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Abstract

In this work we study the change of the structure of a regular pencil when we perform
small perturbations over some of its rows and the other rows remain unaltered. We
provide necessary conditions when several rows are perturbed, and prove them to be
sufficient to prescribe the homogenous invariant factors or the Weyr characteristic of
the resulting pencil when one row is perturbed.
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1 Introduction

The additive perturbation problem of a matrix can be stated as follows: given a matrix A,
analyze the structure of A + P , where P is a perturbation matrix with certain properties.
Different types of problems have been investigated, depending on different requirements over
A and the perturbation P . Analogous problems can also be stated for a matrix pencil A(s)
and a perturbation pencil P (s).

Results about perturbations of square matrices where the perturbation is a matrix of
bounded rank can be found in [28, 30, 31, 33], among others. Changes of the Weierstrass
or the Kronecker structure of regular or singular pencils, respectively, under pencil pertur-
bations of bounded rank have also been obtained (see, for instance, [9, 10, 21, 2, 3, 18] and
the references therein).

Other types of problems arise when the perturbation is required to be small. Thus,
changes of the Jordan structure of a square matrix under small additive perturbations were
studied in [11, 1]. Small additive perturbations have also been studied for pairs of matrices
([23]), and for pencils ([8, 22]). When small additive perturbations are performed only over
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one or several rows, changes in the similarity invariants of a matrix and changes in the
feedback invariants of a pair of matrices have also been explored ([5, 7, 6, 16]).

Our target is to generalize the research of [5, 7, 6] to matrix pencils. It is natural to pose
the following problem.

Problem 1.1 Given a pencil A(s) =

[
A1(s)
A2(s)

]
∈ C[s](r+(m−r))×n, characterize the Kro-

necker structure of the pencils A′(s) =

[
A′1(s)
A2(s)

]
∈ C[s](r+(m−r))×n obtained from A(s) under

small additive perturbations over A1(s).

As mentioned in [5], the small perturbation problem of several rows is sort of a ‘crossroad’
of perturbation and completion problems. On one hand, the general small perturbation
problem must be taken into account. On the other hand, when perturbing one or several
rows of a square matrix (see [5, 7, 6]), the problem of characterizing the invariant factors of
a square matrix with some prescribed rows plays an important role. This is the problem of
completion of a rectangular matrix to a square one, and was solved in [32]. The problem
of perturbing one row in a pair of matrices (see [16]) involves the problem of characterizing
the feedback invariants of a pair of matrices with some prescribed rows. This problem was
solved in [12].

For general pencils, the problem of characterizing the Kronecker structure of a matrix
pencil with prescribed rows was solved in [13] (see also [14, 15]).

In this paper we study Problem 1.1 for regular pencils. We obtain necessary conditions
when r rows of a regular pencil are perturbed, and solve the problem completely when r = 1,
hence generalizing the results of [5]. To solve the problem we follow the ideas of [5], but
we have to overcome the difficulties appearing due to the presence of infinite elementary
divisors in the pencils.

The paper is organized as follows. We introduce some notation and basic definitions in
Section 2. Section 3 is devoted to present previous results. This section is structured in
two subsections. Subsection 3.1 contains results on perturbation of pencils, whilst results
on completion problems are included in Subsection 3.2. Section 4 contains the main results
of this work. In Theorems 4.1 and 4.2 we obtain necessary conditions that the Weierstrass
invariants must satisfy when a regular pencil is perturbed on r rows. For r = 1, we prove that
the necessary conditions obtained are sufficient for prescribing the homogeneous invariant
factors (Theorem 4.9) or the Weyr characteristic (Theorem 4.13) of the perturbed pencil.
Finally, Section 5 includes a summary of the results obtained in the paper and future work.

2 Notation and basic definitions

We start with the introduction of some properties of integers. We call partition of a positive
integer n to a finite or infinite sequence of nonnegative integers a = (a1, a2, . . .) almost all
zero, such that a1 ≥ a2 ≥ . . . and

∑
i≥n ai = n. The number of components of a different

from zero is the length of a (denoted `(a)). Notice that `(a) ≤ n. For a = (a1, . . . , an)
and b = (b1, . . . , bn), a is majorized by b in the Hardy-Littlewood-Pólya sense (a ≺ b) if∑k
i=1 ai ≤

∑k
i=1 bi for 1 ≤ k ≤ n − 1 and

∑n
i=1 ai =

∑n
i=1 bi. If

∑k
i=1 ai ≤

∑k
i=1 bi,

1 ≤ k ≤ n, it is said that a is weakly majorized by b (a ≺≺ b) (see [27]).
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The conjugate partition of a, a = (ā1, ā2, . . .), is defined as āk := #{i : ai ≥ k}, k ≥ 1.
Given a and b two partitions, a ∪ b is the partition whose components are those of a
and b arranged in decreasing order, and a + b is the partition whose components are the
sums of the corresponding components of a and b. The following properties are satisfied:
a ≺ b⇔ b ≺ a and a ∪ b = a + b.

In [17, Definition 2] a generalized majorization between three finite sequences of integers,
c = (c1, . . . , cm), a = (a1, . . . , as) and d = (d1, . . . , dm+s) is defined and it is denoted by
d ≺′ (c,a). When s = 0, the generalided majorization reduces to d = c and when m = 0,
to d ≺ a.

Through this paper, C denotes the field of complex numbers and F any arbitrary field.
F[s] is the ring of polynomials in the indeterminate s with coefficients in F and F[s, t] the ring
of polynomials in two variables s, t with coefficients in F. We denote by Fp×q, F[s]p×q and
F[s, t]p×q the vector spaces of p×q matrices with elements in F, F[s], and F[s, t], respectively.
Glp(F) will be the general linear group of invertible matrices in Fp×p.

Given a polynomial α(s) =
∑g
i=0 αis

i ∈ F[s], with deg(α) = g, and an integer h ≥ g,
we will denote by revh(α)(t) the polynomial revh(α)(t) = thα( 1

t ) = th−g
∑g
i=0 αit

g−i ∈ F[t].
We have deg(revh(α)) ≤ h. If h = g, we denote revg(α) = α̃(t). Then, α̃(0) 6= 0.

The companion matrix of a monic polynomial α(s) = sn+an−1s
n−1+· · ·+a1s+a0 ∈ F[s],

will be

C =


0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1
−a0 −a1 . . . −an−2 −an−1

 ∈ Fn×n.

Given a polynomial matrix A(s) ∈ F[s]m×n, the degree of A(s) (deg(A(s))) is the max-
imum of the degrees of its entries, and the normal rank of A(s) (rank(A(s))) is the order
of the largest non identically zero minor of A(s), i.e., it is the rank of A(s) considered as
a matrix on the field of fractions of F[s]. If deg(A(s)) = g and h is an integer h ≥ g, then
revh(A)(t) = thA( 1

t ) ∈ F[t]m×n.
A matrix U(s) ∈ F[s]n×n is unimodular if it is a unit in the ring F[s]n×n, i.e., 0 6=

det(U(s)) ∈ F. Two polynomial matrices A(s), B(s) ∈ F[s]m×n are equivalent (A(s) ∼ B(s))
if there exist unimodular matrices U(s) ∈ F[s]m×m, V (s) ∈ F[s]n×n such that B(s) =
U(s)A(s)V (s). If A(s) ∈ F[s]m×n and rank(A(s)) = ρ, then (see for example [20, Ch. 6])

A(s) is equivalent to a unique matrix of the form S(s) =

[
diag(α1(s), . . . , αρ(s)) 0

0 0

]
, where

α1(s), . . . , αρ(s) are monic polynomials and α1(s) | · · · | αρ(s). The matrix S(s) is the
Smith form of A(s) and the polynomials α1(s), . . . , αρ(s) are the invariant factors of A(s).
We will take αi(s) = 1 for i < 1 and αi(s) = 0 for i > ρ. For 1 ≤ k ≤ ρ, the monic greatest
common divisor of the minors of A(s) of order k is the determinantal divisor of A(s) of order
k, denoted by Dk(s), and Dk(s) = α1(s) . . . αk(s). The invariant factors form a complete
system of invariants for the equivalence of polynomial matrices, i.e., two polynomial matrices
A(s), B(s) ∈ F[s]m×n are equivalent if and only if they have the same invariant factors.

