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Abstract: Let G be a graph with no isolated vertex and let N(v) be the open neighbourhood of
v ∈ V(G). Let f : V(G) → {0, 1, 2} be a function and Vi = {v ∈ V(G) : f (v) = i} for every
i ∈ {0, 1, 2}. We say that f is a strongly total Roman dominating function on G if the subgraph
induced by V1 ∪ V2 has no isolated vertex and N(v) ∩ V2 6= ∅ for every v ∈ V(G) \ V2. The
strongly total Roman domination number of G, denoted by γs

tR(G), is defined as the minimum
weight ω( f ) = ∑x∈V(G) f (x) among all strongly total Roman dominating functions f on G. This
paper is devoted to the study of the strongly total Roman domination number of a graph and it
is a contribution to the Special Issue “Theoretical Computer Science and Discrete Mathematics”
of Symmetry. In particular, we show that the theory of strongly total Roman domination is an
appropriate framework for investigating the total Roman domination number of lexicographic
product graphs. We also obtain tight bounds on this parameter and provide closed formulas for some
product graphs. Finally and as a consequence of the study, we prove that the problem of computing
γs

tR(G) is NP-hard.

Keywords: strongly total Roman domination; total Roman domination; total domination; lexico-
graphic product graph

1. Introduction

Let G be a simple graph with no isolated vertex. Given a vertex v ∈ V(G), N(v)
and N[v] denote the open neighbourhood and the closed neighbourhood of v in G, respectively.
The order, minimum degree and maximum degree of G will be denoted by n(G), δ(G) and
∆(G), respectively. As usual, given a set D ⊆ V(G) and a vertex v ∈ D, the external private
neighbourhood and the internal private neighbourhood of v with respect to D is defined to be
epn(v, D) = {u ∈ V(G) \ D : N(u) ∩ D = {v}} and ipn(v, D) = {u ∈ D : N(u) ∩ D =
{v}}, respectively.

Domination in graphs is a classical research topic that has experienced rapid growth
since its introduction. A set D ⊆ V(G) is said to be a dominating set of G if N(v) ∩ D 6= ∅
for every v ∈ V(G) \D. LetD(G) be the set of dominating sets of G. The domination number
of G is defined to be the following.

γ(G) = min{|D| : D ∈ D(G)}.

We define a γ(G)-set as a set D ∈ D(G) with |D| = γ(G). The same agreement will
be assumed for optimal parameters associated with other characteristic functions or sets of
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a graph. For more information on domination and its variants in graphs, we suggest the
books [1–4].

An important domination variant in graph, which may be the most studied, is the total
domination number. A total dominating set of G is a set D ∈ D(G) such that N(v) ∩ D 6= ∅
for every v ∈ D. Let Dt(G) be the set of total dominating sets of G. The total domination
number of G is defined to be the following.

γt(G) = min{|D| : D ∈ Dt(G)}.

More information on total domination in graphs can be found in the works [5–7].
Let G be a graph with no isolated vertex and f : V(G) → {0, 1, 2} a function. For every
i ∈ {0, 1, 2}, we define Vi = {v ∈ V(G) : f (v) = i}. We will use the unified notation
f (V0, V1, V2) to identify the function f with the subsets V0, V1, V2 associated with it. Given
a set X ⊆ V(G), we define f (X) = ∑x∈X f (x) and, particularly, we define the weight of f as
ω( f ) = f (V(G)) = |V1|+ 2|V2|. One of the domination topics widely studied by research
is the Roman domination, which is a domination variant arising from some historical roots
coming from the ancient Roman Empire [8]. A function f (V0, V1, V2) is a Roman dominating
function on G if N(v) ∩ V2 6= ∅ for every vertex v ∈ V0. The Roman domination number
of G denoted by γR(G) is the minimum weight among all Roman dominating functions
on G. For more information on Roman domination in graphs, we suggest the referenced
works [9–12].

