%2 UNIVERSITAT
%“ POLITECNICA
%’ DE VALENCIA

Synthesis of the Complete
Inverse Kinematic Model of
Non-Redundant Open-Chain

Robotic Systems Using
Groebner Basis Theory

Author: José Guzman-Giménez

Director: Dr. Angel Valera Fernandez

November 2021

Abstract

One of the most important elements of a robot’s control system is its Inverse
Kinematic Model (IKM), which calculates the position and velocity references
required by the robot’s actuators to follow a trajectory. The methods that are
commonly used to synthesize the IKM of open-chain robotic systems strongly
depend on the geometry of the analyzed robot, so they are not systematic
procedures that can be applied equally in all situations. This project presents
the development of a systematic procedure to synthesize the complete IKM
of non-redundant open-chain robotic systems using Groebner Basis theory,
which does not depend on the robot’s geometry. The inputs to the developed
procedure are the robot’s Denavit-Hartenberg parameters and the movement
range of its actuators, while the output is the IKM, ready to be used in the
robot’s control system or in a simulation of its behavior. This procedure’s
performance was proved synthesizing the IKMs of a PUMA manipulator and a
walking hexapod robot. The computation times of both IKMs are comparable
to those required by the kinematic models calculated by traditional methods,
while the errors of their computed references were absolutely negligible. The
synthesized IKMs are complete in the sense that they not only supply the
position reference for all the robot’s actuators, but also the corresponding
references for their velocities and accelerations, so the developed procedure
can be used in a wide range of robotic systems.

1l

Resumen

Uno de los elementos més importantes en el sistema de control de un robot es
su Modelo Cinematico Inverso (IKM, por sus siglas en inglés), el cual calcula
las referencias de posicién y velocidad requeridas para que dicho robot pueda
seguir una trayectoria. Los métodos mas comtinmente empleados para la sin-
tesis del IKM de sistemas robotizados de cadena cinemética abierta dependen
fuertemente de la geometria del robot, por lo que no son procedimientos sis-
tematicos que puedan ser aplicados uniformemente en todas las situaciones.
Este proyecto presenta el desarrollo de un procedimiento sistematico para la
sintesis del IKM completo de sistemas robotizados no redundantes de cadena
cinematica abierta usando la teoria de Bases de Groebuer, el cual no depende
de la geometria del robot. Las entradas del procedimiento desarrollado son los
pardmetros de Denavit-Hartenberg del robot y el rango de movimiento de sus
actuadores, mientras que la salida es el IKM sintetizado, listo para ser usado
en el sistema de control del robot o en una simulacién de su funcionamiento.
El desempenio del procedimiento desarrollado fue demostrado sintetizando los
IKMs de un manipulador PUMA y un hexiapodo caminante. Los tiempos de
ejecuciéon de ambos IKMs son comparables con los requeridos por los modelos
cineméticos calculados por procedimientos tradicionales, y los errores de las
referencias que ofrecen como salida son totalmente despreciables. Los IKMs
sintetizados son completos, porque no sblo ofrecen las referencias de posicién
para todos los actuadores del robot, sino que también calculan las correspon-
dientes referencias de velocidades y aceleraciones de dichos actuadores, por lo
que el procedimiento desarrollado puede ser empleado en una amplia variedad
de sistemas robotizados.

Resum

Un dels elements més importants en el sistema de control d’'un robot és el seu
Model Cinematic Invers (IKM, per les seues sigles en anglés), el qual calcula les
referéncies de posicié i velocitat requerides perqué aquest robot puga seguir una
trajectoria. Els métodes més comunament emprats per a la sintesi del IKM de
sistemes robotitzats de cadena cinematica oberta depenen fortament de la ge-
ometria del robot analitzat, per la qual cosa no sén procediments sistematics
que puguen ser aplicats uniformement en totes les situacions. Aquest pro-
jecte presenta el desenvolupament d’un procediment sistematic per a la sintesi
del IKM complet de sistemes robotitzats no redundants de cadena cinematica
oberta usant la teoria de Bases de Groebner, el qual no depén de la geome-
tria del robot. Les entrades del procediment desenvolupat sén els parametres
de Denavit-Hartenberg del robot i el rang de moviment dels seus actuadors,
mentre que l'eixida és el IKM sintetitzat, llest per a ser usat en el sistema de
control del robot o en una simulacié del seu funcionament. L’acompliment del
procediment desenvolupat va ser demostrat sintetitzant els IKMs d’un manip-
ulador PUMA i un robot caminante. Els temps d’execucié de tots dos IKMs
sén comparables amb els requerits pels models cinemétics calculats per pro-
cediments tradicionals, 1 els errors de les referéncies que ofereixen com a eixida
s6n totalment menyspreables. Els IKMs sintetitzats sén complets, perqué no
sols ofereixen les referéncies de posicié per a tots els actuadors del robot, sind
que també calculen les corresponents referéncies de velocitats i acceleracions
d’aquests actuadors, per la qual cosa el procediment desenvolupat pot ser em-
prat en una amplia varietat de sistemes robotitzats.

vil

Contents

Abstract iii
Resumen v
Resum vii
Contents ix
1 Introduction 1
1.1 Background: The Kinematic Problem 1
1.2 Objective and main contribution L. 5
1.3 Test Benches L L 6

1.4 Structure of thiswork 12

Groebner Bases theory: applications in engineering and ba-

sic concepts 13
2.1 Applications of Groebner Bases theory in engineering projects 13
2.2 Polynomials, Ideals and Affine Varieties 14
2.3 Monomial Ordering in Groebner Bases 18
Description of the Developed Procedure 21
3.1 Structure of the Synthesized IKM 22
3.2 IKM Core Module o o 22
3.3 State Estimator oo o o 49
3.4 IKM Derivatives L0 0 oo 52
3.5 Registers Lo Lo 55

X

Contents

4 Performance Analysis of the Developed Procedure
4.1 Resolution of the Kinematic Problem by Traditional Methods
4.2 Hexapod’s IKMo

4.3 PUMA’s IKM

5 Discussion, Conclusions and Future Work
5.1 Summary of the developed procedure and discussion

5.2 Publications
5.3 Conclusions
5.4 Future Work

Bibliography

57
58
66
74

79
79
82
82
83

85

1.1
1.2
1.3
1.4
1.5

3.1
3.2

3.3

3.4
3.5
3.6
3.7
3.8

3.9
3.10
3.11

4.1
4.2
4.3

List of Figures

Inverse Kinematic Model in the robot’s control system
BH3-R hexapod walking roboto L.
Coordinate systems for the hexapod’sleg
Unimate’s PUMA 560 roboticarm
Coordinate systems for the PUMA 560 robotic arm

Structure of the synthesized IKM
Flowchart of the developed procedure for the synthesis of the IKM Core
moduleo oL s
Graphical representation of the expected values for the variables related with
the hexapod’slegDoFs
IKM Core’s algorithmo
Algorithm used to solve quadratic equations
Algorithm used to solve bi-quadratic equations
Algorithm used to solve quartic polynomial equations
Algorithm used to calculate one real root of the cubic obtained during a
quartic’s equation resolutiono L. L.
State estimator’s algorithm o .00 oL L.
IKM Derivative’s algorithm
Synthesized IKM in the robot’s control system

Geometric solution for the PUMA’s first joint
Geometric solution for the PUMA’s second and third joints
Performance analysis of the six synthesized IKMs for the hexapod’s leg

10
11

22

24

30
39
43
44
46

47
51
54
55

60
62
68

x1

List of Figures

xii

4.4

4.5
4.6
4.7
4.8

Detailed view of the performance of the hexapod’s IKM generated by lex

order 6

Performance analysis of the synthesized IKM for the hexapod’s leg

Trajectory tracking analysis for the hexapod’s final IKM
Performance analysis of the synthesized IKM for the PUMA 560

Trajectory tracking analysis for the PUMA’s IKM

69
70
73
7
78

1.1
1.2
1.3
1.4
1.5
1.6

3.1
3.2
3.3
3.4

3.5
3.6

4.1

4.2

4.3

4.4
4.5

List of Tables

Denavit-Hatenberg Parameters of the hexapod’'sleg 8
Hexapod’s leg parameter dimensions 9
Movement range of the hexapod’s actuators 9
Denavit-Hatenberg Parameters of PUMA 560 10
PUMA 560 parameters dimensions 11
Movement range of the PUMA’s actuators 12

Expected values for the trigonometric variables related with the rotational
DoFs of the hexapod’sleg 31
Relevant lex orders for the hexapod’sleg 31
Possible types of polynomial equations found in the calculated Groebner Bases 33
Computational cost required to solve different types of polynomial equations

on an ARM Cortex-M4 CPU 33
Computational cost for a microcontroller with an ARM Cortex-M4 CPU . 34
Selection of the lex order for the Hexapod’'s IKM 35

Maximum and average RMS errors obtained when all the points of the hexa-
pod’s workspace are processed by each of the six synthesized IKMs 71
Computation times of the six IKMs generated for the hexapod’s leg and its
referencemodel oL 0oL 0oL Lo 72
Expected values for the trigonometric variables related with the PUMA’s

rotational DoFs oo 74
Relevant lex orders for the PUMA manipulator 74
Selection of the lex order for the PUMA’SIKM 75

xiil

List of Tables

4.6 Computation times of the six IKMs generated for the PUMA 560 and its
reference model Lo L Lo Lo

Xiv

Chapter 1

Introduction

The main contribution of this work is the development of a
systematic procedure for the synthesis of the complete Inverse Kine-
matic Model (IKM) of non-redundant open-chain robotic systems.
The developed procedure employs Groebner Basis theory to synthe-
size this IKM, which solves the Inverse Kinematic Problem of the
analyzed robots, finding an analytical solution if certain conditions
are met. But before we get to the developed procedure’s description,
first we have to understand the Kinematic Problem and study the
state of the art regarding this Robotic’s topic.

1.1 Background: The Kinematic Problem

The modeling and design of a robot’s control system begins with the resolu-
tion of its kinematic problem, which is divided into two parts: the Forward
Kinematics Problem (FKP) and the Inverse Kinematic Problem (IKP).

The Forward Kinematics Problem (FKP) involves finding the pose of a specific
point in the robot’s structure given its current state. This point is normally
an important one in the robot’s body, such as the end effector of a robotic
manipulator or the center of mass of a mobile robot. The solution of the FKP,
commonly referred as the robot’s Forward Kinematics, is the equation system
that establishes a mapping from the robot’s state to the pose of this relevant
point in its structure. The Forward Kinematics is fundamental for modeling

Chapter 1. Introduction

Trajectory Trajectory . References | Multi-Axis | U
Control > KM Control Robot
1 lSensors

State

N

Observer

Figure 1.1: Inverse Kinematic Model (IKM) in the robot’s control system. The IKM'’s
function is to calculate the required references for the robot’s multi-axis control.

the robot’s movements, while it is also necessary to solve the IKP of open-chain
robotic systems.

The Inverse Kinematics Problem (IKP), as its name clearly indicates, is the
inverse of the FKP, so it involves finding the required robot’s state when an
specific point of its structure should reach a certain pose or, more generally,
follow a path. By solving the IKP, the robot’s Inverse Kinematic Model (IKM)
is synthesized, whose function is to calculate the position and velocity refer-
ences required by the robot’s actuators to follow a trajectory. The IKM is a
fundamental part of the robot’s control system, as it supplies all the references
required by the robot’s multi-axis control. Figure 1.1 presents the relevance of
the TKM in the robot’s control system.

There are different procedures to compute the Forward Kinematics of an open-
chain robotic system, which include Denavit-Hartenberg’s algorithm (Atique,
Sarker, and Ahad 2018; Flanders and Kavanagh 2015; Fu, Gonzalez, and Lee
1987), dual quaternions (Ozgiir and Mezouar 2016; X. Wang et al. 2012), and
the modeling by Displacement Matrices (Barrientos et al. 2012). All these pro-
cedures calculate the Forward Kinematics through the execution of systematic
algorithms, which are completely independent of the mechanical complexity of
the robot’s structure or its geometry.

In contrast, the techniques most commonly used to solve the IKP of open-chain
robotic systems, the geometric method and the analytical procedure, strongly
depend on the robot’s structure (Guzmén-Giménez, Valera Fernandez, et al.
2020). The geometric method, which will be properly explained in Section
4.1.2, requires an extensive analysis of the robot’s geometry, separating the
IKP into several plane geometry problems in order to find the relevant geo-
metric equations (Y. Liu et al. 2015; Fu, Gonzalez, and Lee 1987). By its own

1.1 Background: The Kinematic Problem

definition, it is obvious that this method depends heavily on the geometry of
the robot’s structure, so any sequence of steps used to synthesize the IKM of
a robotic system may not be valid for any other different structure.

The analytical procedure, that will be deeply analyzed in Section 4.1.2; needs
a detailed scrutiny of the robot’s Forward Kinematics, to select the proper
mathematical relations that solve the robot’s state vector given a certain pose
(Rodriguez et al. 2018; Petrescu et al. 2017; Chen et al. 2017; Bouzgou and
Ahmed-Foitih 2014; Aydm and Kucuk 2006). The drawback of this analytical
procedure is that the robot’s Forward Kinematics is usually composed of non-
linear geometric equations, which forbids the use of traditional matrix algebra
procedures. Instead, individual relations inside the studied equation system
must be found, which are specific for each case. This implies that the analytic
procedure is also a non-systematic method, because the mathematical rela-
tions, found to solve the IKP of a robot with a certain structure, may not be
valid or suitable for a different robotic system.

In summary, the two techniques most commonly used to solve the IKP heav-
ily depend on the geometry of the robot’s structure. Therefore they are not
systematic procedures, because the steps executed to solve this problem would
probably not be applicable to other robots.

To address this issue, various projects have opted to use different artificial
intelligence techniques to solve the IKP of open-chain robotic systems. Within
this group, the most recent and relevant are the works of Mahajan, Singh,
and Sukavanam (2017) and Duka (2014), which employ Feed-Forward Neural
Networks to solve this problem for robotic manipulators. The work of Toshani
and Farrokhi (2014) use Radial Basis Function Neural Networks to solve the
IKP of a redundant manipulator. Kéker (2013) also uses Feed-Forward Neural
Networks, but trains them with Genetic Algorithm techniques, in order to
improve the precision of the solution given by the neural networks. The works
of Deshmukh et al. (2020), Hussein, Gafer, and Fadhel (2020), Narayan and
Singla (2017), Duka (2015) and Pérez-Rodriguez et al. (2012) solve the TKP
of different types of open-chain robots with Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), which is an special kind of Neural Network based on the
Takagi-Sugeno fuzzy inference system.

In all the previous works the IKP solver is a system that is first trained with a
set of inputs and their respective solution targets. This training set is obtained
using the robot’s Forward Kinematics, and the trained IKP solver is validated
with a separate validation set. The main problem with the artificial intelligence
techniques arises when the target pose is far from the training set, because

Chapter 1. Introduction

the Neural Network’s extrapolation capability may not be enough to obtain
an acceptable solution. Also these systems are highly time consuming and
normally cannot satisfy real time constraints (Rokbani, Casals, et al. 2015).

Other projects use evolutionary algorithms to solve the IKP of different types
of robotic systems. In this category stands out the work of Rokbani and
Alimi (2013), which employs Particle Swarm Optimization (PSO) to solve
the TKP of a double link manipulator. Jiang et al. (2017) combine neural
networks with evolutionary algorithms to solve the positioning problem of an
open-chain puncturing robot using a PSO-optimized Neural Networks, while
Rokbani, Casals, et al. (2015) implement a PSO variant, known as Firefly
Algorithm (IK-FA).

While these procedures satisfactorily solve the IKP, they could suffer from
the known training problems of evolutionary algorithms, such over-fitting or
the convergence to local optima. It is also important to bear in mind that
the solution offered by these techniques is not a properly defined IKM. This
is because their solution is not the output of fully differentiable functions,
therefore it will not be able to calculate the speed or acceleration references
for the robot’s actuators.

Nowadays several projects are being developed in the field of Robotics that use
Groebner Basis theory (Buchberger 2001) to implement systematic methods
that solve the Kinematic Problem, in a way that is completely independent of
the geometry of the robot’s structure.

These new type of works calculate a Groebner Basis from the analyzed robot’s
kinematic equations, to simplify the process of solving the Kinematic Problem
and, if possible, find an analytical solution. The works of Kendricks (2013) and
Y. Wang, Hang, and Yang (2006) present a systematic method to solve the IKP
of robotic manipulators using Groebner Bases, while Rameau and Serré (2015)
use this theory to calculate the mobility conditions of several mechanisms that
are employed in robotic arms and parallel robots.

The Groebner Basis theory may also be used to solve the kinematic problem
of closed-chain robotic systems, as is the case of the works of Gan et al. (2009)
and Huang and He (2009), which employ it to solve the FKP of parallel robots.
Abbasnejad and Carricato (2015) use Groebner Bases for the kinematic anal-
ysis of cable-driven parallel robots, while Uchida and McPhee (2012) utilize
this theory to triangularize the kinematic constraint equations of this type of
robots.

1.2 Objective and main contribution

All the aforementioned works use Groebner Bases to solve their corresponding
Kinematic Problems, proving in all cases that the full set of solutions can
be obtained using this theory. However, they do not provide a systematic
procedure to synthesize a Kinematic Model that can be used in the robot’s
control system (see Figure 1.1). Another issue that these works have is that
the selection of the basis’ monomial order, which is an important point when
using Groebner Bases, is not specified. Some of those works state that they
employ the same monomial order as the one in which the variables are solved
by the traditional methods (Guzman-Giménez, Valera Ferndndez, et al. 2020),
while most just present the optimal order for their robotic system, without
mentioning how it was selected (Rameau and Serré 2015; Kendricks 2013;
Uchida and McPhee 2012; Gan et al. 2009; Huang and He 2009).

Chapter 2 presents all the necessary background to be able to use Groebner
Basis theory to solve a wide variety of engineering problems, including the
IKP of open-chain robotic systems. But first we need to establish the main
objective of this work.

1.2 Objective and main contribution

The main objective of this work was to use the Groebner Basis theory to
develop a systematic procedure for the synthesis of the complete Inverse Kine-
matic Model of non-redundant open-chain robotic systems.

The developed procedure only requires as inputs the robot’s Denavit-Hartenberg
parameters and the movement range of its actuators, while its output is the
synthesized IKM, ready to be used in the robot’s control system or to simulate
its behavior. During its execution, the procedure does not require any further
input from the user, as it is able to automatically select the optimal monomial
order of the Groebner Basis, as well as prepare and configure all the elements
that compose the complete IKM.

The synthesized complete IKM not only supplies the position reference for all
the robot’s actuators, as it is case of the IKP solvers obtained by artificial
intelligence techniques or evolutionary algorithms, but also provides the corre-
sponding references for the actuator’s velocities and accelerations. This way,
the IKMs that are synthesized by the developed procedure can be used in a
wide range of robot’s control systems, including those that have an acceleration
feedback loop or an acceleration feed-forward strategy.