A matrix pencil is a polynomial matrix A(s) ∈ F[s]m×n of degree at most one (A(s) =
A0 + sA1). The pencil is regular if m = n = rank(A(s)). Otherwise it is singular. If
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rank(A(s)) = min{m,n} the pencil is also called quasi-regular. The set of matrix pencils in
F[s]m×n is denoted by Pm×n(F).

Two matrix pencils A(s) = A0 +sA1, B(s) = B0 +sB1 ∈ Pm×n(F) are strictly equivalent

(A(s)
s.e.∼ B(s)) if there exist invertible matrices P ∈ Glm(F), Q ∈ Gln(F) such that B(s) =

PA(s)Q.
Given the pencil A(s) = A0 + sA1 ∈ Pm×n(F) of rankA(s) = ρ, a complete system

of invariants for the strict equivalence is formed by a chain of homogeneous polynomials
φ1(s, t) | · · · | φρ(s, t), φi(s, t) ∈ F[s, t], 1 ≤ i ≤ ρ, monic with respect to s, called the
homogeneous invariant factors and two finite partitions of nonnegative integers, c1 ≥ · · · ≥
cn−ρ and u1 ≥ · · · ≥ um−ρ, called the column and row minimal indices of the pencil,
respectively. In turn, the homogeneous invariant factors are determined by the invariant
factors α1(s) | . . . | αρ(s) and a chain of polynomials tk1 | . . . | tkρ in F[t], called the infinite
elementary divisors (see [19, Ch. 2] or [20, Ch. 12]). In fact, we can write

φi(s, t) = tkitdeg(αi)αi

(s
t

)
, 1 ≤ i ≤ ρ. (1)

Observe that αi(s) = φi(s, 1), 1 ≤ i ≤ ρ. If ᾱ1(t) | . . . | ᾱρ(t) are the invariant factors of the
pencil rev1(A)(t) = tA0 +A1 ∈ F[t]m×n, then for some 0 6= li ∈ F,

liᾱi(t) = φi(1, t) = tki α̃i(t), 1 ≤ i ≤ ρ. (2)

(Recall that α̃i(t) = revgi(αi), where gi = deg(αi)). If A(s) ∈ Pm×n(F) and rank(A(s)) = m
(rank(A(s)) = n), then A(s) does not have row (column) minimal indices. As a consequence,
the invariants for the strict equivalence of regular matrix pencils are reduced to the homo-
geneous invariant factors.

A canonical form for the strict equivalence of matrix pencils is the Kronecker canonical
form. Let A(s) ∈ Pm×n(F) be a pencil of rankA(s) = ρ, with invariant factors 1 = α1(s) =
· · · = αρ−x(s) 6= αρ−x+1(s) | · · · | αρ(s), where 0 ≤ x ≤ ρ and deg(αρ−x+i) = gi > 0,
1 ≤ i ≤ x, infinite elementary divisors 1 = tk1 = · · · = tkρ−y 6= tkρ−y+1 | · · · | tkρ , where
0 ≤ y ≤ ρ, column minimal indices c1 ≥ · · · ≥ cr > 0 = cr+1 = · · · = cn−ρ, where
0 ≤ r ≤ n − ρ, and row minimal indices u1 ≥ · · · ≥ uz > 0 = uz+1 = · · · = um−ρ, where
0 ≤ z ≤ m− ρ. Then the Kronecker canonical form of A(s) is

L(s) 0 0 0 0
0 R(s) 0 0 0
0 0 C(s) 0 0
0 0 0 N(s) 0
0 0 0 0 0

 ∈ Pm×n(F),

where L(s) = diag(Lc1(s), . . . , Lcr (s)), R(s) = diag(Ru1
(s), . . . , Ruz (s)), C(s) = diag(sIg1−

C1, . . . , sIgx − Cx), N(s) = diag(Nkρ−y+1
(s), . . . , Nkρ(s)), with Ci the companion matrix of

αρ−x+i, 1 ≤ i ≤ x,

Lk(s) =


s −1

. . .
. . .

s −1

 ∈ Pk×(k+1)(F),

Rk(s) = L
T
k (s) ∈ P(k+1)×k(F),

Nk(s) =


1 −s

. . .
. . .

. . . −s
1

 ∈ Pk×k(F),
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understanding that the non specified components are zero. For details see [19, Ch. 2] or [20,
Ch. 12] for infinite fields, and [29, Ch. 2] for arbitrary fields. From the Kronecker canonical
form of the pencil A(s) it is easy to see that

∑ρ
i=1 deg(φi) +

∑n−ρ
i=1 ci +

∑m−ρ
i=1 ui = ρ. If

A(s) ∈ Pp×p(F) is a regular pencil, then the Kronecker canonical form of A(s) is reduced to
diag(C(s), N(s)) and is known as the Weirstrass canonical form.

Assume now that A(s) = A0 + sA1 ∈ Pm×n(C) is a complex matrix pencil. Let C =
C ∪ {∞}. The spectrum of A(s) is Λ(A(s)) = {λ ∈ C : rank(A(λ)) < rank(A(s))}, where
we agree that A(∞) = A1. The elements λ ∈ Λ(A(s)) are the eigenvalues of A(s).

We can factorize

αρ−i+1(s) =
∏

λ∈Λ(A(s))\{∞}

(s− λ)ni(λ,A(s)), 1 ≤ i ≤ ρ,

φρ−i+1(s, t) = tni(∞,A(s))
∏

λ∈Λ(A(s))\{∞}

(s− λt)ni(λ,A(s)), 1 ≤ i ≤ ρ.

The integers n1(λ,A(s)) ≥ · · · ≥ nρ(λ,A(s)) are the partial multiplicities of λ in A(s),
n(λ,A(s)) = (n1(λ,A(s)), . . . , nρ(λ,A(s))) is the partition of λ in the Segre characteristic of

A(s) and its conjugate partition w(λ,A(s)) = n(λ,A(s)) = (w1(λ,A(s)), . . . , wρ(λ,A(s))) is
the partition of λ in the Weyr characteristic of A(s).

For λ ∈ C \ Λ(A(s)) we take n(λ,A(s)) = w(λ,A(s)) = 0. We agree that ni(λ,A(s)) =
+∞ for i < 1 and ni(λ,A(s)) = 0 for i > ρ, for λ ∈ C. We also agree that φi(s, t) = 1 for i <
1 and φi(s, t) = 0 for i > ρ. Observe that, in (1), ki = nρ−i+1(∞, A(s)), 1 ≤ i ≤ ρ, and from
(2) we conclude that n(∞, A(s)) = n(0, rev1(A)(t)), thus w(∞, A(s)) = w(0, rev1(A)(t)).

We will use the `1 norm in the vector space of polynomials of degree less than or equal to
n. Given a polynomial α(s) = ans

n + an−1s
n−1 + · · ·+ a1s+ a0 ∈ C[s], ‖α(s)‖ =

∑n
i=1|ai|.

Notice that if α(s), β(s) ∈ C[s] and h is an integer such that deg(α) ≤ h, deg(β) ≤ h, then
‖α(s)− β(s)‖ = ‖revh(α)(t)− revh(β)(t)‖.

Given a matrix M(s) = (mi,j(s)) ∈ C[s]m×n, ‖M(s)‖ =
∑m
i=1

∑n
j=1‖mi,j(s)‖. If M(s) ∈

C[s]m×n, N(s) ∈ C[s]n×p, then ‖M(s)N(s)‖ ≤ ‖M(s)‖‖N(s)‖.
Given a real number η > 0 and λ ∈ C, B(λ, η) = {z ∈ C : |z − λ| < η} denotes the

open ball centered at λ and radius η. For λ =∞, B(∞, η) = {z ∈ C : |z| > η−1} ∪ {∞}.
For a given pencil A(s) ∈ Pm×n(C), we define the η-neighbourhood of the spectrum of

A(s) as Vη(A(s)) =
⋃
λ∈Λ(A(s))B(λ, η), whenever the balls B(λ, η) are pairwise disjoint.

3 Previous results

In this section we present some preliminary results. We have grouped them in two subsec-
tions.

