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Abstract In this paper, a two-step class of fourth-order iterative methods for solving systems of nonlinear equations is presented.
We further extend the two-step class to establish a new sixth-order family which requires only one additional functional evalua-
tion. The convergence analysis of the proposed classes is provided under several mild conditions. A complete dynamical analysis
is made, by using real multidimensional discrete dynamics, in order to select the most stable elements of both families of fourth
and sixth-order of convergence. To get this aim, a novel tool based on the existence of critical points has been used, the parameter
line. The analytical discussion of the work is upheld by performing numerical experiments on some application oriented prob-
lems. Finally on the basis of numerical results, it has been concluded that our methods are comparable with the existing ones of
similar nature in terms of order and efficiency and also that the stability results provide the most efficient member of each class
of iterative schemes.

Keywords Systems of nonlinear equations · Order of convergence ·Multipoint iterative methods · Stability analysis.

1 Introduction

Systems of nonlinear equations are of immense importance for applications in many areas of science and engineering. For a given
nonlinear system, G(X) = 0, where G : D ⊆ Rn → Rn, we are interested to find a vector X∗ = (x∗1, x

∗
2, · · · , x∗n)T such that

G(X∗) = 0 , where G(X) = (g1(X), g2(X), . . . , gn(X))T is a Fréchet differentiable function and X = (x1, x2, . . . , xn)
T ∈

Rn. The classical Newton’s method is the most basic procedure to solve systems of nonlinear equations. It is given by

X(k+1) = X(k) − {G′(X(k))}−1G(X(k)), k = 0, 1, . . . (1)

where {G′(X(k))}−1 is the inverse of first order Fréchet derivative of the function G evaluated in (X(k)). Assuming that the
function G is continuously differentiable and the initial approximation is good enough, then this method converges quadratically.
In literature, there are a variety of higher-order methods which improve the order of convergence of Newton’s scheme. For
example, several authors have developed third-order methods [1–4] each requiring evaluation of one G, two G′ and two matrix
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inversion per iteration. Cordero and Torregrosa [5] derived two more third-order methods, one of which requires one G and three
G′ whereas the other requires one G and four G′ evaluations and two matrix inversions. Another third-order method by Darvishi
and Barati [6] utilizes two G, two G′ and two matrix inversions per iteration. Darvishi and Barati [7] and Potra and Pták [8] have
proposed third-order methods that require two G, one G′ and one matrix inversion. Babajee et al. [9] have presented fourth-order
method which consumes one G, two G′ and two matrix inversions per iteration. The fourth-order method by Cordero et al.
[10] is developed using two evaluations of the function and the Jacobian and one matrix inversion, whereas the authors in [11]
propose another fourth-order method utilizing three G, one G′ and one matrix inversion per iteration. Another fifth-order method
proposed by Cordero et al. [12] require three evaluations of the function and only one Jacobian evaluation, with the solution of
three linear systems with the same matrix of coefficients per iteration.

In pursuit of faster algorithms, researchers have also developed fifth and sixth-order methods for example [13–16]. In [14],
Narang et al. extended the existing Babajee’s fourth-order scheme [17] to solve systems of nonlinear equations and developed
a sixth-order convergent family of Chebyshev-Halley type methods. Their scheme requires two G , two G′ evaluations and the
solution of two linear systems per iteration. One can notice that while the researchers are making an attempt to improve the
order of convergence of an iterative method, it mostly leads to increase in the computational cost per step. The computational
cost is especially high if the method involves the use of second order Fréchet derivative G′′(X). This is a major limitation of the
higher-order methods. Thus, while developing new iterative methods, we should try to keep the computational cost low. With this
intention, we have made an attempt to develop a family of three-step sixth-order family of methods requiring two G, two G′ and
one matrix inversion per iteration. This family of methods are compared to be more efficient than existing methods. These have
been found to be effective in solving particularly large-scale systems of nonlinear equations.

The outline of the paper is as follows. In Section 2, a parametric family of fourth-order methods are presented along with their
convergence analysis. In Section 3, we present a class of new sixth-order schemes by adding a step to the fourth-order family
and its convergence analysis. Section 4 is devoted to the analysis of the real dynamics of the proposed classes and the selection
of their most stable elements. In Section 5, we test the consistency of convergence behaviour of the methods and examine the
theoretical results with help of various numerical experiments. Finally, Section 6 contains some conclusions.

2 Development of fourth-order scheme

In this section, we extended the two-point fourth-order Chebyshev-Halley type methods proposed by Behl and Kanwar [18] for
solving systems of nonlinear equations G(X) = 0. For this purpose, we write the generalized form as:

Y (k) = X(k) − 2

3
Γ (X(k)),

X(k+1) = X(k) − η(X(k))
−1
µ(X(k))Γ (X(k)),

(2)

where

Γ (X(k)) = {G′(X(k))}−1G(X(k)),

µ(X(k)) = A1I + 3A2Ω(X(k)) + 9A3

(
Ω(X(k))

)2
− 27A4

(
Ω(X(k))

)3
,

η(X(k)) = 2
(
A5I − 3A6Ω(X(k)) + 9A7

(
Ω(X(k))

)2
− 27A8

(
Ω(X(k))

)3
,

Ω(X(k)) = {G′(X(k))}−1G′(Y (k)),

and
A1 = 54a3 − 135a2 + 102a− 23, A2 = −54a3 + 135a2 − 112a+ 29,
A3 = 18a3 − 45a2 + 38a− 11, A4 = (a− 1)2(2a− 1),
A5 = 27a3 − 54a2 + 33a− 4, A6 = 27a3 − 54a2 + 35a− 6,
A7 = 9a3 − 18a2 + 11a− 2, A8 = a(a− 1)2,

being a a free disposable parameter and I the identity matrix of size n× n. This class is denoted by PM4.

2.1 Convergence analysis

In order to analyze the convergence of the proposed class (2), we need some tools and procedures introduced in [19]. Let
G : D ⊆ Rn → Rn be sufficiently differentiable in an open neighborhood D. The l-th derivative of G at u ∈ Rn, l ≥ 1, is the
l-linear function G(l)(u) : Rn × · · · × Rn → Rn such that G(l)(u)(v1, . . . , vl) ∈ Rn. It is easy to observe that

1. G(l)(u)(v1, . . . , vl−1, vl) ∈ L(Rn)
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2. G(l)(u)(vσ(1), . . . , vσ(l)) = G(l)(u)(v1, . . . , vl), for all permutations σ of {1, 2, . . . , l}.

From the above properties, we can use the following notation:

(a) G(l)(u)(v1, . . . , vl) = G(l)(u)v1, . . . , vl
(b) G(l)(u)vl−1G(p)vp = G(l)(u)G(p)(u)vp+l−1.

On the other side, for (X∗ + h) ∈ Rn lying in a neighborhood of a solution X∗ of G(X) = 0, we can apply Taylor’s series
expansion and assuming that the Jacobian matrix G′(X∗) is non-singular, we have

G(X∗ + h) = G′(X∗)
[
h+

p−1∑
l=2

Clh
l
]
+O(hp), (3)

where Cl = 1
l!{G

′(X∗)}−1G(l)(X∗) for l ≥ 2. It is clear that Clhl ∈ Rn, since G(l)(X∗) ∈ L(Rn × · · · × Rn,Rn) and
{G′(X∗)}−1 ∈ L(Rn). In addition, G′ can be expressed as

G′(X∗ + h) = G′(X∗)
[
I +

p−2∑
l=2

lClh
l−1
]
+O(hp−1), (4)

where I is the identity matrix. Therefore, lClhl−1 ∈ Rn. From equation (4), we have

{G′(X∗ + h)}−1 = {G′(X∗)}−1
(
I + C∗2h+ C∗3h

2 + C∗4h
3 + C∗5h

4 + . . .
)
+O(hp), (5)

where
C∗2 =− 2C2,

C∗3 =4C2
2 − 3C3,

C∗4 =− 4C4 + 6C2C3 + 6C3C2 − 8C3
2 ,

...

Let e(k) = X(k) − X∗ be the error at kth iteration. The equation e(k+1) = M(e(k))ρ + O((e(k))ρ+1), where M is a ρ-linear
function M ∈ L(Rn × · · · × Rn,Rn), is called error equation, being ρ its convergence order.

Theorem 1 Let G : D ⊆ Rn → Rn be sufficiently differentiable in an open neighborhood D of X∗ which is solution of the
system G(X) = 0. Consider that initial guess X(0) is sufficiently close to the required solution X∗ and G′(X) is continuous and
nonsingular in X∗. Then, the proposed iterative scheme (2) has local fourth-order of convergence for all a ∈ R.

