Índice de contenido

1. Intr	rodu	cciór	1	1
1.1	•	Mot	ivación	1
1.2	•	Obje	etivos	2
1.3	•	Estr	uctura de la tesis	3
2. Est	ado	del a	rte	5
2.1	•	Crite	erios de semejanza	5
2	2.1.1	•	Escalado lineal	6
2	2.1.2	2.	Escalado volumétrico	6
2	2.1.3	5.	Escalado de Ishii	7
2	2.1.4	ŀ.	Escalado másico	7
2.2	•	Mete	odologías de análisis del escalado	8
2	2.2.1	•	Three-Level Scaling	8
2	2.2.2	2.	H2TS	11
2	2.2.3	5.	FSA - Fractional Scaling Analysis	11
2	2.2.4	ŀ.	DSS – Dynamical System Scaling	12
2	2.2.5	5.	Métodos de cuantificación de incertidumbre	13
2	2.2.6	ó .	Otros métodos de análisis	13
2.3	•	Insta	alaciones experimentales	16
2.4	•	Test	counterpart	19
2	2.4.1		Counterpart SBLOCA en LOBI, SPES, BETHSY y LSTF	20
2.4.2.		2.	Counterpart SBLOCA en LSTF y PKL	21
2.4.3. 2.4.4. 2.4.5.		5.	Counterparts en IIST para consolidar instalaciones RHRP	22
		ŀ.	Counterparts en BWR	22
		5.	Counterpart en ATLAS y LSTF	23

3. Instala	ciones experimentales	25
3.1.	Instalación experimental ATLAS	25
3.1.1	. Sistema primario de ATLAS	
3.1.2	2. Sistema secundario de ATLAS	32
3.1.3	S. Sistemas de seguridad de ATLAS	
3.2.	Instalación experimental LSTF	34
3.2.1	. Sistema primario de LSTF	36
3.2.2	2. Sistema secundario de LSTF	40
3.2.3	S. Sistemas de seguridad de LSTF	40
3.3.	Comparación de instalaciones	41
4. Código	s termohidráulicos y modelos	45
4.1.	Códigos Best Estimate	45
4.2.	Código TRACE5	49
4.2.1	. Características principales del código	49
4.2.2	2. Modelos especiales	51
4.3.	Modelos de las instalaciones	54
4.3.1	. Modelos de vasija	60
4.3.2	Efecto de las pérdidas de calor	61
5. Análisi	s aplicado al escalado	67
5.1.	Escalado de condiciones para test counterpart LSTF/ATLAS	67
5.2.	Descripción de experimentos	73
5.2.1	. 1% SBLOCA Rama fría	73
5.2.2	2. 13% IBLOCA Rama fría	75
	1% SBLOCA Upper head	77
5.2.3	· · · · · · · · · · · · · · · · · · ·	
5.2.3 5.3.	Análisis de escalado y distorsión	79

6. Simulación y análisis de experimentos				
6.1.	1% SBLOCA			
6.2.	13% IBLOCA			
6.2.	1. Global system scaling análisis			
6.3.	1% SBLOCA Upper head			
6.3.	1. Blind Phase			
6.3.	2. Open Phase	114		
7. Diseño de experimentos				
7.1.	Experimento Station Blackout – Test A1.1			
7.2.	Condiciones para el test counterpart en LSTF			
7.3.	Simulación del test counterpart – Escenario SBO			
7.4.	Análisis de similaridad			
7.5.	Análisis PIRT			
7.6.	Adecuación del test counterpart			
8. Concl	usiones			
8.1.	Conclusiones generales			
8.2.	Líneas de trabajo futuras			
8.3.	Publicaciones			
Reference	cias			

Índice de Figuras

Figura 1: Metodología 3-level scaling (Ishii et al., 1998).	10
Figura 2: Identificación de distorsiones en la metodología DSS (Bestion et al., 2017)	12
Figura 3: Scaling Roadmap (D'Auria y Galassi, 2010).	15
Figura 4: Esquema de la instalación ATLAS (KAERI, 2018).	27
Figura 5: Vasija de la instalación ATLAS (KAERI, 2018)	28
Figura 6: Esquema de la instalación LSTF (Rosa-V Group, 2003)	36
Figura 7: Vasija de la instalación LSTF (Rosa-V Group, 2003)	38
Figura 8: Márgenes de seguridad (USNRC, 2017).	46
Figura 9: Nodalización de la instalación ATLAS.	58
Figura 10: Nodalización de la instalación LSTF	59
Figura 11: Correlación HTC-Pérdidas de calor en el modelo de ATLAS	63
Figura 12: Relación HTC-Densidad para distintas potencias	65
Figura 13: Correlación Potencia neta-Caudal en el modelo de ATLAS.	66
Figura 14: Metodología de diseño de test counterpart	72
Figura 15: Esquemas de unidad de rotura para 1% SBLOCA	75
Figura 16: Test 1% SBLOCA rama fría – Inventario descargado	84
Figura 17: Test 1% SBLOCA rama fría – Presión en sistema primario	85
Figura 18: Esquema de sellos de lazo (m) a) ATLAS b) LSTF	86
Figura 19: Test 1% SBLOCA rama fría - Nivel de líquido en sellos de lazo (A)	87
Figura 20: Test 1% SBLOCA rama fría – PCT	88
Figura 21: Test 1% SBLOCA rama fría - Caudal acumuladores.	88
Figura 22: Test 13% IBLOCA rama fría – Inventario descargado	90
Figura 23: Test 13% IBLOCA rama fría – Presión sistema primario	90
Figura 24: Test 13%IBLOCA rama fría – PCT.	91
Figura 25: Fases de escenario IBLOCA	94
Figura 26: Sensibilidad rotura – Descarga de inventario	111
Figura 27: Sensibilidad rotura – Presión en sistema primario	111
Figura 28: Sensibilidad modelado CET y PCT	112
Figura 29: Sensibilidad CCFL Kutateladze - Nivel de líquido en sellos	113
Figura 30: Sensibilidad CCFL Wallis - Nivel de líquido en sellos	114
Figura 31: T1 Vs pérdida de refrigerante en t=1000 s	116
Figura 32: Nivel de líquido en el núcleo vs. T1	116
Figura 33: CET máxima vs. PCT	117
Figura 34: PCT vs. tiempo de remojado (T3-T2)	117