3.1 Perturbation results

First of all, we show that in Problem 1.1 we can assume that A2(s) is in Kronecker canonical
form. The proof follows the scheme of that of [5, Lemma 3.2].

Lemma 3.1 Let A(s) =

[
A1(s)
A2(s)

]
∈ P(r+(m−r))×n(C) and B(s) ∈ Pm×n(C) be matrix pen-

cils.

5



Let Ā2(s) = PA2(s)Q and Ā1(s) = A1(s)Q with P ∈ Glm−r(C), Q ∈ Gln(C). Let

Ā(s) =

[
Ā1(s)
Ā2(s)

]
. The following propositions are equivalent:

(i) For every ε > 0, there exists a pencil A′(s) =

[
A′1(s)
A2(s)

]
∈ P(r+(m−r))×n(C) such that

‖A′(s)−A(s)‖ < ε and A′(s)
s.e.∼ B(s).

(ii) For every ε′ > 0, there exists a pencil Ā′(s) =

[
Ā′1(s)
Ā2(s)

]
∈ P(r+(m−r))×n(C) such that

‖Ā′(s)− Ā(s)‖ < ε′ and Ā′(s)
s.e.∼ B(s).

Proof. We have diag(Ir, P )A(s)Q = Ā(s).
(i)⇒ (ii): Let ε′ > 0. From (i) we know that given ε > 0 there exists a pencil A′(s) =[

A′1(s)
A2(s)

]
∈ P(r+(m−r))×n(C) such that A′(s)

s.e.∼ B(s) and ‖A′(s) − A(s)‖ < ε. Let Ā′(s) =

diag(Ir, P )A′(s)Q. Then, Ā′(s)
s.e.∼ A′(s)

s.e.∼ B(s) and

‖Ā′(s)− Ā(s)‖ = ‖diag(Ir, P )(A′(s)−A(s))Q‖ ≤ ‖diag(Ir, P )‖‖A′(s)−A(s)‖‖Q‖

< ε‖diag(Ir, P )‖‖Q‖.

Taking ε = ε′

‖diag(Ir,P )‖‖Q‖ , the result follows.

(ii)⇒ (i): The proof is analogous.

The following lemma can also be found in [5, Lemma 2.1].

Lemma 3.2 [4, Theorem VI.1.2] Let α(s) ∈ C[s] be a polynomial of degree g, α(s) =∑g
i=0 ais

i = ag(s− µ1) . . . (s− µg).

(a) For every ε > 0, there exists δ > 0 such that if α′(s) is a polynomial of degree at most
g and ‖α′(s)− α(s)‖ < δ, then the roots of α′(s) are in

⋃g
i=1B(µi, ε).

(b) Reciprocally, given ε > 0 there exists δ > 0 such that if µ′i ∈ B(µi, δ), 1 ≤ i ≤ g, and
α′(s) = ag(s− µ′1) . . . (s− µ′g), then ‖α′(s)− α(s)‖ < ε.

In the next theorem, necessary conditions are given for perturbations of quasi-regular
pencils.

Theorem 3.3 [8, Ch. 2, Theorem 2.6], [22, Theorem 4.2, particular case] Let A(s) ∈
Pm×n(C) be a pencil such that rank(A(s)) = min{m,n}. Let the partition r (the partition
s) be the conjugate partition of that of the column (row) minimal indices of A(s).

Let Vη(A(s)) be an η-neighbourhood of the spectrum of A(s). There exists δ > 0 such
that if ‖A′(s)−A(s)‖ < δ, then rankA′(s) = rankA(s) and

(i) If the partition r′ (the partition s′) is the conjugate partition of that of the column
(row) minimal indices of A′(s), then r ≺≺ r′ (s ≺≺ s′).

(ii)

Λ(A′(s)) ⊆ Vη(A(s)), (3)

6



(iii)
⋃
µ∈B(λ,η) w(µ,A′(s)) ≺≺ w(λ,A(s)), for every λ ∈ Λ(A(s)).

Remark 3.4 If rank(A(s)) = m = n, i.e., if A(s) is regular, then A′(s) is also regular,
condition (i) disappears and condition (iii) becomes⋃

µ∈B(λ,η)

w(µ,A′(s)) ≺ w(λ,A(s)), for every λ ∈ Λ(A(s)). (4)

The following results on perturbation of matrix pencils are stated for more general pencils
in the corresponding references; we present here the particular cases for regular pencils.

Theorem 3.5 [22, Theorem 5.1, particular case] Let A(s) ∈ Pn×n(C) be a regular pencil,
and let Vη(A(s)) be an η-neighbourhood of the spectrum of A(s). For every λ ∈ Λ(A(s)), let

tλ be a given integer tλ ≥ 0 and let w(λ,j) = (w
(λ,j)
1 , . . . ) be given partitions, 1 ≤ j ≤ tλ.

For every ε > 0, there exists a pencil A′(s) ∈ Pn×n(C) such that ‖A′(s) − A(s)‖ < ε, its
spectrum satisfies (3), and

A′(s) has just tλ eigenvalues µλ,1, . . . , µλ,tλ in B(λ, η), with
w(µλ,j , A

′(s)) = w(λ,j), 1 ≤ j ≤ tλ, for every λ ∈ Λ(A(s)), (5)

if and only if

tλ⋃
j=1

w(λ,j) ≺ w(λ,A(s)), for every λ ∈ Λ(A(s)). (6)

Theorem 3.6 [8, Ch. 2, Theorem 3.1, particular case] Let A(s), B(s) ∈ Pn×n(C) be regular
pencils. For every ε > 0, there exists a pencil A′(s) ∈ Pn×n(C) such that ‖A′(s)−A(s)‖ < ε

and A′(s)
s.e.∼ B(s) if and only if

w(λ,B(s)) ≺ w(λ,A(s)), for every λ ∈ C. (7)

Corollary 3.7 Let A(s), B(s) ∈ Pn×n(C) be regular pencils with homogeneous invariant
factors ψ1(s, t) | · · · | ψn(s, t) and ψ′1(s, t) | · · · | ψ′n(s, t), respectively. For every ε > 0, there

exists a pencil A′(s) ∈ Pn×n(C) such that ‖A′(s)−A(s)‖ < ε and A′(s)
s.e.∼ B(s) if and only

if

i∏
j=1

ψ′j(s, t) |
i∏

j=1

ψj(s, t), 1 ≤ i ≤ n. (8)

Proof. Taking into account that deg(
∏n
j=1 ψj(s, t)) = deg(

∏n
j=1 ψ

′
j(s, t)) = n, from (8), for

i = n we obtain

n∏
j=1

ψ′j(s, t) =

n∏
j=1

ψj(s, t). (9)

By Theorem 3.6, we must prove that (8) and (9) are equivalent to (7). It is easy to see
that (8) and (9) are equivalent to

i∏
j=1

ψn−j+1(s, t) |
i∏

j=1

ψ′n−j+1(s, t), 1 ≤ i ≤ n,
n∏
j=1

ψn−j+1(s, t) =

n∏
j=1

ψ′n−j+1(s, t). (10)
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As

ψn−i+1(s, t) = tni(∞,A(s))
∏

λ∈Λ(A(s))\{∞}

(s− λt)ni(λ,A(s)),

ψ′n−i+1(s) = tni(∞,B(s))
∏

λ∈Λ(B(s))\{∞}

(s− λt)ni(λ,B(s)), 1 ≤ i ≤ n,

condition (10) is equivalent to

(n(λ,A(s)) ≺ (n(λ,B(s)), for every λ ∈ C, (11)

which is equivalent to (7).

Remark 3.8 Following [6] we denote condition (8) by

(ψ′1(s, t), . . . , ψ′n(s, t)) ≺≺ (ψ1(s, t), . . . , ψn(s, t)),

and conditions (8) and (9) by

(ψ′1(s, t), . . . , ψ′n(s, t)) ≺ (ψ1(s, t), . . . , ψn(s, t)). (12)

3.2 Completion results

The following theorem contains a solution of a polynomial matrix completion problem.