One of the classical variants of Roman domination is the so-called total Roman domi-
nation. This article deals precisely with this style of domination. A total Roman dominating
function (TRDF) on a graph G with no isolated vertex is a Roman dominating function
f (V0, V1, V2) such that V1 ∪V2 ∈ Dt(G). The minimum weight among all TRDFs on G is the
total Roman domination number of G and is denoted as γtR(G). This concept was introduced
in 2013 by Liu and Chang [13] and formally presented and deeply studied three years later
by Abdollahzadeh Ahangar et al. [14]. Subsequently, several researchers have continued
with the study of this parameter. For instance, in [15–17], some combinatorial results were
presented. In [18–21], constructive characterizations in trees related with this domination
parameter were provided. In [22–25], studies of the total Roman domination number on
graph products were carried out. In particular, we want to highlight the following closed
formula provided in [25] for the case of lexicographic product graphs.

For any graph G with no isolated vertex and any nontrivial graph H, the total Roman
domination number of the lexicographic product graph G ◦H is given by the following [25]:

γtR(G ◦ H)=

{
2γt(G) if γ(H) ≥ 2,

ξ(G) if γ(H) = 1,
(1)

where ξ(G) = min{|A|+ 2|B| : B ∈ D(G) and A ∪ B ∈ Dt(G)}. As it can be observed,
the authors [25] showed that the behavior of γtR(G ◦ H) depends on two domination
parameters of graphs, namely the well-known total domination number and the incipient
parameter ξ(G). In that regard, the authors exposed some results on this last parameter
and they raised the challenge of conducting a detailed study of the topic.

In this paper, we continue with the study of this novel parameter although it will be
carried out by considering a different approach. In Section 2 we define a new variant of
total Roman domination, namely strongly total Roman domination number and denoted
by γs

tR(G). We then show that this variant is an appropriate framework to investigate the
parameter ξ(G) of a graph. Section 3 is devoted to providing closed formulas for some
product graphs. As a consequence of the study, we conclude this section by showing that
the problem of computing γs

tR(G) is NP-hard. Finally, in Section 4 we obtain tight bounds
on the strongly total Roman domination number of a graph and we discuss the tightness
of these bounds.
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We assume that the reader is familiar with the basic concepts and terminology of
graph domination. If this is not the case, then we suggest the textbooks [1,4]. For the
remainder of the article, definitions will be introduced whenever a concept is required.

2. Strongly Total Roman Dominating Functions

The concept of a total Roman dominating function on a graph is associated with the
“total domination” property, i.e., this kind of functions requires that each vertex has a
neighboring vertex with a positive label assigned to it. However, some vertices have a
“special property”, which in some cases others do not have. In particular, vertices with
label zero must always have a neighbor with label two, but it is not always the case that a
vertex with label one satisfies this property. In relation to the above situation, we introduce
a “stronger” version of the standard total Roman domination below.

A strongly total Roman dominating function (STRDF) on a graph G with no isolated
vertex is a total Roman dominating function f (V0, V1, V2) with the additional property that
V2 is a dominating set of G. The minimum weight among all STRDFs on G is the strongly
total Roman domination number of G and is denoted γs

tR(G).
To illustrate this concept, we consider the graph G shown in Figure 1. For this example,

γtR(G) < γs
tR(G).

2 2 1 1 2 2 1 2

Figure 1. The function on the left is a γtR(G)-function, while the function on the right is a
γs

tR(G)-function.

Now, we proceed to show that this new domination variant is an appropriate frame-
work to investigate the parameter ξ(G).

Theorem 1. For any graph G with no isolated vertex,

γs
tR(G) = ξ(G).

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. By definition we have that V2 ∈ D(G) and

V1 ∪V2 ∈ Dt(G). Therefore, the following obtains.

ξ(G) = min{|A|+ 2|B| : B ∈ D(G) and A ∪ B ∈ Dt(G)} ≤ |V1|+ 2|V2| = γs
tR(G).

