

 \oplus

Synthesis of the Complete Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems Using Groebner Basis Theory

Author: José Guzmán-Giménez

Director: Dr. Ángel Valera Fernández

November 2021

Contents

 \oplus

 \oplus

A	\mathbf{bstr}	act	iii										
R	\mathbf{esun}	nen	v										
R	\mathbf{esun}	1	vii										
С	onte	\mathbf{nts}	ix										
1	Int	roduction	1										
	1.1	Background: The Kinematic Problem	1										
	1.2	Objective and main contribution	5										
	1.3	Test Benches	6										
	1.4	Structure of this work	13										
2	Gro	bebner Bases theory: applications in engineering and ba-											
_	sic	concepts	15										
	2.1	Applications of Groebner Bases theory in engineering projects	15										
	2.2	Polynomials, Ideals and Affine Varieties	16										
	2.3	Monomial Ordering in Groebner Bases	20										
3	Description of the Developed Procedure												
	3.1	Structure of the Synthesized IKM	24										
	3.2	IKM Core Module	24										
	3.3	State Estimator	51										
	3.4	IKM Derivatives	54										
	3.5	Registers	57										

 \oplus

 \oplus

 \oplus

 \oplus

ix

 \oplus

Œ

4	Performance Analysis of the Developed Procedure												
	4.1 Resolution of the Kinematic Problem by Traditional Methods												
	4.2	Hexapod's IKM	68										
	4.3	PUMA's IKM	75										
5	Disc	cussion, Conclusions and Future Work	81										
	5.1	Summary of the developed procedure and discussion	81										
	5.2	Publications	84										
	5.3	Conclusions	84										
	5.4	Future Work	85										
Bibliography 8													

List of Figures

 \oplus

 \oplus

1.1	Inverse Kinematic Model in the robot's control system	2
1.2	BH3-R hexapod walking robot	7
1.3	Coordinate systems for the hexapod's leg	8
1.4	Unimate's PUMA 560 robotic arm	10
1.5	Coordinate systems for the PUMA 560 robotic arm	11
3.1	Structure of the synthesized IKM	24
3.2	Flowchart of the developed procedure for the synthesis of the IKM Core	
	module	26
3.3	$Graphical \ representation \ of \ the \ expected \ values \ for \ the \ variables \ related \ with$	
	the hexapod's leg DoFs	32
3.4	IKM Core's algorithm	41
3.5	Algorithm used to solve quadratic equations	45
3.6	Algorithm used to solve bi-quadratic equations	46
3.7	Algorithm used to solve quartic polynomial equations	48
3.8	Algorithm used to calculate one real root of the cubic obtained during a	
	${\rm quartic's\ equation\ resolution\ \ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ $	49
3.9	State estimator's algorithm	53
3.10	IKM Derivative's algorithm	56
4.1	Geometric solution for the PUMA's first joint	62
4.2	Geometric solution for the PUMA's third joint	63
4.3	Geometric solution for the PUMA's second joint	64
4.4	Performance analysis of the six synthesized IKMs for the hexapod's leg $\ . \ .$	69

 \bigoplus

 \oplus

 \oplus

 \oplus

xi

 \oplus

€

Detailed view of the performance of the hexapod's IKM generated by lex	
order 6	70
Performance analysis of the synthesized IKM for the hexapod's leg \ldots .	72
Trajectory tracking analysis for the hexapod's final IKM	74
Performance analysis of the synthesized IKM for the PUMA 560 \ldots	78
Trajectory tracking analysis for the PUMA's IKM	79
	Detailed view of the performance of the hexapod's IKM generated by lex order 6

List of Tables

 \oplus

 \oplus

1.1	Denavit-Hatenberg Parameters of the hexapod's leg	9
1.2	Hexapod's leg parameter dimensions	9
1.3	Movement range of the hexapod's actuators	9
1.4	Denavit-Hatenberg Parameters of PUMA 560	11
1.5	PUMA 560 parameters dimensions	12
1.6	Movement range of the PUMA's actuators	12
3.1	Expected values for the trigonometric variables related with the rotational	
	DoFs of the hexapod's leg	33
3.2	Relevant lex orders for the hexapod's leg	33
3.3	Possible types of polynomial equations found in the calculated Groebner Bases	35
3.4	Computational cost required to solve different types of polynomial equations	
	on an ARM Cortex-M4 CPU	35
3.5	Computational cost for a microcontroller with an ARM Cortex-M4 CPU .	36
3.6	Selection of the lex order for the Hexapod's IKM	37
4.1	Maximum and average RMS errors obtained when all the points of the hexa-	
	pod's workspace are processed by each of the six synthesized IKMs $$	73
4.2	Computation times of the six IKMs generated for the hexapod's leg and its	
	reference model	75
4.3	Expected values for the trigonometric variables related with the PUMA's	
	rotational DoFs	76
4.4	Relevant lex orders for the PUMA manipulator	76
4.5	Selection of the lex order for the PUMA's IKM	77

 \oplus

 \oplus

 \oplus

 \oplus

xiii

 \oplus

Œ

4.6	Computation times	; of	$_{\mathrm{the}}$	six	IK	Мs	g€	ener	ateo	d foi	r the	e P	UN	ſΑ	56	30	an	d	its	3	
	reference model																				80