Chapter 1. Introduction

The main contribution of this project is the development of this systematic pro-
cedure that automatically synthesizes the complete Inverse Kinematic Model
of non-redundant open-chain robotic systems. The developed procedure can
be used to synthesize the IKM of a wide range of mobile and open-chain indus-
trial robots, including cartesian robotic systems, SCARA robots, multi-legged
walking and climbing robots and all non-redundant manipulators that satisfy
the in-line wrist condition.

In addition to this main contribution, this work has other four contributions:

e The developed procedure automatically selects the optimal monomial or-
der for the Groebner Basis used in the IKM synthesis. Therefore, the
user is relieved from the burden of selecting this monomial order. The
procedure’s user only has to provide the D-H parameters of the analyzed
robot and the movement range of its actuators.

e The synthesized IKM is ready to be used in the robot’s microcontroller.
The output of the developed procedure is the IKM, both in C++ and as
a MATLAB® script, which can be used directly in the robot’s control
system or in a simulation of its behavior.

e The synthesized IKM does not request any kind of complex number oper-
ations from the robot’s microcontroller. All the required operations from
the microcontroller are: floating point additions, multiplications and di-
visions, atan2, cosines, square roots and, in some special cases, a cubic
root. All these operations can be easily executed by modern-day micro-
controllers, even when they do not have any capability of operating with
complex numbers.

e The last contribution is the framework presented in this project, which
can be used to apply Groebner Basis theory in the resolution of a wide
variety of engineering problems. This last contribution will be fully ex-
plained in Section 5.1.

1.3 Test Benches

Two robotic systems were used in this project as test benches for the developed
procedure:

1. Walking hexapod robot BH3-R, built and distributed by Lynxmotion Inc.
(Swanton, Vermont, USA)

1.3 Test Benches

Figure 1.2: BH3-R hexapod walking robot by Lynxmotion Inc.

2. Unimate’s PUMA 560 robotic arm (Danbury, CT, USA)

1.3.1 Test bench 1: Hexapod walking robot

The hexapod walking robot used as a test bench is shown in Figure 1.2. This
robot was selected as a test bench because each of its legs has three rotational
degrees of freedom for positioning, like most industrial robotic arms and many
multi-legged walking robots, and it only requires the resolution of the position’s
kinematic problem.

Because this hexapod has circular geometry, its kinematic problem can be
simplified to the synthesis of the IKM of one of the robot’s legs, to later apply
the corresponding transformations between the hexapod’s center and the origin
of each of its extremities.

Applying the Denavit-Hartenberg’s convention, the coordinate systems created
for a leg of the BH3-R walking hexapod are shown in Figure 1.3. Based on
the coordinate systems presented in Figure 1.3, the D-H parameters of one leg
are shown in Table 1.1, while Table 1.2 lists the dimensions, in mm, of those
parameters. To complete the kinematic description of the hexapod’s leg, Table
1.3 presents the movement range of all its actuators.

Chapter 1. Introduction

Figure 1.3: Coordinate systems for the hexapod’s leg.

Table 1.1: Denavit-Hatenberg Parameters of the hexapod’s leg.

Link 0 d a «
1 a1 0 L1 7T/2
2 g2 0 L2 s

3 qgs+(m/2) 0 Ls 0O

1.3 Test Benches

Table 1.2: Hexapod’s leg parameter dimensions.

Parameter Dimension [mm]

Ly 28
L, 28
Ly 110

Table 1.3: Movement range of the hexapod’s actuators.

Actuator Minimum [rad] Maximum [rad]

@ -1.3990 1.3990
0 -0.6627 1.5217
g ~1.5585 0.6013

1.3.2 Test bench 2: PUMA robotic arm

Figure 1.4 presents the PUMA robotic arm that was used as a test bench in
this work.

Following the Denavit-Hartenberg’s (D-H) convention (Atique, Sarker, and
Ahad 2018; Fu, Gonzalez, and Lee 1987), the coordinate systems created for
all the links of the PUMA 560 manipulator are shown in Figure 1.5. Based on
those coordinate systems, the D-H parameters of every link of the robot are
the ones contained in Table 1.4, while Table 1.5 lists the dimensions, in mm,
of these PUMA’s parameters.

The kinematic description of the PUMA manipulator is completed with the
movement range of all its actuators, which is shown in Table 1.6.

The D-H parameters shown in Table 1.4 and the actuators’ movement range of
Table 1.6 are all the inputs required from the user to synthesize the PUMA’s
IKM with the procedure developed in this work. Chapter 3 will expand all this
information regarding the developed procedure’s inputs and the output that it
offers.

Chapter 1. Introduction

10

Figure 1.4: Unimate’s PUMA 560 robotic arm

Table 1.4: Denavit-Hatenberg Parameters of PUMA 560.

Link 0 d a «
1 ¢+ (7/2) dy 0 —m/2
2 q2 dsy) 0
3 g+ (7/2) 0 —az 7w/ 2
4 q4 d4 0 —7'('/2
5 qs 0 0 /2
6 e dG 0 0

—@
1.3 Test Benches
Figure 1.5: Coordinate systems for the PUMA 560 robotic arm.
Table 1.5: PUMA 560 parameters dimensions.
Parameter Dimension [mm]
dy 660.4
dy 149.1
Qs 431.8
as 20.3
dy 433.1
dg 96.2
11
—®

Chapter 1. Introduction

Table 1.6: Movement range of the PUMA’s actuators.

Actuator Minimum [rad] Maximum [rad]

@ -2.7925 2.7925
G -3.1415 0.7854
a -2.3562 2.3562
44 -1.9199 2.9671
ds _1.7453 1.7453
0 -3.1415 3.1415

1.4 Structure of this work

The next chapter shows the applications of the Groebner Basis theory in a wide
variety of engineering problems, and it also explains all the basic concepts
required to understand these applications. The procedure developed in this
work is presented in Chapter 3, and it was used to synthesize the IKMs of the
two test benches: a PUMA manipulator and a walking hexapod. Chapter 4
shows the performance analysis of the two synthesized IKMs, comparing their
outputs with those of the corresponding reference models. Finally Chapter 5
summarizes the developed procedure, explains the conclusions of this work,
and also presents the possible future works for the project.

12

Chapter 2

Groebner Bases theory:
applications in engineering and
basic concepts

This chapter presents the applications of the Groebner Basis
theory in engineering projects, with special emphasis in Robotics,
and explains all the basic concepts needed to apply it.

2.1 Applications of Groebner Bases theory in engineering
projects

Groebner Basis theory is a useful methodology to solve any problem that can
be expressed as a polynomial equation system. This theory allows to transform
any polynomial equation system to a new form, a Groebner Basis, that is easier
to solve. This transformation is analogous to the row reduction technique (also
called Gaussian elimination) used to lower the complexity of linear equation
systems (Cox, Little, and O’Shea 2015).

Groebner Basis theory has been applied in a wide range of engineering projects,
like Digital Circuit Design, as is the case of the work of Farahmandi and Al-
izadeh (2015), which studies the verification of large integer arithmetic circuits
through Symbolic Computer Algebra techniques and Groebner Basis theory.
The circuits and their specifications are modeled as polynomial equation sys-

13

Chapter 2. Groebner Bases theory: applications in engineering and basic concepts

tems, in such a way that the verification is formulated as a membership problem
that is solved using Groebner Basis theory. This method was improved by the
work of Sabbagh and Alizadeh (2021), in which the output of the verification
process is a remainder polynomial that indicates the correctness of the analyzed
circuit, and can also be used to correct those circuits that are defective.

This theory can also be applied to solve problems in Automation and Control,
like the Time Optimal Feedback Control of a controllable LTI system with
bounded inputs, as shown by Patil et al. (2015). Their work employs Groebner
basis theory to formulate the control switching surfaces as semi-algebraic sets,
which are then used to synthesize the nested switching logic required for the
time optimal feedback control.

Returning to the field of Robotics, the leader selection problem in Multi-Agent
Robotics can also be solved using Groebner Basis theory, as is proven by Mulla
et al. (2018). They formulate this problem as a set of polynomial equations,
which can be easily solved once the corresponding Groebner Basis is calculated.

The work of Koukos-Papagiannis, Moulianitis, and Aspragathos (2019) uses
Groebner Basis theory to classify the cuspidal anatomies of a 3R orthogonal
metamorphic manipulator with two pseudo-joints. H. Liu and Han (2021)
employ Groebner Basis theory to solve the position analysis problem of a 1CS-
4SS spatial linkage.

Before we proceed to the explanation of the developed procedure, we need to
establish the proper mathematical definitions for polynomials and Groebner
Bases.

2.2 Polynomials, Ideals and Affine Varieties

The polynomials that will be studied and analyzed in this work are defined
over a Ring, specifically a Commutative Ring (also known as Polynomial Ring),
while their coefficients are defined over a Field. Therefore, as a prelude to the
theory of Groebner Bases, first we have to establish the definitions of Fields,
Commutative Rings and polynomials.

The basic intuitive idea of a Field is that it is a set where the operations of
addition, subtraction, multiplication and division are defined, with their usual
properties (Cox, Little, and O’Shea 2015). The formal definition of Field is
presented in Definition 2.2.1.

14

2.2 Polynomials, Ideals and Affine Varieties

Definition 2.2.1 Field. A Field consists of a set k and two binary operations,
addition (represented with the symbol “+7) and multiplication (indicated by “”),
both defined on k, for which the following seven properties are satisfied:

1. Associative: (a+b)+c=a+ (b+c)and (a-b)-c=a-(b-c) for all
a,b,c€k.

Commutative: a +b=b+a and a-b=>b-a for all a,b € k.
Distributive: a-(b+c¢)=a-b+a-c for all a,b,c € k.
Additive identity: There is 0 € k such that a +0 = a, for all a € k.

Multiplicative identity: There is 1 € k such that a -1 = a, for all a € k.

S v e e

Additive inverse: Given a # 0, there is b € k such that a + b =0, for all
a € k.

7. Multiplicative inverse: Given a # 1, there is b € k such that a-b =1, for
all a € k.

The most common fields are Z and C. The coefficients of a polynomial are
defined over a Field, normally Z, but the polynomial itself cannot be part of
a Field. This is because no polynomial can satisfy the multiplicative inverse
property, which will be obvious after the formal definition of polynomials is
presented. This is the reason we have to bring forward the definition of Com-
mutative Ring as a set that contains the analyzed polynomials.

Definition 2.2.2 Commutative Ring. A Commutative Ring is composed
by a set R and two binary operations, addition and multiplication, both defined
on R, that satisfy the first siz properties of the Field’s operations: associative,
commutative, additive and multiplicative identity, and additive inverse.

As can be seen in Definition 2.2.2, the only difference between a Commutative
Ring and a Field is that the operations defined for the Commutative Ring do
not have to comply with the multiplicative inverse property. All the Commu-
tative Rings used in this work are sets that contain polynomials, so we will
also refer to them as Polynomial Rings (Cox, Little, and O’Shea 2015).

The best way to define a polynomial is as a linear combination of monomials
over a Polynomial Ring. In this work we will be constantly analyzing multivari-
able polynomial equations, so it is important to establish a proper definition for
a monomial that contains multiple variables, as presented in Definition 2.2.3

15

Chapter 2. Groebner Bases theory: applications in engineering and basic concepts

Definition 2.2.3 Monomial. A monomial over a set of variables x = [xy, x4, ...

on the Commutative Ring k, normally represented as k[xy, xa, ..., T,], i a prod-
uct over these variables:

=t gL (2.1)

In Equation 2.1, the exponent « is an n-tuple of the form a = (ay, g, ..., ay),
where all its elements are non-negative integers.

With the previous definition for multivariable monomials, a polynomial can be
defined as a linear combination of monomials, as presented in Definition 2.2.4.

Definition 2.2.4 Polynomial. A polynomial [is a linear combination of a
finite number of monomials in k[, s, ...,x,], which is written in the form:

f= an -z (2.2)

The coefficients in Equation 2.2, c., are defined over a Field, normally c, € Z.

Every polynomial that follows Definition 2.2.4 is an element of the Commuta-
tive Ring k[z1, za, ..., x,], which from now on will be referenced as the Poly-
nomial Ring k, or simply k. It is important to always bear in mind that k is
a Commutative Ring and not a Field, because the multiplicative inverse for
any monomial x* € k, which should be 7%, is not a valid element of k. But
all the properties that define a Commutative Ring (see Definition 2.2.2) are
completely fulfilled in k.

After defining the basic structure of the polynomials that will be used in this
work, now we have to bring up the concept of Ideal, which is fundamental
in Groebner Basis Theory, and will be crucial when solving the polynomial
equation systems that appear as part of the Kinematic Problem of robotic
systems.

An Ideal is just a subset of a Polynomial Ring k that satisfies the conditions
presented in Definition 2.2.5 (Cox, Little, and O’Shea 2015).

Definition 2.2.5 Ideal. A subset I C k[xy,xs,...,x,] is an Ideal if it satisfies
the following three conditions:

16

7mn]

2.2 Polynomials, Ideals and Affine Varieties

1. 0el.
2. If f,ge I then f+ge€l.
3. If fel and h € k[xy,x9,...,2,] then h- f € I.

An important characteristic about the Ideals of Polynomial Rings is that they
can be defined by a linear combination of polynomials. For example, if we
have a set of s polynomials, {b;,bs,...,bs} € klx1,xo,...,x,], we can generate
the linear combination expressed in Equation 2.3:

< bhbg, ...,bs >= {Z hi : bi : hl,hg, ,hn S k?[xh.’lfg, 7113”]} (23)
i=1

The crucial fact is that < by,bs,...,bs > is an Ideal, known as the Ideal gen-
erated by b; to b,. The generating set, {by, bs,...,bs} € k, is called a basis of
I. And any Ideal can be generated by a finite basis, as it is established by the
Hilbert Basis Theorem (Cox, Little, and O’Shea 2015):

Theorem 2.2.1 Hilbert Basis Theorem. Every ideal I C klxy,xo,...,x,]
has a finite generating set that is also part of I. That is, I =< g1,...,9s > for
some {g1,...,9:} €T .

Note that following the expression presented in Equation 2.3, any given Ideal
may have many different bases, but they all generate the same subset I C
klxy, xg,...,x,]. The Groebner Bases that will be used in this work are based
in this idea of a set of polynomials that generate an Ideal. But before we define
this type of bases, we need to present the concept of Affine Varieties, which
will be fundamental to prove that the solution of the calculated basis is useful
for our work.

Definition 2.2.6 Affine Variety. Let k[z,,xs,...,x,]| be a Polynomial Ring
and {fi1, fa, ..., fs} be a set of s polynomials in k. The Affine Variety of this

set is the expression presented in Equation 2.4.

V(f1, fay s [s) = {(a1, a2, ...;a,) : fi(ay,a9,...;a,) =0 Vie [l s]} (2.4)

Thus, an Affine Variety, V(f1, fo, ..., fs), is the set of all the solutions of the
polynomial equation system composed of {fi, fa, ..., fs} = 0.

17

Chapter 2. Groebner Bases theory: applications in engineering and basic concepts

Since an Ideal generated by a basis is just a linear combination of the poly-
nomials that conform its basis (see Equation 2.3), then the Affine Variety
of the whole Ideal is equal to the Affine Variety of the polynomial set that
compose the basis. That is, if we have an Ideal, I C k[zy,zo,...,2,]|, where
I =<by,...b; >, then:

V(I) = V(by,...,by) (2.5)

Using the definition of Affine Variety presented in Equation 2.4 and the Hilbert
Basis Theorem, we can extend the definition of Affine Varieties to any Ideal,
I C k[z1, 2, ...,x,)], which will be equal to:

V() =A{(a1,...,an) : flai,...,a,) =0 Vfel} (2.6)

Although a non-zero Ideal contains infinitely many polynomials (check Equa-
tion 2.3), its Affine Variety, denoted as V(I), is unique. Therefore the Affine
Variety of the basis that generated the Ideal will be the same as the Affine
Variety of any other basis that is calculated from said Ideal.

This means that the set of solutions of the original polynomial equation sys-
tem (the one that generated the Ideal) will be the same of solutions of any
Groebner Basis derived from this original equation system. So, as the calcu-
lated Groebner Basis normally is easier to solve than the original polynomial
equation system, by solving this easier system we obtain the desired set of
solutions.

2.3 Monomial Ordering in Groebner Bases

An important factor of the Groebner Basis obtained from any Ideal is the
monomial ordering used in its calculation. This monomial ordering is defined

in Definition 2.3.1 (Cox, Little, and O’Shea 2015).

Definition 2.3.1 Monomzial Ordering. A monomial ordering over a set of
variables x = [x1, xa, ..., x,] on the field k, normally represented as k|x1, xa, ..., x,],
s any relation > on the set of monomials x*, with o € Z%,, that satisfies three
conditions: -

1. The relation > is a total ordering on Z%,. This condition establishes that
for every pair of monomials, x® and z°, with a = (a1, sy, ...,a,) and

18

2.3 Monomial Ordering in Groebner Bases

B = (B1, P2y, Bn) € 7%, exactly one of the three following statements is

true: x> 2° | 2% = 28 or 2# > z°.

2. [f % > Iﬁ and v = (71’727 ~-~777L> c ZgOJ then x(OH”’Y) > x(5+7).

3. > 1is a well-ordering on Z%,. This means that every non-empty subset of
Z%, has a smallest element under this ordering.

The main three types of monomial orderings used in Groebner Bases calcula-
tions are: Lexicographic Order (lex), Graded Lexicographic Order (grlex) and
Graded Reverse Lexicographic Order (grevlex) (Cox, Little, and O’Shea 2015).

The lexicographic order (lex) arranges the monomials following a strict ordering
in which a variable always precedes those of lesser value in the order, in an
analogous way to the ordering of words in a dictionary. This type of monomial
ordering is defined in definition 2.3.2 (Cox, Little, and O’Shea 2015).

Definition 2.3.2 Lexicographic Order (lex). The lex order establishes that
2% >, 2P if and only if, in the vector difference o — 3 € Z%,, the leftmost
non-zero entry s positive.

With the lex order, a variable will always dominate any monomial involving
only smaller variables, regardless of its total degree. For some purposes, it is
desirable to take into account the total degree of monomials, ordering them by
total degree first. This is done by using the graded lexicographic order (grlex),
presented in definition 2.3.3 (Cox, Little, and O’Shea 2015).

Definition 2.3.3 Graded Lexicographic Order (grlex). The grlex order
establishes that T > 1., ©° if the condition of Equation (2.7) is met:

ol =>_ai > 18] =36 (2.7)

or, in the case that |a| = |B|, if 2% > 2P, i.e. if the leftmost non-zero entry
of a — B is positive.

To reduce the computation time of Groebner Bases, a variation of the gr-
lex, known as the graded reverse lexicographic order (grevlex), was developed,
which is defined in definition 2.3.4 (Cox, Little, and O’Shea 2015).

19

Chapter 2. Groebner Bases theory: applications in engineering and basic concepts

Definition 2.3.4 Graded Reverse Lezxicographic Order (grevlex). The
grevlex order establishes that x® > g cpien 28 if the condition of Equation (2.7)
is met or, in the case that |«| = |B|, if the rightmost non-zero entry of the
difference o — [is negative.

