ·Yn + (1− γ) ·Yj

L(X̃, Ỹ, α, θ)

(3.4)

As a consequence, training with Mixup smooths the predictions performed by
a model in the intersection between samples from the unknown distribution
P (X,Y). This vicinity distribution showed a great improvement of the ac-
curacy of different models (Zhang et al. 2018), and has been established as a
common regularization technique, from which many different extensions have
been proposed e.g. (Yun et al. 2019; Verma et al. 2019; Hendrycks et al. 2020).

3.2 Does Mixup Training really achieves Model Calibration?

The fundamentals and good performance of Mixup training has motivated the
community towards exploring if this technique has other desirable properties
beyond improving the accuracy of a DNN. The work from (Thulasidasan et
al. 2019) studies the calibration and predictive uncertainty of Mixup against

37

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

other well-established calibration techniques. Beyond other properties, this
work shows that Mixup improves the calibration of DNN.

In this chapter, however, we discuss and provide empirical evidence that DNN
trained with Mixup do not necessarily improve calibration. To do so we rely
on the ideas presented in chapter 2, using them to propose a new loss function
that improves the calibration of DNN trained with Mixup.

The main takeaway from this chapter is not the uncalibration provided by
Mixup or how the proposed loss function improves the calibration, but the
ideas behind how do we arrive at the proposed loss function.

3.2.1 Data Augmentation and Model Calibration

We have seen in chapter 2 that the calibration and refinement of a probabilistic
classifier rely on a correct modeling of the data uncertainty, i.e. the degree of
overlap between the classes in the target distribution. Note that both proper-
ties directly depend on the data distribution to be modeled, and not the model
itself. The refinement is directly concerned with how the data is separated,
i.e. if the data presents overlapping then the model must learn this overlapping.
The calibration measures how reliably do we represent this overlapping using
probabilities.

We have also seen that DA can be framed through the lens of VRM, where the
idea is that the input manifold is extended with transformations that are likely
to provide samples closed to the training set, either through expert knowledge
(e.g. rotations or translations when the inputs are images) or general purpose
DA techniques such as Mixup. However, note that both Mixup and human-
driven DA techniques share a common issue: they are not designed by ana-
lyzing or considering the properties of the input distribution p(Y|X) and the
intersection of these with the probabilistic model pθ(Y|X). In other words,
these DA techniques are not designed by considering how the inputs X of the
different classes are distributed.

The reason is that modern instances of these models, such as DNN, are difficult
to interpret, and high dimensional distributions are difficult to analyze. For
that reason, the selection and performance of DA techniques depend, basically,
on cross-validation; and there is no principled way to establish if a particular
DA technique will boost the performance of a particular application or not.
This does not mean, however, that DA techniques cannot improve the calibra-
tion properties or the robustness towards adversarial examples of an overpa-
rameterized model w.r.t. standard ERM (Hendrycks et al. 2020; Hendrycks et

38

3.2 Does Mixup Training really achieves Model Calibration?

al. 2019a; Hendrycks et al. 2019c; Hendrycks et al. 2019b), because the model
will learn over a wider support of the input manifold.

We can thus conclude that there is no reason to establish that a particular DA
technique will boost the calibration performance of a probabilistic model, be-
yond results obtained using model selection techniques e.g. (Wilk et al. 2018).
This is because common DA techniques do not take into account the data un-
certainty and hence the generated samples are not guaranteed to represent the
uncertainty in the data distribution, as we shall see in the next subsection for
the particular case of Mixup.

3.2.2 Mixup and Model Calibration

The main argument of the research around the idea that Mixup can improve the
calibration and the robustness of probabilistic classifiers relies on the fact that
this technique smooths the predictions performed by a model in the intersection
between samples from the target distribution P (X,Y). However, even if this
might reduce high-oscillations in the predictions performed in these regions of
the feature space, or smooth the ultimate confidence assigned to these regions,
this only ensures that the model will be less overconfident, which does not
necessarily mean that the ultimate probability distribution will be calibrated.

Note that Mixup only ensures a linear-soft transition between the confidences
assigned by the model in different parts of the input space, but it does not
consider the proportion of samples present in different regions of the input dis-
tribution, which is at the core of a proper calibration. As a consequence, only
if the data distribution presents a linear relation between their corresponding
classes, one could expect to improve the calibration by using the generated
samples.

In the experimental section, we show that some models trained with Mixup
do not necessarily improve the calibration, as recently noted by (Thulasidasan
et al. 2019). In fact, we show that Mixup tends to worsen the calibration in
many cases.

39

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

Toy example

To illustrate the ideas discussed so far we make use of the following toy example
illustrated in Figure 3.1.

The top row from the figure shows three common toy datasets employed by
the community, which are generated using Scikit-Learn (Pedregosa et al. 2011).
With circles and light red, we represent one of the classes, while in light blue
and with triangles we represent the other class, both sets of samples being
drawn from the data generating distribution P (X,Y).

In the bottom row, we represent the training data along with samples generated
using Mixup1. The virtual samples are represented with a star. The position of
the star represents the virtual locationX, while the color of the start represents
the virtual label Y. The more red means the virtual label corresponds to class
red, and vice-versa. Thus purple represents labels with a confidence closed to
0.5.

Figure 3.1: This figure illustrates the effect of Mixup on the data distribution. The top row
shows samples from the data generating distribution P (X,Y), while the bottom row shows
the training data alongside with virtual samples generated using Mixup. We can see how
Mixup can sometimes generate samples representative of the data generating distribution
(left plot) but that is not necessarily true for any distribution (middle and right plot).

1I recommend zooming in the pdf.

40

3.2 Does Mixup Training really achieves Model Calibration?

For ease of exposition, let’s concentrate on the circles dataset (top left plot).
A reasonable classifier for this dataset could be parameterized by a categorical
distribution in which the parameters are given by a linear projection of the
data locations p(Y|π = WX). If we think in a non-Bayesian setting, i.e. when
we don’t integrate out the model parameters W, then the learned decision
threshold around p(Y|π = WX) = 0.5, will be in the middle between the blue
and red circles, going from the top left to the right bottom corner of the plot.
Since both circles are totally separable, the model will learn to assign nearly
extreme confidences (∼ 1.0) towards the different classes around this decision
threshold.

It seems reasonable to think that both set of samples have been sampled from
two Gaussian distributions with small variance, hence there is no overlapping
between both of them in general. However, we know Gaussian distributions
have support over all R2, hence there is a chance that samples from differ-
ent distributions can overlap. Moreover, we do not want extreme confidences
around a decision threshold (unless the data is obviously totally separable).
In this dataset, it seems reasonable to assign extreme confidences where most
of the training data appears, and relax these confidences when we get close to
the intersection between both distributions.

If we now take a look at the corresponding figure from the bottom row, we can
see how Mixup is able to generate samples that agree with how this data is
distributed. The virtual samples generated towards the intersection between
both distributions starting from the red side are red and gradually become more
purple. The same effect happens when starting on the blue class. Hence we can
expect that a classifier learned with these generated samples will smooth the
predictions, will improve generalization and will learn a calibrated distribution
because the virtual samples are representative of the data distribution i.e. the
data uncertainty.

If we, however, take a look at the middle and right plots we can see how there
are virtual samples which are not representative of the data distribution. Of
course, there are some that are, but we can see how in regions where the virtual
sampler generates both purple and blue/red samples. Even more important
we can see extreme (red) samples in regions where we would only expect blue
samples, and vice-versa. This does not mean Mixup won’t be able to improve
the generalization capabilities of the classifier. We could expect the resulting
classifier to provide smoother predictions (less overconfident) and to improve
the performance, but the virtual samples are not representative of the data
distribution, hence we cannot expect the resulting classifier to be calibrated.

41

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

In high dimensional distributions, this effect is harder to analyze, and it is
impossible to know a priori how the data is distributed in order to use a
vicinity distribution that can generate samples representative from the target
distribution. This does not mean that data augmentation techniques cannot
improve the calibration performance of a probabilistic model, but that can
only be ensured using model selection techniques.

3.3 The Auto Regularized Confidence Loss Function

In this section, we introduce the proposed solution to the uncalibration of DNN
trained with Mixup. We have seen so far that in order to have a calibrated
probabilistic model we need the virtual data to be representative of the target
distribution.

Note that the goal of a probabilistic classifier is to map any data distribution
into a linear separable manifold, where a final linear projection and a link func-
tion is applied to provide the parameters of the likelihood distribution. This
separability can only be achieved if: 1) the data is separable in its origins and
2) the model has enough capacity to do so. Thus, if 1) or 2) do not hold (which
is something that we will not typically know in high dimensional distributions),
then it seems unreasonable to force the model to learn towards {0, 1} prob-
abilities2; and we should expect an overparameterized model to experiment
different pathologies such as overfitting (Vapnik 1998), memorization (Zhang
et al. 2017), bad calibration (Guo et al. 2017), or sensitivity to adversarial
attacks (Szegedy et al. 2014).

A very illustrative example of this pathology is: Why should we push prob-
abilities towards 1.0 in a 1-dimensional input generative Gaussian classifier if
Gaussians have support over R? Based on this observation a training loss in
a modern probabilistic model should somehow consider this inherent structure
(uncertainty) in the data to reliably target the underlying distribution, and
avoid the great ability of DNN to assign {0, 1} probabilities when we do not
know if the distribution to be modeled is or can be linearly separated after
projecting the input X. This is the core idea of our proposed loss function and
in the previous section we used it to justify why Mixup should not necessarily
provide calibrated distributions.

2Note that this what we force the model to learn when we use a categorical (multiclass) or
Bernoulli (binary) likelihood to learn a probabilistic classifier, unless the rare case in which two
exactly equal samples are labeled towards different classes; something we don’t usually observe in
the datasets used to evaluate the proposed approach in this chapter.

42

3.3 The Auto Regularized Confidence Loss Function

The solution we adopt encourages the probabilistic classifier to assign confi-
dences based on its discriminative capabilities, through the incorporation of a
super simple measure of data uncertainty. Thus, our loss function is inspired
by how optimality is achieved in a Bayes Decision Rule (BDR) scenario, and I
personally claim that this has to be done to achieve reliable probability distri-
butions. As we mentioned at the beginning of this chapter, the main takeaway
from this section is not the proposed loss function, or the fact that Mixup
training does not always provide calibrated distribution, but the incorporation
of a form of data uncertainty in the loss function in order assign probabilities,
since that is what BDR tell us we must do. In fact, I will show that the pro-
posed loss function is not perfect and that a lot of work can be still done in
this direction.

3.3.1 Proposed Solution

The goal of the proposed solution is to benefit from the improved accuracy
of Mixup training, but providing better-calibrated distributions. We do this
by introducing a new loss function which is a weighted combination of our
proposed loss, named Auto-Regularized-Confidence (ARC), and the categorical
cross-entropy (CCE). The ARC loss is inspired by the Expected Calibration
Error (ECE). The idea, as discussed before, is to incorporate data uncertainty
in the predictions. This is done by first partitioning the confidences, p =
pθ(Y|X), assigned to a batch of samples X, into M equally spaced bins Bi;
and matching these confidences to the accuracy µi in that bin, by means of
any of these two loss variants:

ARC_V1 =
1

M

M∑
i=1

 1

|Bi|
∑

0<j≤|Bi|

pij

− µi
2

ARC_V2 =
1

M

M∑
i=1

 1

|Bi|
∑

0<j≤|Bi|

(pij − µi)2


(3.5)

where pij denotes the confidence of sampleXj that lies in binBi. The difference
between these two losses lies in whether the average confidence (ARC_V1) or
the individual confidences (ARC_V2) are forced to match the accuracy. If we
set M = 1 then our loss function is computed over the entire batch instead
of considering different bins. We make the accuracy µi a constant value so

43

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

learning gradients only depend on the confidence assigned by the model. We
can do this by computing the accuracy and then detaching its value from the
computational graph.

Our loss is combined with the CCE to avoid the local minimum in which the
network parameterize a prior classifier (i.e. the one which assigns confidences
given by the prior distribution to all samples), as we found in our initial analy-
sis. This is because a prior classifier is useless, but the trivial way of optimizing
calibration. Thus the overall loss is given by:

L(X,Y, θ) =
1

N

N∑
n=1

CCE(Xn,Yn, θ) + βARC(Xn,Yn, θ) (3.6)

where β is a hyperparameter that controls the relative importance given to
each of the losses and is established with a validation set.

Note that this new loss targets the uncertainty of the learned representation,
through the accuracy. The accuracy is used to summarize the proportion of
samples from different classes that are being “mixed”, i.e. the degree of overlap.
So it somehow represents how the representations that the model can learn are
distributed. It is clear that the accuracy is a very simple statistical summary of
the data uncertainty and it is left to future work the search for other quantifiers
that could encode more useful information such as how samples are distributed
in the input space.

Consequently, we can expect that by evaluating the CCE loss on the Mixup
image X̃, and the ARC loss on the mixing images X1 and X2, one can benefit
from the improved discrimination as learned by the CCE, but the ultimate
confidences are assigned by how the classifier classifies samples X1, X2, which
are the ones really representative from the target distribution P (X,Y), and
not those X̃ virtually generated by Mixup. It is then clear that ARC incor-
porates data uncertainty, which will improve the model representation of the
underlying distribution, and thus its calibration. To validate this procedure,
in our work we experiment with variants that compute ARC loss over X1 and
X2; and over X̃. In general, all datasets benefit more from the first approach.
A discussion is provided in the experimental section.

44

3.4 Experimental Evaluation

3.3.2 Motivation behind the two loss variants

On the other hand, the idea of experimenting with the two variants of our loss
named ARC_V1 and ARC_V2 is based on the following observation. The only
difference between the two variants is whether we force the average confidence
of a set of samples to match the accuracy, as performed by ARC_V1, or we force
each individual sample to match the accuracy, as done by ARC_V2. ARC_V2
is proposed to avoid solutions in which the set of confidences assigned by the
model presents high variance. This will avoid solutions in which, for instance,
the network present a 90% accuracy on a set of samples, and the model assigns
0.8 confidence to half of the samples and 1.0 to the other half. In such a setting,
the loss being minimized will be 0, but the ultimate goal will not be achieved.
The possibility of computing our loss over separate bins is incorporated to
reduce this effect. However, in practice, we expect both losses to work, as the
ideal behaviour of a good representation as learned by a model should be to
map all the samples of a given class to the same (ideally linearly separable)
representation. If this happens, the aforementioned variance on the confidence
assigned by the model is reduced.

3.4 Experimental Evaluation

3.4.1 Experimental Details

We perform several experiments that illustrate the main claims of this chap-
ter. The code and loss hyperparameters (e.g. if the model uses ARC_V1 or
ARC_V2) are open-sourced in Github3. In the following tables, we show aver-
age results and provide the specific results used to compute this average values
in Github alongside with the specific values of the loss hyperparameters. We
evaluate different calibration metrics, detailed in subsection 2.2.5 plus the Log-
arithmic Score (LS) and the Brier Score (BS) defined in Equation 2.15. The
ECE and MCE are evaluated with a partition of 15 bins, as is common in many
works using these metrics, e.g. (Guo et al. 2017). Our approach is compared to
a recent technique designed to implicitly calibrate a probabilistic DNN, which
uses a measure called Maximum Mean Calibration Error (MMCE) (Kumar et
al. 2018). The MMCE loss is a function that evaluates the calibration of the
model using kernels, see section 3 in (Kumar et al. 2018) for the loss definition
and how can it be estimated using training samples.

3https://github.com/jmaronas/calibration_MixupDNN_ARCLoss.pytorch.git

45

https://github.com/jmaronas/calibration_MixupDNN_ARCLoss.pytorch.git

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

Datasets: We evaluate a collection of classical benchmarks for the image
classification task: CIFAR10 (Krizhevsky et al. 2009a), CIFAR100 (Krizhevsky
et al. 2009b), SVHN (Netzer et al. 2011); and we also evaluate our model on
more realistic problems such as the ones provided by Caltech Birds (Welinder
et al. 2010) and Standford Cars (Krause et al. 2013), which contain bigger and
more realistic images. Due to computational restrictions, we did not evaluate
our model on ImageNet.

Models: We experiment with state-of-the-art configurations of computer vi-
sion DNN: Residual Networks (He et al. 2016a), Wide Residual Networks
(Zagoruyko et al. 2016) and Densely Connected Neural Networks(Huang et
al. 2017). Moreover, for each variant, we evaluate several configurations and
models with and without Dropout (Srivastava et al. 2014). We find this inter-
esting since a dropout model can be used to quantify uncertainties (Kingma
et al. 2015b; Gal et al. 2016). For the ResNet, we add a Dropout layer after
the whole network. We set the Dropout values according to the ones provided
in the original works, or in available implementations, except for the ResNet
where we use a 0.5 Dropout rate. We use pre-trained models on ImageNet
for Birds and Cars, which are obtained from the PyTorch API. On these pre-
trained models, we add a Dropout layer at the end just before the last linear
projection. Models are optimized with stochastic gradient descent with mo-
mentum and by placing a Gaussian prior over the parameters (L2 regularization
a.k.a. weight decay). The precision of this Gaussian prior is set according to
the provided implementations or original works. For all the datasets except
Birds and Cars, we use a learning rate starting from 0.1. For Birds and Cars
the initial learning rate is set to 0.01. We use step learning rate scheduler that
varies depending on the model. Additional details can be found in the code.

Data Augmentation Hyperparameters: Regarding Mixup hyperparam-
eters we used the ones provided in the original work (Zhang et al. 2018). On
the datasets where this technique was not evaluated, we searched for the op-
timal value on a validation set. This hyperparameter is then fixed for the rest
of the experiments carried out. More details on Github.

46

3.4 Experimental Evaluation

ARC hyperparameters: Our loss hyperparameters: β, the number of bins
M and the type of cost used (ARC_V1/ARC_V2) were searched using a val-
idation set with the ResNet-18 (with and without dropout) on each dataset.
The selected hyperparameter was then used with the rest of the networks. This
way of searching hyperparameters is not optimal, since we should search within
each particular experiment. The reason we did this was due to computational
restrictions. Since our main goal was to extract conclusions on a possible good
configuration of our loss function we need to do a big battery of experiments
(we trained more than 1000 Neural Networks to evaluate the loss); and with
our resources we could only do this in a feasible amount of time if we used the
cheapest Neural Network we considered. We provide an additional discussion
related to this point in Appendix A.

Our search includes all the possible combinations of: loss ARC_V1 and ARC_V2;
number of bins: M = 1,M = 15 and M = {5, 15, 30} (for this one the loss is
computed three times, one per each value of M , and the three losses are then
averaged); and evaluation of the ARC loss over the Mixup image X̃ or the sep-
arate images X1 and X2. This experiment was essential to validate our claim
regarding data uncertainty and calibration, as exposed in subsection 3.3.1. We
select the hyperparameters that provided a good accuracy with low calibration
error. The specific loss hyperparameters of each of the models are provided in
Github.

3.4.2 Reported Results

For the sake of illustration, we provide average results of all the DNN used
for each dataset in Table 3.1 and the best performing model used in these
averages in Table 3.2. The individual results used to compute these averages
are provided in PDFs in the provided repository since I have realized that
including them in this manuscript ends up messing things up (even in the
appendix).

These tables show the accuracy (ACC) and the Expected Calibration Error
(ECE) and the rest of calibration metrics are provided in Appendix A.

47

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

Table 3.1: Table showing average accuracy and ECE in (%) of all the models considered
in this work

CIFAR10 CIFAR100 SVHN Birds Cars
ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE

Baseline (B) 94.76 3.41 77.21 11.57 96.32 1.90 78.51 2.39 86.74 2.06
Baseline + Mixup (B+M) 96.01 4.35 80.04 3.71 96.41 5.00 79.63 14.22 86.67 18.13

MMCE (M) 94.24 2.17 72.68 3.71 96.28 1.78 78.78 1.95 86.83 2.23
MMCE + Mixup (M+M) 91.90 5.69 78.52 5.48 96.59 2.83 79.99 12.37 86.03 13.07

ARC (A) 94.82 3.37 77.04 11.31 96.26 1.87 78.52 2.70 87.78 2.76
ARC + Mixup (A+M) 95.90 1.62 79.84 2.42 96.02 2.17 79.74 4.95 89.63 2.84

Table 3.2: Table showing the accuracy and ECE in (%) of the best model per task and
technique.

CIFAR10 CIFAR100 SVHN Birds Cars
ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE

Baseline (B) 95.35 2.97 79.79 5.06 97.07 0.50 80.31 4.34 89.13 2.57
Baseline + Mixup (B+M) 97.19 4.65 82.34 1.42 96.97 4.91 82.09 10.14 89.45 18.10

MMCE (M) 95.58 1.21 74.98 7.04 96.90 0.49 80.64 3.28 89.40 2.70
MMCE + Mixup (M+M) 97.02 1.11 81.31 4.46 97.17 3.69 82.41 10.93 88.47 11.56

ARC (A) 95.99 2.01 80.77 4.73 97.08 0.37 80.32 4.44 90.09 1.92
ARC + Mixup (A+M) 97.09 1.03 82.02 0.98 96.82 2.20 82.45 1.28 91.13 2.40

3.4.3 Analysis of Results

First, as shown in rows B (Baseline) and B+M (Baseline+Mixup) we see how
Mixup degrades the calibration except in CIFAR100. By comparing with the
results reported in (Thulasidasan et al. 2019) we can conclude that Mixup
behaves particularly well in CIFAR100, probably because the intersection be-
tween classes can be explained through a linear relation. However, our tables
demonstrate that this is not a general behaviour of Mixup as shown in the rest
of datasets.

It is surprising how Mixup degrades calibration in Birds and Cars, even though
the DNN used for these datasets are pre-trained models which have been shown
to provide better-calibrated distributions (Hendrycks et al. 2019b). In general,
our results contrast with those reported in (Thulasidasan et al. 2019) where
they provide general improvement in calibration performance due to Mixup.
We can explain this difference with the fact that different models are used.
For instance, while they use a VGG-16 and a ResNet-34, we are using much

48

3.4 Experimental Evaluation

deeper models, such as a ResNet-101 or a DenseNet-121. The difference can
be connected to the observation in (Guo et al. 2017) where they show that
calibration is further degraded by deeper architectures. Moreover, we shall
emphasize that our results on CIFAR10 are on the state-of-the-art (∼ 97%
ACC) and much better calibrated (1.03 top ECE and 1.62 average ECE) than
in (Thulasidasan et al. 2019), as they report a 2.00 value of ECE.

Analyzing our loss function, we see how it can correct the miscalibration in-
troduced by Mixup training. In CIFAR10 and CIFAR100 A+M is the best
performing approach. In SVHN we see that A+M corrects the calibration error
introduced in B+M, but the approach behaves worse than the baseline. SVHN
is a dataset that presents good calibration in many models over the test set, as
noted also in (Guo et al. 2017; Maroñas et al. 2020). Finally, regarding Birds
and Cars we see how our loss can largely correct the miscalibration introduced
by Mixup. This means that our approach also performs well with pre-trained
models on ImageNet. It should be noted that in this case, we do not achieve
the same ECE error in Birds and Cars as with the baseline model. However, we
have much better accuracy (over 3% on average results in Cars). In fact, our
work reports nearly state of the art accuracy in Cars using a Dense-Net, where
the best performing reported model has an accuracy only two points above but
using much more complex architectures such as efficient net (Tan et al. 2019)
or inception (Szegedy et al. 2016) (which are also pre-trained on ImageNet).
On the other hand, our method is better than the recently proposed MMCE
(Kumar et al. 2018). We found this method to be unstable in some cases, as
some models saturated during training or tended to degrade the accuracy, as
shown in the tables.

Regarding the parameterization of the loss function, we found that most of the
time the best configuration of hyperparameters was obtained with ARC_V1.
We also found thatM = 1 is a reliable choice for this hyperparameter. This can
be explained by the fact that DNN typically learn invariant representations and
thus, we avoid the pathological behaviour that ARC_V1 can present, which is
discussed in subsection 3.3.2. Besides, we found that only in Birds and some
CIFAR100 models, the ARC loss computed over the Mixup image X̃ worked
better than when computed over X1 and X2, even though this configuration
also improved the calibration. Thus, as we claim in subsection 3.3.1, it seems
reasonable that a loss function that takes into account, separately, the under-
lying structure present in the data distribution can provide better-calibrated
uncertainties. To enhance this last claim, we emphasize that in some cases the
β hyperparameter was 40 times greater than the CCE loss. This enhances the
beneficial influence that our loss function can have on several problems.

49

Chapter 3. Implicit Calibration of Deep Neural Networks using Mixup Training

Table 3.3: This table shows the results of applying the ARC loss just to a validation set.

CIFAR100 CIFAR10 SVHN

validation test validation test validation test

β ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE ACC ECE

0.5 82.74 4.32 77.97 9.48 97.28 1.29 95.29 2.82 98.50 1.21 96.45 2.32

1.0 86.46 4.29 78.74 10.65 97.92 0.88 94.92 3.39 98.86 0.54 96.48 2.33

2.0 91.26 2.17 79.49 9.19 99.08 0.27 95.25 3.05 99.08 0.33 96.54 2.37

4.0 94.30 1.61 79.61 8.86 99.74 0.21 95.60 2.63 99.24 0.24 96.50 2.33

8.0 96.26 1.08 78.85 9.73 99.84 0.18 95.58 2.72 99.32 0.18 96.67 2.13

3.4.4 A final insight on the experiments

Finally, we discuss one drawback of our proposal as being used as a general-
purpose calibration tool. Note that, if applied on a DNN that presents near
100% accuracy on the training dataset (which is the case in many of the stan-
dard databases tested) then the ARC loss will provide the same learning signal
as the CCE, because it will force the average confidences to be 1.0. This means
that it will not work in datasets where the training error is overfitted, as in
CIFAR100. This explains why applying ARC loss over the Baseline model (A
in the tables) does not significantly improve the calibration over the baseline
(B in the tables).