Proof Let e(k) = X(k)−X∗ be the error at kth iteration. With the help of Taylor’s series expansion, one can obtain the following
expansions of the function G(X(k)) and its first-order derivative G′(X(k)) around the point X∗.

G(X(k)) = G′(X∗)
(
e(k) + C2(e

(k))2 + C3(e
(k))3 + C4(e

(k))4 + C5(e
(k))5

+ C6(e
(k))6 +O((e(k))7)

)
.

(6)

G′(X(k)) = G′(X∗)
(
I + 2C2e

(k) + 3C3(e
(k))2 + 4C4(e

(k))3 + 5C5(e
(k))4

+ 6C6(e
(k))5 +O((e(k))6)

)
,

(7)

where Cj = 1
j!{G

′(X∗)}−1G(j)(X∗) for j = 2, 3, 4 . . . .
From (7), one can obtain the expression of the inverse

{G′(X(k))}−1 = {G′(X∗)}−1
(
I − 2C2e

(k) +
(
4C2

2 − 3C3

)
(e(k))2

+
(
− 8C3

2 + 12C3C2 − 4C4

)
(e(k))3

+
(
16C4

2 − 36C3C
2
2 + 16C4C2 + 9C2

3 − 5C5

)
(e(k))4 +O

(
(e(k))5

))
.

(8)
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By using expressions (6) and (8), one gets

{G′(X(k))}−1G(X(k)) = e(k) − C2(e
(k))2 + 2

(
C2

2 − C3

)
(e(k))3

+
(
4C2C3 + 3C3C2 − 4C3

2 − 3C4

)
(e(k))4

+
(
− 4C5 + 6C2C4 − 8C2

2C3 + 6C2
3 + 4C4C2 − 6C2C3C2

+ 8C4
2 − 6C3C

2
2

)
(e(k))5 −

(
C6 − 2C2C5 − 5C5C2 + 4C2

2C4

+ 8C4C
2
2 − 3C3C4 − 4C4C3 + 6C2C

2
3 + 6C3C2C3 − 8C3

2C3

+ 8C2C4C2 − 12C2
2C3C2 + 9C2

3C2 − 12C2C3C
2
2 + 16C5

2

− 12C3C
3
2

)
(e(k))6 +O((e(k))7).

(9)

The first-step of proposed scheme (2) can be rewritten as:

Y (k) −X∗ = X(k) −X∗ − 2

3
{G′(X(k))}−1G(X(k)). (10)

In view of (9), equation (10) yields as:

Y (k) −X∗ = 1

3
e(k) +

2

3
C2(e

(k))2 − 2

3

(
2C2

2 − 2C3

)
(e(k))3

− 2

3

(
− 4C3

2 + 7C3C2 − 3C4

)
(e(k))4

− 2

3

(
8C4

2 − 20C3C
2
2 + 10C4C2 + 6C2

3 − 4C5

)
(e(k))5

− 2

3

(
− 16C5

2 + 52C3C
3
2 − 28C4C

2
2 − 33C2

3C2 + 13C5C2

+ 17C3C4 − 5C6

)
(e(k))6 +O

(
(e(k))7

)
.

(11)

Further, the Taylor’s series expansions of G(Y (k)) and G′(Y (k)) around the point X∗ are given as:

G(Y (k)) = G′(X∗)
[
(Y (k) −X∗) + C2(Y

(k) −X∗)2 + C3(Y
(k) −X∗)3 +O((Y (k) −X∗)4)

]
,

= G′(X∗)
[1
3
e(k) +

7

9
C2(e

(k))2 −
1

27

(
24C2

2 − 37C3

)
(e(k))3 +

1

81

(
180C3

2

− 288C3C2 + 163C4

)
(e(k))4 −

1

243

(
1296C4

2 − 2916C3C
2
2 + 1272C4C2

+ 864C2
3 − 649C5

)
(e(k))5 +

1

729

(
9072C5

2 − 26352C3C
3
2 + 12384C4C

2
2

+ 15552C2
3C2 − 4992C5C2 − 7632C3C4 + 2431C6

)
(e(k))6 +O

(
(e(k))7

)]
,

(12)

and
G′(Y (k)) = G′(X∗)

(
I +

2

3
C2e

(k) +
1

3

(
4C2

2 + C3

)
(e(k))2 +

(
−

8

3
C3

2 + 4C3C2 +
4C4

27

)
(e(k))3

+
1

81

(
432C4

2 − 864C3C
2
2 + 396C4C2 + 216C2

3 + 5C5

)
(e(k))4 +O

(
(e(k))5

))
.

(13)

Also, by using equations (8) and (13), one can have

Ω(X(k)) = I − 4C2

3
e(k) +

(
4C2

2 −
8C3

3

)
(e(k))2 − 8

27

(
36C3

2 − 45C3C2 + 13C4

)
(e(k))3

+
4

81

(
540C4

2 − 999C3C
2
2 + 363C4C2 + 216C2

3 − 100C5

)
(e(k))4 +O

(
(e(k))5

)
,

(14)

(Ω(X(k)))2 = I − 8C2

3
e(k) +

8

9

(
11C2

2 − 6C3

)
(e(k))2 − 16

27

(
54C3

2 − 57C3C2

+ 13C4

)
(e(k))3 +

8

81

(
990C4

2 − 1575C3C
2
2 + 467C4C2 + 288C2

3

− 100C5

)
(e(k))4 +O

(
(e(k))5

)
,

(15)
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and

(Ω(X(k)))3 = I − 4C2e
(k) +

(52C2
2

3
− 8C3

)
(e(k))2 − 8

27

(
224C3

2 − 207C3C2

+ 39C4

)
(e(k))3 +

4

27

(
1584C4

2 − 2247C3C
2
2 + 571C4C2 + 360C2

3

− 100C5

)
(e(k))4 +O

(
(e(k))5

)
.

(16)

In view of equations (9), (14), (15) and (16), the second-step of scheme (2), one gets the following error equation

X(k+1) −X∗ = 1

9

(
− 72a2C3

2 + 144aC3
2 − 63C3

2 − 9C3C2 + C4

)
(e(k))4

+
2

27

(
216a3C4

2 − 648a2C3C
2
2 − 648aC4

2 + 1296aC3C
2
2

+ 378C4
2 − 540C3C

2
2 − 30C4C2 − 27C2

3 + 4C5

)
(e(k))5 +O

(
(e(k))6

)
.

(17)

This implies that the scheme (2) achieves fourth-order convergence. This completes the proof. �

3 The sixth-order scheme and its convergence analysis

Now, we propose the following parametric family of sixth-order iterative scheme based on (2) by introducing an additional step
requiring only one new function evaluation as follows:

Y (k) = X(k) − 2

3
Γ (X(k)),

Z(k) = X(k) − η(X(k))
−1
µ(X(k))Γ (X(k)),

Xk+1 = Z(k) −
(
pI +Ω(X(k))

(
qI + rΩ(X(k))

))
{G′(X(k))}−1G(Z(k)),

(18)

where p, q, r are free disposable parameters, Γ (X(k)), µ(X(k)), η(X(k)), and A′is (for i = 1, 2, . . . , 8) are defined as previously
in scheme (2). In the remain of the manuscript, this family will be denoted by PM6.

In the following result, we establish the local order of convergence of class (18).

Theorem 2 Let G : D ⊆ Rn → Rn be sufficiently differentiable in an open neighborhood D of X∗ which is a solution
of G(X) = 0. Consider that initial guess X(0) is sufficiently close to the required zero X∗ and G′(X) is continuous and
nonsingular in X∗. Then, for all a ∈ R and r ∈ R, the local order of convergence of the sequence {X(k)} generated by the
proposed iterative scheme (18) is six for p = r + 5

2 and q = − 3
2 − 2r.

Proof Using the error equation (17), expand the function G(Z(k)) around the point X∗, one obtains

G(Z(k)) =G′(X∗)
[
(Z(k) −X∗) + C2(Z

(k) −X∗)2 + C3(Z
(k) −X∗)3 +O((Z(k) −X∗)4)

]
. (19)

Pre-multiply the (19) with (8) and after simplification, one can have

{G′(X(k))}−1G(Z(k)) =
1

9

(
− 72a2C3

2 + 144aC3
2 − 63C3

2 − 9C3C2 + C4

)
(e(k))4

+
2

27

(
216a3C4

2 + 216a2C4
2 − 648a2C3C

2
2 − 1080aC4

2

+ 1296aC3C
2
2 + 567C4

2 − 513C3C
2
2 − 33C4C2 − 27C2

3 + 4C5

)
(e(k))5

+O
(
(e(k))6

)
.