This variation begins like grlex, ordering the monomials by total degree, but
then breaks any possible ties by applying a reverse lexicographical order. This
ordering is the most efficient way to calculate a Groebner Basis for a zero-
order Ideal, i.e. an Ideal that has a finite amount of solutions (Cox, Little, and
O’Shea 2015), which is exactly the type of Ideal that the developed procedure
has to work with (Guzman-Giménez, Valera Fernandez, et al. 2020).

The main objective of our procedure, as presented in Guzman-Giménez, Valera
Fernédndez, et al. 2020, is to use the Groebner Basis theory to find an analyt-
ical solution to the Inverse Kinematic Problem of non-redundant open-chain
robotic systems, as a means to synthesize their IKM. This objective is achieved
by calculating a Groebner Basis in a two step process: First, an initial basis is
obtained using a grevlex monomial order, using Faugére’s F4 algorithm (Jean
Charles Faugére 2010; Jean Charles Faugere 1999). Then this first basis is con-
verted to a Groebner Basis with a lex order, employing the FGLM algorithm
developed by Faugere et al (J. C. Faugére et al. 1993). This conversion is done
because the lex monomial order is the only one that guarantees the existence
of a simple analytical solution for the calculated basis.

20

Chapter 3

Description of the Developed
Procedure

The developed procedure is fully explained in this chapter, go-
ing from the initial input of the robot’s information to the synthe-
sized IKM. The chapter begins with the description of the structure
that all the IKMs synthesized by the developed procedure will have.
This structure allows the synthesized IKM not only to provide the
position references for all the robot’s actuators, but also the refer-
ences of their corresponding velocities and accelerations. The next
four sections of the chapter explain each of the modules that com-
pose the IKM’s structure and how the developed procedure generates
and configures them.

As stated in Section 1.2, the main objective of this work was the development
of a procedure that synthesizes the IKM of non-redundant open-chain robotic
systems. The developed procedure only requires as inputs the robot’s D-H
parameters and the range of its actuators. With these inputs, and without
any further information from the user, the procedure’s output is the full IKM,
ready to be used in the robot’s microcontroller or to simulate its behavior.

To fully understand the procedure that was developed in this work, first we
have to analyze the structure of the IKM that this procedure has to synthesize.
Section 3.1 presents this general structure, which will be the same for all the
IKMs synthesized by the developed procedure.

21

Chapter 3. Description of the Developed Procedure

RST l

Parameters & Ref:
Trajectory p(t) | . Variables | X eferences
Tnputs IKM Core < =1 Registers il (Outputs)
P(t) Val HQ
A~ = At)
| State » e q(t = At)
Estimator L Pulig q(t—At)
g law i
1 W .
Va qt)
[IKM -
(\ \ Derivatives a)
\I Singularity Flag >

OoW Flag >

Figure 3.1: Structure of the synthesized IKM

3.1 Structure of the Synthesized IKM

The synthesized IKMs will all have the structure shown in Figure 3.1. This
structure presents four modules:

1. IKM Core: Synthesized applying Groebner Basis theory. Its function is
to solve the IKP of position for all the robot’s actuators.

2. State estimator: Selects the best solution given by the IKM Core.

3. IKM Derivatives: Solves the IKP of velocities and accelerations for all
the robot’s actuators, to complete the robot’s current state.

4. Registers: Stores the robot’s previous and current states, as well as all
the variables required by the other modules.

3.2 IKM Core Module

The main module of the synthesized IKM is the IKM Core, whose main func-
tion is to solve the Inverse Kinematic Problem (IKP) of the robot’s position
in the configuration space. The input of this module is the desired position
for the robot in the cartesian space, and its outputs are the array (), which

22

3.2 IKM Core Module

contains all the possible solutions for the IKP in configuration space, along
with the vector Val, that signals the solutions that are valid, i.e. the ones that
are inside the robot’s workspace.

The developed procedure for the synthesis of the IKM Core module is composed
of seven major steps, including a verification step that checks if the selected
monomial order for the Groebuner Basis is valid in all the robot’s workspace.
Figure 3.2 shows the complete flowchart of this procedure (Guzman-Giménez,
Valera Fernandez, et al. 2021).

It is important to highlight that all these steps are only executed once, out
of line, to synthesize the IKM Core before the robotic system is activated.
Therefore, the execution time of these steps does not affect in any way the
online computation time of the synthesized IKM (Guzman-Giménez, Valera
Fernandez, et al. 2020).

3.2.1 First Step: Information Input

The first step of the procedure presented in Figure 3.2 is the information input,
in which the user has to supply only two data sets: the Denavit-Hartenberg
(D-H) parameters of the robot and the movement range of its actuators. The
first data, the D-H parameters, are necessary to solve the Forward Kinematics
problem, which is a required step to calculate the Groebner Basis that will aid
in the IKM’s synthesis. These parameters represent the fundamental informa-
tion of any robotic system, so they are also indispensable for all traditional
methods that solve the Kinematic Problem.

The actuators’ movement range is employed to eliminate all the solutions that
are not reachable by the robotic system. This way, the IKM is able to discard
those solutions that are out of the robot’s workspace.

This is all the information that the user has to know about the analyzed robot,
which constitutes the absolute minimum data that is required to describe a
robotic system. From this point, the procedure automatically synthesizes the
robot’s IKM Core module, and subsequently the whole IKM, without any
further input from the user (Guzman-Giménez, Valera Fernandez, et al. 2021).

23

Chapter 3. Description of the Developed Procedure

Information
nput

!

Forward Kinematics

v

Polynomial equation

system
Error: J’
Report to User
Groebner Bases
computation

v

Monomial Order
selection

Monomial Order
list empty?

Basis valid for
full workspace?

Remove problematic
order

IKM Core
mmplementation

Figure 3.2: Flowchart of the developed procedure for the synthesis of the IKM Core module

24

3.2 IKM Core Module

3.2.2 Second Step: Forward Kinematics

The second step of the procedure, as is shown Figure 3.2, is the calculation of
the robot’s Forward Kinematics, using as inputs the D-H parameters that were
provided in the first step. This calculation is done by applying the Denavit-
Hartenberg method (Guzman-Giménez, Valera Ferndndez, et al. 2020; Atique,
Sarker, and Ahad 2018; Fu, Gonzalez, and Lee 1987). The result of this second
step is the homogeneous transformation matrix (°4,,) between the origin of the
coordinate system in the robot’s base and the one in its end effector.

When the developed procedure is applied to the hexapod’s leg, this step’s
output is the homogeneous transformation matrix presented in Equation 3.1
(Guzman-Giménez, Valera Fernandez, et al. 2020). In this equation, the term
@23 1s equal to g, —qs.

cos(q1) sin(ges) —cos(g1) cos(ges) —sin(q1) cos(q1)[L1+ L2 cos(gz)+ L3 sin(gz3)]
04 — sin(q1) sin(ges) —sin(g1)cos(ges) cos(q1) sin(q1)[L1+ L2 cos(gz2)+ L3 sin(ga3)]
3T —cos(q23) —sin(ge3) 0 L; sin(g2) — L3 cos(qa3)
0 0 0 1

(3.1)

3.2.83 Third Step: Obtention of the Polynomial Equation System

Once the robot’s Forward Kinematics is calculated, the procedure’s third step,
which is identified in Figure 3.2 as “Polynomial equation system”, begins by
extracting the robot’s kinematic equations from the homogeneous transforma-
tion matrix obtained in the second step. For simplicity, in this work we are
only interested in the position of the end effector. However, the procedure can
be extended to also include the end effector’s orientation, to complete its whole
pose (Guzman-Giménez, Valera Fernandez, et al. 2021).

Continuing with the case of the hexapod’s leg, the extracted position equations
are the ones presented in Equation 3.2, which correspond to the first three
elements of the fourth column of Equation 3.1.

Pz = c08(q1)[L1+ Lo cos(qz)+ L3z sin(ga —g3)]

py = sin(qq)[L1+ Lo cos(g2)+ L3 sin(gs —gq3)] (3.2)
D. = Lo Sin(Qz) —Ls COS(QQ —Q3)

25

Chapter 3. Description of the Developed Procedure

Equation 3.2 conforms a trigonometric equation system that describes the end
effector’s position as a function of the current state of the robot’s actuators.
The previous equation system is completed with trigonometric identities of the
form sin(g;)? + cos(g;)? = 1 for all the robot’s rotational degrees of freedom
(DoFs). Then, all the trigonometric expressions are expanded, and variable
substitutions of the form sin(g;) = s; and cos(q;) = ¢; are applied.

This step’s objective is to obtain a polynomial equation system where the
variables are either a pair sine-cosine of a rotational DoF (s; and ¢;), or directly
the position value of a prismatic DoF (g;).

For the hexapod’s leg, this step’s output is the polynomial equation system
presented in Equation 3.3, where the input parameters are the three compo-
nents of the position vector of the leg’s end point (p), represented by p., py.
and p,. The six variables of Equation 3.3 that should be solved are sy, ci, sg,
Ca, 83, and cs.

28c; + 58cicy + 110¢189¢3 — 110¢1¢c983 — p, =0
2851 + 58s1co + 11081 52¢3 — 11081255 — p, = 0
5889 — 110cyc3 — 1108983 — p, =0

3.3
s24+c2—-1=0 (3:3)
s24+c2—-1=0
s$5+c¢3-1=0

The polynomial equation system obtained as the third step’s output is the
Ideal generator set that will be used for the IKM’s synthesis (Cox, Little, and
O’Shea 2015).

When the procedure is applied to the PUMA manipulator, this step’s output
is the polynomial equation system presented in Equation 3.4. As was the case
of the hexapod’s leg, the six variables that should be solved in this equation
are s, cy, Sg, C2, S3, and C3.

26

3.2 IKM Core Module

—0981Cy — dy81CaC3 + d4515255 — A35152C3 — A351CaS3 — dacy — Py = 0
QA9C1Co —+ d4010203 — d4018253 + a3C152C3 + azCi1CyS3 — d281 — pU = O

dy — as82 — dySsc3 — dycass + azcacs — azses3 — p, = 0

242 —-1=0
ss+c2—1=0
s3+c3—1=0

(3.4)

3.2.4 Fourth Step: Groebner Bases computation

The polynomial equation system shown in Equation 3.3 constitutes an Ideal
generator basis, which will be the starting point for the Groebner Basis cal-
culation (Buchberger 2001). As was explained in Section 2.2, the solution set
of the calculated Groebner Basis is also the solution of the original basis, the
one that generated the Ideal (Cox, Little, and O’Shea 2015). Therefore, the
objective of this step is to obtain a Groebner Basis that is easier to solve than
the original polynomial equation system (the output of the procedure’s third
step), in this way simplifying the process of solving the IKP.

Before proceeding to the calculation of the Groebner Basis, it is important to
acknowledge one restriction of the implementation of Faugére’s F4 algorithm
that is used to compute this basis: all the constant parameters of the input
equation system must be integer numbers. To circumvent this restriction, the
developed procedure analyzes the parameters that conform the Ideal calculated
in the third step, searching for a multiplying factor that will make all those
parameters integer numbers, and then multiplies all the constant parameters
by this computed factor. The multiplying factor will also be applied to the
inputs of the synthesized IKM, in order to preserve all the measurement units.

Up to this point, the procedure has one of the two important elements for
a Groebner Basgis calculation, the Ideal generator basis, but needs the other
one: the monomial order. As was presented in Section 2.3, the monomial
order establishes the order in which the variables are solved in the calculated
Groebner Basis. Different monomial orders will produce different bases, but
it is important to remember that all the possible lex order combinations will
produce an array of Groebner Bases, whose solutions are all the same solution
set of the Ideal generator basis. Therefore, solving any of those Groebner Bases
will also solve the polynomial equation system obtained in the procedure’s third
step (Cox, Little, and O’Shea 2015).

27

Chapter 3. Description of the Developed Procedure

The only difference between obtaining the solution from the Groebner Basis
generated by one specific lex order over another one, would be on the compu-
tation times required to solve each basis. So the optimal monomial order is
the one that requires the least computation time to find its solution.

The main objective of the procedure’s fourth step, identified in Figure 3.2 as
“Groebner Bases computation”, is to establish the lex orders that are relevant
to the analyzed robot, and then calculate their associated Groebner Bases.
The analysis of those bases’ computations times will be done in the fifth step,
along with the selection of the optimal monomial order.

The first task of this fourth step is to recognize all the possible lex order
combinations that can be relevant for the analyzed system. The variables that
should be solved in the polynomial equation system are the ones related with
the rotational DoFs, that come in pairs of the form s; and ¢;, and the variables
of the prismatic DoFs. For the case of the hexapod’s leg, shown in Equation
3.3, the monomials of the Ideal are the variables s, ¢;, S2, ¢2, S3, and cs3, so
the optimal lex order must be a combination of those variables.

All the possible combinations of the Ideal monomials will be equal to (n+7)!,
where n is the total amount of DoFs of the analyzed robot, and r is the quantity
of those DoFs that are rotational. But all those combinations include the orders
that separate the two trigonometric variables of a rotational DoF (s; and ¢;).
These combinations are not relevant lex orders, because the two variables of
a rotational DoF are strongly related, and should always be adjacent in the
lex order. This restriction greatly reduces the amount of possible lex orders,
but it can be further reduced if a relative order is established between the two
variables of each rotational DoF (either s; > ¢; or ¢; > s;). This way the total
amount of relevant lex orders gets reduced to n!, independently if the robot’s
DoFs are rotational or prismatic.

To impose the aforementioned restriction, the developed procedure analyzes
which of the trigonometric variables of every rotational DoF is less likely to be
zero. This is done because, when solving the Groebner Basis, if the lex order
is of the form “... > ¢; > s; > ...", the value of s; (sin(g;)) will be calculated
first, while the computation of ¢; will surely depend on the calculated value
of s;. Therefore, if s; is equal to zero, it is very probable that a term of the
basis’ equation that defines ¢; will be canceled out, which will surely generate
an indetermination in the computation of c;.

So, by analyzing the probable values of sin(q;) and cos(g;) in the range of the
rotational DoF (g¢;), the procedure detects the trigonometric variable that is

28

3.2 IKM Core Module

less likely to be zero, and orders these two variables properly inside the lex
order. This analysis is done by calculating the expected value of |sin(g;)| and
|cos(q;)|, following the expressions shown in Equation 3.5.

Bllsin(a)ll = [lsin(a)|-p(a:)da
(35)
Bllcos(a)] = | lcos(a)|-pla:) da

Tito

In Equation 3.5, ¢;, and ¢;,, are the lower and upper limits of the range of
the actuator g;, and p(q;) is the probability density function (pdf) of ¢;. This
pdf may be supplied by the user, if the probable distribution of the positions
of ¢; in all its range is known. Otherwise, the developed procedure assumes
a Gaussian pdf, that covers all the rotational DoF’s range, with its mean in
the middle of this range. If E[|sin(g;)|] > E[|cos(¢;)|], then the relative order
of the couple of variables related to g; is selected as ¢; > s;. Otherwise, this
relative order is established as s; > ¢;. This way the variable that is less likely
to be zero is always computed first.

Figure 3.3 shows the graphical representation of this order selection process
when applied to the three actuators of the hexapod’s leg. In each of the
graphs presented in Figure 3.3, the black dots outline the Gaussian pdf chosen
for the corresponding actuator. These Gaussians were automatically selected
by the procedure, because in this case the user did not provide any information
regarding the probable distribution of positions among these DoFs. The mean
of each of those Gaussian pdfs is the middle point of the movement range of its
corresponding DoF (see 1.3), while the variance of each Gaussian was selected
in such a way that six of its standard deviations cover said movement range,
three on each side of the middle point.

The blue areas shown in Figure 3.3 represent E[|cos(g;)|], while the red areas
equate El|sin(q;)|]. In all cases El|cos(q:)|] > El|sin(g)|], so the selected
orders for these couples are s; > ¢y, sy > ¢y and s3 > c3, and they will always
appear that way in all the possible lex orders for the hexapod’s leg.

Table 3.1 summarizes all the information presented in Figure 3.3, showing
also the relative order selected for the trigonometric variables related with the
hexapod’s DoFs. The relative orders shown in Table 3.1 are absolutely logical,
because the movement ranges of these three DoFs have their centers close to the
angular position of 0 radians. Therefore it is more probable that sin(g;) = 0,
rather than any of the variables related with the corresponding cosines.

29

Chapter 3. Description of the Developed Procedure

0.9 T T T T T 1.2 T T T T
---Gaussian pdf ---Gaussian pdf
0.8F \, [lcos(@L)|-pdf | 2 [Tleos(@2)] - paf
\, [[JEllcos(q1)|] =0.897 b * [JEllcos(q2)[] =0.850]
o7l \ | Isin(q1)| - pdf . —sin(q2)| - pdf
\[_IE[Isin(q1)|] =0.344 \[_IE[Isin(g2)[] =0.429
0.6F - 08
0.5 / ' B \
0.6
0.4f -
03f - 04f
0.2+ ! - \
/ N 0.2
0.1 -
0 | | | | 0 7 | |
-1 -0.5 0 0.5 1 -0.5 0 0.5 1 15
gl [rad] g2 [rad]
12 T T T T T T T T T T
[---Gaussian pdf
- —Icos(g3)] - pdf
[JE[Icos(q3)]] =0.831]
/ \ —|sin(q3)| - pdf
1F / S [JElIsin(a3)]] =0.460 |-

08

° . . .
14 12 -1 08 06 04 02 0 02 04 06
3 [rad]

Figure 3.3: Graphical representation of the expected values for the variables related with
all three DoFs of the hexapod’s leg. The black dotted line show the chosen pdf for each DoF.
The blue areas represent the E[|cos(gq;)|], while the red areas are equal to E||sin(g:)]].

30

3.2 IKM Core Module

Table 3.1: Expected values for the trigonometric variables related with the rotational
DoFs of the hexapod’s leg. The columns titled “E[|cos(q;)|]" and “E[|sin(q;)|]" contain the
expected values for the corresponding trigonometric variables. The largest expected value
of each DoF is marked in bold, and the selected order for each rotational DoF is shown in
the last column.

Rotational DoF E||cos(q;)|]] E[|sin(q;)|] Relative order

q1 0.897 0.344 S1 > C
q2 0.850 0.429 So9 > Co
qs 0.831 0.460 S3 > C3

Table 3.2: Relevant lex orders for the hexapod’s leg.

Ne° Lexicographic Order

S1>C > 89 > Cy > S3 > C3
S§1>C > 83> C3 > Sy > Co
Sg > Cy > 81 > CL > S3 > C3
Sg > Cy > 83 >C3>8 >C
S3>C3 > 81 > CL > Sy > C2
S3>C3 > 89 >Cp > 81 > C

OOt W N~

It is important to keep in mind that the computation of the relative orders
shown in Table 3.1 is only required for the rotational DoFs of the analyzed
robot, to establish the order in which the pair of variables s; and ¢; will appear
inside all the relevant lex orders. The three DoFs of the hexapod’s leg are
rotational, so the procedure establishes a relative order for all three. The same
happens for the case of the PUMA robot (see Figure 1.5) and most of the
industrial manipulators, whose DoFs are all rotational. In the case that the
analyzed robot has a combination of rotational and prismatic DoFs, only the
rotational ones require this relative order calculation.

