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a b s t r a c t 

Background and objective: Magnetic resonance imaging is the most reliable imaging technique to assess 

the heart. More specifically there is great importance in the analysis of the left ventricle, as the main 

pathologies directly affect this region. In order to characterize the left ventricle, it is necessary to extract 

its volume. In this work we present a neural network architecture that is capable of directly estimating 

the left ventricle volume in short axis cine Magnetic Resonance Imaging in the end-diastolic frame and 

provide a segmentation of the region which is the basis of the volume calculation, thus offering explain- 

ability to the estimated value. 

Methods: The network was designed to directly target the volumes to estimate, not requiring any labeled 

segmentation on the images. The network was based on a 3D U-net with extra layers defined in a scan- 

ning module that learned features like the circularity of the objects and the volumes to estimate in a 

weakly-supervised manner. The only targets defined were the left ventricle volumes and the circularity 

of the object detected through the estimation of the π value derived from its shape. We had access to 

397 cases corresponding to 397 different subjects. We randomly selected 98 cases to use as test set. 

Results: The results show a good match between the real and estimated volumes in the test set, with a 

mean relative error of 8% and a mean absolute error of 9.12 ml with a Pearson correlation coefficient of 

0.95. The derived segmentations obtained by the network achieved Dice coefficients with a mean value 

of 0.79. 

Conclusions: The proposed method is capable of obtaining the left ventricle volume biomarker in the 

end-diastole and offer an explanation of how it obtains the result in the form of a segmentation mask 

without the need of segmentation labels to train the algorithm, making it a potentially more trustworthy 

method for clinicians and a way to train neural networks more easily when segmentation labels are not 

readily available. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

d

m

o

c

t

s

u

e

c

h

0

(

. Introduction 

Correct assessment of the left ventricle (LV) is critical in the 

iagnosis of cardiovascular diseases, which are one of the current 

ajor health problems in advanced countries [1] . Magnetic res- 

nance imaging (MRI) is one the most used diagnostic tools for 
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ardiac structure and function assessment. The characterization of 

he LV is usually done through the volume calculation in the end- 

ystolic and the end-diastolic time frames, from which the vol- 

me, mass and ejection fraction of the LV can be derived. How- 

ver, obtaining these parameters is often a time consuming task, a 

linical user will require the segmentation of the LV in the end- 

ystolic and end-diastolic frames to be done either manually or 

emi-automatically with the help of specialized software in order 

o extract the volumes. 
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In this context, deep learning techniques have been used to 

ssess this problem. Most of the work has focused in using seg- 

entation procedures before obtaining the volumes for specific 

atasets obtained from a single machine source [2–5] and a thor- 

ugh ongoing research still goes in this direction aiming to ac- 

urately segment the left ventricle in multi-center settings [ 6 , 7 ]. 

owever, the exploration of biomarkers extraction from medical 

mages [8] has also been studied using regression networks includ- 

ng age estimation from T1 MRI brain scans [9] , diabetic retinopa- 

hy detection in retinal fundus images [10] , morphometric pa- 

ameters of the corneal endothelium (cell density, cell size varia- 

ion, and hexagonality) in corneal endothelium microscopy images 

11] , skin disease detection and classification from skin lesion pho- 

ographs [12] , detection of osteoporosis and emphysema on chest 

T [13] or Agatston score obtained from chest CT scans of the heart 

14] . In these works, a prior manual segmentation of the region 

rom which the biomarker is obtained was not needed. In these 

ases, the neural network is trained to automatically predict the 

iomarker value from the image. These types of networks work 

sing a convolutional neural network that learn to extract relevant 

eatures followed by fully connected layers that use these extracted 

eatures to give the final biomarker prediction. These algorithms 

ave the disadvantages that they require large amounts of data (in 

he order of thousands) [ 9 , 13 , 14 ] and are often viewed as “black

oxes” where explainability of how the network obtain the result 

s hard. Explainability is still an ongoing part of research in deep 

earning and is one of the most important factors to solve if a ma- 

or trust is to be gained for this field in the clinical setting [ 15 , 16 ].