A possible solution could be to apply the ARC loss on a separate validation
set. To do so, we experiment with the following variant. We take a validation
split from the training dataset where the DNN presents uncalibrated over-
confidences. Let say that this validation set presents an 80% accuracy, with a
0.99 average confidence. Thus, we use the validation set to compute the ARC
loss while the training dataset is only used for the CCE.

Surprisingly, the DNN learns to minimize the ARC loss by increasing the accu-
racy and the confidence assigned to this validation set rather than by relaxing
the confidences assigned (even though the ARC loss does not directly push the
probabilities to be 1.0). This is shown in Table 3.3 where results are reported
by varying the hyperparameter β. We can see how when β grows so does the
accuracy on the validation set rather than decreasing the calibration on the
test set. This means that the model is learning to correctly classify the vali-

50

3.5 Conclusions

dation set (perfect accuracy) assigning extreme 1.0 confidences (nearly perfect
calibration). Note in the table how the ECE decreases when β grows.

3.5 Conclusions

This chapter has shown and motivated why Mixup does not ensure calibrated
distributions. The results and theory presented suggest that a similar analysis
should be employed over different DA techniques, which is left for future work.
We have also opened a new perspective to reduce overconfidence in DNN.
As we cannot control how a model might overfit the dataset to achieve high
discriminative performance, a good practice is to auto-regularize the model
to incorporate the uncertainty of the learned representations. This work has
shown a way of doing this on Mixup training, reporting state-of-the-art results
in accuracy and calibration. Future work is concerned with the exploration of
new loss functions for this purpose.

Finally, as noted by one of the reviewers of this manuscript, a nice experiment
to provide more light into the results and conclusions discussed in this chapter
is to substitute the ARC loss by the categorical cross-entropy, i.e. to apply
the CCE both over the mixup image and over the separated images. The
motivation is the following: the CCE is a proper scoring rule, so, as we noted
in the previous chapter, it should recover both discrimination and calibration.
Hence it seems reasonable to check whether the ARC can be substituted by
the CCE to fix the ultimate confidences adequately. Note that the CCE can
still overfit, since in the case where different datapoints X,Y do not overlap,
it will end up assigning a {0, 1} confidence, as we have discussed previously in
this chapter. Moreover, we should also check if other PSR such as the Brier
Score can replace the ARC as well.

51

Chapter 4

Recalibration of Deep
Probabilistic Models using
Bayesian Neural Networks

This chapter presents a methodology to recalibrate the output
of a DNN using a Bayesian Neural Network (BNN). The uncali-
brated logits from a DNN are passed through a BNN which maps
the uncalibrated logits to calibrated ones. We present and analyze
the proposed approach and discuss potential lines of improvement.

In the first chapter of this thesis, we motivated the use of Bayes Decision
Rule in order to take optimal decisions and introduce some related concepts.
Then, in the second chapter, we make use of this theory to motivate why
Mixup training does not necessarily provide calibrated distributions and, even
more important, to show how a simple modification of the loss function that
takes into account the uncertainty in the learned representation can fix the
miscalibration that Mixup can introduce.

However, one of the main problems of these implicit calibration techniques,
i.e. techniques that aim at providing a model that is directly calibrated, is the
high cost of training and experimentation when the model is parameterized by
a DNN. An alternative solution to implicit techniques is to design calibration
techniques which takes the output probability of an uncalibrated model and
map it to a calibrated one.

53

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

In this chapter, we show how to implement this post-calibration technique
using a Bayesian Neural Network (BNN), i.e. a Neural Network in which the
parameters of the model are inferred and then marginalized out to make pre-
dictions.

We start this chapter by reviewing the basic idea of post calibration. We then
review the state of the art emphasizing pros and cons of different approaches.
We then motivate the use of a Bayesian Neural Network and the chosen (ap-
proximate) inference algorithm. We finally present results, conclusions and
future research directions. Part of this future work has already been started
by one of my MSc students which is now pursuing a PhD in this research di-
rection, trying to answer some of the open questions of this chapter. Most of
the ideas presented in this chapter correspond to those described in (Maroñas
et al. 2020).

4.1 Introduction to Post Calibration

The goal of post-calibration techniques is to map the prediction of a model1
to calibrated class probabilities. Perhaps one of the most well known classical
algorithms for this purpose in the context of Binary Classification is Platt
Scaling (Platt 1999).

If we denote with X the output of the model, then the idea behind Plat Scaling
is to learn a logistic regression model from X to Y with parameters w,b ∈ R.
In other words, Plat Scaling models the outputs Y with a Bernoulli likelihood
p(Y|σ(wX + b)) with σ() being some link function, for example the Sigmoid
function.

This method can be extended to a multiclass setting with C classes by consid-
ering the following model: p(Y|σ(WX + b)) with b ∈ RC and W ∈ RC×C ,
given X ∈ RC . In this case the link function is usually the Softmax function
and the likelihood is given by a Categorical distribution.

These post-calibration models are trained by using a different set of samples
to train the model and the Plat Scaling calibration stage.

1Note that it does not have a probabilistic model but just a model used to make predictions such
a Support Vector Machine.

54

4.1 Introduction to Post Calibration

4.1.1 Deep Neural Networks are Uncalibrated

The work from (Niculescu-Mizil et al. 2005) showed that Neural Networks
usually produce well-calibrated probabilities in binary classification problems,
which is to be expected since we have already seen that the training criteria of
Neural Networks are proper scoring rules. However, (Guo et al. 2017) analyzes
the calibration of modern state of the art Deep Neural Networks, which are
radically different from those used by (Niculescu-Mizil et al. 2005). To their
surprise, they showed that modern DNN are badly calibrated, a phenomenon
that links to the over parameterization of these models as discussed in (Guo
et al. 2017) and section 3.3 in this thesis.

In their study, (Guo et al. 2017) analyzes how different modern regularization
techniques affect calibration. This includes weight-decay, dropout, model ca-
pacity, batch normalization etc. Moreover they popularize the use of the MCE
and ECE calibration measures.

One of the most important parts of this work is the study of different post-
calibration techniques for the purpose of recalibrating the output of a DNN. The
idea is that the logits of a DNN play the role of X in section 4.1, and the cali-
bration technique maps this uncalibrated logit to a calibrated one. The authors
compare different classical post-calibration techniques including the aforemen-
tioned Plat Scaling, but also Histogram binning (Zadrozny et al. 2001), Isotonic
regression (also known as PAV) (Zadrozny et al. 2002) and Bayesian Binning
into Quantiles (Naeini et al. 2015). These binary post-calibration methods are
extended to the multiclass setting.

Among all these techniques the authors propose a novel post-calibration stage
named Temperature Scaling (TS). The idea is to replace the parameters W
and b in Plat Scaling, by a single parameter T which is multiplied by all
the logits. The authors show that on DNN this post-calibration technique
consistently improves the calibration among the other classical techniques with
the improvement that TS does not change the accuracy of the DNN.

The results from this work let the authors conclude that the calibration space is
inherently simple since the calibration is usually corrected by simpler models.
This is the starting point of the contribution of this chapter. Our main hy-
pothesis is that we can actually use complex models as long as we turn them
into Bayesian models. As we have seen in the last section from chapter 2,
Bayesian inference provides a principled way to account for uncertainty in the
parameters of a model, making the predictions more robust to overfitting.

55

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

4.1.2 The benefits of post-calibration techniques

Before introducing the methodology of this section, we motivate why post-
calibration (explicit) techniques can be useful since I have found that some
researchers argue that what is interesting is to directly have a calibrated model
(implicit techniques). However, as I mentioned at the beginning of this chapter,
this can have a high computational cost in a modern DNN.

Other benefits of post-calibration techniques include the fact that the post-
calibration stage is only compromised by the dimensionality of the logit space,
no matter how challenging the initial task is, or the type and complexity of
the pre-trained DNN. Moreover, these approaches are efficient, since the ini-
tial DNN does not need to be re-trained for re-calibration. Some approaches
that attempt to directly train a deep calibrated model (Kumar et al. 2018;
Seo et al. 2019) increase the training time over the initial DNN. In this sense,
hyperparameter search is quicker with post-calibration stages, as one only need
to focus on getting good accuracy from the DNN. Obviously one can benefit
from combining explicit and implicit calibration techniques. For instance, the
best results reported by (Kumar et al. 2018) are a combination of their method
with TS. On the other hand, post-calibration techniques do not compromise
the architecture of the DNN. For example, implicit techniques such as (Gal
et al. 2016; Seo et al. 2019) require certain architectures in the previous stage.
Finally, any future improvement can be incorporated into the post-calibration
stage. For example in our case, we can train BNN post calibrators using alter-
native inference algorithms without affecting the previous stage.

4.2 Bayesian Neural Networks as Post-Calibration technique

Since the work from (Guo et al. 2017) many techniques have been proposed
to solve this miscalibration in DNN. Perhaps one of the most popular ones are
model ensembles (Lakshminarayanan et al. 2017; Wenzel et al. 2020; Mariet et
al. 2021; Havasi et al. 2021) but they are clearly inefficient in nature, although
much work is being done in making them more efficient. There are other
proposed techniques which range from different applications (classification vs
regression) to different modeling design (implicit vs explicit), see e.g. (Kumar
et al. 2018; Kuleshov et al. 2018; Seo et al. 2019).

All these techniques share something in common: their design is based on
point estimate approaches, e.g. maximum likelihood. However, as we will jus-
tify in the next section, a proper address of uncertainty, as done by Bayesian
approaches, is a clear advantage towards reliable probabilistic modeling; a fact

56

4.2 Bayesian Neural Networks as Post-Calibration technique

(a) An example of the architecture of our proposed model. On the left top figure, an expensive DNN
is trained on a dataset. Then, the (uncalibrated) output of such DNN is the input to the BNN
calibration stage. The inputs and outputs of the Bayesian stage have the same dimensionality (given
by the number of classes). Orange Gaussians on each arrow represent the variational distributions
on each parameter.

(b) This figure represents a description of the training, validation and test stages of the proposed
model.

Figure 4.1: A graphical description of the proposed architecture

that has been recently shown for example in the context of computer vision
(Kendall et al. 2017). Despite these well-known properties of Bayesian statis-
tics, they have received major criticisms when they are used in DNN pipelines,
mainly due to important limitations such as prior selection, memory and com-
putational costs, and inaccurate approximations to the distributions involved
(Lakshminarayanan et al. 2017; Kumar et al. 2018; Kuleshov et al. 2018),
although there has been some work trying to solve these problems and under-
stand these limitations for model calibration and robustness (Dusenberry et al.
2020; Wilson et al. 2020; Izmailov et al. 2021).

57

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

−3.0 −2.0 −1.0 0.0 1.0 1.5
x1

−3.5

−3.0

−2.0

−1.0

0.0

1.0

1.5
x2

Train: ACC 82.75 ECE 0.345
 Test: ACC: 80.5 ECE: 0.330

Point Estimate Maximum
 A Posterior Neural Network

−3.0 −2.0 −1.0 0.0 1.0 1.5
x1

−3.5

−3.0

−2.0

−1.0

0.0

1.0

1.5

x2

Train: ACC 87.75 ECE 0.034
 Test: ACC: 85.5 ECE: 0.037

Bayesian Hamiltonian
 Monte Carlo Neural Network

0.0 0.5 1.2
x1

−2.8

−2.0

−1.0

x2

0.00

0.30

0.50

0.70

0.80

0.90

0.94

0.98

−1.5 −1.0 0.0 0.8
x1

−1.5

−1.0

0.0

1.0

x2

0.00

0.30

0.50

0.70

0.80

0.90

0.94

0.98

Figure 4.2: Decision thresholds learned by a Neural Network on a 2-D toy dataset problem
where four classes are considered, each one represented with a different colour and marker
style. The plot represents the confidence assigned by the model towards the most probable
class, in each region of the input space. Darker colours represent higher confidences. The
subfigure on the top row left corner represents the decisions learned by a point-estimate
model obtained by minimizing the loss function given by the posterior distribution (MAP
optimization) in Equation 2.30; and the figure on the top row, right corner, represents
the confidences assigned by a Bayesian model that uses Hamiltonian Monte Carlo to draw
samples of the posterior distribution, which are used to approximate the posterior predictive,
see (Brooks et al. 2011) for details. Bottom rows represent zooms to different regions of the
input space, showing the decision thresholds learned by the Bayesian model. Each figure
represents the Accuracy (ACC) (the higher the better); and the Expected Calibration Error
(ECE) (the lower the better). With markers, we plot the observed data X with their
corresponding label Y being represented by the marker color. Figure best viewed in color.

58

4.2 Bayesian Neural Networks as Post-Calibration technique

In this work we aim at bridging this gap, i.e. being able to combine the state-
of-the-art accuracy performance provided by DNN, with the good properties
of Bayesian approaches towards principled probabilistic modeling. Following
this objective, we propose a new procedure to use Bayesian statistics in DNN
pipelines, without compromising the whole system performance. The main
idea is to re-calibrate the outputs (in the form of logits) of a pre-trained DNN,
using a decoupled Bayesian stage which we implement with a Bayesian Neural
Network (BNN), as shown in Figure 4.1.

4.2.1 Bayesian Modeling and Calibration

In subsection 2.3.5 we have provided a discussion around why making Bayesian
predictions are likely to provide more robust and calibrated predictions than
point estimate networks, even under model misspecification.

The purpose of this subsection is to analyze what happens in a toy example
by comparing point-estimate with Bayesian predictions. To do so, let’s take a
look at Figure 4.2.

This figure shows the training points and the confidences respectively assigned
by a Neural Network with a given topology on a 2-D toy dataset, where four
classes are considered, each one represented with a different color. The darker
the color, the higher the confidence assigned in that region, as illustrated by the
vertical color bars in the figures from the bottom row. The likelihood model
is quite possibly misspecified w.r.t. the data generating distribution since this
data distribution is obtained from a linear Gaussian model p(X|Y)p(Y) (the
same one used in chapter 2) and hence we know that the posterior distribution
p(Y|X) is not the Categorical distribution.

The only difference between the figure of the top row relies on whether the pre-
dictions are done by optimizing the posterior distribution (top left figure) or by
drawing samples using a custom implementation of Hamiltonian Monte Carlo
(top right figure), see chapter 5 in (Brooks et al. 2011). This custom imple-
mentation is provided by clicking on the following link: HMC_implementation.
The bottom row zooms in different parts of the top right figure.

We can see that the Bayesian model assigns better probabilities in the sense
that it better reflects the inherent structure in the data, thus being closer to
the optimal decision rule. This is quantitatively reflected by the values of
the accuracy and the expected calibration error (ECE) showed at the top of
the plots. Moreover, it can be seen how the different models assign different
confidences to each region of the input space. For the sake of illustration, in

59

https://github.com/jmaronas/Machine.Learning.Models.pytorch/tree/master/models/Bayesian_NN/HMC

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

the bottom row, we present two different concrete parts of the input space.
We can clearly see how the Bayesian model assigns confidence being coherent
with what the input distribution presents: highest confidence (close to 1.0) in
regions where only one class is presented and moderate probabilities in regions
where the data from different classes overlap. The point estimate does not
present this behavior.

4.2.2 Proposed Solution

Figure 4.1 shows the main architecture of the proposed solution, which is shared
with other post-calibration techniques. First, we train a DNN on a specific
task. After training is finished, we project each input sample to the logit
space, i.e. the pre-softmax, by forwarding the data through the DNN. Second,
we train a Bayesian stage, which is responsible for mapping the uncalibrated
logit vector of values provided by the DNN, to a calibrated one. Note that
once the DNN is trained, and the forward step is done for a given sample,
the Bayesian stage does not require further access to the previous DNN to be
trained.

The post-calibration technique is implemented with a Bayesian stage, which
we decided to be a Bayesian Neural Network, rather than a Gaussian Process.
We now justify the selected method, and how do we perform inference.

Bayesian inference as an infinite-dimensional optimization problem

To justify the proposed solution, it is convenient to present Bayesian inference
as the solution of an infinite-dimensional optimization problem (Zellner 1988).
Given the set of all probability distributions P(Θ) = {p(θ) : θ ∈ Θ}, Bayesian
inference can be restated as the solution to an infinite-dimensional optimiza-
tion problem where the posterior q(θ) ∈ P(Θ) is given as the solution to the
following minimization problem:

q∗(θ) = argmin
q(θ)∈P(Θ)

∫
−

N∑
n=1

log p(Yn|Xn, θ)q(θ)dθ + KLD[q(θ)||p(θ)] (4.1)

with p(θ) being the prior and
∑N

n=1 log p(Yn|Xn, θ) being the log likelihood.

One of the many interesting discussions in the work from (Knoblauch et al.
2019) is the interpretation of the elements in the loss function being minimized.

60

4.2 Bayesian Neural Networks as Post-Calibration technique

The left element is the data-driven term or the empirical risk minimizer, while
the KLD[q(θ)||p(θ)] is the uncertainty quantifier, i.e. the element that deter-
mines how uncertainty about θ is quantified with the resulting posterior q(θ).
This observation plays a super important role in the approach we take in this
chapter later on, and in the future lines of research.

On the other hand, the second relevant point to this thesis of the work from
(Knoblauch et al. 2019) is the observation that Variational Inference (VI) can
be seen as the same minimization problem of Bayesian Inference but restricting
the space of possible solutions, i.e. by searching over a family Q ⊂ P(Θ). This
implies that VI is the optimal procedure to approximate the posterior distri-
bution using an element from Q when this posterior is analytically intractable.

This means that, from this perspective, using alternatives to VI produce sub-
optimal results. Why is then that alternatives to VI proposed in the literature
work better than VI in certain problems?. There is an excellent answer in
(Knoblauch et al. 2019) which attributes these performance gaps to the Rule
Of Three which includes: how the prior is specified, the definition of a loss
function i.e. how the likelihood is specified, and the set of possible posteriors,
which includes the computational resources available to search over the set of
possible solutions.

Thus, rather than using alternatives to VI, (Knoblauch et al. 2019) propose
to solve any of these misspecifications in different ways. The computational
one can be, in principle, solved using MCMC algorithms, or more expressive
approximations to the posterior distribution that increases the subset Q. The
misspecification about the prior can be solved by using an alternative diver-
gence to the KLD so that the way we quantify uncertainty changes. Note that
a misspecified prior, i.e. a prior that does not really play the role that the prior
should play, can bias our posterior towards a suboptimal quantification of un-
certainty, which in turn will affect our final predictions, as already discussed
in subsection 2.3.6. Finally, alternative loss functions can be used to solve the
way in which the data is related to the parameters of the model. This in turn
has been popularized as Generalized Bayesian Inference (Bissiri et al. 2016).
Special cases of this last point include loss functions derived from alternative
divergence criteria (Jewson et al. 2018), since the log-likelihood is related to the
KLD, and we have already seen in subsection 2.3.3 that this divergence tends
to cover the tails of the distributions (i.e. it will be non-robust to outliers).

61

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

Architecture of the Bayesian Neural Network

Having introduced the ideas from (Knoblauch et al. 2019) relevant to this thesis
we can now describe and justify the proposed solution.

We start by describing the choice of the elements involved in the Bayesian
Neural Network. The likelihood model p(Y|X, θ) is implemented with fully
connected Neural Networks with ReLU activations for the hidden layers, and
softmax activation for the output layer. Note that one can adapt the complex-
ity and flexibility of this stage depending on the context, for instance by using
recurrent architectures.

In this work we discard the use of Gaussian Processes (GP) since the number
of cubic operations scales linearly with the number of classes. Also because
GP need further approximations to the BNN such as the optimization of the
inducing points. We shall point however, to a recent work presented after the
publication of these work in where they have a fantastic idea to use GP for
this task (Wenger et al. 2020) and solve many of the limitations I have pointed
out. The problem with this approach is that it is only particularly suitable
for this task and not a general-purpose technique that can be applied for GP
in the task of classification. Either way, this contribution is brilliant for this
particular task.

The prior distribution p(θ) of the Neural Network parameters is given by a
standard Gaussian distribution, which is the standard choice in the literature.
We will provide a discussion around this choice further in this chapter, since
this choice implies analytical evaluation of the objective function. For the
moment note that the role that the prior plays in a Bayesian Neural Network
has to do with the prior over functions that it induces, since Neural Networks
are used to model functions through a computational graph with parameters
θ and the relation of them with the input X.

Thus our ultimate interest is the prior over functions that the prior over the
parameters and the computational graph induce. However, the prior over
functions that BNN implement is difficult to interpret from the prior over the
parameters, since the computational graphs are black-box function approxi-
mations difficult to analyze. In other words, since it is hard to analyze how
parameters sampled from the prior distribution interact with the input X
within the computational graph, it is difficult to analyze, interpret and specify
a suitable prior over functions.

62

4.2 Bayesian Neural Networks as Post-Calibration technique

Figure 4.3: This figure shows the prior over functions that different BNN likelihood models
induce when a standard Gaussian prior is placed over its parameters. On the top figure
left we show a 10-layer Neural Network with residual connections and hyperbolic tangent
activation function. Top figure right shows a one layer Neural Network with hyperbolic
tangent activation. The bottom row shows Neural Networks with ReLU activation. The left
plot shows a 10 layers residual network Neural Network and the right shows a one layer.

When this happens, it is likely that the kind of functions we model a priori are
not representative of the task at hand, and the posterior distribution is biased
towards a wrong quantification of uncertainty as noted by (Knoblauch et al.
2019). This point is central to the discussion and the future work presented
at the end of the chapter. For the moment, and for the sake of illustration,
Figure 4.3 shows the prior over functions of a 1-dimensional problem that
different Neural Network architecture and a Gaussian prior induces. As we
see, the differences are notable depending on the computational graph.

Predictions over test samples

In order to make predictions over a test point label Y∗ given the correspond-
ing input X∗ we rely on a Monte Carlo integrator. Note that the form of
the likelihood model as described above makes unfeasible the analytic compu-
tation of the posterior predictive distribution. However, this integral can be
approximated by drawing samples from the posterior distribution and approx-
imating the integral by a mixture of likelihood models parameterized by the
computational graph:

63

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

p(Y∗ |X∗ ,Y,X) =

∫
p(Y∗ |X∗ , θ)p(θ|X,Y)dθ ≈

1

K

K∑
k=1

p(Y∗ |X∗ , θk); θk ∼ p(θ|X,Y)

(4.2)

Since we use a categorical likelihood p(Y∗ |X∗ , θk) the resulting mixture relies
on averaging the softmax output from the different K forward steps. Note
that if we would make a DNN Bayesian, this would imply K forward through a
super expensive DNN. However, with this approach, we only need one forward
through the DNN and K much cheaper forwards through the BNN.

Inference

So far, we have described how the likelihood model is implemented and pre-
dictions are done. Note that the only thing we have not specified is how do
we draw samples from the posterior distribution, i.e. how do we perform the
operation θk ∼ p(θ|X,Y). It turns out that the non-conjugacy of the prior and
the likelihood does not allow us to compute this posterior analytically. Thus
we need an approximation.

The gold standard, in this case, would be to run a variant of the Hamilto-
nian Monte Carlo algorithm, probably either by using the No U-Turn Sampler
(Hoffman et al. 2014) or a stochastic gradient version of this algorithm (Chen
et al. 2014), so that we can draw samples using mini batches. Other MCMC
possibilities include stochastic Langevin dynamics (Welling et al. 2011) or more
recently proposed ChEES-HMC (Hoffman et al. 2021). However, in practice,
MCMC algorithms are super hard to diagnose, even more when the number
of parameters to inspect increases. Moreover, the unidentifiability and mul-
timodal posterior typical of ReLU networks would make the convergence to
the target distribution even more harder, and the typical convergence diag-
nosis such as the Rhat will probably fail (Vehtari et al. 2021; Izmailov et al.
2021). On the other hand, MCMC approximations require storing all the sam-
ples that are used to make predictions, and drawing samples using HMC is
computationally expensive, since one needs several reverse mode operations of
the computational graph to get one sample.

For this reason, and also based on the ideas from (Knoblauch et al. 2019)
(already introduced above) we decided to use Variational Inference. The idea
behind VI is that we approximate the posterior distribution with an approxi-

64

4.2 Bayesian Neural Networks as Post-Calibration technique

mate distribution by minimizing the KLD between this approximate posterior
qφ(θ) parameterized by φ and the true posterior p(θ|X,Y). This, in turn, is
equivalent to maximizing the Evidence Lower Bound (ELBO):

KLD[qφ(θ)||p(θ|X,Y)] =

∫
qφ(θ) [log qφ(θ)− log p(θ|X,Y)] dθ =

−
∫
qφ(θ) log

p(X,Y|θ)p(θ)
p(X,Y)

dθ +

∫
qφ(θ) log qφ(θ)dθ =

log p(X,Y)−
∫
qφ(θ) log p(X,Y|θ)dθ + KLD[qφ(θ)||p(θ)].

(4.3)

Rearranging terms we note that this minimization problem w.r.t. φ is equiva-
lent to maximizing the ELBO:

log p(X,Y)︸ ︷︷ ︸
Log marginal likelihood

−KLD[qφ(θ)||p(θ|X,Y)] =

∫
qφ(θ) log p(X,Y|θ)dθ − KLD[qφ(θ)||p(θ)]︸ ︷︷ ︸

ELBO

(4.4)

This objective function has two purposes. First, it minimizes a divergence be-
tween the approximate posterior and the target posterior distribution, but also
maximizes the log marginal likelihood which we have also seen is the Bayesian
criteria for model selection. Moreover, note that as we stated before, it is clear
from Equation 4.4 that one can see Bayesian inference (see Equation 4.1) as the
same minimization problem but over a family of distributions parameterized
by φ, rather than the whole set of probability distributions.