Figura 35: T3 Vs T1 1	18
Figura 36: Conclusiones benchmark - Nivel de líquido en núcleo vs. T1 1	19
Figura 37: Conclusiones benchmark - T1 vs T3 1	20
Figura 38: Conclusiones benchmark - T3 vs. T1 1	20
Figura 39: Conclusiones benchmark - CET en instante de PCT máx vs. T1 1	21
Figura 40: Test 1% SBLOCA upper head - Presión sistema primario 1	22
Figura 41: Test 1% SBLOCA upper head - Presión sistema secundario 1	23
Figura 42: Test 1% SBLOCA upper head - Inventario descargado a través de la rotura. 1	23
Figura 43: Test 1% SBLOCA upper head – Nivel de líquido en la vasija 1	25
Figura 44: Test 1% SBLOCA upper head - CET 1	25
Figura 45: Test 1% SBLOCA upper head – PCT 1	26
Figura 46: Test counterpart A1.1 – Nivel de líquido en GV 1	33
Figura 47: Test counterpart A1.1 – Presión en sistema primario 1	34
Figura 48: Test counterpart A1.1 - caudal en ramas calientes a) sin PRZ b) con PRZ 1	35
Figura 49: Test counterpart A1.1 – nivel de líquido en presionador 1	36
Figura 50: Test counterpart A1.1 – Nivel de líquido en vasija 1	37
Figura 51: Test counterpart A1.1 - Inventario descargado a través de POSRV 1	38
Figura 52: Test counterpart A1.1 - Peak cladding temperature (PCT) 1	39
Figura 53: Etapas de circulación natural en el test counterpart1	40
Figura 54: Post-test counterpart A1.1 - caudal en rama caliente 1	51
Figura 55: Post-test counterpart A1.1 – Peak cladding temperature (PCT) 1	52

Índice de Tablas

Tabla 1: Comparación de parámetros de escalado	8
Tabla 2: Integral test facilities	
Tabla 3: Proporciones de escala de la instalación ATLAS (KAERI, 2018)	27
Tabla 4: Características de las bombas en APR1400 y ATLAS (KAERI 2018)	
Tabla 5: Proporciones de escala de la instalación LSTF (Rosa-V Group, 2003)	
Tabla 6: Características de la vasija	41
Tabla 7: Características del presionador.	
Tabla 8: Características de los conductos del sistema primario	
Tabla 9: Características de los generadores de vapor	43
Tabla 10: Coeficientes de descarga implementados en los modelos de TRACE5	
Tabla 11: Correlaciones Potencia-Caudal	64
Tabla 12: Ratios de escalado en test counterpart LSTF/ATLAS	71
Tabla 13: Eventos y señales 1% SBLOCA rama fría	74
Tabla 14: Eventos y señales 13% IBLOCA rama fría	77
Tabla 15: Experimentos SBLOCA en upper head de LSTF	
Tabla 16: Eventos y señales 1% SBLOCA upper head	79
Tabla 17: Resumen de análisis para fase de purga	97
Tabla 18: Resumen de análisis para fase de circulación natural.	99
Tabla 19: Resumen de análisis para fase de descarga de alta calidad	102
Tabla 20: Resumen de análisis para fase de rellenado	105
Tabla 21: Grupos participantes en el benchmark para Test B5.1	108
Tabla 22: Casos de análisis de sensibilidad en fase ciega	110
Tabla 23: Eventos y señales en el Test A1.1	129
Tabla 24: Parámetros de escalado test counterpart SBO	130
Tabla 25: Condiciones iniciales en test counterpart SBO.	132
Tabla 26: Cronología eventos test counterpart SBO.	132
Tabla 27: Resumen de resultados de escalado. CN - etapa I	143
Tabla 28: Resumen de resultados d escalado. CN - etapa II	145
Tabla 29: PIRT de escenario SBO para el análisis de la circulación natural	148
Tabla 30: Comparación de ratios de potencia y tiempo empleando modelos híbridos.	150