Once all the relative orders of the rotational DoFs are established, the devel-
oped procedure calculates all the relevant lex orders for the analyzed system.
To continue with the hexapod’s leg example, Table 3.2 contains the relevant
lex orders for this robotic system. The relevant amount of lex orders is six,
because the hexapod’s leg contains three DoFs (3! = 6).

31

Chapter 3. Description of the Developed Procedure

After establishing all the relevant lex orders, the developed procedure proceeds
to calculate the Groebner Bases related to those orders. These calculations are
executed in a two step process: First, an initial Groebner Basis is obtained us-
ing Faugére’s F4 algorithm (Jean Charles Faugére 2010; Jean Charles Faugére
1999), with a graded reverse lexicographic order (grevlex). After this first ba-
sis is calculated, a series of FGLM basis conversions, based on the algorithm
developed by J. C. Faugere et al. (1993), are made to convert the original
basis to all the lex orders previously identified as relevant. This way a set of
n! different bases is calculated, one for each of the relevant lex orders. The
procedure’s next step is the selection of the optimal monomial order.

3.2.5 Fifth Step: Automatic monomaial order selection

Once all the Groebner Bases are calculated, the procedure’s fifth step, repre-
sented in Figure 3.2 as “Monomial Order selection”, selects the basis related
with the optimal monomial order. As was stated in Section 3.2.4, the optimal
monomial order is the one that provides the Groebner Basis that requires the
least computation time to obtain the solution. So, in order to find this optimal
monormial order, the following three-step classification criterion is applied:

1. Lowest computational cost of the highest degree equation
2. Lowest accumulated computational cost of all the basis’ equations

3. Lowest accumulated cost of all the equations’ coefficients

The first step of the classification process consists on identifying the Groebner
Bases whose highest degree equation presents the lesser computational time,
and discard the rest.

Table 3.3 presents all the possible types of polynomial equations that can be
found in the previously calculated Groebner Bases. The maximum possible
degree of the polynomial equations shown in Table 3.3 is four, because the
IKP of the positioning of non-redundant open-chain robotic systems has at
most four solutions (Guzman-Giménez, Valera Fernandez, et al. 2020).

The linear and quadratic equations that our procedure encounters are solved
by the well known algorithms for these types of polynomials. The bi-quadratic
polynomial equations are solved as two concatenated quadratic equations. Fi-
nally, the quartic equations that the developed procedure may encounter are
solved using Salzer’s algorithm (Salzer 1960). It is important to highlight that
it is not necessary to prepare for the appearance of cubic equations, because

32

3.2 IKM Core Module

Table 3.3: Possible types of polynomial equations found in the calculated Groebner Bases

Type Degree Polynomial equation
Linear 1 ai1x+ay=20
Quadratic 2 asx? + a1z +ay =0
Bi-Quadratic 4 a,x* + asx® +ay =0
Quartic 4 a2t + asz® + a2 + a1z +ag =0

Table 3.4: Computational cost required to solve different types of polynomial equations on
an ARM Cortex-M4 CPU (ARM Limited 2009).

Operations
Type adml div sqrt trig atan Cost [Cycles|
Linear 1 1 0 0 0 15
Quadratic 7 2 1 0 0 49
Bi-Quadratic 9 2 3 0 0 79
Quartic min 68 4 3 0 0 166
max 80 5 5 1 1 282

the solutions of the IKP of open-chain robotic systems always come in pairs
(Fu, Gonzalez, and Lee 1987).

A list of all the operations required to solve the polynomial equations previ-
ously shown is compiled in Table 3.4. The last column of Table 3.4 contains the
computational cost, in clock cycles, of every type of polynomial equation, as-
suming that the microcontroller in charge of the robot’s control has an ARM
Cortex-M4 CPU (ARM Limited 2009). Table 3.5 breaks down the cost in
clock cycles of each operation for the selected microcontroller. If the robot
has a control system with a different type of CPU, the user can change the
operations’ cost in the initial settings of the procedure, in order to reflect the
real computation times on the robot’s CPU.

In Table 3.4, the quartic polynomial equation encompasses two rows, identi-
fied as “min” and “max”, because Salzer’s algorithm can take different paths,
depending on the type of roots of the analyzed polynomial equation (Salzer
1960). In this case the computational cost is the average between the mini-

33

Chapter 3. Description of the Developed Procedure

Table 3.5: Computational cost, in clock cycles, for a microcontroller with an ARM Cortex-
M4 CPU (ARM Limited 2009).

Operation Identifier Cost [Cycles]
Addition or Multiplication adml 1
Division div 14
Square root sqrt 14
Trigonometric operation trig 29
Arctangent (atan2) atan 33

mum cost for the quartic equation and its maximum, which is equal to 224
clock cycles for an ARM Cortex-M4 CPU.

Using the costs shown in the last column of Table 3.4, the procedure selects
the Groebner Bases whose highest degree equation has the lower computational
cost, thus quickly discarding all the bases that would require a larger amount
of time and resources to be solved. It is possible that more than one basis
passes this first selection criterion, so the second criterion is applied to all
these remaining bases.

The second classification criterion consists on selecting the bases with the lower
accumulated computational cost from all their equations. The accumulated
cost of each basis is equal to the sum of the computational cost of all the poly-
nomial equations that compose that basis, using again Table 3.4 to evaluate
these costs. This second criterion is only passed by those bases with the lowest
accumulated computational cost.

Once again, more than one basis can progress beyond the second criterion, in
which case the third one is applied. This third classification criterion searches
for the basis with the lowest accumulated cost from all its equation’s coeffi-
cients. This last accumulated cost is quantified by adding all the clock cycles
required to calculate all the coefficients in all the basis’ equations. Therefore,
after previously discarding all the bases whose equation types would require
larger amounts of time and resources to be solved, the procedure narrows down
the list of Groebner Bases to those which effectively have the least computation
time.

If after these three classification criteria, there is still more than one candidate
for the optimal lex order, then any of the orders related with these remaining

34

3.2 IKM Core Module

Table 3.6: Selection of the lex order for the Hexapod’s IKM. After each step of the selection
process, the discarded orders are marked in stalic. A value of “” indicates that the lex order
was discarded in a previous step. The first classification criterion is to search for those lex
orders whose basis’ highest degree equation present the least computation time. The second
one seeks for the bases with the lesser accumulated cost of all their equations, while the last
one searches for the lowest amount of time required to compute all the basis’ coefficients.
All these costs, expressed in clock cycles, were calculated for a microcontroller with an ARM
Cortex-M4 CPU (ARM Limited 2009). The selected lex order is marked in bold.

Classification Criteria
Order N° Highest Deg. Acc. Cost Coeflicients
[Cycles] [Cycles] [Cycles]

79 _ _
22/ _ _
79 : :
49 158 103
22/ : :
49 158 201

S UL W N =

bases may be selected, because all the bases that pass the three criteria will
surely present similar computation times.

Continuing with the case of the hexapod’s leg, Table 3.6 compiles the results
obtained when applying the presented three-step classification criterion to the
set of six Groebner Bases calculated in the fourth step of the procedure. The
lex orders 1, 2, 3 and 5 were discarded after the first step of the selection
process, leaving only orders 4 and 6 active. Both remaining orders passed
successfully the second step, but in the third one, lex order 6 was eliminated,
setting lex order 4 as the chosen one.

The outcome of the selection process shown in Table 3.6 is that lex order 4 is
the selected monomial order for the final Groebner Basis. This final basis will
be employed for the synthesis of the hexapod’s IKM Core.

The output of the procedure’s fifth step is the Groebner Basis calculated with
the selected lex order. For the case of the hexapod’s leg, this Groebner Basis
is the set of polynomial equations presented in Equations (3.6) to (3.11):

P+ +pjlei =0 (3.6)

35

Chapter 3. Description of the Developed Procedure

—PyC1 +p$81:0 (37)

P24 papl+papt —29360p,p2 — 26224(p3 + p.pl H-
+52684800p,. +2(p;p; +Pip: +pePyp?

(3.8)
+H1644160(p> +p.) —112(ps +p, +paps +pap2) —224p%p2 et
+162817600p,.c3 =0
P2 PPl A Pap? — 14680p, —56[p2 +p2lei +12760p, 53 =0 (3.9)

28(pP) 4 pay +P=p2) +56(pops, + P2+ paplpi H-
+200704(p2 +p.p — pop?) — 174562304p,+
H10304(p;, +p},) +20608p2p; —p§ —py —4papyp? —3(pap;, +Dapy -
+7168(p2p2+pyp?) —pap: —Pyps —2(ppp?+p,p?) — T463680(p2 +p))]ert
H12760(p}p-+pap +pep.p-)+10003840p,p. |cs+T714560([p2p. +pip-]cicst
H116(p) +pepy, +Papz) +232(PiP. + D7+ paDip H

+H181888(p.p? — Pl — PPy)+ 71300096,] c2 =0

(3.10)
HT168p,p? —2(p2p +p2p2p. +pap?p?) +489216[p2p. +p2p.Jert
H357280(p.p? —p3 —papy) +280107520p, et (3.11)

+10003840(p2 +p2) —12760(p; +p, +pap:+p.p2) —25520p2p2] crest
5 4 4 3 2 3 2 2 2

H1L6(p;, +papy, +pap?) +232(p, 0, +D,0% +PaPyyps H-

+181888(p,p? — Pl —p.p,) +71300096p,] 55 =0

As can be seen in the previous equations, the obtained Groebner Basis con-
stitutes a triangular equation system that can be solved in a staggered way
(Guzman-Giménez, Valera Fernandez, et al. 2020; Uchida and McPhee 2012).
This is because the first equation of the system, shown in Equation 3.6, only
depends on one variable, the lesser monomial in the selected lex order. After
that equation is solved, the second one has at most two variables, the one that
was previously calculated in the first equation and a new one, while the third

36

3.2 IKM Core Module

depends at most on three variables, two computed in the preceding equations
and a new one, and so on. Solving this triangular equation system gives the
solution for the all the variables of the original polynomial equation system
(Guzman-Giménez, Valera Fernandez, et al. 2020).

The algorithm that solves this triangular equation system will be implemented
in the seventh step of the developed procedure. But first it is important to
check if the basis generated by the selected monomial order is valid for the full
workspace of the robotic system, which constitutes the procedure’s sixth step.

3.2.6 Sizth Step: Basis checkup

This checkup step is done to analyze if the selected basis has a possibility to
fall into a false singularity. These false singularities happen when the leading
coefficient of one the basis’ polynomial equations is equal to zero, which should
indicate that the robot’s position is on a singular point of its mechanical struc-
ture, but the robotic system is not really on a singular point, nor near one.
Section 4.2 shows how this problem with false singularities may affect one of
the possible Groebner Basis calculated for the hexapod’s leg.

To prevent this problem, the developed procedure checks the leading coefficient
(LC), i.e. the highest degree coefficient, of all the polynomials that integrate
the selected basis, analyzing the conditions in which these coefficients are equal
to zero. Each of the conditions that cancel any of the basis’ LC are verified with
the determinant of the Jacobian matrix of the robot’s mechanical structure.

The determinant of this Jacobian matrix is equal to zero if the robot’s position
is really on one of the singular points of its mechanical structure. Equation
3.12 presents the Jacobian matrix (J) that the procedure calculates for a robot
with three Degrees of Freedom (DoFs), p,, p, and p., and three actuators ¢,
g2 and gz, just like the analyzed hexapod’s leg.

0q1 Oq2 Oqgs

— |%py Opy Opy
J = dq1 Oq2 Ogs (312)

Op. Op. Op:
9q1 Oq2 Ogs

Therefore, the developed procedure uses the expressions of p,, p, and p. cal-
culated in the third step (Equation 3.2 presents the case of the hexapod’s leg),
computes the corresponding partial derivatives shown in Equation 3.12, eval-
uates the determinant of this Jacobian matrix (|.J]), and finally checks if |.J] is

37

Chapter 3. Description of the Developed Procedure

equal to zero in all the conditions that lead to a cancellation of a LC. If there
is a situation in which any of the LC is canceled but |J| is not equal to zero
(or at least close to zero by a margin of 1 x 1073), then that basis is marked
as problematic.

If this basis checkup does not find any problem with the selected basis, then the
procedure advances to the seventh step: the IKM Core implementation. In the
case that the basis is marked as problematic, then the procedure removes from
the list of relevant monomial orders the order that generated this problematic
basis, and checks if this list is empty after the removal (see Figure 3.2). If the
list is still not empty, the procedure goes back to the fifth step, the one iden-
tified as “Monomial Order selection”, where a new monomial order is selected
from the remaining ones. This sequence of steps and checks is repeated until a
basis successfully passes the checkup, or the list of relevant orders is emptied.

In the event that this list is emptied, an error flag is raised and the user is
notified of this situation. But this extreme case has not been reached in any
of the test benches used in this work, nor in all the other robotic systems on
which this procedure has been tested.

3.2.7 Seventh Step: IKM Core implementation

The objective of the procedure’s last step, identified in Figure 3.2 as “IKM Core
implementation”, is to transform the triangular polynomial equation system of
the selected lex order’s basis into an algorithm that implements the IKM Core
module.

The TKM Core’s algorithm will always be the one presented in Figure 3.4. This
algorithm has three main sections: Initialization, Main Loop and Wrap-up.

Initialization section

In this first section of the IKM Core’s algorithm, enclosed by a red rectangle in
Figure 3.4, all the variables are initialized and the required multiplying factor
is applied to the position input. This multiplying factor might be required if
the robot’s kinematic parameters were previously adjusted, i.e. multiplied by
a certain factor, to comply with the restrictions that the used implementation
of the F4 algorithm impose to the basis’ coefficients. This way all the mea-
surement units are preserved, both in the robot’s kinematic parameters and in
the position inputs.

38

3.2 IKM Core Module

Main loop section

Initialization section

Initialize variables

!) !

Apply multiplying factor

Singularity found
Val[1]=-1

= < 1
Retrieve previously hl
calculated variables ::

{ i

1)

1l

Get next f(x) ::

1)

| o

1l

. 1

Compute coefficients 1"
1l

Normalize coefficients 1"

¥

* Increment sfot

Wrap-up section

Check kinematic
restrictions

—

sact=sact+1

Revert multiplying
factor

l

Olsact,i]=qi

* Solve f(x)
* Update Val

More f(x) in
basis?

No

sact=sact+1

Figure 3.4: IKM Core’s algorithm

39

Chapter 3. Description of the Developed Procedure

At the end of the algorithm, the corresponding inverse factor will be applied
to all the outputs related with linear positions, in order to preserve the proper
measurement units of the outputs offered by the IKM Core. This operation is
not necessary for those outputs that represent an actuators’ angular position.

Main Loop section

After the initialization is completed, comes the algorithm’s main loop, which
is enclosed in Figure 3.4 by a blue rectangle. This section solves the basis
calculated at the end of the procedure’s fifth step, taking into account that
this basis will surely have multiple solutions. It is important to always bear
in mind that the main objective of this IKM Core’s algorithm is to offer as
output all the valid solutions of the robot’s Inverse Kinematic Problem.

To achieve this objective, the Main Loop section is actually conformed by two
nested loops: the inner loop runs through all the equations of the basis, while
the outer one go through all the possible solutions, but without knowing be-
forehand the total amount of these possible solutions. This is achieved with
the help of two inner variables, sact and stot. The variable sact counts the
current solution that the algorithm is calculating, while stot indicates the total
number of different solutions that have been found. Both variables are initial-
ized at the value of “1”, to signal that the algorithm is currently calculating
the first possible solution, and that so far only one solution is known.

During the execution of this section’s inner loop, the algorithm will probably
encounter equations of a degree equal or greater than two, which are the cause
of the existence of multiple solutions. In this case, the algorithm will increase
the value of stot by the proper amount: +1 if the encountered equation has
degree 2, by +3 if its degree is 4, and so on. The value of sact will only
be increased when the inner loop ends running through all the equations of
the basis. Given this setup, the exit condition of the outer loop is reached
when sact > stot (see Figure 3.4), signaling that the equation system has been
thoroughly solved, i.e. all the possible solutions were found. This way the user
does not need to know the total amount of solutions of the IKP, because this
information comes out naturally during the execution of the algorithm.

The inner loop of the algorithm’s Main Loop section starts at the step ti-
tled “Retrieve previously calculated variables” (see Figure 3.4), and begins by
executing the following five steps:

40

3.2 IKM Core Module

1. Retrieve previously calculated variables: All the previously calculated
variables are retrieved from the registers, because they will surely take
part in the computation of the next equation’s coefficients.

2. Get next equation: The next equation that has to be solved is fetched
from the equation system.

3. Compute coefficients: The equation’s coefficients, which depend entirely
on the IKM inputs, the robot’s kinematic parameters and the previously
calculated variables (all known values), are computed.

4. Check if the LC is not equal to zero: If the LC is equal to zero, then
the IKM has found a singular point. If this situation occurs, the first
element of the vector that indicates which solutions are valid, “Val[1]”, is
overwritten with a value of -1 to flag this singularity, and the execution
of the algorithm comes to an end (see Figure 3.4).

5. Normalize coefficients: All the coefficients of the polynomial equation are
divided by the LC.

After these five steps are completed, the equation that was fetched from the
equation system is ready to be solved. At this point the algorithm executes
the step that is highlighted in blue in Figure 3.4, which depends on the degree
of the fetched equation (f(z)):

Linear equation: After the coeflicient normalization applied in this section’s
fifth step, all the linear equations will have the structure presented in Equation
3.13.

Qo

ay

In Equation 3.13, z is the equation’s variable that has to be solved, while by =
ag/ay, i.e. the division of the independent term of the original equation and
its first degree coefficient. This simple equation is solved by a rearrangement
of terms.

In this case there is no possibility of obtaining a solution that is out of the
robot’s workspace, so the Val vector, which contains the information of the
valid solutions, remains untouched.

41

Chapter 3. Description of the Developed Procedure

Quadratic equation: The structure of the quadratic equations will be the one
shown in Equation 3.14.
P Abirt+b=0 b= vi={0,1} (3.14)

as

The quadratic equations have two solutions, so the IKM Core’s algorithm
increases by one the total amount of solutions that have been found so far
(stot = stot + 1). This new solution is initially marked as valid in the Val
vector, but this may change during the execution of the algorithm.

The IKM Core solves the quadratic equations using the algorithm shown in
Figure 3.5.

As shown in Figure 3.5, the IKM Core’s algorithm computes first the discrimi-
nant of the fetched equation. If the discriminant is negative, then the solutions
of this second degree equation will be a complex-conjugate pair, which signals
that the desired solution is out of the robot’s workspace. In this case, the cur-
rent solution is marked as invalid in the Val vector, as well as the new solution
that was created.

On the other hand, if the discriminant is positive, then both solutions are
real, therefore they are both possible solutions. This does not mean yet that
the solutions are inside the robot’s workspace. It only states that there exist
possible configurations that are valid for the position input, but a restriction on
the movement range of an actuator could still invalid any possible solution. All
these movement restrictions are checked at the end of the “Wrap-up Section”,
as the final step of the IKM Core’s algorithm.

After the discriminant is calculated, the quadratic equation is solved using the
well-known algorithm for this type of the equations.