In practice, gradients need to be obtained w.r.t. the variational parameters
in order to maximize the above objective. For the case in which this pos-
terior is Gaussian qφ(θ) = N (θ|µφ, σ2

φ), the KLD term of the ELBO can be
computed analytically since the prior is also Gaussian. However, the expected
log-likelihood needs to be approximated using Monte Carlo, leading to the final
objective:

ELBO =

∫
qφ(θ) log p(X,Y|θ)dθ − KLD[qφ(θ)||p(θ)] ≈

1

K

K∑
k=1

log p(X,Y|θk)− KLD[qφ(θ)||p(θ)]; θk ∼ qφ(θ)

(4.5)

65

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

Since gradients w.r.t. the variational parameters depend on this sampling pro-
cedure2 θk ∼ qφ(θ), we apply the reparametrization trick to allow for unbiased
and low variance gradient estimators, because this trick allows us to push the
gradient into the expectation (in contrast to the reinforce gradient estimator).
This trick can be applied for certain parametrizations of the variational pos-
terior. For the case of a Gaussian distribution, the reparametrization trick
applies as follows:

ε ∼ N (ε|0, I)

θk = µθ + εσθ

log p(X,Y|θk)− KLD[qφ(θ)||p(θ)]
(4.6)

Thus the overall procedure to obtain gradients is given by:

∇φELBO = ∇φ
∫
qφ(θ) log p(X,Y|θ)dθ −∇φKLD[qφ(θ)||p(θ)] =

∇φ
∫
p(ε) log p(X,Y|µθ + εσθ)dε−∇φKLD[qφ(θ)||p(θ)] =∫

p(ε)∇φ log p(X,Y|µθ + εσθ)dε−∇φKLD[qφ(θ)||p(θ)] ≈

1

K

K∑
k=1

∇φ log p(X,Y|θk)−∇φKLD[qφ(θ)||p(θ)]

(4.7)

The trick that allows us to compute the expectation w.r.t. ε rather than θ (first
to second row) is known as the LOTUS rule, with the theoretical background
given by the change of variables of the pushforward measure. This trick is
important also in the next chapter. It implies that expectations w.r.t. a distri-
bution that is given by a transformation of samples from another distribution
can be written as expectations w.r.t. the base distribution, provided that the
transformation is measurable, as linear transformations involved in the case
of Gaussian distributions are. A more extensive explanation of the procedure
described here so far can be found in (Kingma et al. 2014; Rezende et al. 2014;
Blundell et al. 2015). Note moreover that since we assume a factorized like-
lihood log

∏N
n=1 p(Xn,Yn|θk), the above objective can be evaluated without

bias using a subset (minibatch) of the whole dataset.

2We need gradients w.r.t. φ since we are maximizing the ELBO.

66

4.2 Bayesian Neural Networks as Post-Calibration technique

Finally, we experiment with the local reparameterization trick (Kingma et al.
2015b). This trick aims at reducing the noise in the Stochastic evaluation of
the Expected Log-Likelihood in the ELBO. The idea is to sample w.r.t. the dis-
tribution of the preactivation that is induced by the linear combination of the
weights and the features of the Neural Network at each layer, rather than sam-
pling directly the Neural Network weights. Since the variational distribution is
Gaussian, the distribution of the preactivation is also Gaussian, with mean and
variance given by a linear combination of the variational mean and variance
with coefficients given by the data features. In this chapter, we will refer to
the standard mean-field approach with MFVI and with the modified version
that uses the local reparameterization trick as MFVILR. Note that the only
difference between both approaches relies on the convergence of the algorithm
to the optimal solution, since the Local reparameterization trick provides a
variance reduction in the stochastic gradients used to compute the ELBO due
to sample activities rather than weights, thus leading to faster convergence.

Training the Bayesian Neural Network with the training set

One difference between our decoupled BNN and other calibration stages is that
we use the same set to train the DNN and the BNN since the validation set is
used for another purpose (see next subsection). One could think, in principle,
that this is methodologically wrong because if the DNN provides overconfident
logits with 100% accuracy then the BNN will learn a posterior distribution
for this set, instead of a validation set that would be representative of the
miscalibration.

However, we found in a pilot study that training the BNN with the training
and validation dataset was (surprisingly) equivalent. We didn’t put too much
effort into analyzing these kind of things, and hence I pursued this analysis,
beyond other facts, with a Master student (Alvarez-Balanya 2020). We are
now extending it and willing to publish it soon.

One consequence of training the BNN using the training set is that that the
BNN will be usually biased towards providing overconfident predictions since
the logits provided by the DNN on the training set have 100% accuracy with
1.0 confidence. To this end, and building upon the work from (Knoblauch
et al. 2019) we introduce a parameter β that weights the influence of the KLD
and the Expected Log-Likelihood (ELL) in the training objective:

ELBO =

∫
qφ(θ) log p(X,Y|θ)dθ − β KLD[qφ(θ)||p(θ)] (4.8)

67

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

Note that since the KLD is the uncertainty quantifier, we can use a value of
β � 1 to force the approximate posterior to quantify more uncertainty from
the prior. In this way the initial approximate posterior that is concentrated
around weights that map overconfident logits to overconfident logits is forced
to quantify more uncertainty around this set of parameters, i.e. is forced to
consider other weights beyond the MAP solution. Our experiments and the
work from (Alvarez-Balanya 2020) shows that the value of β is generally greater
than 1, and that helps to improve the calibration of the model.

However, this β is related to Bayesian Inference using a power likelihood:
p(Y|X, θ)β, which in turns can be used to solve, for example, model misspec-
ification (Holmes et al. 2017). One clear consequence of raising the value of β
is that the model will be more sensible to prior misspecification (Knoblauch
et al. 2019). We build on this observation further in the chapter.

Variance Under Estimation

Before diving into the experiments that demonstrate how BNN can calibrate
the output of a DNN, we describe one of the well-known issues of variational in-
ference since we will use it as a possible explanation of some of the performance
issues of BNN in this particular task.

Variational inference suffers from posterior variance underestimation (VUE),
see again (Bishop 2006, p. 469). This makes the resulting variational distribu-
tion qφ(θ) avoid placing high density over regions where the posterior presents
low density. Or, in other words, if the posterior is highly multimodal and the
variational distribution is unimodal, then the resulting variational distribution
will tend to cover only one mode from the true posterior. This effect is also
known as mode collapse.

In practice, we hypothesize that this effect can sometimes affect the perfor-
mance of the proposed approach in two ways. On one side, consider, for
example, a highly multimodal intractable posterior that presents a single high-
density mode, alongside with different bumps over the parameter space. As
a result of the optimization process, if the variational distribution accounts
for this high mode, the set of weights sampled could resemble those of MAP
estimation, and thus we will be providing over-confidence predictions. A sim-
ilar effect could happen if the posterior distribution is unimodal but it has
a funnel shape with heavy-tailed marginals, see (Carpenter et al. 2017) user
guide section 21.7. In this case, the variational posterior would concentrate
around the mode since accounting for the tails (in the case of a Gaussian vari-

68

4.2 Bayesian Neural Networks as Post-Calibration technique

ational posterior) would imply placing density over regions with 0 posterior
mass. To overcome this limitation, and beyond the introduction of β, we pro-
pose to select the optimal value of K in Equation 4.2 on a validation set. While
this approach contrasts with the theory, which states that K should tend to
infinity, we find it an effective solution to overcome this limitation in our ex-
periments for this particular mean-field approach. We illustrate this later in
the experiment section.

On the other hand, if our intractable posterior presents several bumps with
equal probable density, or our approximate distribution accounts for a non-
highly probable mode of the intractable posterior, the set of weights sampled
could not be enough representative of the data distribution. The confidences
assigned by models parameterized with this set of sampled weights could affect
the accuracy and the calibration error. This can only be solved by using
more sophisticated approximations of the variational distribution as the current
approach can only recover unimodal Gaussian distributions. We realized that
this effect only affects the most complex tasks. For complexity, we refer, on one
side, to the particular task to solve (which will mainly depend on the number
of classes and number of samples) and, on the other to how well the variational
distribution is able to fit the intractable posterior (i.e. how unimodal the shape
of the posterior is).

Note that since the posterior depends on the choice of the likelihood, the prior
and the set of observations, the issues described above are task-specific and will
depend on the number of classes, the representations learned by the DNN, the
topology of the DNN and the number of training points. As we will see in the
experiment section, these issues are just present in some of the experiments,
and these just serve as a hypothesis on what could be happening in order to
provide some light into future research directions.

4.2.3 Chapter Summary

Before presenting the experiments, I expose a brief backup of what we have
seen so far and which elements are involved in the experiments.

One of the things that we do not experiment with in the following section
is the use of MCMC algorithms to (better) characterize the true posterior3.,
and hence validate the possible conclusions. The reason was simple: I heard
and learn about Hamiltonian Monte Carlo (HMC) nearly before submitting

3As I already note in this chapter, even using MCMC will not probably characterize the true
posterior since diagnosing convergence in Bayesian Neural Networks is hard due to unidentifiability
and multimodality of the true posterior.

69

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

this work for publication. Moreover, how to diagnose HMC, the NUTS HMC
variant, or the Stan software which implements many useful algorithms to run
NUTS (such as windowed warm-up), were things I heard about after, and hence
I could not include them in the experiments presented below.

The other important thing not presented in the experiments is the use of
alternative divergences to the KLD as uncertainty quantifiers. In the original
publication in (Maroñas et al. 2020), I used subsubsection 4.2.2 to explain some
of the issues we will see this approach can suffer from. After the publication
of this work, I read the work from (Knoblauch et al. 2019). This work was an
inspiration to understand, explain and solve these possible issues, and also to
have further understanding of this approach.

Of course, both the Generalized Variational Inference and the use of MCMC
algorithms form the base of the future work that my MsC student started in
his Master Thesis (where he analyzed the influence of alternative divergences),
and that is continuing at the moment. Why I did not do this and I do not
present it in this chapter?. The answer is simple: I was already involved in the
project that led to the next chapter of this thesis.

In summary, we focus this work from the perspective of performing a big set
of experiments to validate if a standard mean-field variational inference BNN
could serve for this task and analyze some general aspects of its performance.
Right after we are performing a more detailed analysis of what is going on
which will be hopefully available by the end of this current year.

4.3 Experiments

We conduct several experiments to illustrate the different properties of the
proposed approach. We provide code for reproducibility and supplementary
material for details on different specific results in Github4.

4.3.1 Experiments set up

Datasets: We choose datasets with a different number of classes and sizes
to analyze the influence of the complexity of the calibration space and the
robustness of the model. In parenthesis, we provide the number of classes:
Caltech-BIRDS (200)(Welinder et al. 2010), Standford-CARS (196)(Krause et
al. 2013), CIFAR100 (100)(Krizhevsky et al. 2009b), CIFAR10 (10)(Krizhevsky

4https://github.com/jmaronas/DecoupledBayesianCalibration.pytorch

70

https://github.com/jmaronas/DecoupledBayesianCalibration.pytorch

4.3 Experiments

et al. 2009a), SVHN (10)(Netzer et al. 2011), VGGFACE2 (2)(Cao et al. 2018),
and ADIENCE (2)(Eidinger et al. 2014). We use all the training set to train
the Bayesian models except for VGGFACE, where we use a random subset of
200000 samples, which is 15 times fewer than the original. This was enough
to outperform the state-of-the-art.

Models: We evaluate our model on several state-of-the-art configurations
of computer vision Neural Networks, over the mentioned datasets: VGG (Si-
monyan et al. 2015), Residual Networks (He et al. 2016a), Wide Residual Net-
works (Zagoruyko et al. 2016), Pre-Activation Residual Networks (He et al.
2016b), Densely Connected Neural Networks (Huang et al. 2017), Dual Path
Networks (Chen et al. 2017), ResNext (Xie et al. 2017) , MobileNet (Sandler
et al. 2018) and SeNet (Hu et al. 2018).

Performance metrics: To evaluate the performance of the proposed ap-
proach we report values for accuracy (ACC) and Expected Calibration Error
(ECE) computed with 15 bins.

BNN Training specifications: We optimize the ELBO using Adam opti-
mization (Kingma et al. 2015a) as it performed better than Stochastic Gradient
Descent (SGD) in a pilot study, and we select β from the set {10−i}4i=0, depend-
ing on the BNN architecture. We use a batch size of 100 and both step and
linear learning rate annealing. More details are provided in the supplementary
material in Github.

Calibration Techniques: We evaluate our model against recently proposed
calibration techniques. Regarding explicit techniques, we compare against
Temperature Scaling (TS) (Guo et al. 2017) as to our knowledge is the state-of-
the-art in decoupled calibration techniques. We also compare with a modified
version of Network Ensembles (NE) (Lakshminarayanan et al. 2017). This is
an implicit calibration technique that proposes to average the output of sev-
eral DNN with adversarial noise (Szegedy et al. 2014) regularization, different
random initialization and randomized training batches. Due to the high com-
putation cost, we train decoupled NE, i.e, NE that maps the logit from the
DNN.

On the other hand, regarding implicit calibration techniques, we compare
against NE in their original form; against MMCE (Kumar et al. 2018), which
proposes a calibration cost which is computed using kernels; and with Monte
Carlo Dropout (Gal et al. 2016), that averages several stochastic forward passes
through a Neural Network trained with Dropout (Srivastava et al. 2014).

71

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

4.3.2 Bayesian vs Non-Bayesian Linear Regression

In this section, we compare Bayesian and non-Bayesian Linear Logistic Regres-
sion under the proposed framework. With this, we show the benefits of being
Bayesian in this setting, which let us conclude, in contrast to (Guo et al. 2017),
that the source of miscalibration is not that the calibration space is simple,
but the proper addressing of uncertainty in the model parameters.

To do this, we train several DNN on different datasets and then use a Linear
Logistic model with a Bayesian and a Non-Bayesian approximation. In this
setting, the likelihood is given by:

p(Y|X, θ) = f(XT ·W + b), (4.9)

where W and b are parameters, f() is the softmax function and X represents
the logit computed from the DNN.

Table 4.1 shows a comparison of both methods where it is clear that the
Bayesian model provides better performance both in accuracy and calibration.
It should be noted that the solution of this optimization problem under the
non-Bayesian estimation is unique5, while the MFVILR admits several steps
of improvement just by using a more sophisticated approximated distribution,
that could capture non-Gaussian or multimodal posteriors. Thus, it is clear
that our main claim, combining the powerfulness of DNN and BNN can be
achieved.

Table 4.1: Calibration ECE (%), and accuracy (ACC) (%) performance for averages of
several logistic models trained for three of the databases considered in this work. ACC the
higher the better, ECE the lower the better.

CIFAR100 SVHN CARS
ECE ACC ECE ACC ECE ACC

Point Estimate 33.90 62.67 1.13 96.72 23.50 76.14
Bayesian 3.66 72.36 1.03 96.72 1.88 74.31

5The model is non-identifiable but several parameters provide the same predictive model. This
is easy to see since the softmax is invariant under a shift, but the problem itself is convex.

72

4.3 Experiments

4.3.3 Selecting optimal K on validation

We then illustrate why selecting the optimal value of the number of Monte
Carlo predictive samples with a validation set is necessary. One of the problems
of VUE is that we can fit our approximation to a high-probable mode of the
intractable posterior density, sampling set of weights that could resemble those
of MAP estimation, with overconfident probability estimates as a result. In this
work we show that this effect can be controlled by searching for the optimal
value of Monte Carlo predictive samples, K in Equation 4.2, using a validation
set.

As an illustration of this over-sampling effect, ?? shows the calibration error
when increasing the number of MC samples. By looking at the figure in the
middle and the left we can see how the calibration error is kept constant (or
even increased) when more samples are drawn. This suggests that the varia-
tional distribution is coupled to a particular part of the intractable posterior.
As a consequence, the ultimate confidence assigned by the model is not be-
ing consistent with the ideal estimation. In the case of being coupled to high
probability regions of the intractable posterior, the generated samples could
resemble those of MAP estimation, having overconfident predictions as a con-
sequence, which links with the observations provided by (Guo et al. 2017) in
which complex models provide overconfident predictions. However, this ef-
fect can be more or less present, as seen for instance in the right figure, where
the behavior resembles what one should expect, i.e. non-degraded performance
when increasing the number of MC samples. However, even without selecting
for the optimal value of K on validation, we observed that most of the models
outperformed the baseline uncalibrated DNN and provide competitive or even
better results than the state-of-the-art as K increases.

4.3.4 Calibration performance of BNN

In this subsection, we discuss the calibration performance of the proposed
framework. We start by evaluating the proposed method against a baseline
uncalibrated network in several datasets. Results are shown in Table 4.2,
where we compare the results with MFVILR and MFVI. For VGGFACE2 we
only run the experiments with MFVILR due to computational restrictions.
These average results are computed from more than 40 trained DNN across
different datasets, showing the suitability of the proposed approach

As shown in the table, the proposed technique improves the calibration perfor-
mance by a wide margin over the baseline even though we are using a mean-

73

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

field approximation to the intractable posterior distribution with well-known
established limitations. Regarding the accuracy performance, we see a slight
accuracy degradation which is only relevant in highly complex tasks, such as
CIFAR100, BIRDS and CARS. We hypothesise that this degradation is not
due to a limitation of the BNN algorithm, but due to inaccurate approxima-
tions to the true posterior in some settings. In fact, in some cases, we improve
the accuracy over the baseline, as in the two-class problem. This degradation
can also give us further insight into the complexity of the calibration task.

As we stated, accuracy degradation can be explained by mode collapse. To
illustrate this claim, we compare the performance provided by MFVI and
MFVILR, as both these approximations only differ in the convergence of the
training criteria given by Equation 4.5, i.e. both approximations provide factor-
ized Gaussian approximations qφ(θ) as approximate distributions. As shown in
the table, better results were obtained by the MFVILR, both regarding calibra-
tion and accuracy performance, which means that an inaccurate approximation
to the true posterior is responsible for this degradation. This is justified by
the fact that, as the MFVILR provides better speed convergence, we are able
to fit a better approximation to the intractable posterior. This same effect is
showed when one trains the same DNN using SGD and SGD with momentum.
Even the models and the initialization can be the same, the results provided
by SGD with momentum are better due to improved convergence.

On the other hand, as we see from the results, this degradation is noticeable
in more complex tasks. This suggests that the complexity of the intractable
posterior increases with the complexity of the task, and thus, a mean-field
approximation is not able to provide the same performance as it does in sim-

Table 4.2: Average ECE 15(%) and ACC (%) on the test set comparing the uncalibrated
model, and the model calibrated with MFVI and MFVILR for each database. ECE the
lower the better, ACC the higher the better. "degr" means degraded

uncalibrated MFVI MFVILR

ACC ECE ACC ECE ACC ECE

CIFAR10 94.81 3.19 94.70 0.58 94.64 0.50
SVHN 96.59 1.35 96.50 0.87 96.55 0.85

CIFAR100 76.36 11.39 73.87 2.52 74.44 2.52
VGGFACE2 96.19 1.33 - - 96.20 0.37
ADIENCE 94.25 4.55 94.28 0.53 94.27 0.51
BIRDS 76.27 13.22 degr degr 74.32 1.88
CARS 88.79 5.81 degr degr 85.34 1.59

74

4.3 Experiments

pler ones. This follows our claim that complex techniques overfit due to a
bad uncertainty treatment and not because the calibration space is inherently
simple, as noted in (Guo et al. 2017). To provide further insight, Table 4.3
compares MFVI and MFVILR with different models and CIFAR100. The first
two rows of the table show how the accuracy degradation is clearly improved
just by using MFVILR, which is a general tendency in the experiments (see the
supplementary material). However, one can not expect that using MFVILR
should always achieve better results, as a good convergence of MFVI should
make us recover similar approximate posteriors, reflected as no performance
increases. This is shown in the third and fourth rows. Moreover, if the ap-
proximate posterior is a bad approximation to the true posterior, we can dig
into an undesirable local minimum, as shown in the fifth and sixth rows. We
found that models where MFVILR worsened the performance w.r.t. MFVI were
those more difficult to calibrate in general, which can be explained by the fact
that the complexity of the true posterior cannot be captured by the factorized
Gaussian approximation, and more sophisticated approximations need to be
employed.

On the other hand, we can also provide evidence on the complexity of the
calibration space as being dependent on the complexity of the task by an-
alyzing another effect observed in the experiments carried out. Again, and
only in complex tasks: CIFAR100, BIRDS and CARS, we experimented an
accuracy degradation during training with the MFVI. This means that even
although the ELBO was correctly maximized, i.e. the likelihood correctly in-
creases over the course of learning, the accuracy provided was totally degraded.
In CIFAR100 we solve it by progressively increasing the expressiveness of the
likelihood model for the MFVI, as illustrated in the supplementary material.
However, on BIRDS and CARS it could only be solved when using MFVILR,

Table 4.3: MFVI compared to MFVILR in CIFAR100. * means best model on validation

CIFAR100
MFVI MFVILR

ACC ECE ACC ECE

DenseNet 169 75.58 2.39 77.22* 2.45
ResNet 101 68.59 1.61 70.31* 1.75

Wide ResNet 40x10 76.17 1.88 76.51* 1.79
Preactivation ResNet 18 74.30 1.76 74.51* 1.59
Preactivation ResNet 164 70.77* 1.46 71.16 2.20

ResNext 29_8x16 73.97* 2.58 71.13 3.77

75

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

as shown in Table 4.2 where "degr" stands for degradation, and it refers to
this effect. This suggests that the factorized Gaussian is unable to give a rea-
sonable approximation to the intractable posterior under noisier gradients. As
this effect is only present in a more complex task, this again suggests that
when the complexity of the task increases, so does the calibration space.

On the other hand and based on the previous observation, one could argue
that accuracy degradation is due to a lack of expressiveness in the likelihood
model. However, we still emphasize that VUE is responsible for this effect. This
is because first increasing the expressiveness of the likelihood model in MFVI on
BIRDS and CARS did not solve the problem. Second is because we observed
that by using MFVILR we were able to reduce, in general, the topologies, of
the likelihood model as compared with MFVI. This is illustrated in Table 4.4
where we show a comparison between the average number of parameters used
for each task6.

To end with, we surprisingly found that in some models that achieved good
calibration and accuracy properties, both the negative-log-likelihood and the
accuracy increased over the course of learning. This means that the network
is unable to correctly raise the probability toward the correct class for the
miss-classified samples.

4.3.5 Comparison Against state-of-the-art calibration techniques

We then compare the calibration performance of our method against other
proposed techniques for calibration, both implicit and explicit. For the com-
parison, we use the hyperparameters as provided in the original works. Results
are shown in Table 4.5 for explicit methods and in Table 4.6 for implicit meth-
ods. Results on the same dataset might differ as due to the high computational
cost of some of the explicit calibration techniques, we only perform a subset

Table 4.4: Average number of parameters (in thousands).

MFVI MFVILR
CIFAR100 24018.7 430.5
CIFAR10 696.6 65.6
SVHN 606.9 7.6

ADIENCE 0.470 4.482
average 6331.2 126.1

6In ADIENCE MFVILR was not able to reduce the topologies due to instabilities when com-
puting derivatives. We provide a justification in the supplementary material in Github.

76

4.3 Experiments

of the experiments. Details on the models used to compute these results are
provided in the supplementary material in Github.

Explicit calibration techniques

Comparing against explicit calibration techniques we first see that all the meth-
ods increase the calibration performance over the baseline (see Table 4.2), with
a clear improvement of the BNN over the rest in all the tasks. These results
demonstrate the two main hypotheses of this work: Bayesian statistics provide
more reliable probabilities, and complex models improve calibration over sim-
ple ones. This observation is consistent in all the experiments presented, where
the ECE is the lowest for the proposed model, manifesting the robustness of
the BNN approach in terms of calibration. Therefore, our results support the
hypothesis that point-estimate complex approaches for re-calibration overfit
(Guo et al. 2017) because uncertainty is not incorporated and not because cal-
ibration is inherently a simple task. This conclusion can also be supported by
the fact that as the complexity of the task increases, the number of parameters
of the Bayesian model that yields better results also increases. For instance,
the calibration BNN for CIFAR100 needs many more parameters than the BNN
for simpler tasks such as CIFAR10, as shown in Table 4.4. Second, it is impor-
tant to remark that in some models TS has degraded calibration by a factor
of three in the worst case while BNN do not, as seen in the results provided
in the supplementary material. On the other hand, Bayesian model average
clearly outperforms standard model averaging as performed by NE. In fact, NE
are not suitable for the calibration of deep models, because training directly
an ensemble of DNN is computationally hard and training NE over the logit
space does not perform as well as TS. In addition, NE is the one that uses more
parameters.

All these observations manifest the suitability of the proposed decoupled Bayesian
stage for recalibration, as even a mean-field approximation to the intractable
posterior performs better in terms of calibration than the state-of-the-art in
many scenarios. This motivates future work to study more complex variational

Table 4.5: Average ECE results compared against explicit calibration techniques.

CIFAR10 CIFAR100 SVHN BIRDS CARS VGGFACE2 ADIENCE

NE decoupled 2.55 10.17 1.02 5.25 5.51 0.79 2.64
TS (Guo et al. 2017) 0.90 3.29 1.04 2.41 1.80 0.55 0.87

ours 0.50 2.52 0.85 1.88 1.59 0.37 0.51

77

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

approximations and different Bayesian-based stages, in order to mitigate the
accuracy degradation observed in these experiments.

To end with, one important aspect we observed is the robustness of BNN. We
obtained a calibration improvement over TS on the first hyperparameter search
in many of the experiments performed. Only some exceptions require further
hyperparameter search, which is explained by having to approximate more
complex posterior distributions. However, in general, the mean-field approach
provides good results, as illustrated in Figure 4.4, where we show how many
of the tested configurations outperformed TS. More figures are provided in the
supplementary material.

Implicit calibration techniques

We then compare against implicit calibration techniques. Looking at the re-
sults in Table 4.6 we see that Network Ensembles provide competitive results
but at a higher computational cost. This is because this method requires to
train several DNN to search for the optimal parameters (number of ensembles,
the factor of adversarial noise, topologies of the ensembles...), while we only
require to reach good discrimination as provided by the DNN, and then search
hyperparameters on a much lighter model.