(20)

In view of equations (14) and (20), one can have(
pI +Ω(X(k))

(
qI + rΩ(X(k))

))
{G′(X(k))}−1G(Z(k)) =

(p+ q + r)−
4

3

(
C2q + 2C2r

)
e(k) +

4

9

(
9C2

2q − 6C3q + 22C2
2r − 12C3r

)
(e(k))2

−
8

27

(
36C3

2q − 45C3C2q + 13C4q + 108C3
2r − 114C3C2r + 26C4r

)
(e(k))3

+
4

81

(
540C4

2q − 999C3C
2
2q + 363C4C2q + 216C2

3q − 100C5q + 1980C4
2r

− 3150C3C
2
2r + 934C4C2r + 576C2

3r − 200C5r
)
(e(k))4 +O

(
(e(k))5

)
.

(21)
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Substituting (21) in the last step of method (18), one obtains

X(k+1) −X∗ =
1

9

(
9(8(a− 2)a+ 7)C3

2 + 9C3C2 − C4

)
(p+ q + r − 1)(e(k))4

+
2

27

(
− 216a3C4

2 + 648(a− 2)aC3C
2
2 + 27C2

3 − 4C5

)
(p+ q + r − 1)

+
2

27

(
− 216a2C4

2p− 360a2C4
2q − 504a2C4

2r + 1080aC4
2p+ 1368aC4

2q

+ 1656aC4
2r − 648aC4

2 − 63C4
2 (9p+ 11q + 13r − 6) + C4C2(33p

+ 35q + 37r − 30) + 513C3C
2
2p+ 495C3C

2
2q + 477C3C

2
2r − 540C3C

2
2

)
(e(k))5

+
1

81

(
5184a4C5

2 − 10368a3C3C
3
2 + 5616(a− 2)aC4C

2
2 + 7776(a− 2)aC2

3C2

− 42C6

)
(p+ q + r − 1) +

1

81

(
− 6480a3C5

2p− 4752a3C5
2q − 3024a3C5

2r

+ 9072a3C5
2 + 288a2C5

2 (45p+ 60q + 79r − 36)− 5832a2C3C
3
2p

− 12744a2C3C
3
2q − 19656a2C3C

3
2r − 3888a2C3C

3
2 + 432aC3C

3
2 (99p

+ 131q + 163r − 54)− 27216aC5
2p− 41040aC5

2q − 57168aC5
2r

+ 14256aC5
2 + 2C5C2(159p+ 175q + 191r − 135) + 3C3C4(207p

+ 215q + 223r − 198) + 13770C5
2p− 22275C3C

3
2p+ 4230C4C

2
2p

+ 5751C2
3C2p+ 20574C5

2q − 27567C3C
3
2q + 3930C4C

2
2q + 5319C2

3C2q

+ 28386C5
2r − 32715C3C

3
2r + 3614C4C

2
2r + 4887C2

3C2r − 6966C5
2

+ 14418C3C
3
2 − 4626C4C

2
2 − 6318C2

3C2

)
(e(k))6 +O

(
(e(k))7

)
.

(22)

To achieve the sixth-order of convergence, the coefficients of (e(k))4 and (e(k))5 must be equal to zero, which reduces to the
following linear system:

p+ q + r = 1,

3p+ 5q + 7r = 0.
(23)

Now, solving the above system of equations, one gets p = r + 5
2 and q = − 3

2 − 2r. Furthermore, (22) reduces to the following
final error equation

X(k+1) −X∗ =
1

81

(
9(8(a− 2)a+ 7)C3

2 + 9C3C2 − C4

)(
2C2

2 (8r − 27) + 9C3

)
(e(k))6

+O
(
(e(k))7

)
.

(24)

This completes the proof of Theorem 2. �

Finally, using the conditions of the Theorem 2, we obtain the sixth-order scheme as follows:

Y (k) = X(k) − 2

3
Γ (X(k)),

Z(k) = X(k) − η(X(k))
−1
µ(X(k))Γ (X(k)),

Xk+1 = Z(k) −
(
(r +

5

2
)I +Ω(X(k))

(
(−3

2
− 2r)I + rΩ(X(k))

))
{G′(X(k))}−1G(Z(k)),

(25)

where a, r ∈ R.

4 Stability analysis of class PM4

From the early works of Fatou and Julia [20,21] at the end of XIX-th century about the qualitative performance of Newton’s
iterative method on quadratic polynomials (by means of the analysis of its associate rational function), discrete dynamics has
shown to be a powerful tool for the study of the stability of iterative schemes for solving nonlinear problems. Nowadays, when
a class of iterative methods depending on one or more parameters is designed, the analysis of its performance on quadratic or
cubic polynomials allows us to select the most stable members of the class (see, for example, [33,22–28]).

These elements are also numerically checked in order to test their performance on other functions. Although there not exist
any result showing that these behavior will be held, it is shown in practice that an unstable iterative method on low-degree poly-
nomials will be also unstable for another nonlinear functions. Also, when an iterative scheme shows a clear stable performance
(as Newton’s method does) then this good behavior will remain, up to some extent, when it is applied on more complicated
functions.
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The most used qualitative techniques are those of real and complex discrete dynamics, when the iterative processes under
analysis are scalar. That is, when the methods are designed for solving nonlinear equations. Nevertheless, when the scheme or
family of iterative methods are constructed for solving systems of nonlinear equations, the multidimensional real dynamics is
needed to study its stability. In these cases, a system of second-degree polynomials is used and the resulting rational function is
also multidimensional.

Let us also remark that, when the iterative scheme uses the evaluation of Jacobian matrices on the previous iterate, the
Scaling Theorem is satisfied (see, for example, [29,30]) and then the dynamics related to the rational function is equivalent,
under conjugation, to that resulting from using any order second-degree polynomial system. Therefore, we work with the simplest
nonlinear quadratic system.

In what follows, we use real multidimensional discrete dynamics tools to determine which elements of proposed classes of
iterative methods PM4 posses better performance, in terms of the dependence of their convergence on the initial estimations
used. To get this aim, let us recall some concepts.

Let us denote by R(x) the vectorial fixed-point rational function associated to an iterative method (or a parametric family of
schemes) applied to n-variable polynomial system p(x) = 0, p : Rn → Rn. Let us also remark that the majority of the definitions
can be directly extended from those in complex dynamics (see, for example, [31,29] for more explanations).

In the following, we denote by M4(x, a) = (m4
1(x, a),m

4
2(x, a), . . . ,m

4
n(x, a)), the fixed point function associated to (2)

class, applied on a system of quadratic polynomials of size n, p(x) = 0, where:

pi(x) = x2i − 1, i = 1, 2, . . . , n. (26)

Let us remark that our system has separated variables, so all the coordinate functionsm4
j (x, a) are similar, with the difference

of the index j = 1, 2, . . . , n. The expression of these coordinate functions are:

m
4
j (x, a) =

1− 6x2
j − 6x4

j − 6x6
j + x8

j + 2a3pj(x)
3
(
1 + x2

j

)
− a2pj(x)3

(
5 + 3x2

j

)
− 2a

(
2− 7x2

j + x4
j + 3x6

j + x8
j

)
−8a2xjpj(x)3 + 4a3xjpj(x)3 − 8

(
x3
j + x5

j

)
− 4a

(
xj − 5x3

j + 3x5
j + x7

j

) , (27)

for j = 1, 2, . . . , n.
Let us remark that the components of this rational function can be highly simplified for specific values of parameter a; in

particular, for a = 1, the resulting components are:

m4
j (x, 1) =

1 + 6x2j + x4j

4
(
xj + x3j

) , (28)

for j = 1, 2, . . . , n.
A summary of the stability study of the fixed points of M4(x, a) appears in the following result.

Theorem 3 Rational function M4(x, a) associated to the family of iterative methods (2) has 2n superattracting fixed points
whose components are roots of p(x). It also has some real fixed points different from the roots whose components are found
combining the roots of polynomial l(t) = 1− 4a+ 5a2 − 2a3 + (−5 + 14a− 15a2 + 6a3)t2 + (−3− 8a+ 15a2 − 6a3)t4 +
(−1− 2a− 5a2 + 2a3)t6, depending on a, and the roots of p(x):

(a) If a < 1
2 , there exist two real roots of l(t), denoted by li(a), i = 1, 2, whose respective eigenvalues are greater than one

(in absolute value). So, the strange fixed point expressed as (lσ1(a), lσ2(a), . . . , lσn(a)) being σi ∈ {1, 2}, are repulsive.
Moreover, if at least one of the components of the strange fixed point (but not all) are equal to 1 or −1, it will be a saddle
fixed point.