Bi-quadratic equation: After the coefficient normalization applied in this sec-
tion’s fifth step, the bi-quadratic equations have the structure presented in
Equation 3.15.

Q;

4

The bi-quadratic polynomial equations are solved as the concatenation of a
quadratic equation followed by a squared variable, following the algorithm
shown in Figure 3.6.

42

3.2 IKM Core Module

stot = stot + 1

v

Val[stot] =1
A — bf = 4 2 b[]

Yes
_ b, + \/E
A 2
—b — VA
o =
- 2
Store solutions

Val[sact] =0
Val[stot] =0

»
-

Figure 3.5: Algorithm used to solve quadratic equations

43

Chapter 3. Description of the Developed Procedure

stot = stot + 3

!

Val[stot] =1
Val[stot — 1] =1
Val[stot — 2] =1

¥

A=12—4-b

Val[sact] = 0

No Val[stot —2] =0
Val[stot — 1] =0

Val[stot] =0

Val[sact] =0 No
Val[stot — 2] =0

Val[stot — 1] =0
Val[stot] =0

A 4
A

Store solutions

Figure 3.6: Algorithm used to solve bi-quadratic equations

44

3.2 IKM Core Module

The algorithm of Figure 3.6 begins by increasing by three the total amount of
solutions that have been found so far (stot = stot+3), because all bi-quadratic
equations have four solutions. As in the case of the quadratic equations, all
the new solutions are initially marked as valid in the Val vector.

The algorithm continues computing the discriminant of the quadratic polyno-
mial shown in Figure 3.6. If the discriminant is negative, then all the four
possible solutions of the bi-quadratic equation are invalid, which is reflected in
the corresponding positions of the Val vector.

If this discriminant is positive, then both quadratic equation’s solutions are
treated as squared variables, each of which is responsible for a pair of solutions
of the original bi-quadratic polynomial. If one of the solutions of the quadratic
equation is negative, then their corresponding pair of solutions will be marked
as invalid, because the square root of this negative number will never give a real
value. If it is positive, then a pair of solutions of the bi-quadratic polynomial
equation are found.

Quartic equation: These equations have the structure shown in Equation 3.16.

byt b byt b o+ by=0 - bi:% Vi = [0,3] (3.16)
4

To solve quartic polynomial equations, the developed procedure uses the algo-
rithm presented in Figure 3.7, which is based on the algorithm developed by
Salzer 1960.

The algorithm shown in Figure 3.7 has a step, highlighted in green, in which
a cubic equation must be solved. The algorithm used to solve this cubic is
presented in Figure 3.8.

In Figure 3.8, the term Aj is the discriminant of the cubic equation, which is
calculated using the expression shown in Equation 3.17.

Az = (18-cy-ci-cp) — (4-c%-c1) + (e2%-¢1?) — (4-¢1*) — (27 -¢p?) (3.17)

The algorithm shown in 3.7 allows to solve all quartic polynomial equations
without requiring any operation with complex numbers. This is one of the
contributions of this work, because the IIKMs synthesized by the developed
procedure do not request any kind of complex number operations from the
robot’s microcontroller.

45

Chapter 3. Description of the Developed Procedure

—

1
a= (5) by —zp — by

B=4-n—bsm

Val[sact] = 0
Val[stot —2] =0

¥

Ye=a+f
d,=a-f

x2

2l = —(1/2)bs + m 4 v
2

~ =(1/2)bs +m —~

_———

Val[stot
Val[stot

stot = stot + 3

Val[stot] =1
Val[stot —1] =1
Val[stot —2] =1

)

cy = —by
cp =by-by —4-by
co = bo(4:by — bf) — b’

)

Solve cubic:
3 2
Z+ez+cz+cep=0

2. Real root

v

1
me = (Z) by — by + 2,

Yes
m=/m;
N
3 —(1/2)bs —m + 4 l °
3=
2
pd e 2172 —m p B2 =
E 9 4-m m=0
/ Store solutions €

Val[sact] = 0
Val[stot —2] =0
Val[stot — 1] =0

Val[stot] = 0

Figure 3.7: Algorithm used to solve quartic polynomial equations

46

3.2 IKM Core Module

Compute Ay
Dy =c? -3¢

Dy =2-¢,° —9-c-¢; + 27

. |Dy| + 27 Ay
°T 2

A= —cbrt(A,)

~atan2(I,R)
b= T

¥

E= —%- Dy-cos(¢)

Figure 3.8: Algorithm used to calculate one real root of the cubic obtained during a
quartic’s equation resolution

47

Chapter 3. Description of the Developed Procedure

After the fetched equation is solved, all the valid solutions are stored in their
corresponding positions in the registers, and the main loop checks if all the
equations of the basis have been solved. If there is any remaining equation, then
the IKM Core’s algorithm returns to the first step of this Main Loop’s inner
loop, the one titled “Retrieve previously calculated variables”. Otherwise, sact
is increased by one, to signal that the current set of solutions has been finished,
and the algorithm returns to the step in which it is checked if sact > stot, i.e.
if all the possible solutions of the basis have been found.

If the variable sact is still not greater than stot, then a new round of the inner
loop begins. Otherwise, the IKM Core’s algorithm passes to the last section:
the Wrap-up Section.

Wrap-up section

The final section of the IKM Core’s algorithm is the Wrap-up, enclosed in
Figure 3.4 by a green rectangle. This last section organizes the set of valid
solutions calculated in the main loop, and prepares the two outputs of the
IKM Core module: @, which is an array that contains all the found solutions
for the robot’s IKP, and Val, the vector that indicates which of those solutions
are valid.

As was stated before, the solution of the Groebner Basis will be a set composed
either by the variables of prismatic DoFs (g¢;), pairs sine-cosine of rotational
DoFs (s; and ¢;), or a combination of both. Therefore, in order to prepare the
IKM Core’s outputs, the algorithm runs through all the set of found solutions,
identifying each type of solution. If a solution is a pair sine-cosine of a rota-
tional DoF, then the final value of this DoF is computed using the expression
shown in Equation 3.18.

q; = atan2 (s;, ¢;) (3.18)

On the other hand, if the solution is the position of a prismatic DoF (g;), then
the algorithm checks if a multiplying factor was applied in the Initialization
section and reverts its effects, dividing by the same factor. This way we pre-
serve the relationship between the measurement units of the position inputs
and the units of the calculated prismatic DoFs. It is important to bear in
mind that this compensation of the multiplying factor is not necessary for the
rotational DoFs.

48

3.3 State Estimator

Finally, the Wrap-up section of the IKM Core’s algorithm ends by checking
all the robot’s kinematic restrictions: if one of the found solutions, that is still
valid at this point, does not meet any of these kinematic restrictions, then that
solution is marked as invalid.

After the algorithm of the IKM Core is prepared, the developed procedure
proceeds to configure the State Estimator (see Figure 3.1).

3.3 State Estimator

The function of the State Estimator is to select the solution offered by the
IKM Core that better fits the projection of the previous state. It’s important
to keep in mind that the IKM Core module offers all the possible solutions for
the robot’s position in the configuration space, but only one of these solutions
keeps the motion of the robot in a smooth way. Therefore, the selection made
by this module is essential for the smoothness of all the robot’s movements.

The inputs of the State Estimator, as it can be seen in Figure 3.1, are all the
variables that conform the robot’s previous state, i.e. the positions, velocities
and accelerations of all the robot’s actuators that were calculated in the pre-
vious execution cycle, as well as the two arrays that the IKM Core offers as
outputs: One of these arrays contains all the possible solutions (@), while the
other indicates which solutions are valid (Val). The task of this module is to
select the valid solution that better guarantees the smoothness of the robot’s
movements.

To achieve its task, the State Estimator first estimates the possible current
state for each of the robot’s actuators. This estimation is done by calculating
the relation shown in Equation 3.19 for every one of the robot’s actuators, g;.

(At)?
2

Gi(t) = qi(t—At) + gi(t—At)- At + G (t— At)- Viel[l,n] (3.19)

The relation presented in Equation 3.19 corresponds to the second-degree Tay-
lor polynomial expansion of the position of actuator ¢;. The previous polyno-
mial, which also models an accelerated movement in the configuration space,
contains a known interval of time, At, between the previous state, ¢;(t —A¢),
and the current one that is being estimated, ¢;(t).

After the state estimation is done, the State Estimator computes the euclidean
distance between the estimated state and all the valid solutions offered by

49

Chapter 3. Description of the Developed Procedure

the TKM Core. These distances are calculated in the configuration space by
applying Equation 3.20 to all the solutions marked as valid.

d;(@(1),d(1) = || D_(a)(1) = @()* = Vallj] =1 (3.20)

In Equation 3.20, ¢/ corresponds to the j-th solution offered by the IKM Core,
while Val[j] indicates if that j-th solution is valid or not (Val[j] = 1 means
that this j-th solution is valid).

Finally, the State Estimator selects the valid solution that is closest to the
estimated state, ¢, i.e. the one that presents the smallest d;. This solution with
the smallest distance is the one that is closest to the expected state. Therefore,
that must be the position’s solution that better guarantees the smoothness of
the robot’s movement.

This selected solution becomes the position’s solution for the IKP, which is
transferred as input to the IKM Derivatives module, and also to the registers,
for storage.

The full algorithm of the State Estimator is summarized in Figure 3.9.

The State Estimator produces four outputs:

1. @(t): The position solution selected by this module.

2. 1: The identifier of the selected solution. This is required by the “IKM
Derivatives” module.

3. Singularity Flag: This is a flag that gets activated if the desired position
is on one of the robot’s singular points.

4. OoW flag: Out of workspace flag. This flag is activated is the desired
position is out of the robot’s workspace.

50

3.3 State Estimator

Reset Flags

v

Compute (t)
Yes Set Singularity
Flag
No l
sol =0 =0 4(t) = q(t — Ab)
J' A
dst = 10°
1 & End
)

) = QU

sol = sol + 1

v

Compute d,,

No,
[Yes

dst = d,,

¥

t=m

¥

m=m+1

A

Figure 3.9: State estimator’s algorithm

o1

Chapter 3. Description of the Developed Procedure

3.4 IKM Derivatives

The function of the last module that conforms the IKM structure, identified in
Figure 3.1 as “IKM Derivatives”, is to calculate the velocities and accelerations
of all the robot’s actuators, that is, the derivatives of the position’s solution
selected by the State Estimator.

The inputs of this module are the desired values, in cartesian space, of the
robot’s position, velocity and acceleration, as well as the identifier of the solu-
tion selected by the State Estimator (¢). The outputs are the solutions for the
velocities and accelerations of the all the robot’s actuators that, together with
the position’s solution, complete the robot’s new calculated state.

The required velocities and accelerations can be obtained through the calcula-
tion of the time derivatives of the basis’ equations. Continuing with the case of
the hexapod’s leg, Equations 3.21 to 3.24 show the first order time derivatives
of the first four equations of its corresponding basis.

{2¢1(p2 4 p2)Yer + 261 (Pyby + Paba) — 2PePa) =0 (3.21)
{ps}$1 + [81P — 1Py — DyCa] =0 (3.22)
(325635200, ¢3 }é5+

H(=112(p; + p, — P202 — Pyp: — 2051, + 1644160(p; + p;))ért

+(5p; + 4pip. + 6pipl + 6p2p. + 2pop- + p,, + pr + 1600(101761c3 4 32928+
—16((4917p? + 1639p2 + 1835p?) + 1dp,c; (2p? + p? + 2p? — 14680)))p.+
HAp,py (D% + D + p2) — 52448p,p, — 224c1p, (2p2 + p + 2p2, — 14680))p,+

Hdpop- (Pl + p2) — 224c1p.(p2 + p.) — 58720p,p.)p.] =0
(3.23)

{12760p, } 35 + [(12760s5 — 112p,c1 + 3p5 + p. + p? — 14680)p,+

: : . (3.24)
42D, (pe — 56¢1)py + 2pap.p. — 56¢1 (P2 + p2)]=0

In Equations 3.21 to 3.24, the variables that should be solved are ¢;, $1, ¢é3
and $3, i.e. the first order time derivatives of the variables calculated by the
IKM Core. Those variables previously computed by the IKM Core, as well as

52

3.4 IKM Derivatives

the desired position (p,, p, and p,) and its time derivatives (p,, p, and p,),
are now inputs to the algorithm executed in this IKM Derivatives module. All
these first order term derivatives are linear polynomial equations, regardless
of the degree of the original polynomial equation, in which the leading term
coefficient is surrounded by curly brackets ({e}), while the constant term
is marked with square brackets ([e]). These equations are easily solved by
applying the same method presented in 3.2.7.

After all these first order time derivatives are computed, the velocities of the
robot’s actuators can be calculated with Equation 3.25, which is the first order
time derivative of the atan2 equation used at the end of the IKM Core’s al-
gorithm to compute the position of each one of these actuators (see Equation
3.18).

(1) = 55 (00(0) = G (1020, (1), (1) = 050~ 2uiton (D

(3.25)

In the same way, the accelerations of all the robot’s actuators can be calculated
by solving the second order time derivatives of the basis’s equations, and finally
applying the second order time derivative of atan2 shown in 3.26.

2

ln0) = 5 (an (1)) =
(080 1) ~ 5060 (1) _ (1)) — 50 0o () (e (1) + 250 (1)3,(0)
en (0 + 50 (en(E)" + (0

(3.26)

The final algorithm of the IKM Derivatives is shown in Figure 3.10. This
algorithm is very similar to the one used by the IKM Core, because all the
computations of the derivatives are done starting from the calculated Groebner
Basis.

In Figure 3.10, the block named “Compute ¢,,(t)” refers to time derivative of
qm (t), presented in Equation 3.25. In the same way, the block named “Compute
Gm(t)" calculates the second order time derivative of g,,(t), whose expression
was shown in Equation 3.26.

93

Chapter 3.

Description of the Developed Procedure

54

Initialization section

Main loop section

Apply multiplying factor
to pl(t), p(t) and p(t)

Retrieve previously

calculated variables

¥

Get next f(t)

¥

Compute coefficients (lff(f)

¥

Solve f(t)

¥

Get next f(t)

v

Compute coefficients of f(£)

Wrap-up section

Compute g, (t)

4

Revert multiplying

factor to g, (t)

v

Compute g, (t)

m=m+1

¥

Solve f(t)

Revert multiplying

factor to g (t)

Figure 3.10: IKM Derivative’s algorithm

End

3.5 Registers

Trajectory Trajectory ~ References | Multi-Axis | U
Control > LM Control Reabot

,n
Sensors
Singularity Flag

State

A

OoW Flag Observer

Figure 3.11: Synthesized IKM in the robot’s control system.

3.5 Registers

The registers presented in Figure 3.1 store the previous state of the robot, as
well as all the ongoing calculations for the current state. The previous state,
which that is stored in the registers, is composed of the positions, velocities
and accelerations of the robot’s actuators in the configuration space. These
values are used by the State Estimator, presented in Section 3.3, to decide
which of the solutions offered by the IKM Core is the appropriate one for the
current state. The reset signal, identified in Figure 3.1 with the label “RST”,
loads the initial state values in the section of the registers that is in charge of
storing the robot’s previous state.

The registers shown in Figure 3.1 also store all the variables related with the
calculations of the robot’s current state. These variables are shared between
two modules: the “IKM Core” and the “IKM Derivatives” module.

After all the four modules shown in Figure 3.1 are prepared and configured,
the final step of the developed procedure is to synthesize the final IKM, which
is compiled as C++ code or as a MATLAB® script, depending on the initial
selections made by the procedure’s user.

The synthesized IKM can be used directly in the robot’s control system, by
connecting it as presented in Figure 3.11. The control scheme shown in this
last figure is similar to the one presented in Figure 1.1, but with the addition
of the two warning flags, the “Singularity Flag” and the “OoW Flag”, which are
used by the synthesized TKM to signal any possible problems to the Trajectory
Control. The “Singularity Flag” is activated if the desired position falls on a
singular point of the mechanical structure, while the “OoW Flag” indicates if
this desired position is out of the robot’s workspace.

95

Chapter 3. Description of the Developed Procedure

The developed procedure was used to synthesize the IKMs of two open-chain
robots: the previously mentioned BH3-R walking hexapod and a PUMA 560
manipulator (see Section 1.3). The performance of these two IKMs is presented

in the next chapter.

56

Chapter 4

Performance Analysis of the
Developed Procedure

The developed procedure was used to synthesize the IKMs of
two non-redundant open-chain robotic systems: a PUMA manip-
ulator and a walking hexapod robot. This chapter begins present-
ing the traditional methods used to solve the Kinematic Problem
of open-chain robotic systems, then proceeds to analyze the perfor-
mance of the IKMs synthesized by the developed procedure. The
performance of both IKMs was compared with the kinematics mod-
els calculated by traditional methods, finding in oll cases that they
are totally comparable, both in precision and computation time.

The procedure presented in Section 3.2 was used to synthesize the IKMs of a
leg of the BH3-R walking hexapod (Figure 1.2) and the PUMA 560 manipu-
lator (Figure 1.4). As was previously explained, the inputs of the developed
procedure are the D-H parameters of the analyzed robot and the movement
range of its actuators, while the output is the synthesized IKM, both in C++
and in MATLAB® script. This procedure also selects automatically the opti-
mal monomial order of the final Groebner Basis that will constitute the TIKM,
so the user does not need to have any further information about the robot.

But before proceeding to the performance analysis of the IKMs that were
synthesized by the developed procedure, it is important to study the traditional
methods normally employed to solve the IKP of open-chain robotic systems.

57

Chapter 4. Performance Analysis of the Developed Procedure

These traditional methods were used to synthesize the reference models, with
which the performance of the synthesized IKMs was compared.

4.1 Resolution of the Kinematic Problem by Traditional
Methods

The first step for the resolution of the Kinematic Problem by any of the tradi-
tional methods is to calculate the Forward Kinematics of the analyzed robot.

4.1.1 Forward Kinematics

The Forward Kinematics of any robotic system can be easily solved by apply-
ing the Denavit-Hartenberg’s (D-H) method (Atique, Sarker, and Ahad 2018;
Fu, Gonzalez, and Lee 1987). The Forward Kinematics of the hexapod’s leg
was already presented in Equation 3.1, which shows the homogeneous trans-
formation between the origin of the hexapod’s leg and its final point.

In the case of the PUMA 560, for simplicity’s sake we will focus only on
the first three links of the robotic arm, just before the robot’s wrist. This
simplification is valid because the last three links of the arm comply with the
conditions of Pieper’s Theorem (Rodriguez et al. 2018; Fu, Gonzalez, and Lee
1987), effectively conforming an in-line wrist. Therefore, the end effector of the
PUMA 560 will be considered to be at the anchor point of this in-line wrist,
just at coordinate system number 4, shown in Figure 1.5.

Applying the Denavit-Hartenberg’s method, with the parameters presented in
Table 1.4, the solution to the Forward Kinematics problem of the PUMA 560 is
the homogeneous transformation shown in Equation 4.1, which establishes the
transformation between the base of the robot and the anchor point of its in-line
wrist. In Equation 4.1, ¢; and s; are equal to cos(q;) and sin (¢,), respectively,
while ¢; and s, correspond to cos(gz) and sin (gz). The term c¢3 is equal to
cos (qz+qz), while s35 is sin (g3+¢).