DenseNet-121 CIFAR10 DenseNet-121 CIFAR100

Figure 4.4: Comparison of ECE performance between TS and BNN in test and validation.
On the left (CIFAR10) we show the performance of models trained with different parameters.
As an example, 30MC 500 means that the ELBO was optimized using 30 MC samples
to estimate expectation under qφ(θ) and 500 epochs of Adam optimization. On the right
(CIFAR100) we show the performance of a BNN trained with a different number of epochs
up to 2000, showing the performance against the course of learning.

78

4.3 Experiments

On the other hand, we briefly discuss other potential advantages of our method
against implicit techniques. First, we see how our Bayesian method out-
performs the other Bayesian method provided, named Monte Carlo dropout
(MCDROP). We should expect these results as the main authors clearly state in
their work that the probabilities provided by this method should not be neces-
sarily calibrated as the dropout parameter has to be adapted as a variational
parameter depending on the data at hand (Gal et al. 2017). In fact, many
works that aim at reporting that Bayesian methods do not provide calibrated
outputs (Lakshminarayanan et al. 2017; Kuleshov et al. 2018) only provide
results comparing with MCDROP. However, this work has clearly shown that
Bayesian methods are able to improve the calibration performance over point
estimate techniques.

Moreover, while our method does not compromise the previous DNN architec-
ture, both MCDROP and VWCI require sampling-based stages, e.g dropout,
to be applied to the DNN. Despite the improvement of (Seo et al. 2019) over
a baseline uncalibrated model, our method is clearly better, as shown in the
table. Moreover, it seems unclear how scalable this method is when applied to
Deep Learning models, as to compute the cost function, this approach requires
several forwards through the DNN. While their deeper model is a DenseNet-40
we provide results here for a DenseNet-169. On the other hand, our method
is clearly more efficient than MCDROP or other Bayesian implicit methods as
these requires performing several forwards through the DNN.

In addition, developing techniques to recalibrate the outputs of a model is
indeed interesting, as they can be combined with implicit techniques. As an
example, the best results reported by (Kumar et al. 2018) are a combination
with their method with TS. Furthermore, (Lee et al. 2018) also uses TS as

Table 4.6: Average ECE results compared against implicit calibration techniques. * indi-
cates that the results are taken from the original works. We also include TS. Results from
TS and our approach differ from Table 4.5 as we only pick the DNN used in the explicit
techniques.

CIFAR10 CIFAR100 SVHN

VWCI (Seo et al. 2019)* - 4.90 -
MMCE (Kumar et al. 2018) 1.79 6.72 1.12

TS (Guo et al. 2017) 0.82 3.84 1.11
MCDROP (Gal et al. 2016) 1.38 3.49 0.92

NE (Lakshminarayanan et al. 2017) 0.61 3.27 0.71
ours 0.43 2.28 0.83

79

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

the calibration technique, and (Kuleshov et al. 2018) proposes a method for
re-calibrating outputs in regression problems; which manifest the interest and
power of developing techniques that aim at re-calibrating outputs of a model.

We end up this subsection by discussing the accuracy performance of the ex-
plicit and implicit techniques. On the explicit calibration techniques, we know
that Temperature Scaling does not change the accuracy of the DNN and we
found that decoupled Network Ensembles didn’t consistently improve or de-
grade it. Regarding the implicit calibration techniques, Network ensembles
usually provide 2− 3 points of boost in accuracy w.r.t. the single network, but
at a much higher computational cost. MCDROP or VWCI does not present a
clear boost or accuracy degradation, while MMCE sometimes degrade accuracy
as we illustrated in the previous chapter.

4.3.6 Qualitative Analysis

We have also performed a qualitative analysis of the output of the Bayesian
model in comparison with TS. We realized that on the misclassified samples
made by TS and BNN, the BNN assigns lower confidence than TS, which is
a desirable property. On the other hand, regarding the correctly classified
samples, the BNN not only adjusts the confidence better but also classifies these
samples with higher confidence than TS. This may mean that TS calibrates by
pushing samples to lower confidence regions, an observation that has been
also noted in previous works (Kumar et al. 2018). Moreover, we analyzed the
samples where the BNN decided a different class w.r.t. the DNN. On the one
hand, we analyzed the set of these samples where the class assigned by the BNN
was correct, i.e. 100% accuracy. First, in this set, the original decision made by
the DNN was incorrect, i.e. 0% accuracy. Second, the DNN assigned very high
incorrect confidence (over 0.9) to some of these miss-classified samples. Third,
the new confidence assigned by the BNN was not extreme, which means that
the BNN “carefully” changes the decision made by the DNN. On the other hand,
we analyze the set of samples where the BNN assigned a different class from
the DNN, and this newly assigned class was incorrect. First, we realize that the
DNN only had a 50% of accuracy on this set. Second, the original confidence
assigned by the DNN to these samples was below 0.5. This means that the
BNN does not make wrong decisions on a set of high-confidence, well-classified
samples by the DNN.

80

4.4 Discussion

4.4 Discussion

The disadvantages discussed in subsubsection 4.2.2 are not a limitation of our
approach. We can still improve the approximate posterior by applying nor-
malizing flows (Rezende et al. 2015), auxiliary variables (Agakov et al. 2004),
combinations of all of them (Louizos et al. 2017b) etc. Finally, a potential line
of research considers robustification by means of Generalized Variational Infer-
ence (Knoblauch et al. 2019), and the use of MCMC algorithm to decouple the
effect of the approximate inference algorithm in the results. However, including
all these improvements is not the aim of this work, but to show the adequacy of
the proposed decoupled BNN and its potential for future improvements. This
is because the true posterior distribution can be highly variable, as it not only
depends on the parameterization of the likelihood model and the prior but also
on the observed dataset, which itself depends on the input training distribution
and the set of representations learned by the specific DNN. Thus we decided to
validate our proposal restricting ourselves to the Gaussian approximation and
to show it works in a numerous set of different configurations.

4.5 Conclusions and Future Work

This work has shown that Bayesian Neural Networks with mean-field varia-
tional approximations can robustly provide state-of-the-art calibration perfor-
mance in Deep Learning frameworks, overcoming the limitations of applying
Bayesian techniques directly to them. This suggests that using more sophis-
ticated approximations to the intractable posterior should even yield better
results than the ones reported in this work.

We have also shown that as long as uncertainty is properly addressed we can
make use of complex models that do not overfit, showing that probability
assignments of DNN outputs suppose a more complex task than what previ-
ous works argued. Also, we have shown that, in contrast to previous works,
Bayesian models parameterized with Neural Networks can be successfully used
for the task of calibration. Moreover, our approach is a clear alternative to the
development of Bayesian techniques directly applied to DNN, as we do it at a
much lower computational cost.

On the other hand, we have analyzed and justified the drawbacks found in
this work: slight accuracy degradation in complex tasks and the selection of
the number of Monte Carlo predictive samples using a validation set. Future
work will be focused on the exploration and analysis of different Bayesian

81

Chapter 4. Recalibration of Deep Probabilistic Models using Bayesian Neural Networks

models for the task of calibration, different approximations to the intractable
posterior distribution, the use of MCMC algorithms to decouple the influence
of the approximate inference algorithm, and the use of alternative divergences
to the KLD to account for prior misspecification. With all this, we aim at
reducing and deeply analyze the influence of the aforementioned drawbacks.

82

Chapter 5

Transformed Gaussian Process
as a new prior over functions

This last chapter of the thesis introduces the Transformed
Gaussian Process. It is a new prior over functions that is con-
structed by transforming samples from a Gaussian process using
an invertible transformation. The chapter first introduces Gaus-
sian Processes and the variational inducing points approximation,
which serves as the base for introducing the proposed model. Among
other nice properties, we show that this model provides better cali-
bration properties than the sparse variational Gaussian Process and
similar performance to a Deep Gaussian Process at a fraction of the
computational cost. The ideas presented in this chapter correspond
to those described in (Maroñas et al. 2021b).

In the previous chapter, we briefly discuss the importance of specifying a
suitable prior to conduct meaningful Bayesian inferences. We saw that in a
Bayesian Neural Network we usually specify priors over the parameters for com-
putational convenience since that allows us to compute the Kullback Leibler
Divergence between the prior and the variational posterior in the ELBO in
closed form, which drastically speeds up the convergence and stability of the
optimization process.

However, since the computational graphs of Neural Networks are black-box
function approximators, it is difficult to interpret the prior over functions that
the prior over the parameters, the computational graph, and the data distribu-

83

Chapter 5. Transformed Gaussian Process as a new prior over functions

tion p(X) induce, which is our ultimate object of interest. This means that a
prior over the parameters that is suitable for computational convenience might
not induce a suitable prior over functions, and the problem is that due to its
black-box nature, it is hard to characterize whether the prior over functions is
correctly specified for the application at hand. In fact, one of the lines of im-
provement of the usage of Bayesian Neural Networks for decoupled calibration
is precisely the robustification against prior misspecification.

Gaussian Processes (GP) are (for the moment) mathematical objects that allow
us to specify a prior distribution directly over the space of functions, where the
attributes of the functions are specified via very few interpretable parameters.
This means that in contrast to Neural Networks, we can easily specify and
interpret priors and thus avoid biasing inferences due to prior misspecification.

The parameters of GP allow us to easily define functions that are periodic,
that are smooth1, that present some linear tendency etc. Thus in practice GP
allow us to easily encode inductive biases in the space of possible functions if
we have background knowledge about our task at hand. Of course, GP have
their limitations as any machine learning model and, as always, the application
will usually drive the kind of machine learning model we want to deploy.

We start this chapter by introducing standard GP regression, their limitations,
and how to overcome them.

5.1 Standard Gaussian Process

5.1.1 Introduction

A Gaussian Process is a stochastic process (i.e. a family of random variables
indexed by some mathematical set that is classically associated with time)
such that any finite collection have a joint Multivariate Normal distribution.
The mean and covariance of this Multivariate Normal distribution are given by
the mean and covariance functions evaluated at the index set of the stochastic
process. In our particular problem, this index set corresponds to the features
X.

An example of a sample drawn from a Gaussian process is given Figure 5.1.
This figure illustrates the difference between GP with different covariance func-
tions and different parameterization. The top row GP have a covariance func-

1Infinetly differentiable.

84

5.1 Standard Gaussian Process

4 2 0 2 4

6

4

2

0

2

4

6

4 2 0 2 4

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

4 2 0 2 4
10

5

0

5

10

15

4 2 0 2 4

5

0

5

10

4 2 0 2 4

5

0

5

10

15

4 2 0 2 4

5

0

5

10

15

20

Figure 5.1: This figure illustrates five samples drawn from a zero mean Gaussian Process
with different covariance functions with varying hyperparameters. Top row shows samples
from an RBF kernel with parameter given by a value of 0.3, 1.0 and 2.0 (left to right) and
bottom row shows a periodic kernel with lengthscale given by 1.0 and periodic parameter
given by 1.0, 2.0 and 5.0.

tion given by a RBF kernel while the bottom row has a periodic one. Samples
drawn from a RBF kernel are smooth, with the parameter controlling the
length of the wiggles in the functions. Samples from a GP with RBF kernel
are equivalent to samples from a linear regression model with a Gaussian prior
on the parameters and an infinite number of basis functions φ(X). The RBF
kernel is usually the standard kernel when no additional information about the
data (periodicity, tendency etc.) is provided. On the other hand, the bottom
row shows samples from a GP with a periodic kernel. The parameter from this
kernel controls the period of the function, which can range from high (left) to
low (right) frequencies. For an extensive study and explanation on different
kernels and how can we combine them to create functions with more attributes
see (Rasmussen et al. 2005; Duvenaud 2014).

GP can be seen as a distribution over functions since the family of random
variables can be arbitrarily large and hence we can see each of these random
variables as the function evaluation f(X) at each point X. Moreover, since the
mean and covariance specifies the kind of functions we can sample, through few
interpretable parameters, it is easy to specify meaningful priors if one wishes to
use the GP as the prior over the functions in a Bayesian setting. This contrasts
with Neural Networks where, as we saw, specifying meaningful priors is hard.

85

Chapter 5. Transformed Gaussian Process as a new prior over functions

For example, if we know that our data has some periodic behaviour, we can
encode this knowledge using a periodic kernel.

5.1.2 Bayesian predictions using GP

For our interests, the role of the GP is to encode the degree of belief about
a set of functions being responsible of generating some data. With f we will
denote samples drawn from a GP prior:

f ∼ GP(f|m(X),Kν(X,X)), (5.1)

which is linked to the observations Y through some likelihood function, which
we will assume factorizes over data points:

∏N
n=1 p(Yn|fn). For the moment

and for explanatory purposes we will assume that the likelihood is Gaussian:
p(Yn|fn) = N (Yn|fn, σ2), with an homoscedastic variance (shared variance
between all datapoints).

Since the likelihood and the prior are both Gaussian distributions, the poste-
rior is also Gaussian. We can derive the expression of the posterior distribution
starting from the joint distribution, and then conditioning on one of the ob-
servations since the Gaussian distribution is closed under marginalization and
conditioning. Most of the expressions (if not all) used in this chapter can be
derived using chapter 2 from (Bishop 2006), more precisely those on page 87
and page 93. The posterior distribution of the latent functions f given X at
any other location X∗ is given by:

p(f∗|X,Y,X∗) = N (f∗|KX∗ ,X

[
KX,X + σ2I

]−1
Y,

KX∗ ,X∗ −KX∗ ,X

[
KX,X + σ2I

]−1
KT

X∗ ,X),
(5.2)

where from now on, Y and X denotes matrices where each row represents
a training point and KX,X is a matrix where each position corresponds to
the kernel evaluation between all the possible pairs of both matrices X. This
means that KX,X is an N×N matrix. We also drop the explicit notation of the
kernel parameters ν2 from both the kernel and the conditional distributions.

This posterior distribution is a GP (i.e. another distribution over functions)
that express which functions are likely to be representative of the new data

2We now denote the parameters with ν rather than θ since θ will be used to denote the parameters
of the proposed model.

86

5.1 Standard Gaussian Process

and the kind of attributes encoded in the prior. As always, this posterior
distribution is integrated out to obtain the posterior predictive, which is also
Gaussian and can be derived using simple integrals from linear Gaussian mod-
els:

p(Y∗ |X∗ ,Y,X) =

∫
p(Y∗ |f∗)p(f∗|X,Y,X∗)df∗ =

N (Y∗ |KX∗ ,X

[
KX,X + σ2I

]−1
Y,

KX∗ ,X∗ −KX∗ ,X

[
KX,X + σ2I

]−1
KT

X∗ ,X + σ2I)

(5.3)

5.1.3 Bayesian Model Selection

In the second chapter of this thesis, we talk about the benefits of the marginal
likelihood for model selection. One of the appealing properties of Gaussian
Processes with a Gaussian Likelihood, in contrast to Neural Networks, is that
we can compute the log marginal likelihood given the hyperparameters θ, which
is a quantity that is usually intractable in Neural Networks since we cannot
integrate out the parameters W,b beyond simple cases. In GP however, we
have:

p(Y|X) =

∫
p(Y|f)p(f|X)df =∫ N∏

n=1

N (Yn|fn, σ2)N (f|0,KX,X)df =

N (Y|0, σ2I +KX,X)

(5.4)

Thus we can optimize this quantity using gradient descent to select the optimal
set of hyperparameters. Of course, this is not the exact marginal likelihood,
since the kernel hyperparameters θ cannot be integrated out analytically and
we would need to resort to an approximation3. Both (MacKay 1992) and
(MacKay 2002) provide a wide discussion around the implications of using this
pseudo marginal likelihood for model selection. Beyond automatic Occam’s
Razor, optimizing this quantity to select the optimal θ is a good approximation
similar to a fully Bayesian treatment of the hyperparameters.

3We can lower bound it using an approximate posterior q(θ), a process similar to that used for
BNN in the previous chapter.

87

Chapter 5. Transformed Gaussian Process as a new prior over functions

5.1.4 Benefits of Bayesian Learning Using Gaussian Processes

The Bayesian nature of GP (i.e. the fact that we integrate out f in order to make
predictions) and the use of a pseudo-marginal likelihood for model selection
and selection of few hyperparameters, make GP more robust to overfitting
than Neural Networks, yet being super expressive models (the RBF kernel is
equivalent to a linear model with infinity features). Moreover, since they are
Bayesian models they properly quantify the uncertainty around a prediction,
a property also available in BNN, with the advantage that we don’t have to
resort to approximate inference algorithms (at least for the moment) that can
bias our predictions and we don’t suffer from prior misspecification as well.

As a side note it shall be noted that the breakthrough of Neural Networks
in machine learning and the fact that is much more useful than GP in many
settings is not because Neural Networks are more expressive models, but due to
the inductive biases that can be encoded in the Neural Network architecture
and that make them more suitable to represent some kinds of distributions
such as images.

5.1.5 Drawbacks of Bayesian Learning Using Gaussian Processes

Of course, GP have their limitations. Beyond the unavailability to encode in-
ductive biases in a similar way to Neural Networks, many limitations make GP
hard to deploy in practice. The first one is that when the likelihood p(Y|X) is
not Gaussian, none of the expressions derived above can be computed, some-
thing that could happen if one wants to use GP for classification. Another
drawback of GP is that predictions and model learning require to invert and
N ×N matrix, which has a cubic cost. Keeping this matrix in memory has a
quadratic cost. This makes GP unfeasible for applications with tons of data,
even more model learning since we need a cubic cost operation per gradient
update. Note moreover that we cannot use stochastic gradient descent for
learning, since Equation 5.4 does not factorize over data, as the GP incor-
porates correlations between data points once f is integrated out. Another
problem is that GP might lack enough expressiveness due to the use of simple
(stationary) kernels or because we assume that the joint distribution in the
random process is Gaussian. Also if we want to model positive constrained
signals, GP with a Gaussian observation model is clearly misspecified.

88

5.2 Sparse Gaussian Process

5.2 Sparse Gaussian Process

In this section, we introduce Sparse Gaussian Processes as a solution to many
of the drawbacks seen so far. This is also a necessary step towards presenting
the inference algorithm used in the Transformed Gaussian Process.

The initial idea behind sparse GP is the use of a subset of the data Z which acts
as a summary statistics of the original dataX. We will refer to Z with inducing
points or inducing inputs. If we have M inducing points with M <<< N ,
then the O(N3) complexity can be reduced to O(M3), drastically reducing the
computational cost.

Classical approaches to sparse GP can be found in (Quiñonero-Candela et al.
2005). In this thesis, we will focus on the approach from (Titsias 2009), which
builds upon the ideas from (Snelson et al. 2006), where Z are learned through
gradient-based optimization, instead of being selected from X directly. We
would however describe the model as in (Hensman et al. 2013) since the ideas
presented in this work extend those in (Titsias 2009) so as training can be
scaled to large datasets.

Traditional sparse GP approaches rely on selecting these inducing points using
a marginal likelihood on a modified GP prior see e.g. (Snelson et al. 2006).
This makes the inducing points model parameters and hence these approaches
can overfit. The idea of (Titsias 2009) is brilliant and radically different. I try
now to briefly expose the key idea behind his approach.

Our ultimate goal is to find a way to compute the posterior distribution
p(f|X,Y) using less than O(N3) operations. An idea would be to define a new
distribution q(f|Z), that depends just onM points. Then, we can optimize the
inducing point’s locations to minimize a distance between these distributions,
for example by using the Kullback Leibler divergence. As we have seen in the
previous chapter, this corresponds to variational learning since we want to tar-
get the true posterior using an approximate posterior. Note here that the use
of a variational distribution is not due to intractabilities when computing the
posterior distribution, but as a way of finding an approximation to the true
posterior distribution using fewer points.

The problem however is that if our variational distribution is directly defined
as q(f|Z), then there is no way we can yield a training criteria that avoids a
O(N3) complexity, since one always would have to evaluate the KLD between
the prior and this approximate posterior, and that has O(N3) operations due
to the computation of the determinants need to compute this KLD. (Titsias

89

Chapter 5. Transformed Gaussian Process as a new prior over functions

2009) proposed to perform variational inference in an augmented space. We
can associate each inducing point location Z with its corresponding function
evaluation u. Then, since inducing point locations Z live in the same space as
the data X we can augment the GP prior to consider these points p(f,u|X,Z).
The idea then is to approximate the posterior distribution on this augmented
space p(f,u|X,Y) using a variational distribution q(f,u) = p(f|u)q(u|m,S),
where m,S are variational parameters as Z. These distribution take the fol-
lowing form:

p(f,u) = N
(

f
u

0,
KX,X KX,Z

KZ,X KZ,Z

)
p(f|u) = N (f|KX,ZK

−1
Z,Zu,KX,X −KX,ZK

−1
Z,ZK

T
X,Z)

q(u|m,S) = N (u|m,S);m ∈ RM×1,S ∈ RM×M

(5.5)

Thus, the idea behind (Titsias 2009) approach is to target the posterior dis-
tribution over the inducing points p(u|Y) with the variational distribution
q(u|m,S) and approximate the posterior distribution over the rest of points f
using the conditional’s model prior p(f|u). The fact that p(f|u,Y) is approxi-
mated with p(f|u) relies on the assumption that u are sufficient statistics of the
data, hence conditional independence applies on p(f|u,Y). This has two conse-
quences, the first one is that the inversion KZ,Z requires O(M3) computations
and the second is that the conditional’s model prior gets canceled avoiding a
O(N3) computation when computing the KLD in the Evidence Lower Bound,
as we shall briefly see. The training criteria is derived as follows:

KLD[q(f,u)||p(f,u|Y)] =∫
q(f,u) log q(f,u)dfdu −

∫
q(f,u) log

p(Y|f,u)p(f,u)

p(Y)
dfdu =∫

q(f,u) log
q(f,u)

p(f,u)
dfdu −

∫
q(f,u) log p(Y|f,u)dfdu + log p(Y)∫

q(u) log
���

�p(f|u)q(u)

���
�p(f|u)p(u)

du −
∫
q(f) log p(Y|f)df + log p(Y)

(5.6)

which can be rewritten as:

90

5.2 Sparse Gaussian Process

log p(Y)︸ ︷︷ ︸
log marginal likelihood

−KLD[q(f,u)||p(f,u|Y)] =

∫
q(f) log p(Y|f)df − KLD[q(u)||p(u)]︸ ︷︷ ︸

ELBO

(5.7)

We can see how the conditional’s model prior p(f|u) gets canceled, avoiding
the cubic computation involved in the KLD. Also note that since the data Y
only depends on f, the likelihood p(Y|f,u) = p(Y|f). Once this is observed,
we just integrate out f or u from the integrals where there is no dependency
on these terms, leading to the final ELBO. The distribution q(f) is Gaussian
and can be easily obtained:

q(f) =

∫
p(f|u)q(u)du =

N (f|KX,ZK
−1
Z,Zm,KX,X −KX,ZK

−1
Z,Z [KZ,Z + S]K−1

Z,ZKZ,X)
(5.8)

Finally, since the likelihood factorizes across data points, we can take the sum
over data points out of the integral, which allow us to compute unbiased gra-
dients from the training objective allowing to train the model using stochastic
gradient guided methods, scaling the method to large datasets:

ELBO =
N∑
n=1

∫
q(fn) log p(Yn|fn)dfn − KLD[q(u)||p(u)] (5.9)

where we have applied the marginalization property over q(f) so that the in-
tegral per datapoint is w.r.t. a univariate Gaussian distribution q(fn). This
integral can be computed in closed form for certain observation models, or
efficiently with one-dimensional quadrature. Predictions can be computed by
replacing the posterior with the variational distribution when computing the
posterior predictive distribution:

p(Y∗ |X∗ ,X,Y) =

∫
p(Y∗ |f)p(f|X,Y)df ≈∫
p(Y∗ |f)q(f)df

(5.10)

91

Chapter 5. Transformed Gaussian Process as a new prior over functions

The presented derivation overcomes many of the limitations presented so far.
The first one is that the computational complexity of the training objective
can be reduced from O(N3) to O(M3). Second, with this approach, we can
target the analytically intractable posterior distribution that arises when the
likelihood is not conjugate of the GP prior, for example in a classification
context. Third, the training objective can be evaluated using a subset of the
training set without bias.

However, what happens if a GP with a stationary kernel does not provide
an enough expressive model for our application?. In the following section,
we introduce the Transformed Gaussian Process (TGP), which is a new prior
over functions constructed by transforming samples from a GP yielding a more
expressive model.

5.3 Transformed Gaussian Processes

So far we have introduced and motivated Gaussian Processes as prior over
functions, and sparse Gaussian Processes as a way to overcome some of their
limitations. However, we haven’t seen how can we make these models more
expressive, for example, if we want to model a non-stationary process with a
non-Gaussian joint distribution.

To my knowledge, there are three ways in which we can overcome these limi-
tations. The first one is to use non-stationary covariance functions (Paciorek
et al. 2004; Heinonen et al. 2016), however current inference proposals can
become hard and slow. Another option is to use Deep Gaussian Processes
(Damianou et al. 2013), which are compositions of GP (see Figure 5.2) that
allow us to model non-stationary and non-Gaussian processes. Finally, we have

Input


X1

X2

...
XDx



Layer 1

GP

Layer L

GP. . .

Output

p(Y|fL)

Figure 5.2: Graphical depiction of a Deep Gaussian Process with one GP per layer. The
output of one GP is the input to the next GP in the hierarchy.

92

5.3 Transformed Gaussian Processes

the Warped Gaussian Process (Snelson et al. 2003), described in section 5.5,
which learns an invertible transformation that warps the outputs Y so that
they are well modeled by a GP. Another option is the Bayesian Warped Gaus-
sian Process (Lázaro-Gredilla 2012), which can be seen as a DGP with only
one hidden layer.