In this work we propose a neural network architecture for di- 

ect volume estimation of the LV in the end-diastole frame, but the 

esign offers the capability of offering explainability of the results 

y indirectly being able to derive a segmentation of the region 

f the LV where the network has based its final output. Achiev- 

ng this required the investigation of weak-supervision techniques 

17] which are employed for segmentation when the segmented 

round-truth is not available for training, and instead other type 

f indirect information is used in the training procedure. This ap- 

roach has been recently taken with good results in other medi- 

al imaging contexts as stated in [18] were they could obtain pec- 

oralis muscle area (PMA), subcutaneous fat area (SFA) and liver 

ass area in single slice computed tomography (CT), and Agatston 

core estimated from non-contrast thoracic CT images (CAC) with- 

ut training for the specific target. This weak-supervision method- 

logy has been employed using different features to train with, like 

abels of the image [ 19 , 20 ], seed points of the region to segment

19] , regions of interest [21–23] , or points around the contour of 

he region to segment [24] . In our case we are simply using a spe-

ific biomarker (the volume of the region) instead of elements that 

lready helps to determine the location of the objects, which is a 

ovel approach in the weak-supervision field. Additionally, we en- 

ode information regarding the fact that the LV is a circular object 

n the 2D plane to help the network learn to identify objects with 

his property. 

. Previous research 

Most of the work done in regards to applying convolutional 

eural networks to the problem at hand aim to obtain the segmen- 

ation of the LV using previously segmented cases to train them. 

his approach has demonstrated to offer state of the art results for 

pecific datasets [2–5] . The same methodology has been explored 

ith multi-center/multi-vendor source image datasets, in [7] the 

uthors tested a neural network for a test set coming from multi- 

le scanners after being trained with a dataset from a single scan- 

er and in [6] the authors designed a neural network trained on 
2 
ifferent scanner images. All these works used either U-net archi- 

ectures or variations of it. 

Recently, other methods that do not employ neural networks 

nd that are capable of obtaining state of the art results in seg- 

entation have also been described. Particularly in [ 25 , 26 ] an al-

orithm employing firstly a ROI selection of the LV region followed 

y a slope difference distribution threshold (SDD) and circular 

ough transform has been applied to the problem of segmentation 

nd LV detection successfully. This method is available in MATLAB 

ode at https://uk.mathworks.com/matlabcentral/fileexchange/ 

8417- sdd- lv- segmentation- for- comparison- with- dl- and- cnn- 

ethods?s _ tid=prof _ contriblnk . 