(b) If 1
2 ≤ a < c∗, being c∗ ≈ 2.90369 the biggest real root of polynomial −1− 2t− 5t2 +2t3, then the roots of polynomial l(t)

are complex and there not exist any real strange fixed point.
(c) If a > c∗, then l1(α) and l2(a) are real. Moreover, the strange fixed point (lσ1

(a), lσ2
(a), . . . , lσn(a)) being σi ∈ {1, 2}, are

attracting if c∗ < a < c∗∗ ≈ 3.864355 and repulsive if a > c∗∗ (c∗∗ is the greatest real root of polynomial −167 + 958t −
2031t2 + 2666t3 − 3716t4 + 4152t5 − 2224t6 + 352t7). Indeed, if at least one of the components of the strange fixed point
(but not all) are equal to ±1, it will be a saddle fixed point for a > 3.864355 and attracting in other cases.

Proof Fixed points of M4(x, a) can be obtained by solving m4
j (x, a) = xj , : −(x2j − 1)(1 − 4a + 5a2 − 2a3 + (−5 + 14a −

15a2 + 6a3)x2j + (−3 − 8a + 15a2 − 6a3)x4j + (−1 − 2a − 5a2 + 2a3)x6j ) = 0, j = 1, 2, . . . , n, that is, the components of
the fixed points are xj = ±1 and also the roots of the polynomial l(t), provided that t 6= 0.

Let us denote the roots of l(t) as li(a), i = 1, 2, . . . , 6. It can be checked that at most two of the roots of l(t) are real, depending
on the value of parameter a. The stability of the fixed points of M4(x, a) is given by the absolute value of the eigenvalues of the
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associated Jacobian matrix evaluated at the fixed points. Due to the nature of the polynomial system, these eigenvalues coincide
with the coordinate function of the rational operator:

Eigj(lj(a), . . . , lj(a)) = (µj(a))
3
[

2a6(µj(a))
4−a5(µj(a))3α1(a)+2a4(µj(a))

2α2(a)

4lj(a)2(2a2(µj(a))3−a3(µj(a))3+2β1(a)+aβ2(a))
2

+
−2lj(a)2α3(a)+2a2α4(a)−aα5(a)+2a3α6(a)

4lj(a)2(2a2(µj(a))3−a3(µj(a))3+2β1(a)+aβ2(a))
2

]
,

being µj(a) = −1 + lj(a)
2, α1(a) = −9 + 7lj(a)

2, α2(a) = 8 − 17lj(a)
2 + lj(a)

4, α3(a) = 3 + 8lj(a)
2 + 3lj(a)

4,
α4(a) = 3− 32lj(a)

2 − 5lj(a)
4 + 18lj(a)

6, α5(a) = 1− 30lj(a)
2 − 42lj(a)

4 + 6lj(a)
6 + lj(a)

8, α6(a) = −7 + 40lj(a)
2 −

33lj(a)
4 − 4lj(a)

6 + 4lj(a)
8, β1(a) = lj(a)

2 + lj(a)
4 and β2(a) = 1− 5lj(a)

2 + 3lj(a)
4 + lj(a)

6.
By taking into account the absolute value of this eigenvalues in the intervals where different fixed points are real, we state

that those fixed points whose components are ±1 are superattracting. Roots of l(t) are real for a > c∗, being c∗ ≈ 2.90369 the
biggest real root of polynomial −1 − 2t − 5t2 + 2t3. Then, it can be checked that the respective eigenvalues are bigger than
one in absolute value, except in case c∗ < a < c∗∗ ≈ 3.864355, as c∗∗ is the greatest real root of polynomial −167 + 958t −
2031t2+2666t3− 3716t4+4152t5− 2224t6+352t7, where they are lower than one. Therefore, combinations among the roots
of l(t) can give rise to attracting or repulsive strange fixed points depending on the value of a. Moreover, all the fixed points
whose components are ±1 and real lj(α) are classified as saddle. In Figure 1, some of the eigenvalues are plotted; if a < 1

2 , the
eigenvalues of the Jacobian matrix evaluated at all the real strange fixed points have the same performance (see Figure 1a), being
higher than one (so, points are repulsive). Moreover, for a > c∗, the possibility of attracting strange fixed point is deduced (see
Figure 1b), as the respective eigenvalues are lower than one when c∗ < a < c∗∗ ≈ 3.864355. �
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(a) Eigj(l1(a), . . . , l1(a), a) for a < 1
2
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1.5

2.0
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(b) Eigj(l1(a), . . . , l1(a), a) for a > c∗

Fig. 1: Eigenvalues associated to the fixed points

Once the existence of strange fixed points is studied and their stability is determined, it is necessary to analyze if it is possible
to get any other attracting behavior, as attracting periodic orbits or even strange attractors. This can be made through the orbits
of the free critical points, if they exist.

4.1 Bifurcation Analysis of Free Critical Points

Now, we analyze the Jacobian matrix M4′(x, a) of the rational function under analysis and its critical points. Let us recall that,
in this context, the critical point are the solutions of det (M4′(x, a)) = 0. When the critical point is not a solution of p(x) = 0,
it is called free critical point.

Theorem 4 The free critical points of operator M4(x, a), denoted by
(crσ1(a), crσn(a), . . . , crσn(a)), σi ∈ {1, 2, . . . ,m} m ≤ 6, are those making zero all the components of the Jacobian matrix,
for j = 1, 2, . . . , n, whose components are different from those of the roots of p(x), that is:

(a) If a ≤ k∗ ≈ −0.744644, 1 −
√
2 < a < 0, 1

4

(
4−
√
2
)
< a < 0.710821, 1.18627 < a < 1

4

(
4 +
√
2
)
, 1
4

(
4 +
√
2
)
< a <

1.88923 or a > 1+
√
2 (where k∗ is the lowest root of polynomial 1− 2t− 3t2 +2t3) then cr1(a) = −

√
s∗, cr2(a) =

√
s∗,
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cr3(a) = −
√
s∗∗, cr4(a) =

√
s∗∗ are the different components of the free critical points, being s∗ and s∗∗ the two positive

roots of polynomial z(s) = −a+6a2−14a3+16a4−9a5+2a6+(−6+30a−64a2+80a3−66a4+34a5−8a6)s+(−16+
42a−10a2−66a3+86a4−48a5+12a6)s2+(−6−6a+36a2−8a3−38a4+30a5−8a6)s3+(−a+8a3+2a4−7a5+2a6)s4.

(b) If k∗ < a < −0.578202, −0.464045 < a < −0.429149, −0.429149 < a < 1 −
√
2 or 1

2 < a < 1
4

(
4−
√
2
)
, then cr1(a),

cr2(a), cr3(a), cr4(a), cr5(a) = −
√
s∗∗∗ and cr6(a) =

√
s∗∗∗ are the different components of the free critical points, being

s∗, s∗∗ and s∗∗∗ the three positive roots of polynomial z(s) in this interval.
(c) If a = −0.578202 or a = −0.464045, the free critical points have as components cr1(a), cr3(a), cr4(a) and cr5(a).

(d) If −0.578202 < a < −0.464045 or 0.355416 < a <
1

2
or 1.88923 < a < 1 +

√
2, then cr1(a) and cr2(a) are the only

components of the free critical points.
(e) If a = −0.429149, then cr1(a), cr3(a), cr4(a), and cr6(a) are the different components of the free critical points.
(f) If 0 ≤ a ≤ 0.355416 or 0.710821 < a < 1.18627, then there are no free critical points.

(g) If a =
1

2
, then the components of the free critical points are ±− 2.54246, the only real roots of polynomial −3− 6t2 + t4.

(h) If a = 1
4

(
4−
√
2
)

or a = 1
4

(
4 +
√
2
)
, then the components of the free critical points are cr2(a) and cr3(a).

(i) If a = 0.710821 or a = 1.18627, then the components of the free critical points are cr1(a) and cr3(a).

Proof The components of the Jacobian matrix M4′(x, a) different from zero are

∂m4
j (x, a)

∂xj
= (pj(x))

3

[
2a6(pj(x))

4−a5(pj(x))3(−9+7x2
j)+2a4(pj(x))

2(8−17x2
j+x

4
j)

4x2
j(2a2(pj(x))3−a3(pj(x))3+2(x2

j+x
4
j)+a(1−5x2

j+3x4
j+x

6
j))

2

+
−2x2

j(3+8x2
j+3x4

j)+2a2(3−32x2
j−5x

4
j+18x6

j)
4x2
j(2a2(pj(x))3−a3(pj(x))3+2(x2

j+x
4
j)+a(1−5x2

j+3x4
j+x

6
j))

2

+
−a(1−30x2

j−42x
4
j+6x6

j+x
8
j)+2a3(−7+40x2

j−33x
4
j−4x

6
j+4x8

j)
4x2
j(2a2(pj(x))3−a3(pj(x))3+2(x2

j+x
4
j)+a(1−5x2

j+3x4
j+x

6
j))

2

]
, j = 1, 2.