DGP are certainly a good alternative to create more expressive prior processes.
Perhaps their biggest limitation is that inference is hard and slow since one
usually uses dozens of GP per layer, but it shall be noted that they work well
in practice. In this chapter, we will evaluate our proposed model against DGP
with the Double Stochastic Variational Inference (DSVI) algorithm (Salimbeni
et al. 2017), which is one of the most popular inference algorithms for these
models, and thus a good baseline.

5.3.1 Model Description

We start by describing the proposed TGP model. Given a GP specified via its
mean and covariance functions, the TGP is a new process defined by transform-
ing samples from a GP withK invertible parametric transformations {Gθk}K−1

k=0 .
More precisely, we define for all k = 0, . . .K − 1 the functions Gθk : F → F as
the individual transformations, Gθ = Gθ0 ◦ Gθ1 ◦ · · · ◦ GθK−1

as their composi-
tion and θ = {θ0, θ1, . . . , θK−1} as the parameterization of this composition4.
Transformations of this kind have recently been popularized in a different con-
text as flows (Rezende et al. 2015). While our model applies for θ ∈ Rd, it also
accommodates the case of function-valued (i.e. input-dependent) parameters
θ : X → Rd parameterized in our case by Neural Networks.

Taking f0 ∼ GP(µ(X),Kν(X,X
′)) as a sample from the base GP, we then

define the TGP as fK = Gθ(f0). For simplicity, this chapter restricts attention
to element-wise mappings. Because such mappings produce diagonal Jaco-
bians, they only affect the marginals of the GP, so that for any fixed X′ ∈ X ,
fK(X′) = Gθ(f0(X′)). Thus, we will often refer to them as diagonal/marginal
transformations/flows. Note that the resulting TGP fK can be seen as an
input-dependent generalization of the Gaussian Copula Process discussed in
(Wilson et al. 2010).

4I have changed the notation on the parameterization. I will use θ for the flow parameters and
ν for the covariance parameters. Also f changes to f0.

93

Chapter 5. Transformed Gaussian Process as a new prior over functions

5.3.2 Input-dependent Flows

A simple example for a marginal flow is given by stacking K Sinh-Arcsinh-
Linear (SAL) flows (Rios et al. 2019):

f1 = d1 · sinh(b1 · arcsinh(f0)− a1) + c1

. . .

fK = dK · sinh(bK · arcsinh(fK−1)− aK) + cK

(5.11)

In this example, Gθ is not input-dependent and θk−1 = {ak, bk, ck, dk}. Fig-
ure 5.3 illustrates the effect of such a transform on a base GP for K = 3 as

0 5 10
X

−4

−2F

Draws from the model

Fk

F0

−2.5 0.0 2.5
F1

0.0

0.1

0.2

0.3
Marginal F0

−2 0 2
F1

0.00

0.25

0.50

0.75

Marginal Fk

−2.5 0.0 2.5
F0

−2

0

F
k

Flow transformation

−2 0 2
F1

−2

0

2

F
2

Joint distribution F0

−2 0 2
F1

−2

0

2

F
2

Joint distribution FK

Figure 5.3: Flow constructed as in Equation 5.11 with K = 3. The parameters of the
flow were obtained from one of the experiments ran in this work. We can see the effect
of the warping function in the marginal distribution (top) and joint distribution (bottom).
The flow allows us to learn multimodal marginal distributions. It shall be noted that since
the flow is an element-wise mapping, only the marginal distributions are changed, i.e. the
dependencies of fK are driven by the GP even though the plot of joint distribution might
let us conclude something different.

94

5.3 Transformed Gaussian Processes

learned in one of our experiments. We can see that the flow changes the Gaus-
sianity of the GP both in the marginal and joint distribution. It shall be noted
that contrary to what we could think, the dependencies between the random
variables from the GP and the TGP are the same, a property derived from
Sklar’s theorem (Sklar 1959; Wilson et al. 2010).

The above transformation can be made input-dependent. The only thing re-
quired is a reparameterization. In particular, one only has to replace the
scalar parameters ak, bk, ck, and dk with the function-valued parameters
αk, βk, γk, δk : X → R.

We achieve this via Neural Networks with L layers so that for any fixed X ∈ X ,
the transformation’s parameters are {αk(X), βk(X), γk(X), δk(X)}K−1

k=0 . Thus,
if the Neural Network’s weights {Wl}Ll=1 are fitted without accounting for
parameter uncertainty, θ = {Wl}Ll=1. Note that a model of this form will be
able to model non-stationary processes. This is illustrated in Figure 5.4 where
we illustrate how the marginal distribution at different locations is different

20 10 0 10 20
0

1000

2000

3000

4000

5000

6000

7000

f0 dimension 0

30 20 10 0
0

1000

2000

3000

4000

5000

6000

7000

fK dimension 0

20 10 0 10 20
0

1000

2000

3000

4000

5000

6000

7000
f0 dimension 250

20 0 20 40
0

2000

4000

6000

8000

10000

12000

fK dimension 250

Figure 5.4: This figure illustrates the effect of an input dependent flow on the resulting
marginal distributions. The two left figures represent the marginal distribution at the first
element of the index set of the stochastic process, while the two on the right represent
the element 250. From the two left figures, the one on the left represents the marginal
distribution of the GP, while the second represents the marginal distribution of the TGP
fK . The same applies to the two right figures. Since the flow is input dependent, a different
flow parameterization applies on each marginal. We can see that p(f0) is the same on both
elements of the index set, but p(fK) and hence the marginals are different. On the first
index of the distribution, the TGP just shifts p(f0), while on the right the distribution is
turn into a multimodal distribution. Clearly and even though the dependencies of these
random variables are the same, the TGP can model non-stationary processes.

95

Chapter 5. Transformed Gaussian Process as a new prior over functions


x1

x2

...
xDx

 GP

Neural Network

W1 W2

G(f0, θ)
f0 fK p(Y|fK)

θ
X

ν
f0

θ

fK

W

Y

λ

Gθ(f0)

Figure 5.5: A pictorial representation of our general formulation that highlights the role of
the Neural Network (left). As seen in the figure, the output of the neural network gives the
parameters of the flow G. We can further incorporate uncertainty into this parameters by
defining a prior p(W) over the Neural Network parameters. The complete graphical model
of the proposed approach is given in the right figure.

when using an input dependent flow. A graphical depiction of our proposed
model is provided in Figure 5.5.

5.3.3 Bayesian Priors on Flows

In this work, we find that a Bayesian treatment of {Wl}Ll=1 (i.e. rather than
using a Neural Network we use a Bayesian Neural Network to encode input
dependency) significantly improves test set performance. This is hardly sur-
prising: input-dependent flows in the form of Neural Networks introduce a
considerable number of additional hyperparameters, making a naive implemen-
tation prone to over-fitting even though we optimize the marginal likelihood.
The reason for this is that enriching GP priors with non-Bayesian flows provide
additional flexibility via hyperparameters which are not regularized via a com-
plexity penalty at inference time. By placing a Bayesian prior p(W) on the
network weights W = {Wl}Ll=1, we effectively regularize the network weights
and avoid this issue. This means that we integrate over {Wl}Ll=1 at test time,
accounting for uncertainty in θ. Though the prior could be chosen arbitrarily,
we consider the fully factorized normal prior pλ(W) = N (W; 0, λ−1I |W|×|W|).
The complete generative model of the proposed approach is given by:

f0|X ∼ GP(µ(X), Cν(X, ·))
W ∼ pλ(W)

θ(X,W) = DNN(X,W)

fK |θ,X,W = Gθ(X,W)(f0)

(5.12)

96

5.3 Transformed Gaussian Processes

Unlike in previous work (Wilson et al. 2010; Wauthier et al. 2010), we not
only quantify uncertainty about the parameter θ, but also make it an input-
dependent function.

5.3.4 Induced Distributions

One of the nice properties of the proposed model is that we can write the
probability distribution induced by the transformation. By virtue of an iterated
application of the change of variable formula and the inverse function theorem
we have:

p(fK |G,X) = p(f0|X)
K−1∏
k=0

∣∣∣∣det
∂Gθk(fk)
∂fk

∣∣∣∣−1

. (5.13)

By using a marginal flow, Sklar’s theorem (Sklar 1959) implies that the depen-
dencies in p(f0) and p(fK) are driven by the same Copula—the GP in our case.
Though the copula is the same, fK will generally have non-Gaussian marginals
(see Figure 5.3). While this chapter restricts attention to diagonal mappings
for simplicity, the presented derivations and methods may be extended to non-
diagonal transformations such as those in (Rios 2020). In practical terms,
non-diagonal transformations could be used to model arbitrary copulas and
correlation structures; and we elaborate on this version of the model in the
next section.

Whether Gθ is a diagonal or non-diagonal transformation, we require that the
resulting fK is a valid stochastic process (and thus a valid function prior).
This amounts to checking whether the resulting collection of random variables
satisfies the necessary consistency conditions, which holds by simple arguments
for marginal flows (Rios 2020). In order to employ flows such as e.g. Real NVP
(Dinh et al. 2017), one needs to prove that these conditions are still satisfied.
We leave this for future work, as the associated theory is highly dependent on
the exact flow in question.

97

Chapter 5. Transformed Gaussian Process as a new prior over functions

5.4 Inference in the Transformed Gaussian Process

So far we have presented the proposed TGP showing that it can be more ex-
pressive than a GP. In this section, we present the inference algorithm, which is
the other main contribution of this work. Note that for general constructions of
G both the posterior and the posterior predictive distributions are analytically
intractable. The works from (Wilson et al. 2010; Wauthier et al. 2010) rely on
a Laplace approximation to the posterior distribution. However, this approxi-
mation still requires O(N3) computations so it is not suitable for training and
making predictions with large datasets. Moreover, Laplace approximation is
not amenable to stochastic variational inference. In this subsection, we present
a sparse variational inference algorithm similar to that presented for standard
GP that is also amenable to stochastic optimization.

5.4.1 Sparse Prior

Since the transformation G induces a valid stochastic process (i.e. the finite
dimensional distributions are consistent) we can introduce inducing points in
the joint distribution, which give us the general joint distribution for any valid
G (diagonal or non diagonal):

p(fK ,uK) = p(f0,u0|X,Z)
K−1∏
k=0

∣∣∣∣∣det

(
∂Gθ(fk)

∂fk
∂Gθ(fk)

∂uk
∂Gθ(uk)

∂fk
∂Gθ(uk)

∂uk

)∣∣∣∣∣
−1

︸ ︷︷ ︸
Jfk,uk

(5.14)

Where each element ∂Gθ(fk)

∂fk
is itself the Jacobian of the transformation of func-

tion evaluations at the elements of X. By noting that the determinant of a
block diagonal matrix can be computed as:

det

(
A B
C D

)
= det

(
A−BD−1C

)
det (D) , (5.15)

the joint distribution p(fK ,uK) factorizes as follows:

98

5.4 Inference in the Transformed Gaussian Process

p(fK ,uK) = p(fK |uK)p(uK)

p(fK |uK) = p(f0|u0)
K−1∏
k=0

∣∣∣∣∣∣∣∣∣det

∂Gθ(fk)
∂fk︸ ︷︷ ︸
Jfk

− ∂Gθ(fk)
∂uk︸ ︷︷ ︸
Jfk|uk

∂Gθ(uk)
∂uk︸ ︷︷ ︸
Juk


−1

∂Gθ(uk)
∂fk︸ ︷︷ ︸

Juk|fk


∣∣∣∣∣∣∣∣∣

−1

p(uK) = p(u0)
K−1∏
k=0

∣∣∣∣det
∂Gθ(uk)
∂uk

∣∣∣∣−1

(5.16)

where we make use of p(fK |uK) = p(fK ,uK)/p(uK) to derive the expression for the
conditional distribution, with p(u0) and p(f0|u0) given by:

p(u0) = N (u0|0,KZ,Z)

p(f0 | u0) = N (f0|KX,ZK
−1
Z,Zu0,KX,X −KX,ZK

−1
Z,ZKZ,X)

(5.17)

Furthermore, note that for marginal flows, B and C are evaluated to zero and
so the above factorization is given by:

p(fK ,uK) = p(fK |uK)p(uK)

p(fK |uK) = p(f0|u0)
K−1∏
k=0

∣∣∣∣det
∂Gθ(fk)
∂fk

∣∣∣∣−1

p(uK) = p(u0)
K−1∏
k=0

∣∣∣∣det
∂Gθ(uk)
∂uk

∣∣∣∣−1

(5.18)

where now ∂Gθ(fk)

∂fk
is a diagonal matrix where the elements of the diagonal are

given by ∂Gθ(fk,n)

∂fk,n
.

99

Chapter 5. Transformed Gaussian Process as a new prior over functions

5.4.2 Choice of the Variational Distribution

For computational convenience, we define the approximate posterior such as
the conditional distribution cancels. This is achieved by defining a base vari-
ational distribution in the original GP space, which is warped with the same
flow as the prior. This gives:

q(fK |uK) = p(fK |uK)q(uK) (5.19)

where
q(uK) = N (u0|m,S)JuK (5.20)

withm ∈ RM×1 and S ∈ RM×M being the variational parameters and p(fK |uK)
is given by Equation 5.16.

5.4.3 Evidence Lower Bound

Following a similar procedure as in standard GP, we approximate the true
posterior using the above variational distribution:

KLD[q(fK ,uK)||p(fK ,uK |Y)] =∫
q(fK ,uK) log q(fK ,uK)dfKduK

−
∫
q(fK ,uK) log

p(Y|fK ,uK)p(fK ,uK)

p(Y)
dfKduK =∫

q(fK ,uK) log
q(fK ,uK)

p(fK ,uK)
dfKduK

−
∫
q(fK ,uK) log p(Y|fK ,uK)dfKduK + log p(Y) =∫

q(uK) log�
���

�
p(fK |uK)q(uK)

���
��p(fK |uK)p(uK)

duK −
∫
q(fK) log p(Y|fK)dfK︸ ︷︷ ︸

−ELBO

+ log p(Y)

(5.21)

Before deriving the final expression, we shall compute the only unknown dis-
tribution q(fK). It turns out that for marginal flows we can compute this
expression analytically as follows:

100

5.4 Inference in the Transformed Gaussian Process

q(fK) =

∫
q(fK ,uK)duK

=

∫
p(f0|u0)q(u0)JfK ,uKduK

(5.22)

Because G is a marginal flow the Jacobian matrix is diagonal and decomposes
such that JfK ,uK = JfKJuK , see Equation 5.18. Substituting this into the above
expression and applying LOTUS rule5 by recognizing this as an expectation
w.r.t. q(uK):

q(fK) =

∫
p(f0|u0)q(u0)JfKJuKduK

= JfK

∫
p(f0|u0)q(u0)du0

= JfKq(f0)

(5.23)

where JfK does not depend on u0 and the marginal q(f0) is given by Equa-
tion 5.8. With this, the final objective function is given by:

ELBO = −
∫
q(uK) log

q(u0)���JuK

p(u0)���JuK

duK +

∫
q(fK) log p(Y|fK)dfK =

−
∫
q(u0) log

q(u0)

p(u0)
du0 +

∫
q(f0) log p(Y|G(f0))df0 =

− KLD[q(u0)||p(u0)] +
N∑
n=1

∫
q(f0,n) log p(Yn|G(f0,n))df0,n

(5.24)

where we have applied the LOTUS rule twice again from the first to the second
row, and finally take the sum out of the integral and apply the marginaliza-
tion property. Note that the KLD between the prior and the approximate
posterior could also be derived by noting that the KLD is invariant under a
reparametrization, although we derive it here through the LOTUS rule by
noting that the KLD is an expectation of a log-ratio w.r.t. q(uK).

The use of marginal flows and factorizing likelihoods results in the expected
log-likelihood (ELL) term being decomposable across the latent variables q(f0,n)
and observations Yn, making it particularly suitable for stochastic variational

5Described at the end of subsubsection 4.2.2.

101

Chapter 5. Transformed Gaussian Process as a new prior over functions

inference and big N as in (Hensman et al. 2013). In other words, we can train
using mini batches of data. The individual ELL components will generally
be unavailable in closed form and computed using one-dimensional Gaussian
quadrature. The whole process can be coded in parallel making use of modern
GPUs.

Note that the presented algorithm scales to large dataset both at training and
test times since we inherit the complexity from standard sparse GP. We will
illustrate this in the experiment section.

Non marginal flows

The above derivation is particular for marginal flows. In this subsection we
present the necessary steps for non diagonal flows. The difference is that we
cannot integrate out the inducing points analytically, hence the ELL can be
computed using Monte Carlo. Note that the marginal q(fK) is given by:

q(fK) =

∫
q(fK ,uK)duK

=

∫
p(fK |uK)q(uK)duK

=

∫
[JfK − JfK |uKJ

−1
uK

JuK |fK]p(f0|u0)q(u0)du0

= q(f0)JfK −
∫

[JfK |uKJ
−1
uK

JuK |fK]p(f0|u0)q(u0)du0

(5.25)

Note that integrating the inducing points will be generally intractable due to
the non-linearity of the flow G that appears in the conditional prior p(fK |uK)
through the elements JfK |uK ,JuK |fK and JuK . Resorting to a Monte-Carlo
approximation the ELL is computed as follows:

ELL =
N∑
n=1

∫
q(fK ,uK) [log p(Yn|fK,n)] dfKduK

=
N∑
n=1

∫
q(fK,n,uK) [log p(Yn|fK,n)] dfKduK

≈
N∑
n=1

1

S

S∑
s=1

[log p(Yn|fK,n,s)]

(5.26)

102

5.4 Inference in the Transformed Gaussian Process

where we follow similar steps to marginal flows, i.e. we integrate out all the
elements from fK but fK,n. The last line is the Monte-Carlo approximation
where samples are obtained by the generative process defined for flow based
models, i.e sample from the base distribution and warp samples with the flow :

u0,s ∼ q(u0)

f0,n,s ∼ p(f0,n|u0,s)

fK,n,s,uK,s = Gθ(f0,n,s,u0,s)

(5.27)

where the samples uK,s are then discarded.

5.4.4 Input Dependent Flows

In the case in which flows are input dependent, we have two options. If the
parameters of the Neural Network are fixed, i.e. we do not perform inference
over them, then for each datapoint Xn we need to compute the corresponding
parameter when evaluating the ELL. Note that this can be easily done in
parallel still making the bound efficient and computable in parallel hardware
architectures.

When the flows are Bayesian, we need to perform inference over the Neural
Network parameters. Since the posterior over the Neural Network weights
is intractable, we approximate the posterior using a variational distribution
qφ(W), as in chapter 4. We assume independence between the latent processes
and the latent parameters both in the prior and variational posterior. Thus,
the complete prior and variational distributions are given by:

p(fK ,uK ,W) = p(fK |uK)p(uK)pλ(W)

q(fK ,uK ,W) = p(fK |uK)q(uK)qφ(W)
(5.28)

where φ are the variational parameters of the BNN. By plugging this into the
ELBO we arrive at:

103

Chapter 5. Transformed Gaussian Process as a new prior over functions

ELBO =

∫
q(fK ,uK)q(W) log

N∏
n=1

p(Yn|fK,n)dfKduKdW

−
∫
q(fK ,uK)q(W) log

q(fK ,uK)qφ(W)

p(fK ,uK)p(W)
dfKduKdW =

=

∫
q(f0)qφ(W) log

[
N∏
n=1

p(Yn|fK,n)

]
df0dW

− KLD[q(u0)||p(u0)− KLD[qφ(W)||p(W)] =
N∑
n=1

∫
q(f0,n)qφ(W) log p(Yn|Gθ(X,W)(f0,n))df0,ndW

− KLD[q(u0)||p(u0)]− KLD[qφ(W)||p(W)] ≈
N∑
n=1

1

S

S∑
s=1

∫
q(f0,n) log p(Yn|Gθ(X,Ws)(f0,n))df0,n

− KLD[q(u0)||p(u0)]− KLD[qφ(W)||p(W)];Ws ∼ q(W)

(5.29)

This bound has two interesting properties. First, one can allow for low variance
and unbiased gradients w.r.t. φ by reparameterization (something satisfied for
popular choices of q(W) such as the mean-field Gaussian family) and use the
local reparameterization trick, as in the previous chapter. Second, one can ac-
count for prior miss-specification by substituting the KLD for other divergences,
which has been shown to improve the performance of this model (Knoblauch
et al. 2019).

In our work however, we have implemented the BNN using Monte Carlo dropout
(Gal et al. 2016). Although this technique has its own problems (e.g. tun-
ing the dropout rate or poor performance in recent benchmarks) we found it
worked well in the proposed model. Moreover it can be more efficiently trained
and also allow us to avoid some well-known problems of mean-field VI such as
variance under-estimation already discussed in the previous chapter. Never-
theless, our bound can be efficiently trained regardless of the specification of
the variational family by using batched matrix computations by means of the
BLAS or CUBLAS libraries.

Finally, note that computing the forward passes through the Neural Network
are independent of the computation of q(f0). This means that one can paral-
lelize the computation of q(f0) and θ(Ws,X).

104

5.5 Warped Gaussian Processes

5.4.5 Computational benefits of the approximate posterior

This final subsection summarizes and extends the computational benefits of the
choice of the approximate family. One of the most interesting properties of our
proposed approach is that both training and predictions can be done without
inverting G, allowing us to use any expressive invertible transformation, in
contrast to the Warped Gaussian Process, discussed in the next section.

On the other hand, other choices for the variational distribution would imply
an undesirable increase in computational time. First, the definition of q(uK)
allows us to compute the KLD in closed form, avoiding the need to resort to
estimation by sampling and to compute the Jacobian of the transformation.
Note that computing this Jacobian can be done in linear time for marginal
flows although it will have, in general, a cubic cost. Moreover, other choices
of q(uK) could require the computation of the inverse G−1

θ (uK) to evaluate
the density of the posterior sample under p(u0)JuK . On the other hand, not
canceling p(fK |uK) would also require to approximate the determinant of the
transformation JfK and the inverse Gθ, with the whole dataset X, something
that cannot be done stochastically. So canceling this term is not only important
to allow stochastic variational inference, but also to avoid costly Jacobian/in-
verse computations.

Finally, the use of marginal flows and definition of the variational posterior
allow us to analytically integrate out the inducing points, a very desirable
property both for training and when making predictions.

5.5 Warped Gaussian Processes

The use of invertible transformations in the GP literature is not new. In
fact, the presented TGP model was already used by (Wauthier et al. 2010;
Wilson et al. 2010). However, rather than as a general-purpose prior over
functions, both works propose the TGP for specific applications. Clearly our
work extends (Wauthier et al. 2010; Wilson et al. 2010) by providing a sparse
inference algorithm, allowing Bayesian input dependent flows, and show that
the TGP can be used as a general-purpose prior over functions. Note moreover
that, beyond those applications, the warping function G can encode inductive
biases. If our data is e.g. positive constrained then it does not make sense
to use a GP, since the Gaussian distribution has support overall R. In the
experiment section, we will show that we can use a TGP prior which provides
a positive constrained process to model positive constrained signals.

105

Chapter 5. Transformed Gaussian Process as a new prior over functions

On the other hand, we can use invertible transformations T to warp the labels
Y rather than the latent function f. This model was presented in (Snelson
et al. 2003) under the name of Warped Gaussian Process (WGP). The idea is
that if the full GP model (likelihood and prior) is misspecified w.r.t. the data
Y (for example because the data is positive), we can learn a transformation
T(Y) that maps this non-Gaussian data to a data that can be well modeled by
a GP, i.e. the data can be mapped to a GP with additive Gaussian noise. Note
that whenever T is non linear6, this implies that Y is non-Gaussian with non-
additive noise7. This means that one can see this transformation as aiming
to fix model misspecification, and thus is only justified if one has sufficient
domain knowledge about the application at hand.

Also note that the WGP cannot be applied to discrete dataY, in contrast to the
TGP. Actually, both the TGP and the WGP are complementary approaches,
that target different parts of the modeling process. Beyond that, and looking
at the computational aspect, the WGP has the advantage that one can train
the model by computing the marginal likelihood (Snelson et al. 2003), hence
there is no need for an approximation. On the other hand, predictions require
to compute the inverse of the warping function, which can be computational
expensive needing approximate methods such as Newton-Raphson, or restrict-
ing the expressiveness of T so that the inverse can be analytically computed
(Rios et al. 2019).

The original implementation of the WGP inherits the same limitations as stan-
dard GP. However, it turns out that extending this model to be sparse is
straightforward. One just needs to warp Y and add the Jacobian correction
to the ELL in the ELBO. Although straightforward this is the first work that
sparsifies and evaluates the WGP. In the experiment section, we will show a
comparison between the WGP and the TGP. The likelihood of the complete
model (WGP + TGP) is given by:

p(Y|T, fK) = p(T(Y)|fK)
K∏
k=0

∣∣∣∣det
Tk(Yk)

Yk

∣∣∣∣ , (5.30)

with the final objective function being:

6As desirable, otherwise the use of T is not justified since the overall model would be a GP.
7Note that if Y = T(X + ε) with T being non-linear, then the output Y will not be an additive

noise model since linearity implies t(x+ y) = t(x) + t(y)

106

5.6 Predictions

ELBO =
N∑
n=1

[∫
q(f0,n) log p(T(Yn)|G(f0,n))df0,n + log

K∏
k=0

∣∣∣∣det
Tk(Yk,n)

Yk,n

∣∣∣∣
]

− KLD[q(u0)||p(u0)]
(5.31)

5.6 Predictions

In order to compute the posterior predictive distribution at test time, we first
replace the posterior distribution with the approximate posteriors which gives:

p(Y∗ |X∗ ,X,Y) =

∫
p(T(Y∗)|fK)q(fK)q(W)dfKdW

K∏
k=0

∣∣∣∣det
Tk(Yk)

Yk

∣∣∣∣ ≈
1

S

S∑
s=1

∫
p(T(Y∗)|Gθ(X,Ws)(f0))q(f0)df0

K∏
k=0

∣∣∣∣det
Tk(Yk)

Yk

∣∣∣∣ ;Ws ∼ q(W)

(5.32)

where we again apply LOTUS rule and integrate out w.r.t. the base distribution
q(f0). This integral can be computed with one-dimensional Quadrature, i.e. for
each Monte Carlo sample Ws the marginalization over q(f0) is performed using
100 quadrature points. We will see that this does not affect the computational
performance of the proposed model.