In the case of the LV direct volume regression with neural net- 

orks, there is a lack of work compared to the problem of segmen- 

ation and few studies have addressed this problem. In [27] the 

uthors applied a convolutional regression network for the LV vol- 

me estimation in both end-systolic and end-diastolic frames with 

 large dataset with 1140 subjects (Data Science Bowl Cardiac Chal- 

enge Data) using 5 convolutional layers followed with 3 fully con- 

ected layers. A similar approach was taken in [28] using the same 

ataset comprising 1140 subjects. In this case, the authors pre- 

rocessed the images in order to crop only the region of interest 

hat included the LV in a ROI and then fed this data to a neu-

al network comprising 13 convolutional layers followed by 3 fully 

onnected layers 

. Materials and methods 

.1. Image dataset 

Our dataset consisted of 397 short-axis stacks of MRI cover- 

ng both the left and right ventricles obtained from the same MR 

canner. This dataset comprised a total of 397 different patients 

270 men and 127 women), with an age of 64.53 ± 12.35 years 

ld (63.27 ± 11.98 years old for men, and 67.42 ± 12.75 years 

ld for women) (mean ± standard deviation). The diagnosis for 

he patients included a great variety of conditions like presence 

f fibrosis, necrosis, ischemia, functional affection of LV (ejection 

raction lower than normal and/or affected segmental contractil- 

ty), or “healthy” subjects (subjects with no cardiac pathology as- 

ociated). The final diagnosis and the number of cases for each 

ondition is presented in Table 1 . For the experiments we used 

nly the time frame corresponding to the diastole. All patients gave 

ritten consent and the study was approved by the Medical Eth- 

cal Committee of our hospital (Hospital Clínico Universitario de 

alencia, Valencia, Spain). Imaging was performed in breath-hold 

sing a 1.5T MRI scanner (Sonata Magnetom Siemens, Erlangen, 

ermany), flip angle: 58 °, repetition time: 52.92 ms, echo time: 

.25 ms. The in-plane resolution varied across the cases, ranging 

rom 0.57 × 0.57 mm 

2 to 1.09 × 1.09 mm 

2 . The slice thickness and 

pacing between slices was constant in all cases, 7 mm and 3 mm 

espectively. The resulting image sizes varied from 144 × 144 to 

56 × 256 and the number of slices ranged from 8 to 14. All 

he images were resampled using bilinear interpolation to a con- 

tant in-plane spatial resolution of 2 mm 

2 with an image size of 

8 × 88. This downsampling was applied in order to reduce the 

umber of features (represented by each voxel) for the network 

o process. Training was tested with original sizes but after sev- 

ral experiments it was seen that reducing the sizes improved the 

raining performance. The z -axis was left untouched in the resam- 

ling process. Additionally, the 3D stacks were normalized to make 

he pixel values range from 0 to 1 using min-max normalization. 

Every case of the entire dataset was categorized in one of the 

1 categories corresponding to the diagnosis category (see Table 1 ). 

his was done in order to ensure that the split between training, 

alidation and test sets had similar distribution with respect to the 

https://uk.mathworks.com/matlabcentral/fileexchange/78417-sdd-lv-segmentation-for-comparison-with-dl-and-cnn-methods?s_tid=prof_contriblnk
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Table 1 

Classification of the dataset in categories according to its clinical diagnosis 

Categories Number of cases 

Normal cases, no pathology 48 

Presence of necrosis 14 

Presence of fibrosis 12 

Presence of ischemia 10 

Functional affection of LV (ejection fraction lower than normal and/or affected segmental contractility) 23 

Functional affection of RV (ejection fraction lower than normal and/or affected segmental contractility) 2 

Functional affection of LV and RV 135 

Functional affection of LV and presence of fibrosis/necrosis/ischemia 45 

Functional affection of RV and presence of fibrosis/necrosis/ischemia 4 

Functional affection of RV and LV and presence of fibrosis/necrosis/ischemia 95 

Other cases that do not fall in any other category 9 
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iagnosis. Finally, the dataset was randomly split in training (259 

ases, 65%), validation (40 cases, 10%) and test set (98 cases, 25%). 

dditionally, we had access to the manual segmentations of the 

V performed by mutual consensus of two cardiologists with more 

han 10 years of experience. The volumes used as inputs to the 

etwork had been previously derived from these manual segmen- 

ations. 