Theorem 3.9 [26, 31] Let A(s) ∈ F[s](m−r)×(n−s), B(s) ∈ F[s]m×n be polynomial matrices
matrices with invariant factors α1(s) | · · · | αρ(s) and β1(s) | · · · | βρ̄(s), respectively, where
ρ = rank(A(s)) and ρ̄ = rank(B(s)). Then, there exist X(s) ∈ F[s]r×(n−s), Y (s) ∈ F[s]r×s,

Z(s) ∈ F[s](m−r)×s such that B(s) ∼
[
X(s) Y (s)
A(s) Z(s)

]
if and only if

βi(s) | αi(s) | βi+r+s(s), 1 ≤ i ≤ ρ.

As mentioned, the problem of row completion of matrix pencils was solved in [13, 14].
We state here the version of [15] for pencils without row minimal indices.

Theorem 3.10 [15, Theorem 2, particular case] Let A2(s) ∈ P(n−r)×(n+m)(F) be a matrix
pencil of rank(A2(s)) = n − r, with homogeneous invariant factors φ1(s, t) | · · · | φn−r(s, t)
and column minimal indices c1 ≥ · · · ≥ cr+m. Let A(s) ∈ Pn×(n+m)(F) be a matrix pencil of
rank(A(s)) = n with homogeneous invariant factors ψ1(s, t) | · · · | ψn(s, t) and column min-
imal indices d1 ≥ · · · ≥ dm. Let c = (c1, . . . , cr+m), d = (d1, . . . , dm) and a = (a1, . . . , ar),
where

ai = deg(τr−i+1(s, t))− deg(τr−i(s, t))− 1, 1 ≤ i ≤ r, with

τj(s, t) =
∏n−r+j
i=1 lcm(φi−j(s, t), ψi(s, t)), 0 ≤ j ≤ r.

There exists a matrix pencil A1(s) ∈ Pr×(n+m)(F) such that

[
A1(s)
A2(s)

]
s.e.∼ A(s) if and only

if

ψi(s, t) | φi(s, t) | ψi+r(s, t), 1 ≤ i ≤ n− r, (13)

and

c ≺′ (d,a). (14)
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Remark 3.11 If m = 0, then A(s) is regular. As it has no column minimal indices,
condition (14) becomes

c ≺ a.

4 Main results

In this section we study Problem 1.1 when m = n and the pencil A(s) =

[
A1(s)
A2(s)

]
∈

P(r+(n−r))×n(C) is regular, hence A2(s) ∈ P(n−r)×n(C) is quasi-regular with rank(A2(s)) =
n − r. We denote the homogeneous invariant factors and column minimal indices of A2(s)
by φ1(s, t) | · · · | φn−r(s, t) and c1 ≥ · · · ≥ cr, respectively, and the homogeneous invariant
factors of A(s) are ψ1(s, t) | · · · | ψn(s, t).

In the following results we give some necessary conditions a pencil must satisfy when
obtained after perturbation of A1(s). The next theorem is straightforward from Theorems
3.3, 3.10 and Remarks 3.4 and 3.11.

Theorem 4.1 Let Vη(A(s)) be an η-neighbourhood of the spectrum of A(s). There exists

ε > 0 such that if A′(s) =

[
A′1(s)
A2(s)

]
∈ P(r+(n−r))×n(C) has ψ′1(s, t) | · · · | ψ′n(s, t) as

homogeneous invariant factors and ‖A′(s)−A(s)‖ < ε, then the spectrum of A′(s) satisfies
(3), (4), and

ψ′i(s, t) | φi(s, t) | ψ′i+r(s, t), 1 ≤ i ≤ n− r, (15)

and

c ≺ a′, (16)

where c = (c1, . . . , cr) and a′ = (a′1, . . . , a
′
r), with

a′i = deg(τ ′r−i+1(s, t))− deg(τ ′r−i(s, t))− 1, 1 ≤ i ≤ r,

and τ ′j(s, t) =
∏n−r+j
i=1 lcm(φi−j(s, t), ψ

′
i(s, t)), 0 ≤ j ≤ r.

From Corollary 3.7 (see Remark 3.8), Theorem 3.10 and Remark 3.11, we obtain

Theorem 4.2 Let ψ′1(s, t) | · · · | ψ′n(s, t) be homogeneous polynomials, monic with respect

to s. If for every ε > 0, there exists a pencil A′(s) =

[
A′1(s)
A2(s)

]
∈ P(r+(n−r))×n(C) with

ψ′1(s, t) | · · · | ψ′n(s, t) as homogeneous invariant factors and ‖A′(s)− A(s)‖ < ε, then (15),
(16 ) and (12) hold.

In the rest of the section we will assume that r = 1, i.e., A(s) =

[
a(s)
A2(s)

]
∈ P(1+(n−1))×n(C),

and ψ′1(s, t) | · · · | ψ′n(s, t) will be prescribed homogeneous polynomials, monic with respect
to s.

Since rankA2(s) = n− 1, the pencil A2(s) has only one column minimal index, c1 ≥ 0.
Let us assume that A2(s) has p ≥ 0 nontrivial invariant factors 1 6= α1(s) | · · · | αp(s),
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αi(s) = sgi +
∑gi−1
j=0 ai,js

j , gi > 0, 1 ≤ i ≤ p, and q ≥ 0 nontrivial infinite elementary
divisors tµ1 | · · · | tµq , µi > 0, 1 ≤ i ≤ q. Notice that if α̂1(s) | · · · | α̂n−1(s) are the invariant
factors of A2(s), then α̂i(s) = 1 for 1 ≤ i ≤ n−1−p and α̂n−1−p+i(s) = αi(s) for 1 ≤ i ≤ p.
Analogously, if tµ̂1 | · · · | tµ̂n−1 are the infinite elementary divisors of A2(s), then µ̂i = 0 for
1 ≤ i ≤ n− 1− q and µ̂n−1−q+i = µi for 1 ≤ i ≤ q. The next identities are satisfied

c1 +

n−1∑
i=1

deg(φi) = c1 +

p∑
i=1

gi +

q∑
i=1

µi = n− 1.

In the case that
∑n
i=1 deg(ψ′i) = n and (15) holds for r = 1, i.e.,

ψ′i(s, t) | φi(s, t) | ψ′i+1(s, t), 1 ≤ i ≤ n− 1, (17)

we have

τ ′1(s, t) =

n∏
i=1

lcm(φi−1(s, t), ψ′i(s, t)) =

n∏
i=1

ψ′i(s, t),

and

τ ′0(s, t) =

n−1∏
i=1

lcm(φi(s, t), ψ
′
i(s, t)) =

n−1∏
i=1

φi(s, t),

hence

a′1 = deg(τ ′1)− deg(τ ′0)− 1 = n− (n− 1− c1)− 1 = c1.

Therefore, for r = 1, (12) and (17) imply (16).

Our aim is to prove that conditions (12) and (17) are sufficient to guarantee that in every
neighbourhood of A(s) there exists a pencil A′(s) ∈ Pn×n(C) with ψ′1(s, t) | · · · | ψ′n(s, t) as
homogeneous invariant factors.

By Lemma 3.1, we can assume that A2(s) is in Kronecker canonical form. There are two
cases to consider depending on the value of c1.

c1 > 0, A2(s) = diag(Lc1(s), C(s), N(s)) ∈ P(n−1)×n(C),
c1 = 0, A2(s) =

[
O diag(C(s), N(s))

]
∈ P(n−1)×n(C),

(18)

where C(s) = diag(sIg1 −C1, . . . , sIgp −Cp), N(s) = diag(Nµ1
(s), . . . , Nµq (s)), with Ci the

companion matrix of αi(s), 1 ≤ i ≤ p, and Lc1(s) and Nµi(s), 1 ≤ i ≤ q, are defined in (3).

The proof of the following lemma is analogous to that of Lemma 3.4 of[5].

Lemma 4.3 Let A(s) = A0 + sA1 =

[
a(s)
A2(s)

]
∈ P(1+(n−1))×n(C) be a regular pencil, with

A2(s) as (18). We partition a(s) according to the blocks of A2(s),

a(s) =
[
aL(s) aC(s) aN (s)

]
=[

aL1 (s) . . . aLc1+1(s) aC1,1(s) . . . aC1,g1(s) . . . aCp,1(s) . . . aCp,gp(s)

aN1,1(s) . . . aN1,µ1
(s) . . . aNq,1(s) . . . aNq,µq (s)

]
.
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Then, there exist unimodular matrices U(s), V (s) ∈ C[s]n×n and Ū(t), V̄ (t) ∈ C[t]n×n such
that

U(s)A(s)V (s) = diag(In−1−p,M(s)), Ū(t) rev1(A)(t)V̄ (t) = diag(In−1−p−q, M̄(t)), (19)

with

M(s) =


γL(s) γC1 (s) . . . γCp (s)

0 α1(s) . . . 0
...