To compute point-wise predictions such as the mean, then we can resort to
approximate methods such as Gauss-Hermite quadrature and Monte Carlo, as
explained above. Also, in the case of the WGP we need to compute the inverse
since LOTUS rule applies again. Let Z = T(Y∗), we have for the mean:

E[Y∗] =

∫
Y∗p(Y∗ |X∗ ,X,Y)dY∗ =∫

T−1(Z)p(Z|X∗ ,X,Y)dZ
(5.33)

where one would need to plug in the necessary approximation steps in Equa-
tion 5.32 in order to integrate out the latent process and latent weights.

107

Chapter 5. Transformed Gaussian Process as a new prior over functions

Quantiles from the posterior predictive can be computed by sampling in the
case of the TGP or by warping the corresponding quantile points in Z using
the inverse T−1 in the case of the WGP, see (Snelson et al. 2003).

5.7 Experimental Evaluation

In this final section, we evaluate the proposed TGP. Beyond its well-calibrated
uncertainties, we illustrate other benefits from the TGP both in terms of com-
putational performance and applications. Experimental details on the archi-
tectures and training hyperparameters are provided in Appendix B8.

We will use the following acronyms to refer to the different models compared:
Sparse Variational Gaussian Process (SVGP) described in section 5.2, Deep
Gaussian Processes (DGP) with DSVI inference, TGP with non-input depen-
dent flows (TGP), TGP with input dependent flows and a point estimation
of the parameters of the Neural Network (PETGP), TGP with input depen-
dent flows and Bayesian marginalization of the Neural Network parameters
(BATGP) and the variational version of the WGP (V-WGP) described in the
previous section. In the different figures the number in the subindex shows
the number of inducing points used, e.g. BATGP100 refers to a Bayesian TGP
fitted with 100 inducing points.

5.7.1 Bayesian Input Dependent TGP

In this first subsection, we illustrate the influence of making the TGP input
dependent, and how accounting for uncertainty in the Neural Network’s param-
eters affects the performance. Figure 5.6 compares the effect of parameterizing
an input dependent TGP with a Neural Network with a point estimation via
standard dropout (Srivastava et al. 2014) vs a Bayesian marginalization via
Monte Carlo dropout (Gal et al. 2016). We can see how the BATGP prevents
the Neural Network from overfitting yielding a performance boost compared
with PETGP. We also illustrate how non-input-dependent flows are much less
expressive than the input-dependent counterpart.

To provide a deep understanding of what is going on, Figure 5.7 shows the
warping functions of an input dependent flow showing the effect of using a
point estimation (top row) vs drawing samples from the approximate posterior
(bottom row). We can see how the mean of both distributions is the same,

8In line with the rest of the chapters a Github with the implementation of the model is provided
https://github.com/jmaronas/TGP.pytorch.git.

108

https://github.com/jmaronas/TGP.pytorch.git

5.7 Experimental Evaluation

2.7 2.8

SVGP100

TGP100

PE-TGP100

BA-TGP100

Power
N=9568, Dx=4

1.0 1.2

1250

1500

1750

2000

2250

2500

2750

3000

3250

Wine-white
N=4898, Dx=11

−1.2 −1.0

1250

1500

1750

2000

2250

2500

2750

3000

3250

Kin8nm
N=8192, Dx=8

3.50 3.75

SVGP100

TGP100

PE-TGP100

BA-TGP100

Power
N=9568, Dx=4

0.65 0.70

1250

1500

1750

2000

2250

2500

2750

3000

3250

Wine-white
N=4898, Dx=11

0.07 0.08

1250

1500

1750

2000

2250

2500

2750

3000

3250

Kin8nm
N=8192, Dx=8

Figure 5.6: Comparison of NLL (top; left is better) and RMSE (bottom; left is better) for a
standard SVGP with a non input-dependent flow (TGP), the input-dependent counterpart
indexed by a Neural Network when the Neural Network is fitted using a point estimate
(PETGP) or integrated out in a Bayesian fashion (BATGP).

however, the Bayesian flow provides uncertainty around the warping function.
This uncertainty is responsible for the boost in performance we will see in
the subsequent sections. This figure also shows how different inputs X1, X2

etc. parameterize different warping functions.

5.7.2 Calibration Properties of the TGP

In this subsection, we evaluate the performance of the TGP both in regression
and classification datasets obtained from the UCI repository (Lichman 2013).
To do so, we evaluate the model using the Root Mean Squared Error (RMSE)
for regression and accuracy (ACC) for classification. Additionally, and in order
to measure the calibration performance of the model, we report the Negative
Log-Likelihood (NLL), which is a proper scoring rule since it is derived from a
statistical divergence.

We compare the SVGP, DGP with a different number of layers, and the three
variants of the TGP: BATGP, TGP and PETGP. Note that PETGP and BATGP
share the same input-dependent architecture and learned parameters W, and
the only difference relies on whether we use standard Dropout (Srivastava et al.
2014) or Monte Carlo dropout (Gal et al. 2016) to make predictions.

109

Chapter 5. Transformed Gaussian Process as a new prior over functions

0.0 2.5

0

1

2

3

4

f K

0.0 2.5

0

1

2

3

4

0.0 2.5

0

1

2

3

4

0.0 2.5

0

1

2

3

4

0.0 2.5

f0(X(1))

0

1

2

3

4

f K

0.0 2.5

f0(X(2))

0

1

2

3

4

0.0 2.5

f0(X(3))

0

1

2

3

4

0.0 2.5

f0(X(4))

0

1

2

3

4

Point Estimate Warping Function

Bayesian Warping Function

Figure 5.7: Example of warping functions obtained with input-dependent flows for the
power dataset. The top row shows the point estimate warping function evaluated over a
range f0, at different input locations using standard Dropout. The bottom row shows the
mean and standard deviation of samples from the posterior of the Bayesian flow using Monte
Carlo Dropout. We can see how the model learns a different function warping depending on
the input locations and how the model accounts for parameter uncertainty.

Large Scale Regression

Figure 5.8a and Figure 5.8b report the RMSE and NLL of two Large scale
regression datasets. The year dataset has 0.5 Million and the airline has around
2 Million training points. This demonstrates the scalability of the proposed
model to large datasets.

Across both datasets, our model outperforms the baseline SVGP both in RMSE
and NLL. Furthermore, the TGP also performs well, although in general is
outperformed by the BATGP. These plots also show the regularization effect
of Bayesian marginalization, noted by comparing the pink and orange dotes. In

110

5.7 Experimental Evaluation

3.58 3.60

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

Year
N=463715, Dx=90

4.94 4.96

−1000

0

1000

2000

3000

4000

5000

Airline
N=1958097, Dx=8

(a) NLL (left is better) for large scale regression datasets.

8.8 8.9

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

Year
N=463715, Dx=90

34.5 35.0

−1000

0

1000

2000

3000

4000

5000

Airline
N=1958097, Dx=8

(b) RMSE (left is better) for large scale regression datasets.

Year the RMSE and NLL is highly improved when accounting for uncertainty
in the parameters. In Airline both models provide similar RMSE, but the
BATGP provides better uncertainty quantification, reflected by improved NLL
scores. In these experiments only the 4-layers DGP clearly outperforms TGP,
PETGP and BATGP except for the Year dataset where BATGP has a lower
NLL, indicating better uncertainty quantification.

Medium-Small Regression

We now illustrate the results for the medium-small regression in Figure 5.9
(NLL) and Figure 5.10 (RMSE). We show results split across decreasing number
of inducing points and different models. Across all levels of inducing points,
the BATGP model ranks the best and consistently outperforms alternative
models on both NLL and RMSE showing superior point-prediction, uncertainty
quantification and calibration.

On the other hand, by looking at e.g power dataset, and comparing RMSE and
NLL, we can see how in terms of RMSE both the PETGP and BATGP perform
similarly. However, there is a big difference in terms of NLL, which is an
indicator of good predictive uncertainty quantification provided by introducing

111

Chapter 5. Transformed Gaussian Process as a new prior over functions

uncertainty in the flow parameters, as already noted in the previous subsection.
This is a general tendency shown in these figures (check pink and orange dots).

Moreover, a particularly interesting outcome is the performance of the models
when only using 5 inducing points. We can see that in kin8nm, power and
concrete the 5 inducing points provides a similar performance to the 100
inducing points for the BATGP. We show in subsection 5.7.4 that even though
the Neural network is highly expressive, the base SVGP is necessary and not
‘ignored’ by the model. Hence we can attribute the excellent performance of
BATGP to both the combination of the BNN and the SVGP. We hypothesize
that since the BATGP allow us to learn a non-stationary model, the underlying
latent GP function can be super smooth, which is the reason for needing very
few inducing points.

We can also see how the standard TGP is also able to improve upon the SVGP
in some datasets, although the improvement is minimal, clearly highlighting
the necessity of input-dependent flows. The fact that the standard TGP has
been tested using more complex transformations than the input-dependent
TGP (which uses just 1-3 length SAL flows) suggest that the boost in perfor-
mance clearly comes from the input dependency and not the warping function.
This means that these results can be improved by testing more complex input-
dependent flow combinations, which is something we leave for future work.
Also, we can see in wine-red that while the uncertainty quantification of our
model and the DGP is quite similar, we clearly outperform it in terms of
pointwise predictions. The DGP consistently outperforms the TGP and SVGP
w.r.t. RMSE but in general the BATGP and PETGP achieve superior perfor-
mance. These two observations might indicate that the proposed model is
more expressive in terms of pointwise predictions than a DGP.

Finally, note how without doing specific model selection for the less inducing
points models, the parameters extrapolated from the 100 inducing points one
works very well, which means that our model is somewhat robust to the se-
lection of hyperparameter. Also by noting that all the models are trained for
15000 epochs, we show how our model has not over-fit, although being much
more complex than a ‘simple’ GP.

112

5.7 Experimental Evaluation

2.0 2.5 3.0

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

SVGP50

TGP50

PE-TGP50

BA-TGP50

SVGP20

TGP20

PE-TGP20

BA-TGP20

SVGP10

TGP10

PE-TGP10

BA-TGP10

SVGP5

TGP5

PE-TGP5

BA-TGP5

Boston
N=506, Dx=13

1 2

−8000

−6000

−4000

−2000

0

2000

Energy
N=768, Dx=8

3.0 3.5

−8000

−6000

−4000

−2000

0

2000

Concrete
N=1030, Dx=8

1.0 1.2 1.4

−8000

−6000

−4000

−2000

0

2000

Wine-red
N=1599, Dx=11

1.0 1.2

−8000

−6000

−4000

−2000

0

2000

Wine-white
N=4898, Dx=11

−1.0 −0.5

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

SVGP50

TGP50

PE-TGP50

BA-TGP50

SVGP20

TGP20

PE-TGP20

BA-TGP20

SVGP10

TGP10

PE-TGP10

BA-TGP10

SVGP5

TGP5

PE-TGP5

BA-TGP5

Kin8nm
N=8192, Dx=8

2.7 2.8 2.9

−8000

−6000

−4000

−2000

0

2000

Power
N=9568, Dx=4

−6 −4

−8000

−6000

−4000

−2000

0

2000

Naval
N=11934, Dx=17

2.8 3.0 3.2

−8000

−6000

−4000

−2000

0

2000

Protein
N=45730, Dx=9

1th 7th 13th 19th

−8000

−6000

−4000

−2000

0

2000

Ranking
Across 9 datasets

Figure 5.9: Comparing NLL (left is better) across 9 data sets for several number of
inducing points. Bottom right panel: Ranking of the methods across all 9 data sets. TGP
stands for non input-dependent flows, PETGP stands for point estimate input-dependent
flows (Standard Dropout) and BATGP stands for the Bayesian input-dependent flows (MC
Dropout)

113

Chapter 5. Transformed Gaussian Process as a new prior over functions

2 3 4

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

SVGP50

TGP50

PE-TGP50

BA-TGP50

SVGP20

TGP20

PE-TGP20

BA-TGP20

SVGP10

TGP10

PE-TGP10

BA-TGP10

SVGP5

TGP5

PE-TGP5

BA-TGP5

Boston
N=506, Dx=13

1 2 3

−8000

−6000

−4000

−2000

0

2000

Energy
N=768, Dx=8

4 6 8

−8000

−6000

−4000

−2000

0

2000

Concrete
N=1030, Dx=8

0.60 0.65

−8000

−6000

−4000

−2000

0

2000

Wine-red
N=1599, Dx=11

0.65 0.70 0.75

−8000

−6000

−4000

−2000

0

2000

Wine-white
N=4898, Dx=11

0.10 0.15

SVGP100

TGP100

PE-TGP100

BA-TGP100

DGP2100

DGP3100

DGP4100

SVGP50

TGP50

PE-TGP50

BA-TGP50

SVGP20

TGP20

PE-TGP20

BA-TGP20

SVGP10

TGP10

PE-TGP10

BA-TGP10

SVGP5

TGP5

PE-TGP5

BA-TGP5

Kin8nm
N=8192, Dx=8

3.5 4.0

−8000

−6000

−4000

−2000

0

2000

Power
N=9568, Dx=4

0.000 0.005

−8000

−6000

−4000

−2000

0

2000

Naval
N=11934, Dx=17

4 5

−8000

−6000

−4000

−2000

0

2000

Protein
N=45730, Dx=9

1th 7th 13th 19th

−8000

−6000

−4000

−2000

0

2000

Ranking
Across 9 datasets

Figure 5.10: Comparing RMSE (left is better) across 9 data sets for several number of
inducing points. Bottom right panel: Ranking of the methods across all 9 data sets. TGP
stands for non input-dependent flows, PETGP stands for point estimate input-dependent
flows (Standard Dropout) and BATGP stands for the Bayesian input-dependent flows (MC
Dropout).

114

5.7 Experimental Evaluation

Classification

Finally, we show results on classification datasets in Figure 5.11a (NLL) and
Figure 5.11b (ACC). Across all datasets our proposed models (either through
input-dependent or non-input-dependent flows) outperform the SVGP, and
only in heart does the TGP substantially outperform the input-dependent
models BATGP and PETGP. We highlight the big boost in accuracy provided
by our models (see e.g. avila dataset).

Surprisingly we observe that the PETGP performs well in classification and
usually outperforms the BATGP. However, we have observed that sometimes
the PETGP outputs extreme wrong values, giving a NLL of ∞. For this same
model, we observe that the BATGP was able to remove those extreme pre-
dictions. We speculate that the model is correctly incorporating epistemic
uncertainty relaxing extremely wrong assigned confidences. This observation
corresponds to the Heart dataset where the pink point is not present since
the NLL was ∞. Moreover, even though the BATGP solves this problem, it is
unable to provide good predictions as compared with the non-input dependent
TGP or the SVGP. We attribute this problem to prior misspecification. As ex-
plained by (Knoblauch et al. 2019), prior misspecification leads to a misleading
quantification of uncertainty. Further, the number of training data points is
small, meaning that the prior has a relatively strong influence relative to the

0.125 0.150 0.175

SVGP100

TGP100

PE-TGP100

BA-TGP100

Avila
N=20867, Dx=10, C=12

0.000 0.005

1250

1500

1750

2000

2250

2500

2750

3000

3250

Banknote
N=1371, Dx=4, C=2

0.525 0.550 0.575

1250

1500

1750

2000

2250

2500

2750

3000

3250

Movement
N=13197, Dx=4, C=2

0.48 0.50

1250

1500

1750

2000

2250

2500

2750

3000

3250

Activity
N=42239, Dx=6, C=7

0.5 1.0

1250

1500

1750

2000

2250

2500

2750

3000

3250

Heart
N=299, Dx=12, C=2

(a) NLL (left is better) of all the classification datasets

0.95 0.96 0.97

SVGP100

TGP100

PE-TGP100

BA-TGP100

Avila
N=20867, Dx=10, C=12

0.95 1.00 1.05

1250

1500

1750

2000

2250

2500

2750

3000

3250

Banknote
N=1371, Dx=4, C=2

0.72 0.74

1250

1500

1750

2000

2250

2500

2750

3000

3250

Movement
N=13197, Dx=4, C=2

0.785 0.790 0.795

1250

1500

1750

2000

2250

2500

2750

3000

3250

Activity
N=42239, Dx=6, C=7

0.7 0.8

1250

1500

1750

2000

2250

2500

2750

3000

3250

Heart
N=299, Dx=12, C=2

(b) Accuracy (right is better) of all the classification datasets

Figure 5.11: Results for classification datasets. TGP stands for non input-dependent
flows, PETGP stands for point estimate input-dependent flows (Standard Dropout) and
BATGP stands for the Bayesian input-dependent flows (MC Dropout).

115

Chapter 5. Transformed Gaussian Process as a new prior over functions

likelihood terms. In situations like this, a badly specified prior dominates the
likelihood terms and adversely affects the predictive likelihoods.

To build on this claim we note that the TGP outperforms the GP on this dataset
indicating that having a more expressive prior is beneficial. This coupled with
the fact that we did not tune the prior p(W) for our BNN, and that this is the
only dataset in which the BATGP does not give a clear boost in performance,
are consistent observations with the hypothesis of prior misspecification.

Finally, on banknote, we see that all the models provide a 100% accuracy,
which means that the improvement in the NLL is coming from reducing the
calibration gap, as the NLL is a proper scoring rule. Our model is making the
predictions extreme towards the correct class, which is a desirable property
if your data distribution doesn’t present overlap between classes as already
discussed in the first chapters of this thesis. Note however how in this case
the BATGP still provides uncertainty in the predictions, avoiding the extreme
{0, 1} probability assignments.

5.7.3 Computational Performance of the TGP

As we have seen in the previous section, the TGP can match the 3-layer DGP
performance at a fraction of the computational complexity. Figure 5.12 com-
pares the training and prediction time required by the SVGP the BATGP and
DGP of different layers. Even on the energy dataset, where the DGP has only
8 GP per layer, computation times of the 3-layer DGP are 3× (training) and
10× (prediction) that of the BATGP.

SVGP TGP DGP2 DGP3 DGP4

5

10

15

T
im

e
in

m
in

u
te

s

Training

SVGP TGP DGP2 DGP3 DGP4

0.00

0.05

0.10

Prediction

Figure 5.12: Average clock times for 100 runs with 1200 epochs on energy. Predictions
use 100 samples from the posterior. The variance of training and prediction repetitions is
negligible (< 10−5).

116

5.7 Experimental Evaluation

This is true even though our implementation of the DGP fully exploits paral-
lelization on a GPU cluster, while our current TGP implementation does not
exploit potential parallelization across GP parameters. We further emphasize
that our predictions use a 100 point quadrature integration rule per Monte
Carlo sample, i.e. we use 100× 100 integration points, in contrast to the DGP
which only uses 100 Monte Carlo samples.

5.7.4 Uncertainty handled by the GP and TGP

In the UCI experiment section, we comment that sometimes the model with
5 inducing points provides similar results to the 100 inducing points models.
Initially, we could think that the BNN is handling all the modeling power both
in terms of uncertainty quantification and regressed values. In this subsection,
we illustrate that this is not the case and that the modeling performance
comes from a combination of the Neural Network and the GP. Note that the
uncertainty provided by the GP is combined with the uncertainty provided by
the BNN.

0 50

0

20

40

60

80

GP 100 inducing

0 50

0

20

40

60

80

GP 5 inducing

0 50

0

20

40

60

80

TGP 100 inducing

0 50

0

20

40

60

80

TGP 5 inducing

0.00

0.02

0.04

0.06

0.08

(a) Covariance from q(f0) evaluated at 100 train-
ing points

0 50 100

−1

0

1

2

GP 100 inducing

0 50 100
−2

−1

0

1

2

GP 5 inducing

0 50 100

−1

0

1

2

3

4
TGP 100 inducing

0 50 100

0.0

0.5

1.0

1.5

2.0

TGP 5 inducing

(b) Mean from q(f0) evaluated at 100 training
points

Figure 5.13: This figure shows the mean and covariance from the GP variational distri-
bution q(f0) evaluated at 100 training points. As shown in the plot the covariance have not
collapse to a point mass (i.e. the cells would have to be completely white) and the mean also
change across training points. This means that the model has not learned to just output a
constant value for f0 and model everything through the Neural Network.

117

Chapter 5. Transformed Gaussian Process as a new prior over functions

To do so, we pick the concrete dataset, which is one of the datasets in which
this effect is presented. For this dataset we plot the mean and covariance of
q(f0) at 100 random training locations in Figure 5.13. As we see in the plot, the
mean and covariance from q(f0) have not collapsed to a constant distribution.
This means that the model has not learned to output a constant value for f0
and perform all the modeling through the input-dependent θ(W,Xn) model.
Note however that understanding the specific role of the GP and the BNN in
our model in terms of uncertainty quantification is something that we leave for
future work.

5.7.5 Applications

Finally, we compare the proposed TGP with the variational V-WGP in two
applications where we can encode inductive biases in the warping function.
This will allow us to discuss the benefits of warping the likelihood (V-WGP)
vs warping the prior (TGP), although in this chapter we do not investigate
when is better to warp the likelihood vs when is better to warp the prior.
In other words, we do not answer the question: is our data corrupted with
non-Gaussian noise, or is our data modeled by a non-Gaussian process with a
Gaussian observation model?. This is something we leave for future work.

Air Quality

Consider Particulate Matter of 2.5 µm size (PM25) in London (London 2020)
as depicted in Figure 5.14. Measurements of PM25 are non-negative, exhibit
periodic fluctuations due to vehicle traffic, and irregular peaks arising from
weather conditions or traffic jams. Thus, we choose a SAL and Softplus (SP)
composition (SAL+SP). This makes the TGP’s latent function positive and
guarantees T(Y) ≥ 0 for the V-WGP.

The difference between methods is noticeable for low numbers of inducing
points (see Figure 5.14 and Figure 5.15). As discussed before the V-WGP im-
plicitly models Y with non-additive noise while the TGP transforms the prior,
but models the noise additively. Hence, the TGP will attribute fluctuations
to the underlying latent function, while the V-WGP is prone to absorb oscilla-
tions into the observation noise, as in Figure 5.14. Unsurprisingly, the TGP’s
fit is superior to that of the SVGP due to its additional flexibility. However,
even though Gθ is chosen so that Gθ(f0) ≥ 0, the TGP assigns positive prob-
ability mass to PM25 being negative, since the observation model p(Y|fK) is
Gaussian.

118

5.7 Experimental Evaluation

0

25

50

75

PM25 in Honor Oak Park, London

Training

Testing

TGP

0

25

50

75
V-WGP

2019-03-28 2019-03-30 2019-04-01 2019-04-03 2019-04-05

0

25

50

75
SVGP

Figure 5.14: Model fits on PM25 with 5% of inducing points. The TGP’s added flexibility
provides the best fit. Top: the TGP with compositional SAL and SP flow. Middle:
V-WGP with the same flow, but in reverse and applied to the likelihood. Bottom: SVGP.

SVGP5%

TGP5%

WGP5%

Air Quality

SVGP10%

TGP10%

WGP10%

3.0 4.5 6.0 7.5

SVGP100%

TGP100%

WGP100%

50 60 70 80

GP

TGPS

WGPS

TGPSS

WGPSS

Rainfall

Figure 5.15: RMSE results (left is better) from the Air quality and Rainfall application.
Left: Air quality experiments with 5%, 10% and 100% inducing points and a SAL plus SP
flow. The TGP consistently outperforms the GP and V-WGP because it can better fit
to irregular patterns in the data. Right: Rainfall experiments with 100% inducing points
and SP flows (S) versus SAL plus SP flows (SS). When both the TGP and V-WGP
use the more expressive SS flow, the V-WGP is superior, reflecting that the source of
misspecification is the likelihood, not the prior.

119

Chapter 5. Transformed Gaussian Process as a new prior over functions

Switzerland Rainfall

We also model daily rainfall in Switzerland (Dubois 2003), see Figure 5.16. As
observations are non-negative, we again employ SAL+SP flows.

Unlike the TGP and SVGP, the V-WGP does not fit the latent function to peaks
in the data and guarantees positive predictions. The resulting smoother fit is
desirable and explains why the V-WGP’s predictive performance in Figure 5.15
outperforms that of the TGP.

V-WGP TGP

GP

0

200

400

R
a
in

fa
ll

Figure 5.16: Spatial median predictions from a V-WGP, TGP and SVGP on the Switzer-
land daily rainfall dataset (units in 10 µm). The V-WGP (left) is guaranteed to have non-
negative predictions. The TGP and SVGP (right) do not and predict negative rainfall in
Graubünden.

5.8 Conclusions and Future work

This chapter introduces the Transformed Gaussian Process, a new flexible fam-
ily of function priors that are constructed by warping samples from a GP using
an invertible, input-dependent, and Bayesian transformation.

Many desirable properties have been outlined, including better performance
than SVGP and DGP at a much lower computational cost. We have also
derived a sparse variational inference algorithm which allows us to deploy this
model in large scale applications.

This model can be used within inter-domain inducing point approximations
(Lázaro-Gredilla et al. 2009), to improve multitask GPs (Bonilla et al. 2007),
density estimation (Dutordoir et al. 2018), model calibration (Maroñas et al.
2020), and probabilistic dimensionality reduction (Titsias et al. 2010). We
also think many applications can benefit from the proposed model, being the
combination of V-WGP and TGP a clear line to explore.

120

Chapter 6

Conclusions and Future Work

This thesis has focused on how to make modern state-of-the-art machine learn-
ing models more reliable. We have done this by targeting the final objective
in different ways.