$1832 S1C32 —C€1 —S1|a2ca+diCza+a3Sze] —dacy
—C1832 —C1C32 —S1 C1]AaC2+dyCso+azS3a] —das;
—32 532 0 dy — G352 —dy 832 +a3Cs2
0 0 0 1

04, = (4.1)

58

4.1 Resolution of the Kinematic Problem by Traditional Methods

4.1.2 Inverse Kinematics Using Traditional Methods

As was mentioned in Section 1.1, the techniques most commonly used to solve
the TKP of open-chain robotic systems are two: the geometric method and the
analytical procedure. The geometric method was used to solve the IKP of the
PUMA manipulator, while the analytical procedure was employed for the case
of the walking hexapod.

Inverse Kinematics of the PUMA 560 by the Geometric Method

Based on the link coordinate systems presented in Figure 1.5, and inspired in
the geometry of a human arm, various arm configurations can be identified for
a PUMA robot with the assistance of three configuration indicators: ARM,
ELBOW, and WRIST (Fu, Gonzalez, and Lee 1987). The first two, ARM
and ELBOW, are associated with the solution of the first three joints, while
WRIST is related to the solution of the last three. For a six-axis manipulator,
like the PUMA 560, there are four possible solutions for the first three joints
(g1, g2 and g3), commonly referred as configurations, and for each one of these
configurations, there are two possible solutions for the last three joints (g4, g5
and ¢g) (Fu, Gonzalez, and Lee 1987).

As was stated in Section 4.1.1, we will focus exclusively in the first three
joints of the PUMA robotic arm. Thus, we only need to find the four possible
solutions for ¢; to g3, which are related to the first two configuration indicators:
ARM and ELBOW.

The ARM indicator can have two possible values, LEFT and RIGHT. LEFT
indicates that positive values of ¢o will move the robot’s wrist in the negative
zo direction when the third joint, g3, is not activated, while RIGHT will move
it in the positive zg direction. ELBOW also has two possible values, ABOVE
and BELOW, which indicate whether the third joint of the robot is above the
imaginary line described between the top part of the robot’s body and its wrist,
or below this line, respectively. The combination of the two possible values of
the ARM indicator together with the two of ELBOW gives the four possible
configurations of the PUMA’s arm (up to its wrist), which constitute the four
solutions of its first three joints (g, ¢ and g3).

If the position vector of the PUMA’s wrist, p(p,, py, p.), is projected onto the
Xop — Yo plane, as shown in Figure 4.1, ¢; could be obtained by solving the
equations shown in Equation 4.2. This projection of the PUMA’s wrist is the

99

Chapter 4. Performance Analysis of the Developed Procedure

-\

X0
\ qH% Xo
ARM: LEFT ARM: RIGHT

Figure 4.1: Geometric solution for the PUMA’s first joint (¢1), showing both possible
configurations: “LEFT Arm” (left) and “RIGHT Arm” (right)

point marked as “D” in Figure 4.1. The “L” and “ R” superscripts added to ¢,
differentiate between the LEFT and RIGHT arm configurations.

OA = d,
OD =Ry, = /(p.)? + (p,)?

AD =1, = \/(Ro)? = ()2 = /(0.2 + (p,)? — (do)?

a = atan2 (dq, r,) (4.2)
¢ = atan2 (pyupac)

L, T L m
Wty=v-a=aqa=p-a-—g

s

2

™

p-—a=1 = qf”zap—i—oc—kz

a +

In order to calculate ¢, and g3, the position vector of the PUMA’s wrist, p,
is projected onto the plane x5 — y2, as shown in Figure 4.2. In this figure,

60

4.1 Resolution of the Kinematic Problem by Traditional Methods

the plane x; — y; is parallel to x5 — y2, and the point “D” represents the
position of the robot’s wrist from coordinate system number 1. This position
can be computed using the expression shown in Equation 4.3, where %4;(q!)
is the transformation matrix between coordinate system number 1 and the
one located at the robot’s base, while the terms p,i, p,:, and p.: represent
the projection of the wrist’s position vector over the x;, y:, and z; axes,
respectively. The transformation matrix shown in Equation 4.3 depends on
the ARM configuration, so the superscript “¢” indicates if ARM is on the
LEFT configuration (“L.”) or the RIGHT one (“R?).

py} — OA i) 1 . Dy 4.3
Pl = (i) |2 43)
1 1

The geometric equations presented in Equation 4.4 can be derived from the
diagram shown in Figure 4.2.

2-a9-73
sin(B") = \/m 4

B" = atan2 (sin(3"), cos("))

' = atan2 (pyi, pai)

(0)° + ()" — ()
2-a9 -7}
sin(6") = 4/1 — (cos(6))2

5" = atan2 (sin(6"), cos(5"))

cos(d) =

61

Chapter 4. Performance Analysis of the Developed Procedure

ARM: LEFT & ELBOW: ABOVE

1[Yz
ARM: LEFT & ELBOW: BELOW

Figure 4.2: Geometric solution for the PUMA’s second (g2) and third (g3) joints, showing
two of the possible four configurations: “LEFT and ABOVE” (top) and “LEFT and BELOW”
(bottom).

62

4.1 Resolution of the Kinematic Problem by Traditional Methods

From the geometric relations computed previously, gz can be calculated using
the expressions shown in Equation 4.5, where the superscripts “LA”, “LB”,

“RA” and “RB” indicate the value of the ARM and ELBOW indicators.

(4.5)

(4.6)

Finally, Equation 4.7 summarizes the four configurations that conform the
whole solution of the Inverse Kinematic Problem of the PUMA 560 manipula-

tor.

LA

LB

RA

RB

Inverse Kinematics of the BH3-R Hexapod’s Leg by the Analytical Procedure

The analytical procedure begins with the Forward Kinematics equation system,
presented in Equation 4.8, that calculates the position vector of the end point,
P, from the configuration of all actuators of the hexapod’s leg (g, ¢ and g¢3).
In this equation, p,, represents the projection of the vector p over the xq axis,
Dy, 1s the projection over yo, while p,, constitutes the projection over zo.

63

Chapter 4. Performance Analysis of the Developed Procedure

Do 0 cos(q1) [L1 + La cos(qa) + L3 sin(ga—qs)]
Puo| —og..|0f = sin(gy) [Ly + Lo cos(gz) + Lssin(g2—gs)] (4.8)
Dz 0 Ly sin(gz) — L3 cos(g2—q3)

1 1 1

The solution for the first actuator of the robot, ¢;, can be obtained by dividing
the second equation of the system shown in Equation 4.8 by the first one, as
presented in Equation 4.9.

Pyo _ sin(qy) [L1 + Lo cos(qz2) + L3 sin(g2 —g3)] _ sin(q;)
Dzo €08(qq) [L1 + Lacos(qz) + Lsin(ga—qz)] cos(qi)
\ (4.9)

@ = arctan(pyo)
Pz

The right hand of Equation 4.9 shows one of the possible solutions for ¢;, the
one normally labeled as “FRONT” (F') for this type of mechanical structure.
The second possible solution is the one presented in Equation 4.10, which also
solves Equation 4.9. This second solution is usually identified as “BACK” (B).

sin(a) _ Pw _ —Pu = ¢F = arctan(_pyo> =q +7 (4.10)

COS(QI) Dzq Pz —Pazo

The two possible solutions for ¢, are presented in Equation 4.11, where the
arctan function has been substituted by the more general atan2, which is fully
defined for all the range [—7, 7].

¢ =atan2(py,,ps,); @ =q + (4.11)

To obtain the solution for g3, we have to return to the definition of the Forward
Kinematics equation system (see Equation 4.8), and do the matrix operations
shown in Equation 4.12.

64

4.1 Resolution of the Kinematic Problem by Traditional Methods

Do 0 0
0 0 i 0
gzo =4 ol = YA, (1) - 'Ay %Az - 0
1 1 1
U
[P, | 0 0
i) 1 0 iy 1 i 0 0
(OAl((h)) : gy = (OAl(%)) -CA, (q1) - A, - 2AS ol = 1‘43 "o (4.12)
20
i 1] 1 1
%
[P | Ly cos(qz) + Lssin(gz—q3)
Py | _ Ly sin(gy) — L cos(ga—q3)
Dai 0
- 1 - 1

The superscript ¢ that appears in some terms of Equation 4.12 may be either F
(“FRONT”) or B (“BACK”), depending on the related configuration of ¢;. The
terms p,:, p,i, and p.: represent the projection of the position vector over the
X1, Y1, and z; axes, respectively, taking into account that these axes depend
on the aforementioned configuration of g;.

From Equation 4.12, we can add the square of the first two equations of that
equation system, obtaining the solution shown in Equation 4.13.

(Pai)? + (pyi)? = [L2cos(ga) + Lssin(gz—g3)]” + [Lasin(g2) — L cos(ga—gs)]”

4
(Pat)” + (pyy)?* = (L2)* + (L3)* — 2L L sin(gs)
4
(L2)* + (L3)* = (pay)” — (pyy)?

sin(q}) = T

(4.13)

The term sin(gi) in Equation 4.13 can have two possible solutions, depending
on whether the configuration of ¢; is F' or B. Each of these solutions for sin(¢3)
yield two possible values for cos(g3) when the quadratic equation shown in
Equation 4.14 is solved.

65

Chapter 4. Performance Analysis of the Developed Procedure

cos(qf) = /1 — [sin(g})]” (4.14)

The four possible values for cos(q) in Equation 4.14 lead to the expression of
g3 in Equation 4.15, where the superscript k£ may be FA (“FRONT ABOVE"),
FB (“FRONT BELOW”), BA (“BACK ABOVE”) or BB (“BACK BELOW").
The names of these configuration identifiers were selected in a similar way as
the ones of the the PUMA 560 (see Section 4.1.2).

q5 = atan2(sin(q}), cos(q5)) (4.15)

Once g3 has been calculated, g may be obtained solving the equation system
shown in the final part of Equation 4.12, as it is presented in Equation 4.16.

. w DyilLe — Lysin(q})] + p,i Ls cos(qf)
sin(g}) = |
[Ly — Lysin(g3)]? + [Ls cos(g3)]?
Pai — L3 cos(gy) sin(gp)
Ly — L sin(qg’)

(4.16)

cos(gz) =

Finally, Equation 4.17 presents the four configurations structure that conform
the solution of the Inverse Kinematic Problem of the analyzed walking hexa-
pod.

FA -qu- BA -qlBA-

43 43

- - (4.17)
FB qI%FB BB quBB
B 1 %Y IR

a3 a3

4.2 Hexapod’s IKM

Throughout this work we have been using the hexapod’s leg as an example
for the application of the developed procedure, giving special attention to the
automatic selection of the basis’ monomial order. In this section we will prove
that the selected monomial order is effectively the optimal one. This will
be done by analyzing the performance and the computation times of all the

66

4.2 Hexapod’s IKM

Groebner Bases calculated in 3.2.4, in order to demonstrate that the TKM
synthesized from this selected order presents the lesser error and execution
time.

Figure 4.3 presents the comparison between the outputs of the hexapod’s leg
reference model and the ones obtained by all six IKMs synthesized for this
robot, one for each of the relevant lex orders presented in Table 3.2. This
figure has marked in green (“Correctly calculated”) all those positions inside
the hexapod leg’s workspace in which the corresponding IKM obtains the same
amount of solutions as the reference model and, for all those solutions, the
root mean square error (RMS) in the configuration space is less than 1x1075.
Marked by red circles are the singularities found by the IKMs which, for the
case of the hexapod’s leg, are located in the axis defined by the intersection of
the planes X =0NY = 0.

Figure 4.3 shows that lex orders 1 to 5 correctly calculate all the positions of
the robot’s workspace, including its singularities. Only lex order 6 has some
problems, because it incorrectly computes some false singularities, marked by
black circles (“False Singularities”), along the axis defined by the intersection
of the planes Y = 0N Z = 0. This happens because the basis generated by lex
order 6 has several leading terms that heavily depend on the values of p, and p.,
the position of the leg’s tip along the axis Y,y and Z,, respectively. Therefore,
when p, and p, are both equal to zero, those leading terms are cancelled out,
generating an indetermination when the system is solved. Figure 4.4 presents
a detailed view of the IKM generated by this problematic lex order.

These false singularities from the IKM generated by lex order 6 are not a
problem, because the selected monomial order is lex order 4, which synthesizes
an IKM that correctly calculates all the positions of the robot’s workspace.
But in the case that the selected monomial order has a problem similar to the
one of lex order 6, the procedure’s user can indicate that the problematic order
is not a valid one. In this case the developed procedure will offer a new IKM,
generated by the best monomial order from a list of lex orders that does not
contain the problematic one.

The selected monomial order was used to synthesize the final IKM for the hexa-
pod’s leg. Figure 4.5 compares the results obtained with this IKM and those
of the corresponding reference model. This figure shows that the calculated
IKM successfully computes all the possible solutions inside the workspace of
the hexapod’s leg, while also finding all the singular points of the leg’s mech-
anism, marked by the red circles (“Singularities”). These singular points are
located in the axis defined by the intersection of the planes X =0NY = 0.

67

Chapter 4. Performance Analysis of the Developed Procedure

Lex Order 1

o Singularities

Lex Order 2

o Singularities

200 Correctly calculated 200 Correctly calculated
100 100
E o E o
N N
-100 -100
-200 -200
200 200 2° 200
0 0
X [mm] 200 -200 Y [mm] X [mm] 200 -200 Y [mm]
Lex Order 3 Lex Order 4
o Singularities o Singularities
200 Correctly calculated 200 Correctly calculated
100 100
E o E o
N N
-100 -100
-200 -200
-200 200 -200
0 0
X [mm] 200 -200 Y [mm] X [mm] 200 -200 Y [mm]
Lex Order 5 Lex Order 6

© Singularities

200 Correctly calculated

100

Z [mm]
o

-100

-200
-200

0

X [mm] 200 -200 Y [mm]

Z [mm]

200

o Singularities
200 o False singularities
Correctly calculated

100

-100

-200

-200
200

0

X [mm] 200 -200 Y [mm]

Figure 4.3: Performance analysis of the six synthesized IKMs for the hexapod’s leg, one for
each relevant lex order. Marked in green (“Correctly calculated”) are all the the positions in
which the corresponding IKM obtains the same amount of solutions as the reference model,

with an RMS error lesser than 1x 1076,

The red circles correspond to the singularities of

the leg’s mechanism that are correctly identified by each IKM.

68

4.2 Hexapod’s IKM

Lex Order 6

> Singularities
> False singularities
200.| Correctly calculated

100

Z [mm]

-100

-200
-200

200

0

Top View Side View

E E
E o E o

> N
-50 50
100 100
150 -150
200 -200

-200 -100 0 100 200 -200 -100 0 100 200
X [mm] X [mm]
Front View

° Singularities
o False singularities
- Correctly calculated

200 -100 100 200

0
Y [mm]

Figure 4.4: Detailed view of the performance of the hexapod’s IKM generated by lex order
6. The top figure shows the isometric view of the leg’s workspace, while the bottom one
presents the top, side, and front views of the same workspace. The difference between this
IKM and the ones generated by lex orders 1 to 5, is that the other IKMs do not present those
false singularities along the axis defined by the intersection of the planes Y =0NZ = 0.

69

Chapter 4. Performance Analysis of the Developed Procedure

Lex Order 4

> Singularities
- Correctly calculated

200

100

Z [mm]

-100

-200
-200

200
0 0

X [mm] 200 -200 Y [mm]

Top View Side View

Y [mm]

-200 -100 0 100 200 -200 -100
X [mm] X [mm]

Front View

Z [mm]

° Singularities
Correctly calculated

-200
200 -100

0 100 200
Y [mm]

Figure 4.5: Performance analysis of the synthesized IKM for the hexapod’s leg. The top
figure shows the isometric view of the leg’s workspace, while the bottom one presents the
top, side, and front views of the same workspace. Marked in green (“Correctly calculated”)
are all the the positions in which the IKM obtains the same amount of solutions as the
reference model, with an RMS error lesser than 1x107!°. The red circles correspond to the
singularities of the leg’s mechanism that are correctly identified by the synthesized IKM.

70

4.2 Hexapod’s IKM

Table 4.1: Maximum and average RMS errors obtained when all the points of the hexapod’s
workspace are processed by each of the six synthesized IKMs. The selected lex order is
marked in bold.

N° Avg. RMS Error Max. RMS Error

1 5.566 x 10712 2.981x 1078
2 2.577x10713 5.345x 10710
3 5.754x 1072 2.981x1078
4 4.542x1071¢ 1.243x107 4
9 2.561x 10713 5.325x 10710
6 1.177x107 14 1.175x 10712

In Figures 4.3 and 4.4, all the positions marked as “Correctly calculated” have
an RMS error lesser than 1x107% when compared to the ones calculated by
the hexapod’s reference model. In Figure 4.5, the one that shows the data
comparison for the IKM synthesized using the selected monomial order, the
RMS error margin was reduced to 1x 1071°, and still all the positions that
are not in any of the singular points of the mechanical system are marked as
“Correctly calculated”. This further proves that the IKM synthesized by the
developed procedure successfully solves the Inverse Kinematic Problem in all
the robot’s workspace.

Table 4.1 contains the maximum and average RMS errors obtained when all
the points of the hexapod’s workspace are processed by each of the six TKMs
synthesized for this robot. As it can be seen in this table, the IKM that
presents the least RMS error, both in its maximum value and its average, is
the one generated by the selected lex order: number 4.

Regarding the computation cost of the six synthesized IKMs for the hexapod’s
leg, Table 4.2 contains a summary of the computation times when those TKMs
are presented with all points in the robot’s workspace, and compares those
times with the ones of the reference model (row named “Ref”). This table shows
the maximum (“Max [ms[|”), minimum (“Min |ms|’) and average (“Avg [ms|”)
times required to compute all the different positions inside the workspace. In
this table it can be seen that, as expected, the smallest computation time
among all the synthesized IKMs is the one achieved by the IKM related to
the selected lex order. This proves that the three-step classification criterion
presented in Section 3.2.5 effectively identifies the optimal monomial order.

71

Chapter 4. Performance Analysis of the Developed Procedure

Table 4.2: Computation times of the six IKMs generated for the hexapod’s leg and its ref-
erence model (“Ref.” row), when they are presented with all points in the robot’s workspace.
Column “Avg [ms]” shows the average computation times obtained for all the workspace’s
points (in milliseconds), while “Min [ms]” and “Max [ms|” present the minimum and maxi-
mum registered times, respectively. The selected lex order is marked in bold.

N° Min [ms] Avg [ms|] Max [ms]

1 0.226 0.265 0.726
2 0.236 0.285 1.031
3 0.210 0.251 0.748
4 0.199 0.238 0.670
5] 0.231 0.281 1.049
6 0.203 0.247 0.787
Ref. 0.033 0.126 0.347

It is important to highlight that it is impossible to achieve computation times
that are less than the ones of the reference model calculated by traditional
methods, because this model is already composed of equations specially crafted
for the analyzed robot. The computation times shown for the selected IKM are
close enough to the ones of the reference model, while achieving a negligible
positioning error, so it can be concluded that the IKM synthesized by our
procedure is equivalent to this reference model.