Therefore, it is straightforward that the roots of −a+ 6a2 − 14a3 + 16a4 − 9a5 + 2a6 + (−6 + 30a− 64a2 + 80a3 − 66a4 +
34a5 − 8a6)t2 + (−16 + 42a− 10a2 − 66a3 + 86a4 − 48a5 + 12a6)t4 + (−6− 6a+ 36a2 − 8a3 − 38a4 + 30a5 − 8a6)t6 +
(−a + 8a3 + 2a4 − 7a5 + 2a6)t8, when they are real, are the components of the critical points. A simple change s = t2 yields
to solve z(s) in order to define the free critical points. �

Let us remark that the case a = 1, where rational function M4(x, a) is simplified, has no free critical points. The importance
of this knowledge is in a classical result from Julia and Fatou (see, for example, [32]), stating that in the immediate basin of
attraction of any attracting point (fixed or periodic) there exist at least one critical point. So, the existence of these free critical
points states the possibility of another attracting behavior different from that of the roots and their absence means that no other
behavior is possible than convergence to the roots. We can check this performance by plotting the dynamical planes of M4(x, a)
for different values of a in these areas where there not exist free critical points.

Pictures in Figure 2 have been obtained using the routines appearing in [33] in the following way: it has been used a mesh
with 400 × 400 points, with 80 as maximum number of iterations, being the tolerance of the stopping criterium 10−3. We have
painted a point with different colors depending on where it converges to. This color is brighter when the number of iterations
used is lower; moreover, it is colored in black if it reaches the maximum number of iterations without converging to any of the
roots.

Figures 2a and 2c correspond to values of a in the interval 0 ≤ a ≤ 0.355416; it can be observed that the basins of attraction
of the roots have an infinite number of connected components and in case of a = 0, there is a basin of attraction of infinity
(in black in the figure), where all the initial estimations diverge. On the contrary, in Figures 2b and 2d there exist only one
connected component of each basin of attraction and there are not divergent behavior; they correspond to values of a in the
interval 0.710821 < a < 1.18627. They have a performance as stable as Newton’s method but with fourth-order of convergence.

Some examples of unstable behavior can be observed in Figure 3: for a = 3 where many attracting strange fixed points
appear (see Figure 3a), combining in pairs {±1,±5.076757}. These points are marked with white stars and all of them have their
own basin of attraction, although not all of them have a color assigned. In Figure 3b, corresponding to a = 3.864355, the pairs
obtained combining ±1.86676 are non-hyperbolic strange fixed points (the associate Jacobian matrix have eigenvalues equal to
one) and they can behave as attracting points. So, the wideness of the basins of attraction of the roots is quite reduced.

5 Stability analysis of class PM6

In order to analyze the performance of class PM6 on the polynomial system p(x) = 0, we fix the value a = 1 that has
shown to be the best in the study of the stability of class PM4 (although close values of a in ]0.710821, 1.18627[ would



10 Munish Kansal et al.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
y

(a) a = 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(b) a = 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(c) a = 0.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(d) a = 0.8

Fig. 2: Stable dynamical planes of M4(x, a)

lead to very similar results). Therefore, the third step of PM6 depend only on parameter r. Let us denote by M6(x, r) =
(m6

1(x, r),m
6
2(x, r), . . . ,m

6
n(x, r)), the fixed point function associated to (18) class on p(x). Coordinate functions m6

j (x, a) can
be expressed as:

m6
j (x, r) =

−2r
(
−1 + x2j

)5
+ 3

(
1− 7x2j + 34x4j + 90x6j + 125x8j + 13x10j

)
192x5j

(
1 + x2j

)2 , (29)

for j = 1, 2, . . . , n.
Let us remark that the components of this rational function can be highly simplified for specific values of parameter r; in

particular, for r =
39

2
, the resulting components are:

m6
j

(
x,

39

2

)
=

7− 36x2j + 82x4j − 20x6j + 95x8j

32x5j

(
1 + x2j

)2 , (30)
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(b) a = 3.864355

Fig. 3: Unstable dynamical planes of M4(x, a)

for j = 1, 2, . . . , n.
In the following result, we summarize the information about the stability analysis of the fixed points of M6(x, r). The proof

is similar to that of Theorem 3, so it is omitted.

Theorem 5 Rational function M6(x, a) associated to the family of iterative methods (18) has 2n superattracting fixed points
whose components are roots of p(x). It has also several real strange fixed points whose components are found combining the
roots of polynomial

h(t) = 3 + 2r + (−18− 8r)t2 + (84 + 12r)t4 + (162− 8r)t6 + (153 + 2r)t8,

depending on r, and the roots of p(x):

(a) If r < − 153
2 , four roots of h(t), denoted by hi(r), i = 1, 2, 3, 4 are real, being their associate eigenvalues greater than

one ( in absolute value). So, the strange fixed point expressed as (hσ1(r), hσ2(r), . . . , hσn(r)) being σi ∈ {1, 2, 3, 4}, are
repulsive. Moreover, if at least one of the components of the strange fixed point (but not all) are equal to 1 or −1, it will be a
saddle fixed point.

(b) If − 153
2 ≤ r < −3

2
, only h1(r) and h2(r) are real. The absolute value of the eigenvalues of their associate Jacobian

matrix are all greater than one. So, the strange fixed point expressed as (hσ1(r), hσ2(r), . . . , hσn(r)) being σi ∈ {1, 2}, are
repulsive. However, if at least one of the components of the strange fixed point (but not all) are equal to 1 or−1, it is a saddle
fixed point.

(c) If r = −3

2
or r >

3(−1237+41
√
41)

2048 ≈ −1.42745, then all the roots of polynomial h(t) are complex and there not exist any
real strange fixed point.

(d) If− 3
2 < r <

3(−1237+41
√
41)

2048 , then li(r), i = 1, 2, 3, 4, are real. Regarding the stability, strange fixed points (hσ1(r), hσ2(r), . . . , hσn(r))
with σi ∈ {2, 3} are attracting for r ∈] − 1.427649,−1.427449[; in any other case, the strange fixed points are unstable
repelling (if σi ∈ {1, 4}) or saddle.

(e) If r =
3(−1237+41

√
41)

2048 , then l1(r) and l3(r) are real and the strange fixed point (lσ1
(r), lσ2

(r), . . . , lσn(r)) being σi ∈ {1, 3}
are parabolic.

From this result, it can be concluded that r = −3

2
or r >

3
(
−1237 + 41

√
41
)

2048
≈ −1.42745 are the best areas for

avoiding the existence of strange fixed points; however, the only area with attracting strange fixed points is extremely small,
] − 1.427649,−1.427449[. So, the existence of attracting periodic orbits would be the only undesirable behavior to avoid in
practice. To get this aim, we study M6′(x, r) and its critical points.
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Theorem 6 There exist 2n real free critical points of M6(x, r), only if − 3
2 ≤ r < 39

2 . In this case, their only components are

±
√

12+14r
39−2r +

√
729+696r+176r2

(39−2r)2 .

Proof The eigenvalues of the Jacobian matrix M6′(x, r) are

Eigj(x, r)−
(
−1 + x2j

)4 (
15 + 24x2j − 39x4j + 2r

(
5 + 14x2j + x4j

))
192x6j

(
1 + x2j

)3 , j = 1, 2.

Then, to get the free critical points it is only necessary to find the real roots of 15 + 10r + (24 + 28r)t + (−39 + 2r)t2, being
t = x2j . �

As there exist at least one critical point in each basin of attraction (see [32]), the orbits of these points give us relevant
information about the stability of the rational function and, therefore, of the iterative method involved. We present in Figure 4
real parametric lines showing these orbits (see Theorem 6) for n = 2. In each one of these pictures, a different free critical point
is used as starting point of each member of the family of iterative schemes, using − 3

2 ≤ r < 39
2 to ensure the existence of real

critical points.
To plot these parameter lines, a mesh of 500 × 500 points is made in the region [0, 1]×] − 3

2 ,
39
2 [. We use [0, 1] to fatten

the interval where r is defined, allowing a better visualization. So, the color corresponding to each value of r is red if the
corresponding critical point converges to one of the roots of the polynomial system, blue in case of divergence and black in
other cases. This color is also assigned to all the values of [0, 1] with the same value of the parameter. The maximum number of
iterations used is 200 and the tolerance for the error estimation is 10−3, when the iterates tend to a fixed point.