We started by introducing Bayes Decision Rule, a framework to make decisions
under uncertainty. We then motivated the need of recovering this uncertainty
for a machine learning model to be calibrated. We saw how this idea could
be used to justify why any Data Augmentation technique is not necessarily
calibrated, in contrast to many recent works showing the opposite direction;
and to show how a super simple loss function can fix this miscalibration. From
this work (and this is a personal opinion) the most interesting thing is not
the loss function proposed, but how do we arrive at this loss function. To
my knowledge, this line of research has not been really exploited, at least in
this way, and I am planning to pursue some research in this direction. This
could let us not only provide better-calibrated models but also improve the
error probability of the final application, guaranteed by targeting the data
distribution more reliably.

This thesis has also explored another line of research which has attracted the
attention of the community in the last years. This corresponds to decoupled
techniques that aim at fixing the miscalibration of a Deep Neural Network.
To this end, this thesis proposes the use of Bayesian Neural Networks. We

121

Chapter 6. Conclusions and Future Work

evaluated the proposed approach, showing that is a promising line of research,
but with a lot of work to do. We have started to work in this direction already,
analyzing some of the problems outlined in this thesis such as the source of
accuracy degradation the BNN suffers from. We are also studying if the ro-
bustification against prior misspecification can improve upon the limitations
shown by this work. The work from my colleague Jeremias was not just a
reading that I recommend to anyone starting with Bayesian Inference, but
also provide me with the light on the path I need to follow to pursue future
directions on this line of research. Beyond this, I would like to explore the
design of hierarchical priors for a BNN applied to this particular task.

Finally, we showed how can we design non-stationary non-Gaussian priors di-
rectly over the space of functions, that can solve many problems that Bayesian
Neural Networks suffer from when specifying a prior distribution over its pa-
rameters. The proposed approach provides a principled way of constructing
more expressive priors than the typical Gaussian Process, but at a fraction of
the computational cost of other proposed models. On this site I would like to
explore applications of the TGP or new models that can be build on top of the
tools developed for this work.

Beyond the future work outlined in this chapter, the other thing I have started
to learn early this 2021 year is the mathematical field of topology. These years
have served me to discover one of the (for me) most unknown but most useful
fields in mathematics for my particular interests. My objective is to learn
about differential geometry, topology and information geometry during these
years although I am not planning to perform research on this direction. Other
lines I would like to explore in the future are stochastic differential equations
and sum-product networks.

122

Appendix A

Additional Calibration Results
in Chapter 3

A.1 Additional Loss Analysis

In this appendix, we first provide additional insights on the loss proposed which
might explain some of the behaviour presented in the main text.

A.1.1 Accuracy Improvement

First, it should be noted that this cost presents other desirable properties
that aim at improving regularization. First, consider a set of samples lying
in the confidence range [0.6, 0.7]. If the accuracy of these samples is located
in this range then our loss function will encourage the model to adjust these
confidences to be as close as possible to the accuracy. Second, if the accu-
racy provided by the model has a value over this range, e.g 80%, then the
model will raise these confidences to recover a calibrated model. It should be
noted that in this case, our loss function will not change the accuracy as we
are just pushing upwards the confidence of the samples which are originally
correctly/incorrectly assigned, and thus the decision of which class should be
assigned to each sample remains intact. Third, consider the same set of sam-

123

Appendix A. Additional Calibration Results in Chapter 3

ples but with a provided accuracy of 40%. Our loss function will encourage
this set of samples to reduce its confidences. It is clear that reducing this confi-
dence has to be done at the cost of raising the confidence towards other classes.
By doing this, we have a chance of changing the decision made by the model
towards another class, thus helping to improve the discrimination of the model
and consequently raising the accuracy. This serves as a possible explanation of
the boost in accuracy that the CARS dataset present (over 1 − 3% w.r.t. the
baseline model see Table 3.1).

A.1.2 Further discussion about hyperparameter search

In this subsection, we provide a further discussion about the hyperparameter
search we have performed using a ResNet-18 on each dataset, which is then
used by the rest of the models.

Note that this way of searching for hyperparameters is clearly not optimal. We
found, however, that in general, the extrapolated hyperparameter performed
well (as shown in the results and detailed in Github). This means that there is
a great chance to improve the results by performing this search on each model
individually (which is what one does in a real application).

However, sometimes, we experimented accuracy degradation in the training
set. This is because a pathological solution of optimizing the ARC loss is by
setting the parameters to output the data prior probability,. This solution
evaluates the ARC loss to 0, but at the cost of parameterizing a useless prior
classifier. How do we solve these particular cases?. As an example consider,
for instance, that on the ResNet-18 we found that the optimal hyperparameter
was β = 42, but when training a DenseNet-121 this hyperparameter degraded
the accuracy over the training set at the cost of providing perfect calibration.
When this effect was observed we just picked the next hyperparameter that
provided the next top performance over the ResNet-18 (β = 40 in this case);
until the training accuracy was not degraded1.

On the other hand, in CIFAR100 with Mixup we found this way of searching
for the hyperparameter not to be as effective for the models without dropout.
As provided in the specific results for each model trained on CIFAR100 (see
Github), we can see that all the models except ResNet-18 improve calibration
when using Mixup. Thus, we cannot expect the hyperparameter of the ResNet-
18 to extrapolate as it happens with other datasets. This was observed by
training any of the deeper models with a validation set. To solve this, we

1Note that we are not cheating since we always look at the training set.

124

A.2 Additional Results

Table A.1: This table shows different calibration metrics for average results. ACC in (%),
MCE in (%), BS ×100 and LS

CIFAR10 CIFAR100 SVHN Birds Cars

Model ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS

B 94.76 2.16 0.86 0.23 77.21 5.20 0.35 1.08 96.32 1.86 0.62 0.17 78.51 0.58 0.17 1.04 86.74 0.56 0.10 0.52

B+M 96.01 2.88 0.65 0.18 80.04 0.67 0.29 0.79 96.41 2.76 0.63 0.18 79.63 1.49 0.18 1.11 86.67 1.81 0.13 0.71

M 94.24 1.06 0.89 0.21 72.68 0.61 0.38 0.98 96.28 1.12 0.61 0.17 78.78 0.46 0.17 1.02 86.83 0.59 0.10 0.52

M+M 91.90 2.73 1.33 0.32 78.52 1.18 0.31 0.86 96.59 1.46 0.59 0.16 79.99 1.23 0.17 1.07 86.03 1.28 0.12 0.67

A 94.85 2.13 0.85 0.23 77.04 4.78 0.35 1.05 96.26 1.16 0.62 0.17 78.52 0.65 0.17 1.04 87.78 1.32 0.10 0.51

A+M 95.90 0.78 0.67 0.17 79.84 0.54 0.29 0.80 96.02 1.11 0.64 0.16 79.74 0.65 0.15 0.82 89.63 1.70 0.08 0.44

Table A.2: This table shows different calibration metrics for the best model per task and
technique. ACC in (%), MCE in (%), BS ×100 and LS

CIFAR10 CIFAR100 SVHN Birds Cars

Model ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS ACC MCE BS LS

B 95.35 1.23 0.65 0.15 79.79 2.36 0.29 0.81 97.07 0.18 0.48 0.12 80.31 1.01 0.16 0.98 89.13 0.42 0.089 0.45

B+M 97.19 3.11 0.47 0.14 82.34 0.46 0.26 0.70 96.97 2.55 0.53 0.16 82.09 1.12 0.15 0.97 89.45 1.84 0.110 0.61

M 95.58 0.46 0.67 0.15 74.98 1.18 0.36 0.92 96.90 0.34 0.49 0.13 80.64 0.99 0.16 0.97 89.40 0.35 0.087 0.44

M+M 97.02 0.73 0.45 0.11 81.31 0.70 0.28 0.74 97.17 1.36 0.50 0.14 82.41 1.05 0.15 0.96 88.47 1.14 0.105 0.59

A 95.99 1.02 0.62 0.14 80.77 2.25 0.28 0.79 97.08 0.17 0.47 0.12 80.32 1.17 0.16 0.99 90.09 1.21 0.080 0.42

A+M 97.09 0.39 0.48 0.12 82.02 0.31 0.26 0.72 96.82 1.75 0.51 0.14 82.45 0.34 0.13 0.69 91.13 0.91 0.078 0.42

simply perform a hyper-parameter search over one of the deeper models in
which Mixup showed great calibration performance, and use this parameter
with the rest of the models. Due to computational limitations, we did not
perform such an exhaustive search as we did with the ResNet-18, and just
select a subset of the hyperparameters based on the previous wider analysis
performed over the ResNet-18.

A.2 Additional Results

In addition, we present the rest of calibration metrics of the corresponding
experiments in Table 3.1 and Table 3.2. These are given in Table A.1 and
Table A.2.

125

Appendix B

Experimental Details of the
Transformed Gaussian Process

In this appendix, we provide additional details on the experiments. We mainly
provide training hyperparameters and experiment configurations. Details about
the kind of warping functions that can be used are provided in e.g. (Rios et al.
2019; Maroñas et al. 2021b). Details about the type of warping functions used
in each experiment are provided in Github.

B.1 Flow Parameters Initialization

One of the critical points in the performance of the TGP is the initialization of
the model. We propose two different ways to initialize the flow hyperparame-
ters.

127

Appendix B. Experimental Details of the Transformed Gaussian Process

B.1.1 Initializing Flows from Data

In this section, we describe an initialization scheme that attempts to learn
flow parameters that Gaussianize the prior. In the derivation, we approximate
the data as being noise-free and so in practice, this may also be used for
the likelihood transformations of the WGP. Ideally, we would want to learn a
normalizing flow G(·) that transforms a standard Gaussian ϕ to the true prior
p(f):

ϕ(G−1(fK))
∂G−1

∂fK
= p(f) (B.1)

In practice we do not have access to the true prior but instead observations
Y. By using Y as approximate samples from p(f) we can then optimize G
to approximately satisfy Equation B.1. To optimize we directly minimize the
KLD divergence between p(f) and ϕ(G−1(fK))∂G

−1

∂fK
:

KLD

[
p(f) || ϕ(G−1(fK))

∂G−1

∂fK

]
=

Ep(f)
[
logϕ(G−1(fK))

∂G−1

∂fK

]
− Ep(f) [p(f)]

(B.2)

The second term is constant w.r.t. the flow parameters and hence we only need
to consider and optimize the first term. Because we have assumed that the Y
are approximate samples from the true prior we write:

Ep(f)
[
logϕ(G−1(fK))

∂G−1

∂fK

]
≈

N∑
n=1

logϕ(G−1(Yn))
∂G−1

∂Yn

=
N∑
n=1

logϕ(G−1(Yn))

(
∂G
∂Yn

)−1 (B.3)

and the final initialization optimization procedure is:

argmin
θ

N∑
n=1

logϕ(G−1(Yn))
∂G−1

∂Yn

(B.4)

128

B.2 Experiment Details

A similar derivation is used by (Papamakarios et al. 2017) but in a different
context. Note that the procedure described here is basically the formalization
in terms of divergences of the maximum likelihood training criteria derived
from the KLD, already done in chapter 3. In this subsection, we have followed
the same derivation as in the original publication (Maroñas et al. 2021b).

B.1.2 Initializing Flows approximately to Identity

In this section, we provide details on how we initialize flows close to the identity
function. Many transformations can already recover identity but for those
that cannot this method provides an effective and simple way to initialize
them. To find these parameters we simply generate observations from the
line Y = X : {Xn,Yn}Nn=1 and minimize the mean squared loss of the flow
mapping from X to Y:

argminθ
1

N

N∑
n=1

(Yn −G(Xn))2 (B.5)

B.1.3 Initialization of Input-dependent flows

To initialize input-dependent flows we first initialize standard (non-input-dependent)
flow parameters θ̂ by any of the procedures described above. Then, we turn the
parameters into input-dependent and initialize the Neural network parameters
to match the values learned in the first step. This is done through stochastic
gradient optimization, i.e. by first sampling a minibatch from the data dis-
tribution, and then minimize the empirical MSE loss between DNN(X) and
θ̂.

B.2 Experiment Details

B.2.1 Regression and Classification

In the black-box experiments, we explore the performance of TGP across many
UCI datasets (Lichman 2013). The performance measures are evaluated by
employing random 10 fold train-test partitions and reporting average results
plus standard error. This is done for all the datasets except Year and Avila
(because the test partition is already provided) and Airline, where we just
use a random 1 fold partition following previous works e.g. (Salimbeni et al.

129

Appendix B. Experimental Details of the Transformed Gaussian Process

2017). We perform flow selection by running each of the candidate models
using random validation splits. We use one validation split on the first and
second random fold partitions, except for Year and Airline where we only use
one. This selection is done for 100 inducing points. The selected model is then
used across all the experiments reported, including the experiments with fewer
inducing points. We use 100 quadrature points and 1 Monte Carlo samples to
evaluate the ELBO during training and 100 Monte Carlo samples to evaluate
the posterior predictive.

To initialize our models we follow (Salimbeni et al. 2017). We use RBF kernels
with parameters initialized to 2.0. The inducing points are initialized using
the best of 10 KMeans runs except for Year and Airline where we just use 1
run. We use a whitened representation of inducing points and initialize the
variational parameters to m = 0 and S = 1−5I. The DGP have an additional
white noise kernel added to the RBF in each hidden layer, with the noise pa-
rameter initialized to 1−6. The noise parameter of the Gaussian likelihood is
initialized to 0.05 for the regression experiments. For classification, we use
a noise-free latent function and Bernoulli/Categorical likelihoods for Binary/-
Multiclass problems. We use probit and softmax link functions respectively.
We use Adam optimizer with a learning rate of 0.01. The flow initializers are
run over 2000 epochs for the identity initializer and over 2000 (rest-of-datasets)
or 20 (Year-Airline) epochs for input-dependent flows, to match the learned
parameters in the previous initialization step. In our experiments however, we
observed that the flow could be initialized with fewer epochs. We have tried a
set of different combinations of flows as described in the appendix of the original
work (Maroñas et al. 2021b). This includes different flow lengths and different
number of flows in the linear combinations. For input-dependent flows we just
tried the SAL flow with lengths 1 and 3; where input dependency is encoded
just in the non-linear flow (i.e the sinh-arcsinh). For these experiments, we
focus on exploring different architectures of the Neural Networks. We search
over {1, 2} hidden layers, {25, 50} neurons per layer, {0.25, 0.5, 0.75} dropout
probabilities, batch normalization and ReLu and Tanh activations. We found
that any of these possible combinations could work except the use of Batch
Normalization, and that most of these combinations could be successfully op-
timized using the default optimizer, although some combinations suggested
that a lower learning rate was needed to make optimization stable (these com-
binations were discarded as we wanted to show robustness against optimizer
hyperparameter search). The prior over the neural network parameters is kept
fixed and is introduced in the model by fixing a 1−5 weight decay in the opti-
mizer (λ = 1−5). In our Github, we provide additional information about the
model selection process and the final selected models.

130

B.2 Experiment Details

All of our models were optimized for 15000 epochs for all datasets except Year
and Airline where we use 200 epochs. Each epoch corresponds to a full pass
over the dataset. For classification, we follow (Hensman et al. 2015) and freeze
the covariance parameters before learning everything end to end. This is done
for the first 2000 epochs.

For experiments using less than 100 inducing points, we use the same flow
architecture selected from the validation sets and optimizer hyperparameters as
the corresponding 100 inducing point experiment. The performance obtained
highlights that our approach is somewhat robust to hyperparameter selection.
On just one dataset we observe that this extrapolation was suboptimal and
that the algorithm diverge. Those results are not reported in this appendix
and correspond to 5 inducing points, input-dependent flows and naval dataset.
We attribute this fact to not having performed model selection and optimizer
hyperparameter search for each set of inducing points specifically. On the other
hand, if any of the experiments carried out failed due to numerical errors (e.g
Cholesky decomposition) we increase the standard amount of jitter added by
Gpytorch from 1−8 to 1−6. This is just needed on some train-test folds and
some datasets only when using less inducing points. In general, we found that
our experiments were quite stable.

B.2.2 Real World Experiments

For both real world experiments, we consider 2 different seeds, shuffle the obser-
vations and run 5-fold cross-validation across 2 different optimization schemes.
The first optimization scheme optimizes both the variational and hyperparam-
eters jointly. The second holds the likelihood noise fixed for 60% of iterations.
This is to help avoid early local minimum that causes the models to underfit
and explain the observations as noise.

For all models, we use RBF kernels with length scales initialized to 0.1, and
Gaussian likelihoods with noise initialized to 1.0. We optimize the whitened
variational objective using Adam optimizer with a learning rate of 0.01.

131

Appendix B. Experimental Details of the Transformed Gaussian Process

Air Quality

We used data from the London Air Quality Network London 2020 and we focus
on site HP5 (Honor Oak Park, London) using 1 month of PM25 data (731
observations, date range 03/15/2019 - 04/15/2019). Because the observations
are non-negative bounded we only consider the following positive enforcing
flow: SAL+SP initialized from data.

We shuffle observations and run 5-fold cross-validation across 5%, 10% and
100% of inducing points and optimize each for a total of 10000 epochs. We
compute means and standard deviations across all folds and seeds.

Rainfall

The Switzerland rainfall uses data collected on the 8th of May 1986. Because all
the observations are positively bounded we again use positive enforcing flows.
We consider: SP, SAL+SP (from data), SAL+SP (from identity), SAL+SAL+SP
(from identity), SAL+SAL+SP (from data).

We optimize for a total of 20000 epochs and compute means and standard
deviations across all flows, folds and seeds.

132

Bibliography

Agakov, Felix V. et al. (2004). “An Auxiliary Variational Method”. In: Neu-
ral Information Processing, 11th International Conference, ICONIP 2004,
Calcutta, India, November 22-25, 2004, Proceedings, pp. 561–566 (cit. on
p. 81).

Alvarez-Balanya, Sergio (2020). “Técnicas expresivas de calibración para clasi-
ficadores multiclase”. In:Master Thesis. Universidad Autónoma de Madrid
(cit. on pp. 67, 68).

Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition. USA:
Oxford University Press, Inc. isbn: 0198538642 (cit. on p. 25).

— (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag. isbn: 0387310738 (cit.
on pp. 28, 68, 86).

Bissiri, P. G., C. C. Holmes, and S. G. Walker (2016). “A general framework for
updating belief distributions”. In: Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 78.5, pp. 1103–1130 (cit. on pp. 34, 61).

Blundell, Charles et al. (2015). “Weight Uncertainty in Neural Network”. In:
Proceedings of the 32nd International Conference on Machine Learning.
Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, pp. 1613–1622 (cit. on p. 66).

133

Bibliography

Bojarski, Mariusz et al. (2016). “End to End Learning for Self-Driving Cars”.
In: In Nips Depp Learning Synopsium Workshop (cit. on p. 2).

Bonilla, Edwin V., Kian Ming A. Chai, and Christopher K. I. Williams (2007).
“Multi-Task Gaussian Process Prediction”. In: Proceedings of the 20th In-
ternational Conference on Neural Information Processing Systems. NIPS’07.
Vancouver, British Columbia, Canada: Curran Associates Inc., 153–160.
isbn: 9781605603520 (cit. on p. 120).

Bröcker, Jochen (2009). “Reliability, sufficiency, and the decomposition of proper
scores”. In: Quarterly Journal of the Royal Meteorological Society: A jour-
nal of the atmospheric sciences, applied meteorology and physical oceanog-
raphy 135.643, pp. 1512–1519 (cit. on pp. 15, 16).

Brooks, S. et al. (2011). Handbook of Markov Chain Monte Carlo. Chapman &
Hall/CRC Handbooks of Modern Statistical Methods. CRC Press. isbn:
9781420079425 (cit. on pp. 2, 58, 59).

Cao, Q. et al. (2018). “VGGFace2: A dataset for recognising faces across pose
and age”. In: International Conference on Automatic Face and Gesture
Recognition (cit. on p. 71).

Carpenter, Bob et al. (2017). “Stan: A probabilistic programming language”.
In: Journal of statistical software 76.1 (cit. on p. 68).

Caruana, Rich et al. (2015). “Intelligible Models for HealthCare: Predicting
Pneumonia Risk and Hospital 30-Day Readmission”. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. New York, NY, USA: Association for Computing
Machinery, 1721–1730. isbn: 9781450336642 (cit. on p. 2).

Chapelle, Olivier et al. (2001). “Vicinal Risk Minimization”. In: Advances in
Neural Information Processing Systems. Ed. by T. Leen, T. Dietterich,
and V. Tresp. Vol. 13. MIT Press (cit. on pp. 29, 36).

Chen, Tianqi, Emily Fox, and Carlos Guestrin (2014). “Stochastic Gradient
Hamiltonian Monte Carlo”. In: Proceedings of the 31st International Con-
ference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara.
Vol. 32. Proceedings of Machine Learning Research 2. Bejing, China:
PMLR, pp. 1683–1691 (cit. on p. 64).

134

Bibliography

Chen, Yunpeng et al. (2017). “Dual Path Networks”. In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et al. Curran Asso-
ciates, Inc., pp. 4467–4475 (cit. on p. 71).

Cohen, Ira and Moises Goldszmidt (2004). “Properties and Benefits of Cali-
brated Classifiers”. In: Knowledge Discovery in Databases: PKDD 2004.
Ed. by Jean-François Boulicaut et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 125–136 (cit. on p. 21).

Damianou, Andreas and Neil D. Lawrence (2013). “Deep Gaussian Processes”.
In: Proceedings of the Sixteenth International Conference on Artificial In-
telligence and Statistics. Ed. by Carlos M. Carvalho and Pradeep Raviku-
mar. Vol. 31. Proceedings of Machine Learning Research. Scottsdale, Ari-
zona, USA: PMLR, pp. 207–215 (cit. on pp. 5, 92).

Degroot, M. and S. Fienberg (1983). “The Comparison and Evaluation of Fore-
casters.” In: The Statistician 32, pp. 12–22 (cit. on pp. 2, 15).

Deng, Jia et al. (2009). “Imagenet: A large-scale hierarchical image database”.
In: 2009 IEEE conference on computer vision and pattern recognition. Ieee,
pp. 248–255 (cit. on p. 9).

Dietterich, Thomas G. (2000). “Ensemble Methods in Machine Learning”. In:
Proceedings of the First International Workshop on Multiple Classifier Sys-
tems. MCS ’00. Berlin, Heidelberg: Springer-Verlag, 1–15. isbn: 3540677046
(cit. on p. 2).

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2017). “Density esti-
mation using Real NVP”. In: International Conference on Learning Rep-
resentations, ICLR (cit. on p. 97).

Dubois, G (2003). Mapping radioactivity in the environment : Spatial Interpo-
lation Comparison 97. Luxembourg: Office for Official Publications of the
European Communities. isbn: 92-894-5371-0 (cit. on p. 120).

Duda, Richard O., Peter E. Hart, and David G. Stork (2000). Pattern Classifi-
cation (2nd Edition). USA: Wiley-Interscience. isbn: 0471056693 (cit. on
p. 9).

135

Bibliography

Dusenberry, Michael et al. (2020). “Efficient and Scalable Bayesian Neural Nets
with Rank-1 Factors”. In: Proceedings of the 37th International Conference
on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119.
Proceedings of Machine Learning Research. PMLR, pp. 2782–2792 (cit. on
p. 57).

Dutordoir, Vincent et al. (2018). “Gaussian Process Conditional Density Esti-
mation”. In: Advances in Neural Information Processing Systems 31. Ed.
by S. Bengio et al. Curran Associates, Inc., pp. 2385–2395 (cit. on p. 120).

Duvenaud, David (2014). “Automatic Model Construction with Gaussian Pro-
cesses”. PhD thesis. Computational and Biological Learning Laboratory,
University of Cambridge (cit. on p. 85).

Eidinger, Eran, Roee Enbar, and Tal Hassner (Dec. 2014). “Age and Gender
Estimation of Unfiltered Faces”. In: Trans. Info. For. Sec. 9.12, pp. 2170–
2179. issn: 1556-6013. doi: 10.1109/TIFS.2014.2359646 (cit. on p. 71).

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning”. In: Proceed-
ings of The 33rd International Conference on Machine Learning. Ed. by
Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of
Machine Learning Research. New York, New York, USA: PMLR, pp. 1050–
1059 (cit. on pp. 46, 56, 71, 79, 104, 108, 109).

Gal, Yarin, Jiri Hron, and Alex Kendall (2017). “Concrete Dropout”. In: Ad-
vances in Neural Information Processing Systems 30. Ed. by I. Guyon et
al. Curran Associates, Inc., pp. 3581–3590 (cit. on p. 79).

Gneiting, Tilmann and Adrian E. Raftery (2007). “Strictly Proper Scoring
Rules, Prediction, and Estimation”. In: Journal of the American Statistical
Association 102, pp. 359–378 (cit. on pp. 12, 14).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton (2013). “Speech
recognition with deep recurrent neural networks”. In: 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 6645–
6649. doi: 10.1109/ICASSP.2013.6638947 (cit. on p. 1).

Guo, Chuan et al. (2017). “On Calibration of Modern Neural Networks”. In:
Proceedings of the 34th International Conference on Machine Learning.

136

https://doi.org/10.1109/TIFS.2014.2359646
https://doi.org/10.1109/ICASSP.2013.6638947

Bibliography

Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, pp. 1321–1330 (cit. on pp. 22, 36, 42, 45, 49,
55, 56, 71–73, 75, 77, 79).

Havasi, Marton et al. (2021). “Training independent subnetworks for robust
prediction”. In: International Conference on Learning Representations (cit.
on p. 56).

He, Kaiming et al. (2016a). “Deep Residual Learning for Image Recognition”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90 (cit. on pp. 1, 46,
71).

— (2016b). “Identity Mappings in Deep Residual Networks”. In: ECCV (cit.
on p. 71).

Heinonen, Markus et al. (2016). “Non-Stationary Gaussian Process Regression
with Hamiltonian Monte Carlo”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics. Ed. by Arthur Gret-
ton and Christian C. Robert. Vol. 51. Proceedings of Machine Learning
Research. Cadiz, Spain: PMLR, pp. 732–740 (cit. on p. 92).