.2. Neural network architecture 

The neural network designed is based on the classic U-net [29] , 

ore specifically it is a 3D version of it [30] with some notable 

hanges that we proceed to describe. The network takes as inputs 

mages of 88 × 88 × n. The value of n can be variable and it rep-

esents the number of slices within the input volume (which in 

ur dataset ranged from 8 to 14). All the layers include batch nor- 

alization (BN) [31] to improve the training performance. Every 

onvolution in the network is a 3 × 3 × 3 convolution and has 

 rectified linear unit as activation function (ReLU). To reduce the 

eature maps (also called channels) spatial size maxpooling oper- 

tions of size 2 × 2 × 1 are applied to halve the xy plane, while

reserving the number of slices of the feature maps. The “bottle- 

eck” layer output is regularized with L1 activity regularization to 

orce it to encode meaningful features and set to 0 non-important 

nes. The up-sampling path is composed of up-convolutions of size 

 × 2 × 1 to recover the xy size, the up-convolutions are a way 

o upsample inputs to specific sizes with the advantage that the 

psampling process is associated to a convolution with weights 

hat can be learned, and thus optimize the upsampling of the fea- 

ure maps. Concatenation of the final feature maps obtained in 

he contracting path are also applied to the feature maps in the 

psampling path after every up-convolution in the same manner 

s the U-net, this helps the network to recover the original spa- 

ial resolution that was reduced along the contracting path [29] . 

he final layer is a 1 × 1 × 1 sigmoid activation function that 

ives the probability of each voxel being part of the left ventri- 

le region. This layer has also L1 activity regularization to force 

hat only the LV appears in the class activation map (CAM). This 

ayer outputs the CAM, that gives a probability map for the voxel 

lassification [ 32 , 33 ], from which the network will derive the fi-

al output volume and indirectly a segmentation of the region of 

nterest. The full network architecture can be seen in Fig. 1 and 

n example of a CAM output is presented in Fig. 2 . The final lay-

rs of the network correspond to the scanning module that ap- 

ly sweeps to the CAM in order to derive meaningful parameters, 

ainly the final volume and the diameter of the detected object. 

n order to obtain the volume, we incorporated a non-trainable 

5 × 25 × 1 convolution filled with ones, after which a max pool- 

ng layer (88 × 88 × 1) extracts the maximum for each slice and 

hen applies a sum along the third dimension. The non-trainable 

onvolution size was defined based on the usual LV size in the 
3 
lices where it appears bigger in the downsampled images used 

s inputs. This specific size ensure that the LV can fit with a small 

argin in it. The maxpooling ensures that only the biggest object 

s taken into account for the volume calculation, as in rare cases 

he CAM can produce other small residual objects of high proba- 

ility. The second scanning incorporates 2 non-trainable convolu- 

ions of ones of size 1 × 88 × 1 and 88 × 1 × 1 and the output

s then averaged. With this scanning the net is forced to detect 

he largest diameter of the objects present in the net along the 

lices. We then combine these with the first scanning convolution 

which outputs the areas for every slice) in order to output the 

elation between the two, which should be close to the number 

(as the left ventricle is approximately circular). This circularity 

eature extractor is what ultimately allows the net to detect circu- 

ar objects whose volume match that of the target, which corre- 

ponds to the LV. Fig. 3 show a schematic of the scanning layers 

escribed. 

.3. Network training 

The network was implement using tensorflow 2.1 ( www. 

ensorflow.org , Google Brain, Google, LLC, Mountain View, CA) us- 

ng its Keras API. The hardware employed included a PC com- 

uter with an Intel Core i9 9900k 3.6 GHz CPU (Intel Corporation, 

anta Clara, CA), 64 GB of RAM, a GPU RTX 2080 Ti with 11 GB

f RAM (Nvidia Corporation, Santa Clara, CA) running on Windows 

0 operating system (Microsoft, Redmond, WA). The network was 

rained for a total of 50 epochs using both the training and valida- 

ion dataset. After running some test, the training was set up with 

DAM optimizer with a learning rate of 0.001 with a batch size of 

. 