The performance of the final IKM, synthesized with the selected lex order, was
also tested following a trajectory that covers three consecutive full swings of
the hexapod’s leg, each one with a duration of 2.6s. The first swing has the
hexapod walking in a diagonal direction that is —m/6 rad measured from the
forward direction. The second swing is walking in the forward direction, while
the third one has the robot moving in a /6 rad diagonal. Figure 4.6 presents
these tests results, where it can be seen that the outputs given by our IKM
allow the hexapod’s leg to follow any trajectory, with high precision and a
completely negligible positioning error.

72

4.2 Hexapod’s IKM

0.5 0.5

- Ref. Model
0.4 H—IKM

- Ref. Model
r—IKM

0.4

0.3r

0.2r

0.1f

gl [rad]
. g2 [rad]

-0.1r

-0.2¢

-0.3r

0.4+ -0.41

-05 - - - -0.5
0

- Ref. Model
0.4[—IKM

g3 [rad]

-0.5

Time [s]

Figure 4.6: Trajectory tracking analysis for the hexapod’s final IKM. The red dots represent
the outputs of the reference model, for each of the leg’s DoFs, when it is supplied with the
predetermined trajectory, while the continuous blue lines are the IKM’s outputs for that
same trajectory. The top left graph contains the computed outputs for the first DoF (q1).
The data of the second DoF (g2) is presented in the top right graph, while the bottom one
displays the third DoF’s outputs (g3). The data show that the IKM’s outputs follow those
of the reference model for all three DoFs, with high accuracy and a negligible error along all
the desired trajectory

73

Chapter 4. Performance Analysis of the Developed Procedure

Table 4.3: Expected values for the trigonometric variables related with the PUMA’s rota-
tional DoFs. The columns titled “E[|cos(q;)|]” and “E[|sin(q;)|]” are the expected values of
the trigonometric variables related with a rotational DoF. The relative order of the trigono-
metric variables related with the rotational DoF is established depending on those expected
values. The largest expected value of each DoF is marked in bold.

Rotational DoF El|cos(q;)|] E[|sin(q;)|] Relative order

q1 0.709 0.561 S1 > C
q2 0.507 0.763 Co > So
qs 0.757 0.511 S3 > C3

Table 4.4: Relevant lex orders for the PUMA manipulator.

Ne° Lexicographic Order

S§1>C > Cy > S > S3 > C3
S§1>C > 83 >C3 > Cy > So
Co >S9 > 81 >C > S3 > C3
Co >S9 > 83 >C3>8 >C
S3 > C3 > 81 > Cp > Cy > S
S3>C3 > Cy > 82 > 81 >C

OO W N

4.3 PUMA’s IKM

To demonstrate the application of the developed procedure to robotic manip-
ulators, it was also used to synthesize the IKM of the PUMA 560 shown in
Figure 1.4. As it was said before, the user just has to give as inputs the D-H
parameters of the PUMA | presented in Table 1.4, and the movement range of
its actuators.

Table 4.3 presents the expected values for each of the three PUMA’s DoFs
(El|cos(q;)|] and E||sin(g;)|]), while Table 4.4 shows the relevant lex orders
for the PUMA manipulator. It is important to highlight that the PUMA has
three rotational DoFs, just like the hexapod’s leg, but the lex orders presented
in Table 4.4 are not the same that the ones used for the hexapod (see Table
3.2). This is because in the PUMA’s case: E]|sin(q)|] > E[|cos(q2)]], so the
two trigonometic variables related with go are ordered as: ¢y > ss.

74

4.3 PUMA’s IKM

Table 4.5: Selection of the lex order for the PUMA’s IKM. After each step of the selection
process, the discarded orders are marked in italic. The first classification criterion is to search
for those lex orders whose basis’ highest degree equation present the least computation time.
The second one seeks for the bases with the lowest accumulated cost between all their
equations, while the last one searches for the lesser amount of time required to compute all
the coefficients of the basis. All these costs, expressed in clock cycles, were calculated for a
microcontroller with an ARM Cortex-M4 CPU (ARM Limited 2009). The selected lex order
is marked in bold.

Classification Criteria
Order N° Highest Deg. Acc. Cost Coeflicients

[Cycles] [Cycles] [Cycles]
1 37 110 360
P 37 110 405
3 37 110 47
4 37 110 47
b} 37 110 405
6 37 110 65

The results of the three-step selection criterion applied to the relevant lex
orders of the PUMA manipulator are presented in Table 4.5. After applying
this selection criterion, the selected lex order for the PUMA is the fourth one,
which is the same lex order in which the variables were solved while applying
the geometric method used in Guzman-Giménez, Valera Fernandez, et al. 2020.

All of the six possible IKMs for the PUMA correctly calculate all the posi-
tions inside the robot’s workspace, with an RMS error below 4 x 107°. The
computation times required by the all the IKMs synthesized for the PUMA
manipulator are compiled in Table 4.6. It can be seen that the IKM that has
the least average computation time is the one automatically selected by our
three-step criterion: lex order 4.

This selected order was used to synthesize the final IKM for the PUMA ma-
nipulator. Figure 4.7 presents the comparison, in all the robot’s workspace, of
the results obtained by this IKM and the corresponding reference model. This
figure has marked in green (“Correctly calculated”) all those positions in which
the IKM obtains the same amount of solutions as the reference model and,
for all those solutions, the root mean square error (RMS) in the configuration
space is less than 1x107!°. This figure proves that the IKM synthesized by

75

Chapter 4. Performance Analysis of the Developed Procedure

Table 4.6: Computation times of the six IKMs generated for the PUMA 560 and its refer-
ence model (“Ref.” row), when they are presented with all points in the robot’s workspace.
Column “Avg [ms]” shows the average computation times obtained for all the workspace’s
points (in milliseconds), while “Min [ms]” and “Max [ms|” present the minimum and maxi-
mum registered times, respectively. The selected lex order is marked in bold.

N° Min [ms] Avg [ms|] Max [ms]

1 0.228 0.251 0.597
2 0.213 0.235 0.657
3 0.205 0.231 0.633
4 0.204 0.230 0.621
) 0.210 0.233 0.707
6 0.212 0.239 0.678
Ref. 0.108 0.117 0.275

the developed procedure successfully computes all the possible solutions inside
the PUMA’s workspace.

The synthesized IKM performance was also tested following a trajectory that
covers the majority of the PUMA’s workspace. Figure 4.8 presents these tests
results, where it can be seen that the outputs given by our IKM allow the
PUMA’s wrist to follow any trajectory, with high precision and a completely
negligible positioning error.

76

4.3 PUMA’s IKM

Isometric View

- Correctly calculated

1600

1400

1200

1000

800

E
E 0
N
400
200
0
-200
-1000 1000
Top View Side View
1000
1600
1400
500 1200
1000
T E 800
E o E
> N 600
400
-500 200
0
-200
-1000
-1000 -500 0 500 1000 -1000 -500 0 500 1000
X [mm] X [mm]
Front View
1600
1400
1200
1000
E 800
N 600 - Correctly calculated|
400
200
0
-200
-1000 -500 500 1000

0
Y [mm]

Figure 4.7: Performance analysis of the synthesized IKM for the PUMA 560. The top figure
shows the isometric view of the PUMA’s workspace, while the bottom one presents the top,
side, and front views of the same workspace. Marked in green ("Correctly calculated") are
all the the positions in which the IKM obtains the same amount of solutions as the reference
model, with an RMS error lesser than 1x1071°.

77

Chapter 4. Performance Analysis of the Developed Procedure

T T
* Ref. Model|
—IKM

q1 [rad]

T T
* Ref. Model|
—IKM

Time [s]

.
2 3 4 5 6 7 8 9
Time [s]

q3 [rad]

* Ref. Model|
— KM

Time [s]

Figure 4.8: Trajectory tracking analysis for the PUMA’s IKM. The red dots represent the
outputs of the reference model, for each of the PUMA’s DoFs, when it is supplied with the
predetermined trajectory, while the continuous blue lines are the IKM'’s outputs for that
same trajectory. The upper left figure presents the computed outputs for the first DoF

(¢q1), the upper right one corresponds to the second (g2),

while the bottom figure are the

outputs for the third DoF (g3). The data show that the IKM’s outputs follow the ones of the
reference model, with high accuracy and a negligible error along all the desired trajectory,

in the robot’s three DoFs.

78

Chapter 5

Discussion, Conclusions and
Future Work

This last chapter presents a summary of the developed proce-
dure and the performance tests done over the IKMs synthesized by
this procedure, the publications made from the developed procedure,
and the conclusions and possible future works for this project.

5.1 Summary of the developed procedure and discussion

This work presented the procedure developed to employ Groebner Basis theory
in the synthesis of the IKM of non-redundant open-chain robotic systems. The
inputs requested by this procedure to begin the IKM synthesis process are the
D-H parameters of the robot and the movement range of its actuators, which
corresponds to the least information required to properly describe a robotic
system. With that information the developed process provides the synthesized
IKM, ready to be used in the robot’s control system or in a simulation of its
behavior.

The synthesized IKMs always have the structure shown in Figure 3.1. The
developed procedure automatically configures and prepares the four modules
that conform said structure, without requiring any further information from
the user.

79

Chapter 5. Discussion, Conclusions and Future Work

All the performance tests presented in Chapter 4 prove that the developed
procedure successfully synthesized the IKMs for both test benches: a PUMA
manipulator and a walking hexapod. The execution times shown in Tables 4.2
and 4.6 prove that the developed procedure successfully selected the optimal
Groebner Basis” monomial order for each of the synthesized IKMs. Figures 4.5
and 4.7 show that the synthesized IKMs correctly solve the Inverse Kinematic
Problem in all the workspace of their corresponding robotic systems, with
an RMS error lesser than 1x 107! Finally, Figures 4.6 and 4.8 prove that
the outputs of the synthesized IKMs can follow any trajectory inside their
corresponding robot’s workspace.

The main contribution of this work is the development of the systematic pro-
cedure that automatically synthesizes the complete Inverse Kinematic Model
of non-redundant open-chain robotic systems. This procedure can be used to
synthesize the IKM of a wide variety of open-chain industrial robotic systems
and mobile robots, including:

e Cartesian robotic systems.
e SCARA robots.
e Multi-legged walking and climbing robots.

e Non-redundant robotic manipulators that satisfy the in-line wrist condi-
tion.

The second contribution is that the developed procedure automatically selects
the optimal monomial order for the Groebner Basis used in the IKM synthesis.
As indicated above, this was proven with the execution times shown in Tables
4.2 and 4.6, where it can be seen that the developed procedure always selects
the monomial order that ensures that the synthesized ITKM has the shortest
possible execution time. This way the user does not have to worry about the
Grobner Basis’ monomial order, nor know any additional information about the
robotic system, besides the aforementioned inputs: the robot’s D-H parameters
and the movement range of its actuators.

This work’s third contribution is that the synthesized IKM is ready to be
used in the robot’s microcontroller. As stated in Chapter 3, the output of the
developed procedure is the IKM, compiled as C++ code or as a MATLAB®
script, depending on the initial selections made by the procedure’s user. Any of
these IKM implementations can be used directly in the robot’s control system.

80

5.1 Summary of the developed procedure and discussion

This synthesized IKM does not request any kind of complex number opera-
tions from the robot’s microcontroller, which corresponds to this work’s fourth
contribution. As was shown in Table 3.4, all the required operations from
the microcontroller are: floating point additions, multiplications and divisions,
atan2, square roots, cosines and a cubic root, although the cosine and the cubic
root are only necessary if the Groebner Basis used in the IKM synthesis has
a quartic polynomial equation. All the previously stated operations can be
easily executed by modern-day microcontrollers, without requiring the ability
to operate with complex numbers.

The last contribution is the framework presented in this work, which can be
used to apply Groebner Basis theory in the resolution of a wide variety of engi-
neering problems. The structure shown in Figure 3.1, as well as the procedure
developed to synthesize it, can be applied to other solutions based on Groebner
Basis theory, with some adjustments:

e IKM Core: This core module can be configured to solve other types of
problems. It is only necessary to make three changes to this module to
adapt it to any new system:

1. Update the first and second steps of the synthesis process shown in
Figure 3.2. These are the steps that take the system’s inputs and
prepare them for the polynomial equation system. The rest of the
synthesis process may stay unaltered.

2. Update the meaning of Val[l] = —1 and when all the values of the
Val vector equal to zero. These situations will still happen, but they
will have different meanings, depending on the studied system.

3. Update the “Wrap-Up section” of the core’s algorithm (see Figure
3.4). The output of the core module may need a different prepara-
tion, which will depend on the requirements of the studied system.

e State Estimator: This module is responsible for selecting the best solution
from the output given by the core module, based on an estimation of the
current state. Any kind of estimation can be programmed in this module,
as long as all the necessary information of the previous state (or states)
is stored in the registers.

e KM Derivatives: This module is optional, although it can be used to cal-
culate any function that is directly derived from the computed Groebner
Basis.

81

Chapter 5. Discussion, Conclusions and Future Work

e Registers: The registers just have to be adjusted to store all the data
required by the other modules.

With the six changes explained above, the presented framework can be easily
configured to implement the solutions of other engineering problems that are
solved using Groebner Basis theory.

5.2 Publications

The first concept of the developed procedure was presented in (Guzméan-
Giménez, Valera, et al. 2019). Here we explain the necessary steps to synthesize
the IKM of a non-redundant open-chain robotic system using Groebner Basis
theory, applying them in the synthesis of the IKM of a walking hexapod.

The first version of the IKM Core’s synthesis process was published in (Guzman-
Giménez, Valera Fernandez, et al. 2020). This first version had almost all the
steps presented in Section 3.2 to synthesize the IKM Core, except for the au-
tomatic selection of the basis’ monomial order.

That automatic selection of the basis’ monomial order was added in the second
version of the IKM Core’s synthesis process, which was published in (Guzmén-
Giménez, Valera Fernandez, et al. 2021), thus completing the description of
the developed procedure to synthesize the IKM Core module.

5.3 Conclusions

This work presents the development of a systematic procedure that employs
the Groebner Basgis theory to synthesize the IKM of non-redundant open-chain
robotic systems. The developed procedure does not require any special knowl-
edge of the robot’s mechanical structure, besides its Denavit-Hartenberg pa-
rameters and the movement range of its actuators. The procedure selects auto-
matically the optimal monomial order for the Groebner Basis, and synthesizes
a complete IKM from this basis. The procedure’s output is the synthesized
IKM, both in C++ and as a MATLAB® script, which is ready to be used
directly in the robot’s control system or to simulate its behavior.

The performance analysis presented in Chapter 4 shows that the developed
procedure successfully synthesized the IKMs of a multi-legged robot, a Lynx-
motion’s BH3-R hexapod, and a non-redundant manipulator, a PUMA 560.
The synthesized IKMs are totally comparable, both in precision and compu-

82

5.4 Future Work

tation time, with their respective kinematic models calculated by traditional
methods. This implies that the developed procedure represents a systematic so-
lution to the Inverse Kinematic Problem of non-redundant open-chain robotic
systems, one that is completely independent of the robot’s mechanical struc-
ture.

The synthesized IKMs are ready to be used in the robot’s microcontroller, and
they do not only supply the position reference for all the robot’s actuators, as
it is case of most IKP solvers, but also provide the corresponding references
for the actuators’ velocities and accelerations. Therefore, the IKMs that are
synthesized by the developed procedure can be used in a wide range of con-
trol systems, including those that have an acceleration feedback loop or an
acceleration feed-forward strategy.

The developed procedure can be used to synthesize the IKM of a wide range
of mobile and open-chain industrial robots, including cartesian robotic sys-
tems, SCARA robots, multi-legged walking and climbing robots and all non-
redundant manipulators that satisfy the in-line wrist condition.

The last contribution of this work is the framework of the procedure, which
can be used to apply Groebner Basis theory in the resolution of a wide variety
of engineering problems. With some minor adjustments, the developed proce-
dure, as well as all the structures and algorithms presented in this work, can
be used to implement other solutions based on Groebner Basis theory.

5.4 Future Work

There are three lines of research that continue the work presented in this PhD
Thesis:

The first one is to extend the procedure to also cover the end effector’s ori-
entation, completing this way the full pose computation for all types of non-
redundant open-chain robots.

The second proposed line of research is the extension to redundant robots,
in order to fully cover all the spectrum of open-chain robotic systems. The
application of Groebner Basis theory to a redundant robot will surely produce
an underdetermined equation system with infinite solutions. Properly solving
these types of equation systems will require the application of kinematic re-
strictions, as is common for redundant robotic systems. It is possible that the
degree of these equations systems would be greater than four, so the analytical

83

Chapter 5. Discussion, Conclusions and Future Work

methods presented in Section 3.2.7 cannot be applied, and the final solution
would surely require the use of numerical methods. Nevertheless, the structure
presented in Figure 3.1 can still be employed, updating the IKM Core module
with the implementation of the required numerical method, which would only
change the "Main loop" section of the IKM Core’s algorithm (see Figure 3.4).

Therefore, the developed procedure presented in this work is easily extendable
to redundant open-chain robotic systems, only requiring some adjustments
in the second step, where the kinematic equations that should be solved are
calculated, and also in the seventh step, which corresponds to the IKM Core’s
implementation.

As a third line of research, we propose to expand the developed procedure to
closed-chain robotic systems. The solution of the kinematic problem of this
type of robots contains polynomial equations whose degree is greater than four,
but, as in the case of the redundant robots, this only implies a change in the
"Main loop" section of the Core’s algorithm.

So, in a similar way to the case of redundant open-chain robots, the developed
procedure can also be extended to closed-chain robotic systems, making only
some adjustments in its second step, to properly prepare the kinematic equa-
tions of the closed-chain robot, and in the seventh step, in order to update
Core’s algorithm with the required numerical method.

84

Bibliography

Abbasnejad, Ghasem and Marco Carricato (2015). “Direct Geometrico-static
Problem of Underconstrained Cable-Driven Parallel Robots With n Ca-
bles”. In: IEEE Transactions on Robotics 31.2, pp. 468—478. 1SSN: 15523098.
DOI: 10.1109/TR0.2015.2393173 (cit. on p. 4).

ARM Limited (2009). Cortez-M4 Technical Reference Manual. Tech. rep. ver-
sion rOp0. Available at https://developer.arm. com/documentation/
ddi0439/b/ (cit. on pp. 33-35, 75).

Atique, Moin Uddin, Rafiqul Islam Sarker, and Atiqur Rahman Ahad (2018).
“Development of an 8DOF quadruped robot and implementation of In-
verse Kinematics using Denavit-Hartenberg convention”. In: Heliyon 4.12,
€01053. 1SsN: 24058440. pOI: 10.1016/j.heliyon.2018.e01053 (cit. on
pp- 2, 9, 25, 58).

Aydm, Yavuz and Serdar Kucuk (2006). “Quaternion Based Inverse Kinemat-
ics for Industrial Robot Manipulators with Kuler Wrist”. In: 2006 IEEE
International Conference on Mechatronics, ICM, pp. b81-586. DOI: 10.
1109/ICMECH. 2006.252591 (cit. on p. 3).