0 2 4 6 8 10 12 14 16 18

r

Fig. 4: Parameter line of M6(x, r) for −3

2
< r <

39

2

All the pairs of free critical points have the same global performance, so only the case (cr1(r), cr1(r)) is presented in Figure

4. In it, the parameter line is plotted for −3

2
< r <

39

2
as outside this interval all the components of the free critical points are

complex. It is observed that there is convergence to the roots (red color) for almost all values of r, except a black small region
around 18.5.

Bifurcation or Feigenbaum diagrams has been used in order to study the changes of each class of methods on p(x) by using
each of the free critical points of the rational function as a initial guess and noticing their performance for different ranges of the
parameter. Therefore, different behavior can be observed after 1000 iterations by using a mesh with 3000 subintervals.

Figures 5 corresponds to the bifurcation diagrams in The black area of the parameter line for −3

2
< r <

39

2
(see Figure

4). In Figures 5a and 5c, it can be observed as there is a general convergence to one of the roots, but in a small interval around
r = 18.5 a period-doubling cascade appears, including not only periodic but also chaotic behavior (blue regions). In them, there
can be found strange attractors. To represent it, we plot in the (x1, x2)-space the orbit of x(0) = (0.35, 0.35) byM6 ((x1, x2), r),
for r = 18.659, laying in the blue region. For each r, the number of different starting estimations is 1000 and, for each one, we
do not plot the first 500 iterations, meanwhile following 400 are represented in blue color and the resting 100 in magenta. We
observe it in Figure 6 as a neutral strange fixed point, after bifurcating in periodic orbits with increasing periods, falls in a chaotic
behavior where orbits are dense in a small area of (x1, x2) space.

This unstable performance, as well as stable one can be checked by plotting the associated dynamical planes, where the value
of the parameter is fixed and a mesh of initial estimations is used to see the performance of the methods. The first dynamical

planes correspond to stable behavior, that is, there exist only convergence to the roots (see Figure 7). For values of r in ]− 3

2
,
39

2
[,

where there are free critical points, there are only one connected component per root in Figures 7a and 7b if values of red color
in the parameter line ( shown in Figure 4) are selected. Outside this interval, there are no free critical point and the performance
is also stable, but there exist infinite connected components of each basin of attraction (Figures 7c and 7d).
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Fig. 5: Feigenbaum diagrams of M6(x, r) for −3

2
< r <

39

2

Regarding the unstable behavior, it is limited to values of r in the the black region of the parameter line (Figure 4). In
Figures 8a and 8b, two parts of the strange attractor found for r = 18.659 can be observed, that was plotted in Figure 6;
this dynamical plane have been obtained by avoiding the lines in the orbit of the initial estimation selected in the black area
and plotting by yellow circles the elements of the orbit (this time 400 iterations have been used). Finally, in Figures 8c and
8d, the phase space for r = 18.5 is represented. In them, the 2-period orbits {(−0.3473,−0.3473), (−18.0176,−18.0176)}
and {(0.3473,−0.3473), (18.0176,−18.0176)} appear in yellow. In this case, two more attracting orbits exist, with symmetric
coordinates.

In general, it can be concluded that, the main performance of the members of M4 and M6 classes of iterative methods on this
kind of polynomial systems is very stable. There are no attracting strange fixed points and the only attracting behavior different
from the roots lay in a very small interval of r. These conclusions are numerically checked in the following numerical section.

6 Numerical results

In this section, some numerical problems are considered to demonstrate the convergence behavior and computational efficiency
of the proposed methods. The proposed schemes (2) namely PM1

4 , PM2
4 , PM3

4 for a = 1
2 , a = 5

8 , and a = 8
10 respectively are

considered and compared with existing fourth-order techniques namely HM4, JM4, MM1
4 , introduced by Sharma and Arora’s
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(a) r = 18.659 (b) r = 18.659, a detail

Fig. 6: Strange attractors of M6(x, r) for r in blue doubling-period cascade

method [34], Jarratt’s method [35] and Narang’s method [14], respectively. For a = 1, Jarratt’s method is the special case of
proposed scheme (2). The proposed scheme (25) for a = 5

8 , r = 10, for a = 1
2 , r =

1
2 , for a = 3

2 , r =
1
4 and for a = 1, r = 39

2
are denoted as PM4

6 , PM5
6 , PM6

6 and PM7
6 respectively and compared with existing schemes of sixth order namely, LM6,

MM2
6 , RM6 proposed by Lotfi et al. [15], Narang’s et al. [14] and Behl et al. [16], respectively. To verify the theoretical order

of convergence, we have displayed the iterations k, ‖G(X(k))‖ and ||X(k+1)−X(k)||, the approximation of the asymptotic error
constant η and computational order of convergence (ρ) using the following formulas, respectively:

ρ ≈
ln ‖X

(k+1)−X(k)‖
‖X(k)−X(k−1)‖

ln ‖X(k)−X(k−1)‖
‖X(k−1)−X(k−2)‖

, for each k = 2, 3, . . . , (31)

where X(k−2), X(k−1), X(k), and X(k+1) are four consecutive approximations in the iterations process;

η = lim
k→∞

‖X(k+1) −X(k)‖
‖X(k) −X(k−1)‖ρ

, where (ρ = 4 or 6). (32)

All numerical computations have been done on Mathematica 11 with variable precision arithmetics using a mantissa of 1000
digits to minimize rounding errors and in all tables, b(±c) denotes b× 10±c.

Example 1 Consider the following small system of nonlinear equations

x21 + x22 + x23 = 1,

2x21 + x22 − 4x3 = 0,

3x21 − 4x22 + x23 = 0.

The convergence of this system towards the solution X∗ = (0.6982886 . . . , 0.6285243
. . . , 0.3425642 . . . )T is tested and shown in Table 1.

Example 2 One of the most famous physical problem of radiative transfer theory which is the Chandrasekhar integral equation
(see [36, pages 251-252]) is considered for applicability and effectiveness of proposed schemes compared to existing methods,
as follows:

F (P, c) = 0, P : [0, 1]→ R

with parameter c and operation F as

F (P, c)(y) = P (y)−
(
1− c

2

∫ 1

0

yP (y)

y + v
dv
)−1

.



New fourth and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis 15

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(a) r = 0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(b) r = 18

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

(c) r = −2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
y

(d) r = 20

Fig. 7: Stable dynamical planes of M6 on p(x)

We transform the Chandrasekhar equation in a nonlinear system by means of a Gauss-Legendre quadrature formula,
∫ 1

0
f(t)dt '∑8

j=1 wjf(tj), where tj denotes the nodes and wj the weights of the Gauss-Legendre quadrature formula.
Denoting the approximations of P (y(ti)) by yi(i = 1, 2, ..., 8), one gets the system of nonlinear equations

yi −
(
1− c

2

8∑
j=1

aijyj

)−1
= 0, i = 1, 2, ..., 8,

where
aij =

wj ti
ti + tj

, and c = 0.5.

Nodes tj and weights wj are known and given in the following table for t = 8.
The performance of the methods to estimate the solution:

X∗ = (1.021720 . . . , 1.073186 . . . , 1.125725 . . . , 1.169753 . . . , 1.203072 . . . ,
1.226491 . . . , 1.241525 . . . , 1.249449 . . . )T is checked in Table 3.
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Fig. 8: Unstable dynamical planes of M4 on p(x)

Example 3 Consider the Frank-Kamenetskii Problem [37] described by the following differential equation

xy′′ + y′ + xey = 0, y′(0) = y(1) = 0. (33)

To convert the above boundary value problem (33) into nonlinear system of size 50 × 50 with step size h = 1
51 , the finite

difference discretization is used. For second derivative central difference has been used which is as follows:

y′′i =
yi−1 − 2yi + yi+1

h2
, i = 1, 2, . . . , 50.

The solution (0.4742933 . . . , 0.4738815 . . . , 0.4730579 . . . , 0.4718232 . . . , 0.4701778 . . . ,
0.4681227 . . . , 0.4656589 . . . , 0.4627878 . . . , 0.4595107 . . . , 0.4558294 . . . , 0.4517458 . . . ,
0.4472620 . . . , 0.4423803 . . . , 0.4371031 . . . , 0.4314332 . . . , 0.4253735 . . . , 0.4189268 . . . ,
0.4120966 . . . , 0.4048861 . . . , 0.3972989 . . . , 0.3893387 . . . , 0.3810094 . . . , 0.3723149 . . . ,
0.3632593 . . . , 0.3538470 . . . , 0.3440823 . . . , 0.3339696 . . . , 0.3235137 . . . , 0.3127193 . . . ,
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Table 1: Convergence behavior of different methods using initial guess X(0) = (1, 1, 1)T for Example 1.

