
Summary

This thesis is framed at the intersection between modern Machine Learning
techniques, such as Deep Neural Networks, and reliable probabilistic model-
ing. In many machine learning applications, we do not only care about the
prediction made by a model (e.g. this lung image presents cancer) but also
in how confident is the model in making this prediction (e.g. this lung image
presents cancer with 67% probability). In such applications, the model assists
the decision-maker (in this case a doctor) towards making the final decision.
As a consequence, one needs that the probabilities provided by a model reflects
the true underlying set of outcomes, otherwise the model is useless in practice.
When this happens, we say that a model is perfectly calibrated.

Bayes Decision Rule provides a principled framework for decision making under
uncertainty and guarantees optimal performance (i.e. minimum error proba-
bilities). For Bayes Decision Rule to work, one needs to use a calibrated model
since that implies that the model has (better) recovered the data generating
distribution. Calibration is not the only thing that matters, but also the re-
finement which is the ability of the classifier to recover how the data of the
different classes are separated.

However, modern machine learning techniques, such as Deep Neural Networks,
are uncalibrated, which compromises their deployment in high-risk applica-
tions. Many works have attempted to solve the miscalibration of modern Deep
Neural Networks, and this is one of the main objectives of this thesis.
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This thesis starts by reviewing the elements involved in Bayes Decision Rule,
through the lens of Proper Scoring Rules. This let us introduce one of the key
concepts, at least in my personal opinion, that one should take into considera-
tion in order to train a machine learning model. This is the data uncertainty in
the target distribution, i.e. how the different samples from the different classes
overlap. This observation is used in the first contribution of this thesis to
justify why any Data Augmentation techniques will not guarantee calibrated
distributions, even though empirical evidence has been provided in the oppo-
site direction. We show how a proposed loss function that takes into account
data uncertainty solves the miscalibration introduced by Mixup training, a
state-of-the-art Data Augmentation technique.

However, since Deep Neural Networks are expensive models to train, techniques
that aim at implicitly calibrate these models are costly to be deployed in prac-
tice since one has to deal with model selection techniques. To this end, the
second contribution proposes to recalibrate the output of a Deep Neural Net-
work using a Bayesian Neural Network. With this, we show that one can use
expressive models as long as uncertainty is incorporated, which contrasts with
many of the recent contributions that hypothesize that the calibration space is
inherently simple because simpler techniques work better than their complex
counterparts. We also show that the main criticism of Bayesian techniques,
when applied to modern Neural Networks, is overcome by combining the capa-
bilities of Deep Neural Networks with the proposed decoupled Bayesian Neural
Network.

One of the problems of Bayesian Neural Networks is the specification of a mean-
ingful prior in the parameter space that induces a useful prior in the function
space. A bad specified prior will wrongly bias the way we quantify uncertainty
with the posterior, leading to suboptimal Bayesian predictions. In the final
contribution of this thesis, we introduce a new prior that directly applies to
the function space, named the Transformed Gaussian Process. This new prior
over functions is constructed by warping samples from a Gaussian Process
using an invertible transformation. These warping functions are parameter-
ized by Bayesian Neural Networks, which allow us to model non-stationary
processes accounting for parameter uncertainty, clearly improving the perfor-
mance over the point estimate counterpart. We introduce a sparse variational
inference algorithm that allows us to lighten the computational burden that
we would inherit from standard Gaussian Processes, to target the intractable
posterior, to train the model using Stochastic variational inference and to use
any observation model; among other nice properties.
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