During the training we used a custom loss function that took 

nto account the L1 regularization terms, and the mean absolute 

rrors of the estimated volumes and the derived π value. Due to 

he nature of each error and the regularization terms, there was 

 significant difference in the scale of the contributions of each 

erm to the loss. Specifically, L1 regularization penalizes the sig- 

al in the feature maps of the bottleneck and the CAM (which can 

e very high reaching the order of tens of thousands), the π error 

an be very low in contrast (in the order of units), and the LV vol-

mes can reach values in the order of hundreds (using milliliters 

easurements). To compensate for this, we multiplied the error 

f π by 100 and the L1 regularizations were weighted by 10 −3 . 

hese specific weights were chosen based on the observed errors 

uring the network training after several experiments. The values 

hat optimized the training process were the ones described, which 

eans that an equilibrated contribution was required for a good 

erformance. The final loss function was the sum of all these pa- 

ameters. This loss function can be checked in Eq. (1 ), where MAE 

volume) and MAE ( π ) represent the mean absolute error for the 

olume prediction in milliliters and for the value of π estimated 

http://www.tensorflow.org
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Fig. 1. Neural network architecture design. The design is similar to that of the 3D U-net, but the last layer of the bottleneck and the CAM layer include L1 activity regu- 

larization. The CAM layer is then passed to the features scanning module which produces the final volume estimation. Above every block is the number of feature maps 

associated to it, and under it at the side of each stage is the size of the feature maps, where the squared number refers to xy plane size and n the z size. The number of 

feature maps generated start at 64 and gets doubled at each pooling stage in the contracting path. Conversely, along the upsampling path the number of feature channels is 

halved at each step, until reaching a final convolution that outputs a 32-channel block before the last one that generates the CAM. 

Fig. 2. Example of the output obtained by the CAM layer of the proposed neural network. It can be seen how the left ventricle region corresponds to a high probability in 

the CAM. CAM: class activation ap. 

Fig. 3. Scanning module designed to extract two features from the CAM. The first convolution scan obtains the volume of the biggest region. Then a second scanning of 

convolutions finds the average diameters for each slice, which combined with the previous scanned areas output an estimation of the number π in order to help the network 

focus on circular objects. 

r
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t

d

s

(

r

s

4

W

espectively. 

oss = MAE ( volu me ) + 100 × MAE ( π) 

+ 10 

−3 
( L 1 ( bott lene ck ) + L 1 ( CAM ) ) (1) 

The training dataset was increased through data augmentation 

echniques. Specifically, for each batch we added an extra batch 

uring training. This additional batch was obtained from random 

amples from the training dataset that applied random rotation 
4 
between -30 ° and + 30 °), random shear (between -20 ° and + 20 °), 
andom translation (between -15 and + 15 pixels) and added gaus- 

ian noise (mean of 0.035 and standard deviation of 0.01). 

. Results 

In this section we present the results offered by the network. 

e analyzed two types of results in the test set. One was the direct 
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Fig. 4. Training and validation history of the network. The training loss kept de- 

creasing in a stable manner, with little improvement from epoch 30. The validation 

loss took some time to stabilize until it reached epoch 20 with very high losses 

and fluctuations before reaching this point. This shows that in the initial stages the 

training was not obtaining meaningful features and that the training of such net- 

work can take some time and is of high difficulty. a.u.: arbitrary units. 

v

s

o

t

4

h

f

a

e

a

m

i

g

i

4

t

o

0

b

m

t

o

m

h

t

h

t

i

t

1  

i

c

Fig. 5. Cloud of points representing the real volumes against the predicted volumes 

from the network for the test set. The analysis of the results shows a high correla- 

tion (R = 0.95) and the values closely match in most cases. The regression showed a 

slope of 0.81 and bias of 19.41. Although the correlation is big, it is noticeable that 

with the cases of higher volume values there is an underestimation that seems to 

be more apparent from 250 ml. 
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olume estimation offered by the network and the other was the 

egmentation derived from the CAM employed by the network to 

btain the volume. Furthermore, we analyze the performance of 

he training process. 

.1. Training performance 

The neural network was trained for 50 epochs and needed 12 

ours to complete the training. The training history of the loss 

unction can be seen in Fig. 4 . The training loss improved during 

ll the 50 epochs, however the validation loss shows a more erratic 

volution in the first steps until it stabilizes in epoch 20 and stays 

pproximately constant during the rest of the training. This could 

ean that the training of this type of network is complicated, as 

t takes time to actually start learning meaningful features to get 

ood results in the validation dataset without overfitting the train- 

ng set. 