Cases k ||G(X(k+1))|| ||X(k+1) −X(k)|| ρ
‖X(k+1)−X(k)‖
‖X(k)−X(k−1)‖ρ

η

HM4

1 9.2(−2) 3.4(−2)
2 3.3(−6) 8.4(−7) 6.56632768(−1) 1.20819612
3 3.0(−24) 6.0(−25) 3.9425 1.20819612

JM4

1 5.0(−2) 1.6(−2)
2 5.1(−8) 1.1(−8) 3.25047966(−1) 3.67096134(−1)
3 2.9(−32) 5.6(−33) 4.0214 3.67096134(−1)

MM1
4

1 5.3(−2) 1.7(−2)
2 1.1(−9) 3.1(−10) 3.31909055(−3) 3.48171436(−2)
3 1.4(−39) 3.1(−40) 3.9536 3.48171436(−2)

PM1
4

1 2.3(−2) 3.8(−3)
2 7.1(−11) 1.6(−11) 8.22152464(−2) 3.21217484(−1)
3 1.2(−43) 2.3(−44) 4.0045 3.21217484(−1)

PM2
4

1 3.3(−2) 8.3(−3)
2 7.1(−10) 1.4(−10) 2.98786575(−2) 4.56924693(−2)
3 9.2(−41) 1.8(−41) 3.9961 4.56924693(−2)

PM3
4

1 4.5(−2) 1.4(−2)
2 2.2(−8) 4.8(−9) 1.29912566(−1) 2.31165655(−1)
3 6.5(−34) 1.3(−34) 4.0153 2.31165655(−1)

LM6

1 2.3(−2) 6.9(−3)
2 7.5(−13) 1.6(−13) 1.48465013 3.38894420
3 2.8(−76) 5.4(−77) 6.0165 3.38894420

MM2
6

1 1.2(−2) 3.6(−3)
2 4.4(−16) 1.0(−16) 4.34999343(−2) 1.60951775(−1)
3 9.4(−97) 1.8(−97) 6.0065 1.60951775(−1)

RM6

1 1.6(−2) 5.0(−3)
2 4.6(−14) 1.1(−14) 6.43957889(−1) 1.93917293
3 1.4(−83) 2.7(−84) 6.0153 1.93917293

PM4
6

1 3.2(−3) 5.9(−4)
2 6.1(−20) 1.2(−20) 2.68196800 2.77107704
3 3.8(−120) 7.3(−121) 5.9995 2.77107704

PM5
6

1 3.1(−3) 5.3(−4)
2 5.7(−20) 1.1(−20) 4.81238189 1.62837380
3 1.3(−119) 2.5(−120) 6.0015 1.62837380

PM6
6

1 4.0(−3) 8.4(−4)
2 1.6(−18) 3.1(−19) 8.56644577(−1) 1.04568928
3 5.0(−111) 9.6(−112) 5.9998 1.04568928

PM7
6

1 7.7(−3) 2.6(−3)
2 5.3(−15) 1.0(−15) 3.16181092 9.11341844
3 4.9(−89) 9.3(−90) 6.0034 9.11341844

Table 2: Nodes and weights of Gauss-Legendre quadrature formula

j tj wj

1 0.01985507175123188415821957... 0.05061426814518812957626567...

2 0.10166676129318663020422303... 0.11119051722668723527217800...

3 0.23723379504183550709113047... 0.15685332293894364366898110...

4 0.40828267875217509753026193... 0.18134189168918099148257522...

5 0.59171732124782490246973807... 0.18134189168918099148257522...

6 0.76276620495816449290886952... 0.15685332293894364366898110...

7 0.89833323870681336979577696... 0.11119051722668723527217800...

8 0.98014492824876811584178043... 0.05061426814518812957626567...

0.3015910 . . . , 0.2901340 . . . , 0.2783530 . . . , 0.2662533 . . . , 0.2538399 . . . , 0.2411180 . . . ,
0.2280928 . . . , 0.2147698 . . . , 0.2011542 . . . , 0.1872513 . . . , 0.1730667 . . . , 0.1586057 . . . ,
0.1438739 . . . , 0.1288766 . . . , 0.1136194 . . . , 0.09810770 . . . , 0.08234704 . . . , 0.06634287 . . . ,
0.05010065 . . . , 0.03362582 . . . , 0.01692381 . . . )T of this problem is tested and shown in Table 4.
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Table 3: Convergence of different methods using initial value X(0) = (1, 1, . . . , 1)T for Example 2.

Cases k ||G(X(k+1))|| ||X(k+1) −X(k)|| ρ
‖X(k+1)−X(k)‖
‖X(k)−X(k−1)‖ρ

η

HM4

1 7.9(−7) 8.9(−7)
2 2.1(−30) 2.4(−30) 3.71092028 3.19792695(−6)
3 9.0(−125) 1.0(−124) 4.0027 3.19792695(−6)

JM4

1 6.3(−7) 7.0(−7)
2 5.4(−31) 6.0(−31) 2.48977678(−6) 2.07422265(−6)
3 2.4(−127) 2.7(−127) 4.0556 2.07422265(−6)

MM1
4

1 5.8(−7) 6.5(−7)
2 3.4(−31) 3.7(−31) 2.14640690(−6) 1.75506541(−6)
3 3.1(−128) 3.4(−128) 4.0550 1.75506541(−6)

PM1
4

1 5.4(−7) 6.0(−7)
2 2.3(−31) 2.5(−31) 1.90277319(−6) 1.54003293(−6)
3 5.6(−129) 6.2(−129) 4.0547 1.54003293(−6)

PM2
4

1 5.8(−7) 6.5(−7)
2 3.4(−31) 3.8(−31) 2.15684152(−6) 1.77057582(−6)
3 3.2(−128) 3.5(−128) 4.0551 1.77057582(−6)

PM3
4

1 6.7(−7) 6.9(−7)
2 4.8(−31) 5.3(−31) 2.3944553(−6) 1.98712419(−6)
3 1.4(−127) 1.5(−127) 4.0550 1.98712419(−6)

LM6

1 8.8(−11) 9.7(−11)
2 9.3(−62) 9.4(−62) 1.14365077(−1) 2.09430142(−47)
3 1.3(−319) 1.4(−319) 5.2138 2.09430142(−47)

MM2
6

1 1.2(−10) 1.3(−10)
2 6.3(−69) 7.1(−69) 1.38796360(−9) 1.19766180(−9)
3 1.4(−418) 1.5(−418) 6.0382 1.19766180(−9)

RM6

1 1.3(−10) 1.5(−10)
2 1.5(−68) 1.7(−68) 1.52873178(−9) 1.31247377(−9)
3 2.9(−416) 3.3(−416) 6.0385 1.31247377(−9)

PM4
6

1 3.3(−11) 3.9(−11)
2 7.4(−72) 8.7(−72) 2.58565512(−9) 1.89554607(−9)
3 6.8(−436) 8.0(−436) 6.0369 1.89554607(−9)

PM5
6

1 1.0(−10) 1.1(−10)
2 2.1(−69) 2.4(−69) 1.15228376(−9) 9.90919774(−10)
3 1.8(−421) 2.0(−421) 6.0380 9.90919774(−10)

PM6
6

1 1.1(−10) 1.2(−10)
2 2.8(−69) 3.2(−69) 1.21461310(−9) 1.04639321(−9)
3 9.2(−421) 1.0(−420) 6.0380 1.04639321(−9)

PM7
6

1 1.9(−10) 2.2(−10)
2 4.9(−67) 5.7(−67) 5.21111400(−9) 4.50911963(−9)
3 1.3(−406) 1.5(−406) 6.0392 4.50911963(−9)

Example 4 In this example, we want to check the effectiveness of our methods on a large system of nonlinear equations as
compared to the existing methods. Therefore, we consider the following (100× 100) system of polynomial equations.{

x2i sin(xi+1)− 1 = 0, 1 ≤ i ≤ 99,

x2i sin(x1)− 1 = 0, i = 100.

The required solution of this system X∗ = (−1.114157 . . . ,−1.114157 . . . , . . . ,
−1.114157 . . . )T is tested and depicted in the Table 5.