...
. . .

...
0 0 . . . αp(s)

 ,

M̄(t) =



revc1+1(γL)(t) revg1(γC1 )(t) . . . revgp(γCp )(t) revµ1(γN1 )(t) . . . revµp(γNq )(t)
0 α̃1(t) . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . α̃p(t) 0 . . . 0
0 0 . . . 0 tµ1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . tµq


, (20)

where

γL(s) =

c1+1∑
j=1

sj−1aLj (s), γCi (s) =

gi∑
j=1

sj−1aCi,j(s), 1 ≤ i ≤ p, γNi (s) =

µi∑
j=1

sµi−jaNi,j(s), 1 ≤ i ≤ q. (21)

Remark 4.4 1. In Lemma 4.3,

deg(γL) ≤ c1 + 1, deg(γCi ) ≤ gi, 1 ≤ i ≤ p, deg(γNi ) ≤ µi, 1 ≤ i ≤ q. (22)

2. The pencil A(s) (the pencil rev1(A)(t)) has the same nontrivial invariant factors as
the polynomial matrix M(s) (the polynomial matrix M̄(t)).

3. By Theorem 3.10, the pencil A(s) has at most p+1 nontrivial invariant factors β1(s) |
· · · | βp+1(s) and q+ 1 nontrivial infinite elementary divisors tη1 | · · · | tηq+1 satisfying

βi(s) | αi(s) | βi+1(s), 1 ≤ i ≤ p, ηi ≤ µi ≤ ηi+1, 1 ≤ i ≤ q. (23)

We have α1(s) . . . αp(s)γ
L(s) = κβ1(s) . . . βp+1(s) for some κ ∈ C, hence

η1 + · · ·+ ηq+1 = n−
p+1∑
i=1

deg(βi) = n−
p∑
i=1

deg(αi)− deg(γL)

= µ1 + · · ·+ µp + c1 + 1− deg(γL).

Next lemma provides a characterization of the invariant factors of matrices of the form
(20).
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Lemma 4.5 Let σ1(s) | · · · | σp(s) be monic polynomials and

M(s) =

[
γ(s)
M2(s)

]
=


γ0(s) γ1(s) . . . γp(s)

0 σ1(s) . . . 0
...

...
. . .

...
0 0 . . . σp(s)

 ∈ C[s](1+p)×(1+p),

a polynomial matrix with invariant factors τ1(s) | · · · | τp+1(s). Then,

γ0(s)σ1(s) . . . σp(s) = κτ1(s) . . . τp+1(s),

for some κ ∈ C, and for 1 ≤ k ≤ p, τ1(s) . . . τk(s) is the monic greatest common divisor of
the polynomials in the following list.

1. σ1(s) . . . σk(s),

2. γ0(s)σ1(s) . . . σk−1(s),

3. γi(s)σ1(s) . . . σi−1(s)σi+1(s) . . . σk(s), 1 ≤ i ≤ k.

4. γi(s)σ1(s) . . . σk−1(s), k + 1 ≤ i ≤ p,

where we take σa(s) . . . σb(s) = 1 for a > b.

Proof. The proof can be obtained taking into account that

det(M(s)) = κτ1(s) . . . τp+1(s),

for some κ ∈ C, and that, for 1 ≤ k ≤ p, the minors of order k of M(s) are multiples of one
polynomial of the list (see the proof of [5, Theorem 3.5]).

Lemma 4.6 Given a pencil a(s) =
[
a1(s) . . . ag(s)

]
∈ P1×g(C), let γ(s) =

∑g
j=1 s

j−1aj(s)
and let γ′(s) ∈ C[s] be a polynomial such that deg(γ′) ≤ g. Then, there exists a pencil
a′(s) =

[
a′1(s) . . . a′g(s)

]
∈ P1×g(C) such that γ′(s) =

∑g
j=1 s

j−1a′j(s) and ‖a′(s) −
a(s)‖ = ‖γ′(s)− γ(s)‖.

Proof. Let aj(s) = saj,1 + aj,0, 1 ≤ j ≤ g, γ(s) =
∑g
j=0 s

jγj , γ
′(s) =

∑g
j=0 s

jγ′j and
ej = γ′j − γj , 0 ≤ j ≤ g. Then γ0 = a1,0, γg = ag,1, γj = aj,1 + aj+1,0, 1 ≤ j ≤ g − 1 and

‖γ′(s)− γ(s)‖ =
∑g
j=0|ej |.

Define a′j(s) = sa′j,1 + a′j,0, 1 ≤ j ≤ g, with a′1,0 = a1,0 + e0, a′g,1 = ag,1 + eg, and, for
1 ≤ j ≤ g − 1, a′j,1 = aj,1 + ej , a

′
j+1,0 = aj+1,0 (or a′j,1 = aj,1, a′j+1,0 = aj+1,0 + ej). Then

a′(s) =
[
a′1(s) . . . a′g(s)

]
satisfies the desired conditions.

Lemma 4.7 Let

M̄(t) =

ā(t) b̄(t) c̄(t)
O M̄1(t) 0
O O M̄2(t)

 ∈ C[t](1+p+q)×(1+p+q),

and

N̄(t) =

[
ā(t) c̄(t)
O M̄2(t)

]
∈ C[t](1+q)×(1+q),

be regular polynomial matrices such that M̄1(0) = Ip. Then

w(0, M̄(t)) = w(0, N̄(t)).
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Proof. By [24, Theorem 2],

k∑
i=1

wi(0, M̄(t)) = (1 + p+ q)k − rankRk,

k∑
i=1

wi(0, N̄(t)) = (1 + q)k − rankSk, k ≥ 1,

with

Rk =


M̄(0) 0 . . . 0 0

1
1!M̄

(1)(0) M̄(0) . . . 0 0
1
2!M̄

(2)(0) 1
1!M̄

(1)(0) . . . 0 0
...

...
. . .

...
...

1
(k−1)!M̄

(k−1)(0) 1
(k−2)!M̄

(k−2)(0) . . . 1
1!M̄

(1)(0) M̄(0)

,

Sk =


N̄(0) 0 . . . 0 0

1
1!N̄

(1)(0) N̄(0) . . . 0 0
1
2!N̄

(2)(0) 1
1!N̄

(1)(0) . . . 0 0
...

...
. . .

...
...

1
(k−1)!N̄

(k−1)(0) 1
(k−2)!N̄

(k−2)(0) . . . 1
1!N̄

(1)(0) N̄(0)

,

where the superscript (j) indicates the jth-derivative of the matrix with respect to t. Taking
into account that

M̄(0) =

ā(0) b̄(0) c̄(0)
O Ip 0
O O M̄2(0)

,
performing elementary operations it is easy to see that rankRk = pk+ rankSk, from where∑k
i=1 wi(0, M̄(t)) =

∑k
i=1 wi(0, N̄(t)), for k ≥ 1, and the lemma follows.

Lemma 4.8 Let σ1(s) | · · · | σp(s), τ1(s) | · · · | τp+1(s), τ ′1(s) | · · · | τ ′p+1(s) be monic
polynomials such that

τ ′i(s) | σi(s) | τ ′i+1(s), 1 ≤ i ≤ p, (24)

and

(τ ′1(s), . . . , τ ′p+1(s)) ≺ (τ1(s), . . . , τp+1(s)). (25)

Let γ0(s), γ1(s), . . . , γp(s) ∈ C[s] be polynomials such that deg(γi) ≤ deg(σi), 1 ≤ i ≤ p, and
let

M(s) =


γ0(s) γ1(s) . . . γp(s)

0 σ1(s) . . . 0
...

...
. . .

...
0 0 . . . σp(s)

 ∈ C[s](1+p)×(1+p),
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be a matrix with invariant factors τ1(s) | · · · | τp+1(s). Then, for every ε > 0 there exists

M ′(s) =


γ0(s) γ′1(s) . . . γ′p(s)

0 σ1(s) . . . 0
...