.2. Volume estimation results 

The distribution of the relative errors of the volume estima- 

ion from the network followed a mean and standard deviation 

f 8.50 ± 6.60 % with the majority of the cases falling between 

 and 10 % relative error. In terms of the absolute error the distri- 

ution followed a mean and standard deviation of 9.127 ± 18.888 

illiliters. After exploring the results, we encountered a slight 

endency to underestimate the volumes. Fig. 5 present the cloud 

f points of the real volumes against the estimated volumes in 

illiliters. It shows a high correlation (R = 0.95) and it also shows 

ow the tendency to underestimate the volume is greater when 

he LV is bigger. This trend starts to be more apparent at 250 ml, 

owever there were few cases that surpassed this limit (6 cases in 

otal, 6.12% of the test set). 

As for the computation time required by the network to output 

ts prediction, using the hardware described the 98 cases of the 

est set requires a total of 104.85 s to complete using a batch of 

 (we used a batch of 1 in order to check the time required for

ndependent computations), resulting in an average of 1.07 s per 

ase. 
5 
.3. Derived segmentation results 

An analysis of the masks derived from the CAM layer was also 

erformed to ensure that the estimated volumes were in fact ob- 

ained from the corresponding region of the LV, which was the 

im in order to offer the desired explainability. For this analysis we 

mployed the Dice coefficient [34] which measures the degree of 

verlap between the estimated object and the manual segmenta- 

ion. In order to generate the masks, we performed two steps: first 

e applied a threshold of 0.9 to the CAM and then we retrieved 

nly the biggest object present (which is the one that the network 

sed to derive the volume) as in some rare cases small residual 

bjects outside the LV appeared in the CAM. Fig. 6 shows a rep- 

esentative example of the segmentation achieved with this proce- 

ure. After exploring the segmentations, we encountered two ten- 

encies: they tended to overestimate the mask at the apical region 

nd to slightly underestimate the remaining slices. This matches 

he results of the volumes estimated directly by the network, lead- 

ng to a slight underestimation of the final volume. The location of 

he LV was correct in all cases. 

Based on these findings we additionally applied a simple post- 

rocessing to the masks in order to improve the segmentation: 

limination of the more apical slice followed by a dilation of 

 × 5 × 1 pixels at each slice. These improved the masks signif- 

cantly. The Dice coefficient distributions for both the basic masks 

erived from the CAM and the masks with the post-processing 

ollowed a mean and standard deviation of 0.720 ± 0.053 and 

.791 ± 0.042 respectively. These results show that applying the 

ost-processing described resulted in better segmentations, which 

onfirms the tendency observed in the masks directly derived by 

he CAM. 

. Discussion 

We have presented a fully convolutional neural network that is 

apable of obtaining the LV volume in the diastole time frame and 

erive a segmentation of the region to offer explainability. The net- 

ork offers such outputs after being trained with only the actual 

olume values, not using any information regarding the location of 

he LV, but encoding information regarding the circular property of 

he LV in the images. 
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Fig. 6. Example of segmentations of the LV derived from the CAM in the test set. It is noticeable how at the apical slice there is a slight overestimation of the region, while 

in the remaining slices a small part of the LV is left out of the mask. Still, in all cases the mask location matched that of the LV. 
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The current tendency is to explore the use of convolutional 

eural networks to obtain the segmentation of the LV using pre- 

iously segmented cases to train them. This type of work usually 

chieves state of the art result for specific datasets with reported 

ice coefficients between 0.93 and 0.96 [2–5] . In the case of multi- 

enter/multi-vendor studies, in [7] it was reported a Dice coeffi- 

ient of 0.90 and in [6] the designed neural network achieved Dice 

oefficient values between 0.88 and 0.95 for the endocardium area 

epending on the region (apical, middle and base). All these results 

re promising and show very accurate matches. However, working 

ith the pure segmentation methodology still poses the problem 

f the need to have such segmentations available. We have to take 

nto account that in the clinical setting much of the cases are saved 

n databases were only the final output is saved [18] (LV mass, 

olume, ejection fraction, etc.), this is furthered supported as one 

f the biggest free-available dataset do not provide segmentation 

o work with (Data Science Bowl Cardiac Challenge Data, https: 