Example 5 Consider the Bratu Problem [38] that has large variety of application areas such as the fuel ignition model of thermal
combustion, radioactive heat transfer, thermal reaction, the Chandrasekhar model of the expansion of the universe, chemical
reactor theory and nanotechnology. The problem is defined as:

y′′ + C1e
y = 0, y(0) = y(1) = 0. (34)

The finite difference discretization is used convert this boundary value problem into nonlinear system of size 40× 40 with C1=1
and step size h = 1

41 . For second derivative central difference has been used which is as follows:

y′′i =
yi−1 − 2yi + yi+1

h2
, i = 1, 2, . . . , 40.
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Table 4: Convergence behavior of different methods using initial value X(0) = ( 1
10 ,

1
10 , . . . ,

1
10 )

T for Example 3.

Cases k ||G(X(k+1))|| ||X(k+1) −X(k)|| ρ
‖X(k+1)−X(k)‖
‖X(k)−X(k−1)‖ρ

η

HM4

1 1.5(−6) 2.6(−3)
2 1.6(−17) 2.9(−14) 6.23789565(−4) 6.23762642(−4)
3 2.6(−61) 4.5(−58) 4.000 6.23762642(−4)

JM4

1 7.3(−7) 1.3(−3)
2 3.9(−19) 7.1(−16) 2.34263687(−4) 2.34236756(−4)
3 3.2(−68) 5.8(−65) 4.2229 2.34236756(−4)

MM1
4

1 6.2(−7) 1.1(−3)
2 9.9(−20) 1.9(−16) 1.19116526(−4) 1.19364071(−4)
3 7.6(−71) 1.5(−67) 4.2122 1.19364071(−4)

PM1
4

1 2.9(−7) 5.4(−4)
2 1.9(−21) 3.5(−18) 4.06900764(−5) 4.29296835(−5)
3 3.5(−78) 6.5(−75) 4.1842 4.29296835(−5)

PM2
4

1 4.8(−7) 8.9(−4)
2 4.1(−20) 7.8(−17) 1.25036152(−4) 1.25171462(−4)
3 2.4(−72) 4.6(−69) 4.2079 1.25171462(−4)

PM3
4

1 6.6(−7) 1.2(−3)
2 2.3(−19) 4.2(−16) 2.03161618(−4) 2.03144555(−4)
3 3.4(−69) 6.2(−66) 4.2193 2.03144555(−4)

LM6

1 5.9(−9) 1.0(−5)
2 3.8(−36) 5.2(−34) 5.12639506(−4) 1.30020237(−26)
3 1.7(−177) 2.7(−174) 5.0727 1.30020237(−26)

MM2
6

1 1.8(−8) 3.2(−5)
2 1.0(−36) 1.8(−33) 1.82615946(−6) 1.82531370(−6)
3 3.5(−206) 6.2(−203) 6.1550 1.82531370(−6)

RM6

1 2.7(−8) 4.7(−5)
2 3.3(−35) 5.8(−32) 5.12016539(−6) 5.11568289(−6)
3 1.2(−196) 2.0(−193) 6.1630 5.11568289(−6)

PM4
6

1 1.1(−8) 1.7(−5)
2 4.1(−38) 7.0(−35) 2.76740190(−6) 2.76658573(−6)
3 1.9(−214) 3.2(−211) 6.1484 2.76658573(−6)

PM5
6

1 8.0(−9) 1.4(−5)
2 2.2(−39) 4.0(−36) 5.30775163(−7) 5.32026749(−7)
3 1.2(−222) 2.2(−219) 6.1429 5.32026749(−7)

PM6
6

1 9.6(−9) 1.7(−5)
2 7.3(−39) 1.3(−35) 5.67371161(−7) 5.68749186(−7)
3 1.5(−219) 2.7(−216) 6.1450 5.68749186(−7)

PM7
6

1 5.1(−8) 8.5(−5)
2 3.0(−33) 5.1(−30) 1.36031353(−5) 1.35828720(−5)
3 1.4(−184) 2.4(−181) 6.1741 1.35828720(−5)

The required solution of this system X∗ = (0.055685 . . . , 0.109484 . . . , 0.161292 . . . ,
0.211002 . . . , 0.258509 . . . , 0.303705 . . . , 0.346483 . . . , 0.386737 . . . , 0.424363 . . . ,
0.459262 . . . , 0.491336 . . . , 0.520492 . . . , 0.546646 . . . , 0.569716 . . . , 0.589632 . . . ,
0.606329 . . . , 0.619754 . . . , 0.629862 . . . , 0.636620 . . . , 0.640005 . . . , 0.640005 . . . ,
0.636620 . . . , 0.629862 . . . , 0.619754 . . . , 0.606329 . . . , 0.589632 . . . , 0.569716 . . . ,
0.546646 . . . , 0.520492 . . . , 0.491336 . . . , 0.459262 . . . , 0.424363 . . . , 0.386737 . . . ,
0.346483 . . . , 0.303705 . . . , 0.258509 . . . , 0.211002 . . . , 0.161292 . . . , 0.109484 . . . ,
0.0556856 . . . )T is tested and shown in Table 6.

7 Conclusions

In this work, we have developed new families of fourth and sixth-order iterative methods for solving systems of nonlinear
equations numerically. As these classes depend on parameters, a stability analysis has been performed, by using tools from
multidimensional discrete dynamics, in order to select those values of the parameters with better properties. Then some specific
elements of both families are chosen. In order to check their effectiveness, the proposed schemes are applied on some large-
scale systems arising from various academic problems. Further, the numerical results show that the proposed techniques perform
better than the existing methods of same order in terms of residual error, difference between two consecutive approximations and
asymptotic error constant.
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Table 5: Convergence behavior of different methods using initial value X(0) = (−1,−1, . . . ,−1)T for Example 4.

Cases k ||G(X(k+1))|| ||X(k+1) −X(k)|| ρ
‖X(k+1)−X(k)‖
‖X(k)−X(k−1)‖ρ

η

HM4

1 3.1(−5) 2.3(−5)
2 6.8(−24) 4.9(−24) 1.91814312(−5) 1.91807387(−5)
3 1.6(−98) 1.1(−98) 4.000 1.91807387(−5)

JM4

1 3.0(−5) 2.2(−5)
2 6.1(−24) 4.4(−24) 1.88736669(−5) 1.88730286(−5)
3 9.6(−99) 6.9(−99) 4.1695 1.88730286(−5)

MM1
4

1 3.0(−5) 2.2(−5)
2 5.9(−24) 4.2(−24) 1.87824776(−5) 1.87818553(−5)
3 8.3(−99) 5.9(−99) 4.1694 1.87818553(−5)

PM1
4

1 3.0(−5) 2.2(−5)
2 5.7(−24) 4.1(−24) 1.87197857(−5) 1.87191736(−5)
3 7.5(−99) 5.4(−99) 4.1693 1.87191736(−5)

PM2
4

1 3.0(−5) 2.2(−5)
2 5.9(−24) 4.2(−24) 1.87871086(−5) 1.87864852(−5)
3 8.4(−99) 6.0(−99) 4.1694 1.87864852(−5)

PM3
4

1 3.0(−5) 2.2(−5)
2 6.0(−24) 4.3(−24) 1.88490459(−5) 1.88484118(−5)
3 9.3(−99) 6.7(−99) 4.1695 1.88484118(−5)

LM6

1 2.0(−7) 1.4(−7)
2 8.7(−49) 6.3(−49) 7.96435784(−8) 7.96435977(−8)
3 6.7(−297) 4.8(−297) 6.1239 7.96435977(−8)

MM2
6

1 1.5(−7) 1.1(−7)
2 1.7(−49) 1.2(−49) 7.38016606(−8) 7.38016476(−8)
3 3.1(−301) 2.2(−301) 6.1221 7.38016476(−8)

RM6

1 1.5(−7) 1.1(−7)
2 1.8(−49) 1.3(−49) 7.42388427(−8) 7.42388292(−8)
3 5.1(−301) 3.7(−301) 6.1222 7.42388292(−8)

PM4
6

1 1.4(−7) 9.9(−8)
2 8.8(−50) 6.3(−50) 6.77788219(−8) 6.77788132(−8)
3 5.9(−303) 4.2(−303) 6.1214 6.77788132(−8)

PM5
6

1 1.5(−7) 1.1(−7)
2 1.6(−49) 1.1(−49) 7.32543890(−8) 7.32543764(−8)
3 2.1(−301) 1.5(−301) 6.1220 7.32543764(−8)

PM6
6

1 1.5(−7) 1.1(−7)
2 1.6(−49) 1.1(−49) 7.34048736(−8) 7.34048610(−8)
3 2.3(−301) 1.7(−301) 6.1220 7.34048610(−8)

PM7
6

1 5.1(−8) 8.5(−6)
2 3.0(−33) 5.1(−30) 1.36031353(−5) 1.35828720(−5)
3 1.4(−184) 2.4(−181) 6.1741 1.35828720(−5)
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