...
. . .

...
0 0 . . . σp(s)

 ∈ C[s](1+p)×(1+p),

with invariant factors τ ′1(s) | · · · | τ ′p+1(s), such that deg(γ′i) ≤ deg(σi), 1 ≤ i ≤ p, and
‖M ′(s)−M(s)‖ < ε.

Proof. The invariant factors of the polynomial matrix 0 σ1(s) . . . 0
...

...
. . .

...
0 0 . . . σp(s)

 ∈ C[s]p×(1+p),

are σ1(s) | · · · | σp(s). By Theorem 3.9,

τi(s) | σi(s) | τi+1(s), 1 ≤ i ≤ p.

Now the proof follows the steps of that of Theorem 3.5 in [5].

In the next theorem we solve the announced problem of prescription of the homogeneous
invariant factors.

Theorem 4.9 Let ψ′1(s, t) | · · · | ψ′n(s, t) be homogeneous polynomials, monic with respect

to s. For every ε > 0, there exists a pencil A′(s) =

[
a′(s)
A2(s)

]
∈ P(1+(n−1))×n(C) with

ψ′1(s, t) | · · · | ψ′n(s, t) as homogeneous invariant factors such that ‖A′(s)−A(s)‖ < ε if and
only if (12) and (17) hold.

Proof. The necessity of the conditions follows from Theorem 4.2. Let us prove the sufficiency.
Since A2(s) has p nontrivial invariant factors α1(s) | · · · | αp and q nontrivial infinite

elementary divisors tµ1 | · · · | tµq , by Theorem 3.10, the pencil A(s) has at most p + 1
nontrivial invariant factors β1(s) | · · · | βp+1(s) and q + 1 nontrivial infinite elementary
divisors sη1 | · · · | sηq+1 satisfying

βi(s) | αi(s) | βi+1(s), 1 ≤ i ≤ p, and ηi ≤ µi ≤ ηi+1, 1 ≤ i ≤ q.

Denoting

β̂′i(s) = ψ′i(s, 1) and ψ′i(s, t) = tη̂
′
itdeg(β̂′i)β̂′i(

s

t
), 1 ≤ i ≤ n,

from (17)

β̂′i(s) = 1, 1 ≤ i ≤ n− p− 1, and η̂′i = 0, 1 ≤ i ≤ n− q − 1,

and, taking β′i(s) = β̂′n−p−1+i(s), 1 ≤ i ≤ p + 1, η′i = η̂′n−q−1+i, 1 ≤ i ≤ q + 1, from (17)
and (12) we obtain

β′i(s) | αi(s) | β′i+1(s), 1 ≤ i ≤ p, and (β′1(s), . . . , β′p+1(s)) ≺ (β1(s), . . . , βp+1(s)). (26)
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η′i ≤ µi ≤ η′i+1, 1 ≤ i ≤ q, and (tη
′
1 , . . . , tη

′
q+1) ≺ (tη1 , . . . , tηq+1). (27)

We partition a(s) as in Lemma 4.3. According to this lemma, A(s) and rev1(A)(t) are
equivalent to diag(In−1−p,M(s)) and diag(In−1−p−q, M̄(t)), respectively, where M(s) and
M̄(t) are defined in (20) and (21).

Let ε > 0. By Lemma 4.8, from (26) there exists

M ′(s) =


γL(s) γ̄C1 (s) . . . γ̄Cp (s)

0 α1(s) . . . 0
...

...
. . .

...
0 0 . . . αp(s)

 ∈ C[s](p+1)×(p+1),

with invariant factors β′1(s) | . . . β′p+1(s), such that deg(γ̄Ci ) ≤ gi, 1 ≤ i ≤ p, and ‖M ′(s)−
M(s)‖ < ε

2 . Moreover, by Lemma 4.6, there exists a pencil

āC(s) =
[
āC1,1(s) . . . āC1,g1(s) . . . āCp,1(s) . . . āCp,gp(s)

]
∈ P1×

∑p
i=1 gi

(C),

such that ‖āC(s)− aC(s)‖ < ε
2 and

γ̄Ci (s) =

gi∑
j=1

sj−1āCi,j(s), 1 ≤ i ≤ p. (28)

Let N̄(t) =


revc1+1(γL)(t) revµ1(γN1 )(t) . . . revµq (γ

N
q )(t)

0 tµ1 . . . 0
...

...
. . .

...
0 0 . . . tµq

, and let δ1(t) | · · · |

δq+1(t) be its invariant factors. Let g0 = deg(γL). By Remark 4.4 item 3, κδ1(t) . . . δq+1(t) =
tµ1+···+µq+c1+1−g0 γ̃L(t) = tη1+···+ηq+1 γ̃L(t) for some κ ∈ C. By Lemma 4.7, w(0, N̄(t)) =
w(0, M̄(t)). As diag(In−1−p−q, M̄(t)) and rev1(A)(t) are equivalent, we have w(0, M̄(t)) =

w(0, rev1(A)(t)) = w(∞, A(s)) = (η1, . . . , ηq+1), and by Theorem 3.9, δi(t) | tµi , 1 ≤ i ≤ q.
Therefore, δi(t) = tηi , 1 ≤ i ≤ q and κδq+1(t) = tηq+1 γ̃L(t).

We define δ′i(t) = tη
′
i , 1 ≤ i ≤ q and δ′q+1(t) = 1

κ t
η′q+1 γ̃L(t). Then, from (27),

δ′i(t) | tµi | δ′i+1(t), 1 ≤ i ≤ q, (δ′1(t), . . . , δ′q+1(t)) ≺ (δ1(t), . . . , δq+1(t)). (29)

By Lemma 4.8, from (29), there exists

N̄ ′(t) =


revc1+1(γL)(t) γ′1(t) . . . γ′q(t)

0 tµ1 . . . 0
...

...
. . .

...
0 0 . . . tµq

 ∈ C[t](q+1)×(q+1),

with invariant factors δ′1(t) | . . . δ′q+1(s), such that deg(γ′i) ≤ µi, 1 ≤ i ≤ q, and ‖N̄(t) −
N̄ ′(t)‖ < ε

2 . Observe that w(0, N̄ ′(t)) = (η′1, . . . , η
′
q+1).

Let γ̄N1 (s), . . . , γ̄Nq (s) ∈ C[s] be polynomials such that revµi(γ̄
N
i )(t) = γ′i(t). Recall that

‖γ̄Ni (s)− γNi (s)‖ = ‖revµi(γ̄
N
i )(t)− revµi(γ

N
i )(t)‖. By Lemma 4.6, there exists a pencil

āN (s) =
[
āN1,1(s) . . . āN1,µ1

(s) . . . āNq,1(s) . . . āNq,µq (s)
]
∈ P1×

∑q
i=1 µi

(C),
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such that ‖āN (s)− aN (s)‖ < ε
2 and

γ̄Ni (s) =

µi∑
j=1

sµi−j āNi,j(s), 1 ≤ i ≤ q. (30)

Let

M̄ ′(t) =



revc1+1(γ̄L)(t) revg1(γ̄C1 )(t) . . . revgp(γ̄Cp )(t) revµ1(γ̄N1 )(t) . . . revµp(γ̄Nq )(t)
0 α̃1(t) . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . α̃p(t) 0 . . . 0
0 0 . . . 0 tµ1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . tµq


.

By Lemma 4.7, w(0, M̄ ′(t)) = w(0, N̄ ′(t)) = (η′1, . . . , η
′
q+1).

Let a′(s) =
[
aL(s) āC(s) āN (s)

]
and A′(s) =

[
a′(s)
A2(s)

]
. Then ‖A′(s) − A(s)‖ < ε.

By Lemma 4.3, the pencils A′(s) and rev1(A′)(t) are equivalent to diag(In−1−p,M
′(s)) and

diag(In−1−p−q, M̄
′(t)), respectively. Therefore, the invariant factors of A′(s) are

β̂′i(s) = 1, 1 ≤ i ≤ n− p− 1, β̂′n−p−1+i(s) = β′i(s), 1 ≤ i ≤ p+ 1.