Hendrycks, Dan and Thomas G. Dietterich (2019a). “Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations”. In: In-
ternational Conference on Learning Representations (cit. on p. 38).

Hendrycks, Dan, Kimin Lee, and Mantas Mazeika (2019b). “Using Pre-Training
Can Improve Model Robustness and Uncertainty”. In: Proceedings of the
36th International Conference on Machine Learning. Ed. by Kamalika
Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, pp. 2712–2721 (cit. on pp. 39, 48).

Hendrycks, Dan et al. (2019c). “Using Self-Supervised Learning Can Improve
Model Robustness and Uncertainty”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc. (cit. on p. 39).

Hendrycks, Dan et al. (2020). “AugMix: A Simple Data Processing Method
to Improve Robustness and Uncertainty”. In: International Conference on
Learning Representations (cit. on pp. 37, 38).

137

https://doi.org/10.1109/CVPR.2016.90

Bibliography

Hensman, James, Nicolò Fusi, and Neil D. Lawrence (2013). “Gaussian Pro-
cesses for Big Data”. In: Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence. UAI’13. Bellevue, WA: AUAI Press,
282–290 (cit. on pp. 89, 102).

Hensman, James, Alexander G. de G. Matthews, and Zoubin Ghahramani
(2015). “Scalable Variational Gaussian Process Classification.” In: AIS-
TATS. Ed. by Guy Lebanon and S. V. N. Vishwanathan. Vol. 38. JMLR
Workshop and Conference Proceedings. JMLR.org (cit. on p. 131).

Hoffman, Matthew, Alexey Radul, and Pavel Sountsov (2021). “An Adaptive-
MCMC Scheme for Setting Trajectory Lengths in Hamiltonian Monte
Carlo”. In: Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu.
Vol. 130. Proceedings of Machine Learning Research. PMLR, pp. 3907–
3915 (cit. on p. 64).

Hoffman, Matthew D. and Andrew Gelman (Jan. 2014). “The No-U-Turn Sam-
pler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo”. In:
J. Mach. Learn. Res. 15.1, 1593–1623. issn: 1532-4435 (cit. on p. 64).

Holmes, C. C. and S. G. Walker (Mar. 2017). “Assigning a value to a power
likelihood in a general Bayesian model”. In: Biometrika 104.2, pp. 497–503
(cit. on p. 68).

Hu, Jie et al. (2018). “Squeeze-and-Excitation Networks”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7132–7141
(cit. on p. 71).

Huang, Gao et al. (2017). “Densely Connected Convolutional Networks”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2261–2269 (cit. on pp. 46, 71).

Izmailov, Pavel et al. (2021). What Are Bayesian Neural Network Posteriors
Really Like? arXiv: 2104.14421 [cs.LG] (cit. on pp. 57, 64).

Jewson, Jack, Jim Q. Smith, and Chris Holmes (2018). “Principles of Bayesian
Inference Using General Divergence Criteria”. In: Entropy 20.6. issn: 1099-
4300 (cit. on pp. 33, 61).

138

https://arxiv.org/abs/2104.14421

Bibliography

Kendall, Alex and Yarin Gal (2017). “What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision?” In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc. (cit. on p. 57).

Kingma, Diederik P. and Jimmy Ba (2015a). “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun (cit. on p. 71).

Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational
Bayes”. In: International Conference on Learning Representations (cit. on
p. 66).

Kingma, Durk P, Tim Salimans, and MaxWelling (2015b). “Variational Dropout
and the Local Reparameterization Trick”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates,
Inc. (cit. on pp. 46, 67).

Knoblauch, Jeremias, Jack Jewson, and Theodoros Damoulas (2019). Gener-
alized Variational Inference: Three arguments for deriving new Posteriors
(cit. on pp. 33, 34, 60–64, 67, 68, 70, 81, 104, 115).

Kober, Jens, J. Andrew Bagnell, and Jan Peters (2013). “Reinforcement Learn-
ing in Robotics: A Survey”. In: International Journal of Robotics Research
32.11, pp. 1238–1274. doi: 10.1177/0278364913495721 (cit. on p. 2).

Krause, Jonathan et al. (2013). “3D Object Representations for Fine-Grained
Categorization”. In: 4th International IEEE Workshop on 3D Representa-
tion and Recognition (3dRR-13). Sydney, Australia (cit. on pp. 46, 70).

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton (2009a). “CIFAR-10 (Cana-
dian Institute for Advanced Research)”. In: (cit. on pp. 46, 70).

— (2009b). “CIFAR-100 (Canadian Institute for Advanced Research)”. In:
(cit. on pp. 46, 70).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances in

139

https://doi.org/10.1177/0278364913495721

Bibliography

Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25.
Curran Associates, Inc. (cit. on p. 1).

Kuleshov, Volodymyr, Nathan Fenner, and Stefano Ermon (2018). “Accurate
Uncertainties for Deep Learning Using Calibrated Regression”. In: Pro-
ceedings of the 35th International Conference on Machine Learning. Ed.
by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, pp. 2796–2804 (cit. on pp. 56, 57, 79, 80).

Kumar, Aviral, Sunita Sarawagi, and Ujjwal Jain (2018). “Trainable Calibra-
tion Measures for Neural Networks from Kernel Mean Embeddings”. In:
Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, pp. 2805–2814 (cit. on pp. 45, 49, 56, 57, 71,
79, 80).

Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell (2017).
“Simple and Scalable Predictive Uncertainty Estimation using Deep En-
sembles”. In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon et al. Vol. 30. Curran Associates, Inc. (cit. on pp. 56, 57, 71, 79).

Lázaro-Gredilla, Miguel (2012). “Bayesian Warped Gaussian Processes”. In:
Advances in Neural Information Processing Systems. Ed. by F. Pereira
et al. Vol. 25. Curran Associates, Inc. (cit. on p. 93).

Lázaro-Gredilla, Miguel and Aníbal Figueiras-Vidal (2009). “Inter-domain Gaus-
sian Processes for Sparse Inference using Inducing Features”. In: Advances
in Neural Information Processing Systems 22. Ed. by Y. Bengio et al.
Curran Associates, Inc., pp. 1087–1095 (cit. on p. 120).

Lee, Kimin et al. (2018). Training Confidence-calibrated Classifiers for Detect-
ing Out-of-Distribution Samples (cit. on p. 79).

Lichman, Moshe (2013). UCI machine learning repository (cit. on pp. 109,
129).

London, Imperial College (2020). Londonair - London air quality network (LAQN).
https://www.londonair.org.uk (cit. on pp. 118, 132).

140

https://www.londonair.org.uk

Bibliography

Louizos, Christos, Karen Ullrich, and Max Welling (2017a). “Bayesian Com-
pression for Deep Learning”. In: Advances in Neural Information Process-
ing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc. (cit.
on p. 29).

Louizos, Christos and Max Welling (2017b). “Multiplicative Normalizing Flows
for Variational Bayesian Neural Networks”. In: Proceedings of the 34th In-
ternational Conference on Machine Learning. Ed. by Doina Precup and
YeeWhye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
pp. 2218–2227 (cit. on p. 81).

MacKay, David (1992). “Bayesian Methods for Adaptative Models”. PhD the-
sis. California Institute of Technology (cit. on pp. 33, 87).

MacKay, David J. C. (2002). Information Theory, Inference and Learning Al-
gorithms. USA: Cambridge University Press. isbn: 0521642981 (cit. on
p. 87).

Mariet, Zelda E et al. (2021). “Distilling Ensembles Improves Uncertainty Es-
timates”. In: Third Symposium on Advances in Approximate Bayesian In-
ference (cit. on p. 56).

Maroñas, Juan, Roberto Paredes, and Daniel Ramos (2019). “Generative Mod-
els for Deep Learning with Very Scarce Data”. In: Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications. Ed. by
Ruben Vera-Rodriguez, Julian Fierrez, and Aythami Morales. Cham: Springer
International Publishing, pp. 20–28 (cit. on p. 6).

Maroñas, Juan, Roberto Paredes, and Daniel Ramos (2020). “Calibration of
deep probabilistic models with decoupled bayesian neural networks”. In:
Neurocomputing 407, pp. 194–205. issn: 0925-2312. doi: https://doi.
org/10.1016/j.neucom.2020.04.103 (cit. on pp. 4, 5, 49, 54, 70, 120).

Maroñas, Juan, Daniel Ramos, and Roberto Paredes (2021a). “On Calibration
of Mixup Training for Deep Neural Networks”. In: Structural, Syntactic,
and Statistical Pattern Recognition. Ed. by Andrea Torsello et al. Cham:
Springer International Publishing, pp. 67–76 (cit. on pp. 4, 5, 35).

Maroñas, Juan et al. (2021b). “Transforming Gaussian Processes With Nor-
malizing Flows”. In: Proceedings of The 24th International Conference on

141

https://doi.org/https://doi.org/10.1016/j.neucom.2020.04.103
https://doi.org/https://doi.org/10.1016/j.neucom.2020.04.103

Bibliography

Artificial Intelligence and Statistics. Ed. by Arindam Banerjee and Kenji
Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR,
pp. 1081–1089 (cit. on pp. 4, 5, 83, 127, 129, 130).

Murphy, Kevin P (2021). Machine learning: a probabilistic perspective. Cam-
bridge, MA (cit. on p. 10).

Naeini, Mahdi Pakdaman, Gregory F. Cooper, and Milos Hauskrecht (2015).
“Obtaining Well Calibrated Probabilities Using Bayesian Binning”. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence. AAAI’15. Austin, Texas: AAAI Press, 2901–2907. isbn: 0262511290
(cit. on pp. 23, 55).

Netzer, Yuval et al. (2011). “Reading Digits in Natural Images with Unsu-
pervised Feature Learning”. In: NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011 (cit. on pp. 46, 71).

Niculescu-Mizil, Alexandru and Rich Caruana (2005). “Predicting Good Prob-
abilities with Supervised Learning”. In: Proceedings of the 22nd Interna-
tional Conference on Machine Learning. ICML ’05. Bonn, Germany: As-
sociation for Computing Machinery, 625–632. isbn: 1595931805 (cit. on
p. 55).

Nixon, Jeremy et al. (2019). “Measuring Calibration in Deep Learning”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops (cit. on p. 24).

Paciorek, Christopher and Mark Schervish (2004). “Nonstationary Covariance
Functions for Gaussian Process Regression”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by S. Thrun, L. Saul, and B. Schölkopf.
Vol. 16. MIT Press (cit. on p. 92).

Papamakarios, George, Theo Pavlakou, and Iain Murray (2017). “Masked Au-
toregressive Flow for Density Estimation”. In: Advances in Neural Infor-
mation Processing Systems 30. Ed. by I. Guyon et al. Curran Associates,
Inc., pp. 2338–2347 (cit. on p. 129).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830 (cit. on p. 40).

142

Bibliography

Platt, John C. (1999). “Probabilistic Outputs for Support Vector Machines
and Comparisons to Regularized Likelihood Methods”. In: ADVANCES IN
LARGE MARGIN CLASSIFIERS. MIT Press, pp. 61–74 (cit. on p. 54).

Pollastri, Federico et al. (2021a). “A deep analysis on high-resolution dermo-
scopic image classification”. In: IET Computer Vision (cit. on p. 6).

Pollastri, Federico et al. (2021b). “Confidence Calibration for Deep Renal
Biopsy Immunofluorescence Image Classification”. In: 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR), pp. 1298–1305 (cit. on
pp. 2, 3, 5).

Quiñonero-Candela, Joaquin and Carl Edward Rasmussen (2005). “A Unifying
View of Sparse Approximate Gaussian Process Regression”. In: Journal of
Machine Learning Research 6.65, pp. 1939–1959 (cit. on p. 89).

Ramos, Daniel, Juan Maroñas, and Jose Almirall (2021). “Improving Calibra-
tion of Forensic Glass Comparisons by Considering Uncertainty in Feature-
Based Elemental Data”. In: Chemometrics and Intelligent Laboratory Sys-
tems, p. 104399. issn: 0169-7439. doi: https://doi.org/10.1016/j.
chemolab.2021.104399 (cit. on pp. 2, 6).

Rasmussen, Carl Edward and Christopher K. I. Williams (2005).Gaussian Pro-
cesses for Machine Learning (Adaptive Computation and Machine Learn-
ing). The MIT Press. isbn: 026218253X (cit. on pp. 2, 85).

Rezende, Danilo and Shakir Mohamed (2015). “Variational Inference with Nor-
malizing Flows”. In: Proceedings of the 32nd International Conference on
Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceed-
ings of Machine Learning Research. Lille, France: PMLR, pp. 1530–1538
(cit. on pp. 81, 93).

Rezende, Danilo Jimenez, Shakir Mohamed, and DaanWierstra (2014). “Stochas-
tic Backpropagation and Approximate Inference in Deep Generative Mod-
els”. In: Proceedings of the 31st International Conference on Machine
Learning. Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings
of Machine Learning Research 2. Bejing, China: PMLR, pp. 1278–1286
(cit. on p. 66).

143

https://doi.org/https://doi.org/10.1016/j.chemolab.2021.104399
https://doi.org/https://doi.org/10.1016/j.chemolab.2021.104399

Bibliography

Rios, Gonzalo (2020). Transport Gaussian Processes for Regression. arXiv:
2001.11473 [stat.ML] (cit. on p. 97).

Rios, Gonzalo and Felipe Tobar (2019). “Compositionally-warped Gaussian
processes”. In: Neural Networks 118, 235–246. issn: 0893-6080. doi: 10.
1016/j.neunet.2019.06.012 (cit. on pp. 94, 106, 127).

Salimbeni, Hugh and Marc Deisenroth (2017). “Doubly Stochastic Variational
Inference for Deep Gaussian Processes”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc. (cit. on pp. 93, 129, 130).

Sandler, Mark et al. (2018). “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (cit. on p. 71).

Seo, Seonguk, Paul Hongsuck Seo, and Bohyung Han (2019). “Learning for
Single-Shot Confidence Calibration in Deep Neural Networks Through
Stochastic Inferences”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 56, 79).

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: International Confer-
ence On Learning Representations (cit. on p. 71).

Sklar, Abe (1959). “Fonctions de répartition à n dimensions et leurs marges”. In:
Publications de l’Institut de Statistique de l’Université de Paris 8, pp. 229–
231 (cit. on pp. 95, 97).

Snelson, Edward and Zoubin Ghahramani (2006). “Sparse Gaussian Processes
using Pseudo-inputs”. In: Advances in Neural Information Processing Sys-
tems. Ed. by Y. Weiss, B. Schölkopf, and J. Platt. Vol. 18. MIT Press
(cit. on p. 89).

Snelson, Edward, Carl Edward Rasmussen, and Zoubin Ghahramani (2003).
“Warped Gaussian Processes”. In: Proceedings of the 16th International
Conference on Neural Information Processing Systems. NIPS’03. Whistler,
British Columbia, Canada: MIT Press, 337–344 (cit. on pp. 93, 106, 108).

144

https://arxiv.org/abs/2001.11473
https://doi.org/10.1016/j.neunet.2019.06.012
https://doi.org/10.1016/j.neunet.2019.06.012

Bibliography

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56, pp. 1929–1958 (cit. on pp. 46, 71, 108, 109).

Szegedy, Christian et al. (2014). “Intriguing properties of neural networks”. In:
International Conference on Learning Representations (cit. on pp. 29, 36,
42, 71).

Szegedy, Christian et al. (2016). “Rethinking the Inception Architecture for
Computer Vision”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826 (cit. on p. 49).

Tan, Mingxing and Quoc Le (2019). “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks”. In: Proceedings of the 36th Inter-
national Conference on Machine Learning. Ed. by Kamalika Chaudhuri
and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Re-
search. PMLR, pp. 6105–6114 (cit. on p. 49).

Thulasidasan, Sunil et al. (2019). “On Mixup Training: Improved Calibration
and Predictive Uncertainty for Deep Neural Networks”. In: Advances in
Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc. (cit. on pp. 37, 39, 48, 49).

Titsias, Michalis (2009). “Variational Learning of Inducing Variables in Sparse
Gaussian Processes”. In: Proceedings of the Twelth International Con-
ference on Artificial Intelligence and Statistics. Ed. by David van Dyk
and Max Welling. Vol. 5. Proceedings of Machine Learning Research.
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR,
pp. 567–574 (cit. on pp. 89, 90).

Titsias, Michalis and Neil D. Lawrence (2010). “Bayesian Gaussian Process
Latent Variable Model”. In: ed. by Yee Whye Teh and Mike Titterington.
Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: JMLR Workshop and Conference Proceedings, pp. 844–
851 (cit. on p. 120).

Vapnik, V. N. and A. Y. Chervonenkis (1971). “On the uniform convergence of
relative frequencies of events to their probabilities”. In: Theory of Probab.
and its Applications 16.2, pp. 264–280 (cit. on p. 28).

145

Bibliography

Vapnik, Vladimir Naumovich (1998). Statistical Learning Theory. New York,
NY, USA: Wiley (cit. on p. 42).

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30.
Curran Associates, Inc. (cit. on p. 1).

Vehtari, Aki et al. (2021). “Rank-Normalization, Folding, and Localization: An
Improved R̂ for Assessing Convergence of MCMC”. In: Bayesian Analysis,
pp. 1 –38. doi: 10.1214/20-BA1221 (cit. on p. 64).

Verma, Vikas et al. (2019). “Manifold Mixup: Better Representations by In-
terpolating Hidden States”. In: Proceedings of the 36th International Con-
ference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 6438–6447 (cit. on p. 37).

Walker, Stephen G. (2013). “Bayesian inference with misspecified models”. In:
Journal of Statistical Planning and Inference 143.10, pp. 1621–1633. issn:
0378-3758. doi: https://doi.org/10.1016/j.jspi.2013.05.013 (cit.
on p. 33).

Wauthier, Fabian L and Michael I. Jordan (2010). “Heavy-Tailed Process Priors
for Selective Shrinkage”. In: Advances in Neural Information Processing
Systems 23. Ed. by J. D. Lafferty et al. Curran Associates, Inc., pp. 2406–
2414 (cit. on pp. 97, 98, 105).

Welinder, P. et al. (2010). Caltech-UCSD Birds 200. Tech. rep. CNS-TR-2010-
001. California Institute of Technology (cit. on pp. 46, 70).

Welling, Max and Yee Whye Teh (2011). “Bayesian Learning via Stochastic
Gradient Langevin Dynamics.” In: ICML. Ed. by Lise Getoor and Tobias
Scheffer, pp. 681–688 (cit. on p. 64).

Wenger, Jonathan, Hedvig Kjellström, and Rudolph Triebel) (2020). “Non-
Parametric Calibration for Classification”. In: Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics.
Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of
Machine Learning Research. PMLR, pp. 178–190 (cit. on p. 62).

146

https://doi.org/10.1214/20-BA1221
https://doi.org/https://doi.org/10.1016/j.jspi.2013.05.013

Bibliography

Wenzel, Florian et al. (2020). “Hyperparameter Ensembles for Robustness and
Uncertainty Quantification”. In: Advances in Neural Information Process-
ing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc.,
pp. 6514–6527 (cit. on p. 56).

Wilk, Mark van der et al. (2018). “Learning Invariances using the Marginal
Likelihood”. In: Advances in Neural Information Processing Systems. Ed.
by S. Bengio et al. Vol. 31. Curran Associates, Inc. (cit. on p. 39).

Wilson, Andrew G and Zoubin Ghahramani (2010). “Copula Processes”. In:
Advances in Neural Information Processing Systems 23. Ed. by J. D. Laf-
ferty et al. Curran Associates, Inc., pp. 2460–2468 (cit. on pp. 93, 95, 97,
98, 105).

Wilson, Andrew G and Pavel Izmailov (2020). “Bayesian Deep Learning and
a Probabilistic Perspective of Generalization”. In: Advances in Neural In-
formation Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran
Associates, Inc., pp. 4697–4708 (cit. on pp. 2, 57).

Xie, Saining et al. (2017). “Aggregated Residual Transformations for Deep
Neural Networks”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5987–5995 (cit. on p. 71).

Yun, Sangdoo et al. (2019). “CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features”. In: International Conference on
Computer Vision (ICCV) (cit. on p. 37).

Zadrozny, Bianca and Charles Elkan (2001). “Obtaining Calibrated Probability
Estimates from Decision Trees and Naive Bayesian Classifiers”. In: Pro-
ceedings of the Eighteenth International Conference on Machine Learning.
ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
609–616. isbn: 1558607781 (cit. on p. 55).

— (2002). “Transforming Classifier Scores into Accurate Multiclass Probabil-
ity Estimates”. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’02. Edmon-
ton, Alberta, Canada: Association for Computing Machinery, 694–699.
isbn: 158113567X (cit. on p. 55).

147

Bibliography

Zagoruyko, Sergey and Nikos Komodakis (2016). “Wide Residual Networks”.
In: Proceedings of the British Machine Vision Conference 2016, BMVC
2016, York, UK, September 19-22, 2016. Ed. by Richard C. Wilson, Edwin
R. Hancock, and William A. P. Smith. BMVA Press (cit. on pp. 46, 71).

Zellner, Arnold (1988). “Optimal Information Processing and Bayes’s Theo-
rem”. In: The American Statistician 42.4, pp. 278–280 (cit. on p. 60).

Zhang, Chiyuan et al. (2017). “Understanding deep learning requires rethinking
generalization”. In: International Conference on Learning Representations
(cit. on pp. 22, 36, 42).

Zhang, Hongyi et al. (2018). “mixup: Beyond Empirical Risk Minimization”.
In: International Conference on Learning Representations (cit. on pp. 37,
46).

148

	Summary
	Contents
	1 Introduction
	1.1 Motivation
	1.1.1 Intuition behind the necessity of having calibrated classifiers.

	1.2 Overview of Contributions
	1.3 Thesis Structure

	2 Background
	2.1 Bayes Decision Rule
	2.1.1 Classification
	2.1.2 Regression and Unconditional Modeling

	2.2 Calibration and Refinement
	2.2.1 Proper Scoring Rules
	2.2.2 Decomposing Proper Scoring Rules
	2.2.3 Illustrating PSR decomposition with an example
	2.2.4 Calibration, Refinement and Bayes Decision Rule
	2.2.5 Measuring Calibration

	2.3 How does learning techniques meet model calibration and refinement
	2.3.1 Maximum Likelihood Estimation
	2.3.2 Empirical Risk Minimization
	2.3.3 Divergence Minimization and Overfitting
	2.3.4 Regularization
	2.3.5 Bayesian Learning
	2.3.6 Model misspecification

	3 Implicit Calibration of Deep Neural Networks using Mixup Training
	3.1 From Empirical to Vicinal Risk minimization
	3.1.1 Mixup Training

	3.2 Does Mixup Training really achieves Model Calibration?
	3.2.1 Data Augmentation and Model Calibration
	3.2.2 Mixup and Model Calibration

	3.3 The Auto Regularized Confidence Loss Function
	3.3.1 Proposed Solution
	3.3.2 Motivation behind the two loss variants

	3.4 Experimental Evaluation
	3.4.1 Experimental Details
	3.4.2 Reported Results
	3.4.3 Analysis of Results
	3.4.4 A final insight on the experiments

	3.5 Conclusions

	4 Recalibration of Deep Probabilistic Models using Bayesian Neural Networks
	4.1 Introduction to Post Calibration
	4.1.1 Deep Neural Networks are Uncalibrated
	4.1.2 The benefits of post-calibration techniques

	4.2 Bayesian Neural Networks as Post-Calibration technique
	4.2.1 Bayesian Modeling and Calibration
	4.2.2 Proposed Solution
	4.2.3 Chapter Summary

	4.3 Experiments
	4.3.1 Experiments set up
	4.3.2 Bayesian vs Non-Bayesian Linear Regression
	4.3.3 Selecting optimal K on validation
	4.3.4 Calibration performance of BNN
	4.3.5 Comparison Against state-of-the-art calibration techniques
	4.3.6 Qualitative Analysis

	4.4 Discussion
	4.5 Conclusions and Future Work

	5 Transformed Gaussian Process as a new prior over functions
	5.1 Standard Gaussian Process
	5.1.1 Introduction
	5.1.2 Bayesian predictions using GP
	5.1.3 Bayesian Model Selection
	5.1.4 Benefits of Bayesian Learning Using Gaussian Processes
	5.1.5 Drawbacks of Bayesian Learning Using Gaussian Processes

	5.2 Sparse Gaussian Process
	5.3 Transformed Gaussian Processes
	5.3.1 Model Description
	5.3.2 Input-dependent Flows
	5.3.3 Bayesian Priors on Flows
	5.3.4 Induced Distributions

	5.4 Inference in the Transformed Gaussian Process
	5.4.1 Sparse Prior
	5.4.2 Choice of the Variational Distribution
	5.4.3 Evidence Lower Bound
	5.4.4 Input Dependent Flows
	5.4.5 Computational benefits of the approximate posterior

	5.5 Warped Gaussian Processes
	5.6 Predictions
	5.7 Experimental Evaluation
	5.7.1 Bayesian Input Dependent TGP
	5.7.2 Calibration Properties of the TGP
	5.7.3 Computational Performance of the TGP
	5.7.4 Uncertainty handled by the GP and TGP
	5.7.5 Applications

	5.8 Conclusions and Future work

	6 Conclusions and Future Work
	A Additional Calibration Results in Chapter 3
	A.1 Additional Loss Analysis
	A.1.1 Accuracy Improvement
	A.1.2 Further discussion about hyperparameter search

	A.2 Additional Results

	B Experimental Details of the Transformed Gaussian Process
	B.1 Flow Parameters Initialization
	B.1.1 Initializing Flows from Data
	B.1.2 Initializing Flows approximately to Identity
	B.1.3 Initialization of Input-dependent flows

	B.2 Experiment Details
	B.2.1 Regression and Classification
	B.2.2 Real World Experiments

	Bibliography