Barrientos, Antonio et al. (2012). “Modelado de Cadenas Cineméticas medi-
ante Matrices de Desplazamiento. Una alternativa al método de Denavit-
Hartenberg”. In: RIAI - Revista Iberoamericana de Automatica e Infor-

85

https://doi.org/10.1109/TRO.2015.2393173
https://developer.arm.com/documentation/ddi0439/b/
https://developer.arm.com/documentation/ddi0439/b/
https://doi.org/10.1016/j.heliyon.2018.e01053
https://doi.org/10.1109/ICMECH.2006.252591
https://doi.org/10.1109/ICMECH.2006.252591

Bibliography

matica Industrial 9.4, pp. 371-382. 1SSN: 16977920. por: 10.1016/j .
riai.2012.09.004 (cit. on p. 2).

Bouzgou, Kamel and Zoubir Ahmed-Foitih (2014). “Geometric modeling and
singularity of 6 DOF Fanuc 2001C robot”. In: fth International Conference
on Innovative Computing Technology, INTECH 2014. Institute of Electri-
cal and Electronics Engineers Inc., pp. 208-214. 1SBN: 9781479942336. DOT:
10.1109/INTECH.2014.6927745 (cit. on p. 3).

Buchberger, Bruno (2001). “Grébner Bases and Systems Theory”. In: Multidi-
mensional Systems and Signal Processing 12.3, pp. 223-251. 18SN: 09236082.
DOI: 10.1023/4:1011949421611 (cit. on pp. 4, 27).

Chen, Saixuan et al. (2017). “A general analytical algorithm for collaborative
robot (cobot) with 6 degree of freedom (DOF)”. In: 2017 IEEFE Interna-
tional Conference on Applied System Innovation (ICASI), pp. 698-701.
ISBN: 9781509048977. DOI: 10.1109/ICASI.2017.7988522 (cit. on p. 3).

Cox, David A., John Little, and Donal O’Shea (2015). Ideals, Varieties, and
Algorithms. An Introduction to Computational Algebraic Geometry and
Commutative Algebra. Ed. by Sheldon Axler and Kenneth Ribet. Fourth
Edition. Undergraduate Texts in Mathematics. Cham, Switzerland: Springer
International Publishing. 1sSBN: 978-3-319-16720-6. po1: 10.1007/978-3-
319-16721-3 (cit. on pp. 13-20, 26, 27).

Deshmukh, Deepak et al. (Dec. 2020). “ANFIS-Based Inverse Kinematics and
Forward Dynamics of 3 DOF Serial Manipulator”. In: Advances in Intelli-
gent Systems and Computing 1375 AIST, pp. 144-156. DOI: 10.1007/978-
3-030-73050-5_15 (cit. on p. 3).

Duka, Adrian-Vasile (2014). “Neural Network based Inverse Kinematics Solu-
tion for Trajectory Tracking of a Robotic Arm”. In: Procedia Technology
12, pp. 20-27. 18sN: 2212-0173. DOI: 10.1016/j .protcy.2013.12.451
(cit. on p. 3).

— (Jan. 2015). “ANFIS Based Solution to the Inverse Kinematics of a 3SDOF

Planar Manipulator”. In: Procedia Technology 19, pp. 526-533. 1SSN: 2212-
0173. DOI: 10.1016/J.PROTCY.2015.02.075 (cit. on p. 3).

86

https://doi.org/10.1016/j.riai.2012.09.004
https://doi.org/10.1016/j.riai.2012.09.004
https://doi.org/10.1109/INTECH.2014.6927745
https://doi.org/10.1023/A:1011949421611
https://doi.org/10.1109/ICASI.2017.7988522
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-030-73050-5_15
https://doi.org/10.1007/978-3-030-73050-5_15
https://doi.org/10.1016/j.protcy.2013.12.451
https://doi.org/10.1016/J.PROTCY.2015.02.075

Bibliography

Farahmandi, Farimah and Bijan Alizadeh (2015). “Groebner basis based formal
verification of large arithmetic circuits using Gaussian elimination and
cone-based polynomial extraction”. In: Microprocessors and Microsystems
39.2, pp. 83-96. 18sN: 01419331. por: 10.1016/j .micpro.2015.01.007
(cit. on p. 13).

Faugere, J. C. et al. (1993). “Efficient Computation of Zero-dimensional Gréb-
ner Bases by Change of Ordering”. In: Journal of Symbolic Computation
16.4, pp. 329-344. 1SSN: 0747-7171. DOI: 10.1006/jsco.1993.1051 (cit.
on pp. 20, 32).

Faugere, Jean Charles (1999). “A new efficient algorithm for computing Gréb-
ner bases (F4)”. In: Journal of Pure and Applied Algebra 139.1-3, pp. 61—
88. 18sN: 0022-4049. DOI: 10.1016/S0022 - 4049 (99) 00005-5 (cit. on
pp- 20, 32).

— (2010). “FGb: A Library for Computing Grébner bases”. In: ICMS 2010.
Lecture Notes in Computer Science. Ed. by K. Fukuda et al. Vol. 6327.
Springer, Berlin, Heidelberg, pp. 84-87. 1SBN: 978-3-642-15582-6. DOT: 10.
1007/978-3-642-15582-6_17 (cit. on pp. 20, 32).

Flanders, Megan and Richard C. Kavanagh (2015). “Build-A-Robot: Using vir-
tual reality to visualize the Denavit-Hartenberg parameters”. In: Computer
Applications in Engineering Education 23.6, pp. 846-853. DOIL: 10.1002/
cae.21656 (cit. on p. 2).

Fu, K. S., R. C. Gonzalez, and C. S. G. Lee (1987). Robotics: Control, Sensing,
Vision and Intelligence. Ed. by R. Sanjeev. CAD/CAM, robotics, and
computer vision. McGraw-Hill Book Company. 1SBN: 0-07-022625-3 (cit.
on pp. 2,9, 25, 33, 58, 59).

Gan, Dongming et al. (2009). “Forward displacement analysis of the general
6-6 Stewart mechanism using Grobner bases”. In: Mechanism and Ma-
chine Theory 44.9, pp. 1640-1647. 18sN: 0094114X. po1: 10.1016/j .
mechmachtheory.2009.01.008 (cit. on pp. 4, 5).

Guzman-Giménez, José, Angel Valera, et al. (Aug. 2019). “Obtencién del mod-

elo cinematico inverso de sistemas robotizados de cadena cinemética abierta
empleando bases de Groebner: aplicacién a un robot hexapodo”. In: XL

87

https://doi.org/10.1016/j.micpro.2015.01.007
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1007/978-3-642-15582-6_17
https://doi.org/10.1007/978-3-642-15582-6_17
https://doi.org/10.1002/cae.21656
https://doi.org/10.1002/cae.21656
https://doi.org/10.1016/j.mechmachtheory.2009.01.008
https://doi.org/10.1016/j.mechmachtheory.2009.01.008

Bibliography

Jornadas de Automdtica. Universidade da Coruna, pp. 726-734. DOI: 10.
17979/spudc.9788497497169.726 (cit. on p. 82).

Guzman-Giménez, José, Angel Valera Fernandez, et al. (2020). “Synthesis of
the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Sys-
tems Using Groebner Basis Theory”. In: Applied Sciences 10.8, p. 2781.
1SSN: 2076-3417. DOI: 10.3390/app10082781 (cit. on pp. 2, 5, 20, 23, 25,
32, 36, 37, 75, 82).

— (2021). “Automatic selection of the Groebner Basis’ monomial order em-
ployed for the synthesis of the inverse kinematic model of non-redundant
open-chain robotic systems”. In: Mechanics Based Design of Structures
and Machines. 1SSN: 15397742, DOI: 10.1080/15397734.2021 .1899829
(cit. on pp. 23, 25, 82).

Huang, Xiguang and Guangpin He (2009). “Forward kinematics of the gen-
eral Stewart-Gough platform using Grébner basis”. In: 2009 IEEE In-
ternational Conference on Mechatronics and Automation, ICMA 2009,
pp. 3557-3561. 1SBN: 9781424426935. DOI: 10.1109/ICMA.2009.5246088
(cit. on pp. 4, 5).

Hussein, Mustafa T, Ali S Gafer, and Essam Z Fadhel (2020). “Robot manipu-
lator Inverse Kinematics using Adaptive Neuro-Fuzzy Inference System”.
In: Journal of Engineering Science and Technology 15.3 (cit. on p. 3).

Jiang, Guanwu et al. (2017). “A Precise Positioning Method for a Puncture
Robot Based on a PSO-Optimized BP Neural Network Algorithm”. In:
Applied Sciences 7.10, p. 969. 1sSSN: 2076-3417. DOI: 10.3390/2app7100969
(cit. on p. 4).

Kendricks, Kimberly D. (2013). “A kinematic analysis of the gmf a-510 robot:
An introduction and application of groebner basis theory”. In: Journal of
Interdisciplinary Mathematics 16.2-3, pp. 147-169. 1ssN: 09720502. poT:
10.1080/09720502.2013.800304 (cit. on pp. 4, 5).

Koker, Rasit (Feb. 2013). “A genetic algorithm approach to a neural-network-
based inverse kinematics solution of robotic manipulators based on error
minimization”. In: Information Sciences 222, pp. 528-543. 1SSN: 00200255.
DOL: 10.1016/j.1ns.2012.07.051 (cit. on p. 3).

88

https://doi.org/10.17979/spudc.9788497497169.726
https://doi.org/10.17979/spudc.9788497497169.726
https://doi.org/10.3390/app10082781
https://doi.org/10.1080/15397734.2021.1899829
https://doi.org/10.1109/ICMA.2009.5246088
https://doi.org/10.3390/app7100969
https://doi.org/10.1080/09720502.2013.800304
https://doi.org/10.1016/j.ins.2012.07.051

Bibliography

Koukos-Papagiannis, C. K., V. C. Moulianitis, and N. A. Aspragathos (July
2019). “Cuspidality Investigation of a Metamorphic Serial Manipulator.”
In: Mechanisms and Machine Science 73, pp. 2491-2500. DO1: 10.1007/
978-3-030-20131-9_246 (cit. on p. 14).

Liu, Hualiang and Jianyou Han (Aug. 2021). “Solution region synthesis method-
ology of spatial 1CS-4SS linkages for six given positions”. In: Mechanism
and Machine Theory 162, p. 104369. 1ssN: 0094-114X. por1: 10.1016/7J.
MECHMACHTHEORY . 2021.104369 (cit. on p. 14).

Liu, Yuan et al. (Sept. 2015). “Geometric approach for inverse kinematics anal-
ysis of 6-Dof serial robot”. In: 2015 IEEE International Conference on
Information and Automation, ICIA 2015. Institute of Electrical and Elec-
tronics Engineers Inc., pp. 852-855. 1SBN: 9781467391047. por: 10.1109/
ICInfA.2015.7279404 (Cit. on p. 2).

Mahajan, Akanshu, H. P. Singh, and N. Sukavanam (Mar. 2017). “An unsuper-
vised learning based neural network approach for a robotic manipulator”.
In: International Journal of Information Technology 9.1, pp. 1-6. I1SSN:
2511-2104. DOI1: 10.1007/s41870-017-0002-2 (cit. on p. 3).

Mulla, Ameer K. et al. (Jan. 2018). “Leader selection for minimum-time con-
sensus in multi-agent networks”. In: 2017 IEEE 56th Annual Conference
on Decision and Control, CDC 2017 2018-January, pp. 1036-1041. DOLI:
10.1109/CDC.2017.8263793 (cit. on p. 14).

Narayan, Jyotindra and Ashish Singla (Sept. 2017). “ANFIS based kinematic
analysis of a 4-DOFs SCARA robot”. In: 4th IEEE International Confer-
ence on Signal Processing, Computing and Control, ISPCC 2017 2017-
January, pp. 205-211. DOI: 10.1109/ISPCC.2017.8269676 (cit. on p. 3).

Ozgiir, Erol and Youcef Mezouar (Mar. 2016). “Kinematic modeling and control
of a robot arm using unit dual quaternions”. In: Robotics and Autonomous
Systems T7, pp. 66-73. 1SSN: 09218890. DOI: 10.1016/j.robot.2015.12.
005 (cit. on p. 2).

Patil, Deepak et al. (May 2015). “Computation of feedback control for time
optimal state transfer using Groebner basis”. In: Systems & Control Letters
79, pp. 1-7. 1sSN: 0167-6911. po1: 10.1016/J.SYSCONLE.2015.02.003
(cit. on p. 14).

89

https://doi.org/10.1007/978-3-030-20131-9_246
https://doi.org/10.1007/978-3-030-20131-9_246
https://doi.org/10.1016/J.MECHMACHTHEORY.2021.104369
https://doi.org/10.1016/J.MECHMACHTHEORY.2021.104369
https://doi.org/10.1109/ICInfA.2015.7279404
https://doi.org/10.1109/ICInfA.2015.7279404
https://doi.org/10.1007/s41870-017-0002-2
https://doi.org/10.1109/CDC.2017.8263793
https://doi.org/10.1109/ISPCC.2017.8269676
https://doi.org/10.1016/j.robot.2015.12.005
https://doi.org/10.1016/j.robot.2015.12.005
https://doi.org/10.1016/J.SYSCONLE.2015.02.003

Bibliography

Pérez-Rodriguez, Rodrigo et al. (2012). “Inverse kinematics of a 6 DoF human
upper limb using ANFIS and ANN for anticipatory actuation in ADL-
based physical Neurorehabilitation”. In: Ezpert Systems with Applications
39.10, pp. 9612-9622. 1sSN: 09574174. DOI: 10.1016/j.eswa.2012.02.143
(cit. on p. 3).

Petrescu, Relly Victoria et al. (2017). “Anthropomorphic Solid Structures n-R
Kinematics”. In: American Journal of Engineering and Applied Sciences
10.1, pp. 279-291. 188N: 1941-7020. DOI: 10.3844/ajeassp.2017.279.291
(cit. on p. 3).

Rameau, Jean Francois and Philippe Serré (Sept. 2015). “Computing mobility
condition using Groebner basis”. In: Mechanism and Machine Theory 91,
pp. 21-38. 18SN: 0094114X. poI: 10.1016/j .mechmachtheory.2015.04.
003 (cit. on pp. 4, 5).

Rodriguez, Ruthber et al. (2018). “A consistent methodology for the devel-
opment of inverse and direct kinematics of robust industrial robots”. In:
ARPN Journal of Engineering and Applied Sciences 13.1, pp. 293-301.
ISSN: 18196608 (cit. on pp. 3, 58).

Rokbani, Nizar and Adel M. Alimi (Jan. 2013). “Inverse kinematics using par-
ticle swarm optimization, a statistical analysis”. In: Procedia Engineering.
Vol. 64. Elsevier, pp. 1602-1611. por: 10.1016/j . proeng.2013.09.242
(cit. on p. 4).

Rokbani, Nizar, Alicia Casals, et al. (2015). “TK-FA, a new heuristic inverse
kinematics solver using firefly algorithm”. In: Studies in Computational
Intelligence 575, pp. 369-385. 18sN: 1860949X. pot: 10.1007/978-3-319-
11017-2_15 (cit. on p. 4).

Sabbagh, Negar Aghapour and Bijan Alizadeh (June 2021). “Arithmetic Cir-
cuit Correction by Adding Optimized Correctors Based on Groebner Basis
Computation”. In: 2021 IEEE European Test Symposium (ETS). Leuven,
Belgium: Institute of Electrical and Electronics Engineers (IEEE), pp. 1-
6. ISBN: 9781665418492. DOT: 10.1109/ETS50041.2021.9465454 (Cit. on

p. 14).

90

https://doi.org/10.1016/j.eswa.2012.02.143
https://doi.org/10.3844/ajeassp.2017.279.291
https://doi.org/10.1016/j.mechmachtheory.2015.04.003
https://doi.org/10.1016/j.mechmachtheory.2015.04.003
https://doi.org/10.1016/j.proeng.2013.09.242
https://doi.org/10.1007/978-3-319-11017-2_15
https://doi.org/10.1007/978-3-319-11017-2_15
https://doi.org/10.1109/ETS50041.2021.9465454

Bibliography

Salzer, Herbert E (Feb. 1960). “A Note on the Solution of Quartic Equations”.

In: Mathematics of Computation 14.71, pp. 279-281. 1ssN: 00255718, 10886842.

DOI: 10.2307/2003172 (cit. on pp. 32, 33, 45).

Toshani, Hamid and Mohammad Farrokhi (2014). “Real-time inverse kinemat-
ics of redundant manipulators using neural networks and quadratic pro-
gramming: A Lyapunov-based approach”. In: Robotics and Autonomous
Systems 62.6, pp. 766—-781. 18sN: 09218890. DO1: 10.1016/j.robot.2014.
02.005 (cit. on p. 3).

Uchida, Thomas and John McPhee (June 2012). “Using Grobner bases to gen-
erate efficient kinematic solutions for the dynamic simulation of multi-loop
mechanisms”. In: Mechanism and Machine Theory 52, pp. 144-157. 1SSN:
0094114X. DOI: 10.1016/j .mechmachtheory.2012.01.015 (cit. on pp. 4,
5, 36).

Wang, Xiangke et al. (2012). “The geometric structure of unit dual quaternion
with application in kinematic control”. In: Journal of Mathematical Anal-
ysis and Applications 389, pp. 1352-1364. DOI: 10.1016/j . jmaa.2012.
01.016 (cit. on p. 2).

Wang, Yan, Lu Bin Hang, and Ting Li Yang (Jan. 2006). “Inverse kinematics
analysis of general 6R serial robot mechanism based on groebner base”.
In: Frontiers of Mechanical Engineering in China 1.1, pp. 115-124. 1SSN:
16733479. DOI: 10.1007/s11465-005-0022-7 (cit. on p. 4).

91

https://doi.org/10.2307/2003172
https://doi.org/10.1016/j.robot.2014.02.005
https://doi.org/10.1016/j.robot.2014.02.005
https://doi.org/10.1016/j.mechmachtheory.2012.01.015
https://doi.org/10.1016/j.jmaa.2012.01.016
https://doi.org/10.1016/j.jmaa.2012.01.016
https://doi.org/10.1007/s11465-005-0022-7

	Abstract
	Resumen
	Resum
	Contents
	1 Introduction
	1.1 Background: The Kinematic Problem
	1.2 Objective and main contribution
	1.3 Test Benches
	1.4 Structure of this work

	2 Groebner Bases theory: applications in engineering and basic concepts
	2.1 Applications of Groebner Bases theory in engineering projects
	2.2 Polynomials, Ideals and Affine Varieties
	2.3 Monomial Ordering in Groebner Bases

	3 Description of the Developed Procedure
	3.1 Structure of the Synthesized IKM
	3.2 IKM Core Module
	3.3 State Estimator
	3.4 IKM Derivatives
	3.5 Registers

	4 Performance Analysis of the Developed Procedure
	4.1 Resolution of the Kinematic Problem by Traditional Methods
	4.2 Hexapod's IKM
	4.3 PUMA's IKM

	5 Discussion, Conclusions and Future Work
	5.1 Summary of the developed procedure and discussion
	5.2 Publications
	5.3 Conclusions
	5.4 Future Work

	Bibliography