Moreover,

w(∞, A′(s)) = w(0, M̄ ′(t)) = (η′1, . . . , η
′
q+1),

therefore, the homogeneous invariant factors of A′(s) are ψ′1(s, t) | · · · | ψ′n(s, t).

In order to prescribe the Weyr characteristic of A′(s) we will use some auxiliary lemmas.
First of all, we state Lemma 4.5 in terms of the partial multiplicities of the eigenvalues of
M(s).

Lemma 4.10 Let M(s) =

[
γ(s)
M2(s)

]
∈ C[s](1+p)×(1+p) be the matrix in Lemma 4.5, let λ ∈ C

and write

γi(s) = (s− λ)xi γ̂i(s), γ̂i(λ) 6= 0, xi ≥ 0, 0 ≤ i ≤ p.

Then,
∑p+1
i=1 ni(λ,M(s)) = x0 +

∑p
i=1 ni(λ,M2(s)) and for 2 ≤ ` ≤ p+1,

∑p+1
i=` ni(λ,M(s))

is the minimun of the integers in the following list.

1.
∑p
i=`−1 ni(λ,M2(s)),

2. x0 +
∑p
i=` ni(λ,M2(s)),

3. xj +
∑p
i=p−j+2 ni(λ,M2(s)) +

∑p−j
i=`−1 ni(λ,M2(s)), 1 ≤ j ≤ p− `+ 2,

4. xj +
∑p
i=` ni(λ,M2(s)), p− `+ 3 ≤ j ≤ p,

where we take
∑b
i=a ni(λ,M2(s)) = 0 for a > b.
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Observe that Theorem 3.9 implies, for λ ∈ C,

ni+1(λ,M(s)) ≤ ni(λ,M2(s)) ≤ ni(λ,M(s)), 1 ≤ i ≤ p,

hence x0 ≥ n1(λ,M(s))− n1(λ,M2(s)).

Lemma 4.11 Under the notation of Lemmas 4.5 and 4.10, let z be an integer, 0 ≤ z ≤
n1(λ,M(s)) − n1(λ,M2(s)), γ′0(s) = (s − λ)x0−z γ̂′0(s), with γ̂′0(λ) 6= 0, and M ′(s) =

[
γ′(s)
M2(s)

]
=


γ′0(s) γ1(s) . . . γp(s)

0 σ1(s) . . . 0
...

...
. . .

...
0 0 . . . σp(s)

. Then

n1(λ,M ′(s)) = n1(λ,M(s))− z and nk(λ,M ′(s)) = nk(λ,M(s)), 2 ≤ k ≤ p+ 1. (31)

Proof. Notice that for M ′(s), the values of the expressions in items 1, 3 and 4 in Lemma
4.10 coincide with those of M(s), whereas the expression in item 2 turns into x0 − z +∑p
i=` ni(λ,M2(s)) for M ′(s).
From Lemma 4.10, we obtain that

p+1∑
i=1

ni(λ,M
′(s)) = x0 − z +

p∑
i=1

ni(λ,M2(s)) =

p+1∑
i=1

ni(λ,M(s))− z,

and
p+1∑
i=k

ni(λ,M
′(s)) ≤

p+1∑
i=k

ni(λ,M(s)), 2 ≤ k ≤ p+ 1.

Assume that for some k ∈ {2, . . . , p+ 1},
∑p+1
i=k ni(λ,M

′(s)) <
∑p+1
i=k ni(λ,M(s)). Then

p+1∑
i=k

ni(λ,M
′(s)) = x0 − z +

p∑
i=k

ni(λ,M2(s))

=

p+1∑
i=1

ni(λ,M(s))−
p∑
i=1

ni(λ,M2(s))− z +

p∑
i=k

ni(λ,M2(s))

=

k−1∑
i=1

(ni(λ,M(s))− ni(λ,M2(s))− z +

p+1∑
i=k

ni(λ,M(s)).

Bearing in mind that ni(λ,M(s)) ≥ ni(λ,M2(s)), 1 ≤ i ≤ p and n1(λ,M(s))−n1(λ,M2(s)) ≥
z, we obtain that

∑p+1
i=k ni(λ,M

′(s)) ≥
∑p+1
i=k ni(λ,M(s)), which is a contradiction. There-

fore, for 2 ≤ k ≤ p+ 1,
p+1∑
i=k

ni(λ,M
′(s)) =

p+1∑
i=k

ni(λ,M(s)),

hence (31) is satisfied.

The proof of the following lemma can be found in [25, Lemma 3.2].
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Lemma 4.12 Let (a1, . . . ) and (b1, . . . ) be partitions of nonnegative integers. Let p =
(p1, . . . ) = (a1, . . . ) and q = (q1, . . . ) = (b1, . . . ) be the conjugate partitions. Let k ≥ 0 be
an integer. Then, ai ≥ bi+k, i ≥ 1, if and only if pi ≥ qi − k, i ≥ 1.

In the next theorem, given a matrix pencil A(s), we provide conditions that some pre-
scribed partitions must satisfy in order to be the Weyr characteristic of a pencil obtained
from A(s) by a small perturbation of one row. Recall that the pencil A(s) is split as

A(s) =

[
a(s)
A2(s)

]
∈ P(1+(n−1))×n(C).

Theorem 4.13 Let Vη(A(s)) be an η-neighbourhood of the spectrum of A(s). For each

λ ∈ Λ(A(s)) let tλ be a given integer tλ ≥ 1 and let w(λ,j) = (w
(λ,j)
1 , . . . ) be given partitions,

1 ≤ j ≤ tλ, such that w(λ,j) 6= (0), 2 ≤ j ≤ tλ.

For every ε > 0, there exists a pencil A′(s) =

[
a′(s)
A2(s)

]
∈ P(1+(n−1))×n(C) such that

‖A′(s)−A(s)‖ < ε, the spectrum of A′(s) satisfies condition (3), and

w(λ,A′(s)) = w(λ,1),

A′(s) has tλ − 1 eigenvalues µλ,2, . . . , µλ,tλ in B(λ, η), different from λ, with

w(µλ,j , A
′(s)) = w(λ,j), 2 ≤ j ≤ tλ, (32)

if and only if condition (6) and

0 ≤ w(λ,1)
i − wi(λ,A2(s)) ≤ 1, i ≥ 1,

0 ≤ w(λ,j)
i ≤ 1, i ≥ 1, 2 ≤ j ≤ tλ,

}
(33)

are satisfied.

Proof. The proof is inspired by that of [5, Theorem 3.8]. Assume that for every ε > 0, there

exists a pencil A′(s) =

[
a′(s)
A2(s)

]
∈ P(1+(n−1))×n(C) satisfying (3) and (32) and such that

‖A′(s) − A(s)‖ < ε. Then, from Theorem 3.5, condition (6) holds, and from Theorem 4.9
we obtain (17), which is equivalent to

ni+1(µ,A′(s)) ≤ ni(µ,A2(s)) ≤ ni(µ,A′(s)), i ≥ 1, for each µ ∈ C. (34)

For λ ∈ Λ(A(s)) and 2 ≤ j ≤ tλ, µλ,j 6∈ Λ(A(s)), hence n(µλ,j , A(s)) = n(µλ,j , A2(s)) = (0).
Then, by Lemma 4.12, (34) implies (33).

Conversely, assume that (6) and (33) hold, and let ε > 0. Recall that A2(s) is in
the Kronecker canonical form given in (18). For each λ ∈ Λ(A(s)) and 1 ≤ j ≤ tλ, let

n(λ,j) = w(λ,j) = (n
(λ,j)
1 , . . . ). Then, from (33) and Lemma 4.12 we obtain

n
(λ,1)
i+1 ≤ ni(λ,A2(s)) ≤ n(λ,1)

i , i ≥ 1, (35)

and

n
(λ,j)
2 = 0, 2 ≤ j ≤ tλ. (36)
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For λ ∈ Λ(A(s)) we denote pλ =
∑tλ
j=1 n

(λ,j) = (pλ1 , . . . ) and define

ξn−i+1(s, t) = tp
∞
i

∏
λ∈Λ(A(s)\{∞}

(s− λt)p
λ
i , 1 ≤ i ≤ n, (37)

where, if ∞ 6∈ Λ(A(s), we take p∞ = (0). Then, (6) and (35) are equivalent to

(ξ1(s, t), . . . , ξn(s, t)) ≺ (ψ1(s, t), . . . , ψn(s, t))

and
ξ1(s, t) | φi(s, t) | ξi+1(s, t), 1 ≤ i ≤ n− 1,

respectively. By Theorem 4.9, there exists a pencil B(s) =

[
b(s)
A2(s)

]
∈ P(1+(n−1))×n(C) with

ξ1(s, t) | · · · | ξn(s, t) as homogeneous invariant factors and such that ‖B(s) − A(s)‖ < ε
2 .