/www.kaggle.com/c/second- annual- data- science- bowl/data ), mak- 

ng access to segmentations a hard and time-consuming problem. 

raining the networks with only the volume values may give ac- 

ess to a wider spectrum of clinical databases were the value of 

he biomarker is usually readily accessible. 

In regards to the method recently described in [25] the reported 

ice scores 0.95 in the test set of the automated cardiac diagnosis 

hallenge (ACDC) consisting of 50 subjects. These results show a 

imilar quality as those of convolutional neural networks. 

In contrast to the direct segmentation, the use of regression 

etworks for direct biomarker estimation is a subject that has been 

mployed extensively in the medical field for different topics but 

ew work has been done for the LV volume biomarkers and its 

erivates. 

Specifically, for the case of the LV direct volume regression 

ith neural networks, few studies have addressed this problem. 

n [27] they reported good correlation results with values of 0.95 

nd 0.92 for the end-diastole and end-systole respectively using 

37 cases as a test set. Additionally, they reported a mean error 

f 5.1 ml and 3.6 ml respectively. In [28] the reported results were 

orse with a mean error of 15.83 ml and 9.82 ml for the end-

iastolic and end-systolic frames respectively using as test set a 

otal of 440 cases. In these studies, they aimed to directly obtain 

he volume values of interest and they obtained reasonably good 

esults in the predictions but this kind of approach lacked the abil- 
6 
ty of offering explainability to the result and how the network 

as obtaining the final volume and also required a large amount 

f cases to train the networks. These are problems that are not 

resent in the case of segmentation networks, as they usually re- 

uire a lower number of cases to train the networks and their out- 

ut can be checked to ensure the correct assessment of the regions 

f interest and be trusted by clinicians. 

The design of our neural network is different to the usual re- 

ression networks, in which usually a convolutional neural net- 

ork learns to extracts the features from the image and then a 

ully connected neural network uses this features to obtain the 

iomarker estimation. This makes explainability even more hard 

o obtain, as the representation and dimensionality of the image is 

ost in the process. In contrast our neural network uses the typical 

-net architecture whose output is designed to match the desired 

egmentation, and from the output obtained by the CAM layer it is 

apable of obtaining the volume of interest. We also had to encode 

hrough a scanning module the property of circularity of the object 

o segment in order to help the network determine the best region 

atch. The final output to train the neural network is not the seg- 

ented region but the direct biomarker (the volume to estimate) 

ut it also aims to obtain the segmentation of the region based 

n the CAM layer. This makes the design fall within the weak- 

upervision methodology, which is still a relatively novel and an 

ngoing research field within machine learning [ 15 , 16 ]. 

As exposed, one important consideration to take this kind of 

pproach is that not every medical image database saves the seg- 

entation obtained in the clinical setting, making recovery of 

uch results difficult and time-consuming. In this setting weakly- 

upervised methods like the one proposed will be very useful in 

he near future as well, as the direct biomarkers are usually saved 

n the databases and are more widespread and easily available. 

eakly-supervised methods have been normally used employing 

s target for the training some kind of information that already 

elps the neural network to encode spatial information or pres- 

nce of the object of interest in some regard. Examples are found 

n [ 19 , 20 ] were they employed simply labels of the image to seg-

ent the object of interest, [19] used seed points within the region 

o train with and derive the full object segmentation, [21–23] used 

OIs of the objects to segment as the target during training and 

24] points spread around the contour of the region to segment. In 

ontrast to all this works we used exclusively the actual biomarker 

https://www.kaggle.com/c/second-annual-data-science-bowl/data
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alue (the volume) and incorporated some spatial information in 

he form of a circularity scanning layer using the prior knowledge 

f the natural shape of the LV. 