Observe that n(λ,B(s)) = pλ for each λ ∈ Λ(A(s)).
We partition b(s) according to the blocks of A2(s),

b(s) =
[
bL(s) bC(s) bN (s)

]
=[

bL1 (s) . . . bLc1+1(s) bC1,1(s) . . . bC1,g1(s) . . . bCp,1(s) . . . bCp,gp(s)

bN1,1(s) . . . bN1,µ1
(s) . . . bNq,1(s) . . . bNq,µq (s)

]
.

By Lemma 4.3, the pencils B(s) and rev1(B)(t) are equivalent to diag(In−1−p, N(s)) and
diag(In−1−p−q, N̄(t)), respectively, where

N(s) =

[
θ(s)
M2(s)

]
=


θL(s) θC1 (s) . . . θCp (s)

0 α1(s) . . . 0
...

...
. . .

...
0 0 . . . αp(s)

,

N̄(t) =



revc1+1(θL)(t) revg1(θC1 )(t) . . . revgp(θCp )(t) revµ1(θN1 )(t) . . . revµp(θNq )(t)
0 α̃1(t) . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . α̃p(t) 0 . . . 0
0 0 . . . 0 tµ1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . tµq


,

with

θL(s) =

c1+1∑
j=1

sj−1bLj (s), θCi (s) =

gi∑
j=1

sj−1bCi,j(s), 1 ≤ i ≤ p, θNi (s) =

µi∑
j=1

sµi−jbNi,j(s), 1 ≤ i ≤ q.

Then, N(s) has the same nontrivial invariant factors as B(s), hence α1(s) . . . αp(s)θ
L(s) =

κψ1(s, 1) . . . ψn(s, 1) = κξ1(s, 1) . . . ξn(s, 1) for some κ ∈ C. Therefore

θL(s) = κ
∏

λ∈Λ(A(s)\{∞}

(s− λ)x0,λ ,
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where, for λ ∈ Λ(A(s), x0,λ =
∑n
i=1 ni(λ,B(s)) −

∑n−1
i=1 ni(λ,A2(s)) =

∑n
i=1 ni(λ,A(s)) −∑n−1

i=1 ni(λ,A2(s)). Observe that

deg(θL) = deg(ψ1(s, 1) . . . ψn(s, 1))− deg(φ1(s, 1) . . . φn−1(s, 1)) =

c1 + 1 +

n−1∑
i=1

ni(∞, A2(s))−
n∑
i=1

ni(∞, A(s)) = c1 + 1− x0,∞,

thus

revc1+1(θL)(t) = tc1+1−deg(θL)θ̃L(t) = tx0,∞ θ̃L(t).

For each λ ∈ Λ(A(s)) and 2 ≤ j ≤ tλ, let µλ,j ∈ C with µλ,j 6= λ, and zλ =
∑tλ
j=2 n

(λ,j)
1 .

We have

n1(λ,N(s))− n1(λ,M2(s)) = n1(λ,B(s))− n1(λ,A2(s)) = pλ1 − n1(λ,A2(s))

= n
(λ,1)
1 − n1(λ,A2(s)) + zλ.

By (35), we obtain zλ ≤ n1(λ,N(s))− n1(λ,M2(s)) ≤ x0,λ.
Let

θ̄L1 (s) =
∏

λ∈Λ(A(s)\{∞}

(
(s− λ)x0,λ−zλ

tλ∏
j=2

(s− µλ,j)
n
(λ,j)
1

)
, θ̄L(s) =

t∞∏
j=2

(
1 − (

1

µ∞,j
)s

)n(∞,j)
1

θ̄L1 (s), (38)

and

N ′(s) =

[
θ′(s)
M2(s)

]
=


θ̄L(s) θC1 (s) . . . θCp (s)

0 α1(s) . . . 0
...

...
. . .

...
0 0 . . . αp(s)

,

N̄ ′(t) =



revc1+1(θ̄L)(t) revg1(θC1 )(t) . . . revgp(θCp )(t) revµ1(θN1 )(t) . . . revµp(θNq )(t)
0 α̃1(t) . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . α̃p(t) 0 . . . 0
0 0 . . . 0 tµ1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . tµq


.

Observe that for each λ ∈ Λ(A(s)) and 2 ≤ j ≤ tλ,

n1(µλ,j , N
′(s)) = n

(λ,j)
1 , nk(µλ,j , N

′(s)) = 0 = n
(λ,j)
k , 2 ≤ k ≤ p+ 1,

i.e., w(µλ,j , N
′(s)) = w(λ,j), 2 ≤ j ≤ tλ. Moreover, deg(θ̄L) = deg(θL) + z∞, hence

revc1+1(θ̄L)(t) = tc1+1−deg(θ̄L) ˜̄θL(t) = tx0,∞−z∞ ˜̄θL(t). (39)

As deg(θ̄L) = c1 + 1 − (x0,∞ − z∞) ≤ c1 + 1, by Lemma 4.11, from (38) and (39), for
λ ∈ Λ(A(s))

n1(λ,N ′(s)) = n1(λ,N(s))− zλ = n
(λ,1)
1 , and
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nk(λ,N ′(s)) = nk(λ,N(s)) = n
(λ,1)
k , 2 ≤ k ≤ p+ 1,

i.e., w(λ,N ′(s)) = w(λ,1). By Lemma 4.6, there exists a pencil b̄L(s) ∈ P1×(c1+1) such

that ‖b̄L(s)− bL(s)‖=‖θ̄L(s)− θL(s)‖ and if B′(s)=

[
b′(s)
A2(s)

]
∈P(1+(n−1))×n(C) with b′(s) =[

b̄L(s) bC(s) bN (s)
]
, then B′(s) and rev1(B′)(t)) are equivalent to diag(In−1−p, N

′(s))
and diag(In−1−p−q, N̄

′(t)), respectively. Hence, for each λ ∈ Λ(A(s)), w(λ,B′(s)) =
w(λ,N ′(s)) = w(λ,1) and w(µλ,j , B

′(s)) = w(µλ,j , N
′(s)) = w(λ,j), 2 ≤ j ≤ tλ.

By Lemma 3.2, for λ ∈ Λ(A(s) \ {∞}, the values of µλ,j can be chosen in B(λ, η),
2 ≤ j ≤ tλ, in such a way that ‖θ̄L1 (s)− θL(s)‖ < ε

4 , and it is easy to see that we can choose
µ∞,j ∈ B(∞, η) such that ‖θ̄L(s) − θ̄L1 (s)‖ < ε

4 , 2 ≤ j ≤ t∞. Therefore, ‖B′(s) − B(s)‖ =
‖b̄L(s)− bL(s)‖ = ‖θ̄L(s)− θL(s)‖ < ε

2 , and as a consequence we obtain ‖B′(s)−A(s)‖ < ε.

5 Conclusions and future research

The effect of small perturbations of a regular pencil when some of its rows remain unchanged
is investigated. It is a twofold problem. On one hand, it involves characteristics of general
small perturbation problems. On the other hand, it is closely related to matrix pencil com-
pletion problems. We have obtained necessary conditions to be satisfied by the Weierstrass
invariants of a pencil which is a one-row small perturbation of another regular pencil (see
Theorems 4.1 and 4.2).

Moreover, when perturbing a single row, we also prove the sufficiency of the necessary
conditions obtained (see Theorems 4.9 and 4.13). Our results generalize to pencils previous
results on the problem obtained for square matrices. To achieve them, we had to tackle the
difficulties appearing due to the presence of infinite elementary divisors in the pencils.

Our next step is to extend the sufficiency part of this work to regular pencils when more
than one row is perturbed. The research can also be extended to singular pencils.
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