Although the results offered by the network show a good cor- 

espondence with the real values, there are still some limitations 

o its capabilities, as the volume errors and the Dice coefficient 

easurements for the derived segmentation do not reach state of 

he art results offered by convolutional neural networks that are 

rained to directly segment the LV. We could achieve mean Dice 

oefficient values of 0.791 and a mean error value of 9.127 ml with 

 very high Pearson correlation of 0.95 for the estimated volumes 

or the 98 cases of the test set. These results are comparable to 

he ones obtained by regression networks and show a good match 

ith the real values. Although these are promising results, they fall 

ehind the state of the art results, specially from the neural net- 

orks that are trained to directly offer segmentations. We believe 

his is due to the limited number of cases used during training. 

e employed a total of 259 volumes with data augmentation tech- 

iques during training, but this type of problem offers better re- 

ults with larger datasets in the order of thousands of cases. This 

ould also be seen in the training process where it took a great 

art of the training time for the network to actually start learning 

eaningful features, as seen how the validation loss did not sta- 

ilize to an acceptable trend until reaching epoch 20. Still, the re- 

ults in both the final output volume and the segmentation overlap 

how a good match indicating that the methodology employed for 

his problem is correct and that it could be improved and extended 

or the volume estimation in the LV in the end-systolic time frame 

nd to additionally derive the ejection fraction. It is also important 

o note that we did not test the method on systolic frames due to 

he increased difficulty usually associated to it, as in this frame the 

V is considerably smaller and we had access to a fewer number of 

amples for the systole to train the network model. Although we 

id not test it for the systolic frame some changes would probably 

e required, mainly the size reduction of the non-trainable convo- 

ution in the scanning layer to better fit the size of the LV in those

rames. We believe the methodology could also be expanded to en- 

ompass other problems with similar aims in the medical imaging 

eld, as the one of the main focus is in the segmentations obtained 

hat aims to offer explainability to the final user. 

Explainability in deep learning is a major concern in recent 

ears due to the fact that this type of algorithms is difficult to in-

erpret and are usually viewed as black boxes. This is especially 

mportant for neural networks that aim to extract direct biomark- 

rs without using a segmentation of the region of interest (usu- 

lly through regression networks), while traditionally biomarkers 

ave been extracted after segmenting the region of interest. We 

elieve that the use of the approach taken in this work will in- 

rease in the following years to come, as it offers the opportunity 

o broaden the use of more databases which lack segmentation in- 

ormation and aims to offer the biomarker result along a segmen- 

ation, which would provide the desired explanation of that re- 

ult. This method works in contrast to current regression networks 

hat provide the biomarker output without giving an explanation 

f how it was obtained by the network, making the output difficult 

o trust [ 15 , 16 ]. Specifically, in the clinical field this is crucial, as

he decision-making is of utmost delicacy and will be considered 

n the legal setting in the near future for this type of algorithms 

35] . 

. Conclusions 

We have presented a neural network design that achieves good 

esults in the LV volume estimation, with values close to the real 

nes. Furthermore, the network allows the obtention of a mask 

f the LV derived from the CAM layer, which explains how the 
7 
eural network estimates the volumes. The masks obtained also 

howed a good correspondence with the actual LV region, which 

nsured that the estimated volumes matched the LV. We think this 

ethodology is important from a clinical perspective, since it al- 

ows for clinicians to understand how these algorithms work and 

xplain the results instead of just offering the biomarker output 

eading to the widespread view of them working as black boxes. At 

he same time, it broadens the spectrum of possibilities to conduct 

ore research in this direction, as with this methodology more 

atabases with fewer labeled data could be employed for the LV 

olume estimation and segmentation. 
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