On the other side, let A′, B′ ⊆ V(G) such that B′ ∈ D(G), A′ ∪ B′ ∈ Dt(G) and
ξ(G) = |A′|+ 2|B′|. Notice that the function f ′(V′0, V′1, V′2), defined by V′2 = B′, V′1 = A′

and V′0 = V(G) \ (A′ ∪ B′), is a STRDF on G. Hence, γs
tR(G) ≤ ω( f ′) = |A′|+ 2|B′| =

ξ(G), which completes the proof.

To end this section and as a consequence of previous theorem, we show the basic
results given in [25] for the strongly total Roman domination number.

Theorem 2. Ref. [25] For any graph G with no isolated vertex,

max{γtR(G), γt(G) + γ(G)} ≤ γs
tR(G) ≤ min{3γ(G), 2γt(G)}.

Furthermore,

(i) γs
tR(G) = γtR(G) if and only if there exists a γtR(G)-function f (V0, V1, V2) such that V2 is

dominating set of G.
(ii) γs

tR(G) = γt(G) + γ(G) if and only if there exists a γt(G)-set that contains some γ(G)-set.
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3. Exact Formulas for Some Graph Products and Computational Complexity

In order to show the tightness of several bounds and relationships, in this section
we obtain the strongly total Roman domination number concerning a well-know families
of graphs. We emphasize that we will use the notation Kn, K1,n−1, Kr,n−r and Wn for
complete graphs, star graphs, complete bipartite graphs and the wheel graphs of order
n, respectively.

The join graph G + H of the graphs G and H is the graph with vertex set V(G + H) =
V(G) ∪V(H) and edge set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V(G), v ∈ V(H)}.

Theorem 3. For any graphs G and H,

γs
tR(G + H) =

{
3 if γ(G) = 1 or γ(H) = 1,

4 otherwise.

Proof. We first notice that γt(G + H) = 2. Now, we observe that γ(G + H) = 1 if and only
if γ(G) = 1 or γ(H) = 1. Therefore, by Theorem 2 we deduce that γs

tR(G + H) = 3 if and
only if γ(G) = 1 or γ(H) = 1, which completes the proof.

The following corollary is an immediate consequence of the theorem above.

Corollary 1. The following equalities hold for any integer n ≥ 3.

(i) γs
tR(K1,n−1) = γs

tR(Wn) = γs
tR(Kn) = 3.

(ii) If r ∈ Z such that n− r ≥ r ≥ 2, then γs
tR(Kr,n−r) = 4.

Let G be a graph with no isolated vertex and H is any graph. The corona product
graph G� H is defined as the graph obtained from G and H, by taking one copy of G and
|V(G)| copies of H and joining by an edge every vertex from the ith-copy of H with the
ith-vertex of G. Next, we study the strongly total Roman domination number of any corona
product graph.

Theorem 4. For any graph G with no isolated vertex and any graph H,

γs
tR(G� H) = 2n(G).

Proof. First, we notice that γt(G� H) = γ(G� H) = n(G). Hence, Theorem 2 leads to
the equality γs

tR(G� H) = 2n(G). Therefore, the proof is complete.

Let G be a graph with no isolated vertex and H a nontrivial graph. The lexicographic
product of G and H is the graph G ◦ H for which the vertex set is V(G ◦ H) = V(G)×V(H)
and two vertices (u, v), (x, y) ∈ V(G ◦ H) are neighbors if and only if ux ∈ E(G) or u = x
and vy ∈ E(H).

Theorem 5. Ref. [26] For any graph G with no isolated vertex and any nontrivial graph H,

γt(G ◦ H) = γt(G).

We next show that the strongly total Roman domination number and the total Roman
domination number coincide for lexicographic product graphs.

Theorem 6. For any graph G with no isolated vertex and any nontrivial graph H,

γs
tR(G ◦ H) =

{
2γt(G) if γ(H) ≥ 2,

γs
tR(G) if γ(H) = 1.
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Proof. If γ(H) ≥ 2, then the result immediately follows by applying Equation (1) and
Theorems 2 and 5, i.e., we have the following.

2γt(G) = γtR(G ◦ H) ≤ γs
tR(G ◦ H) ≤ 2γt(G ◦ H) = 2γt(G).

From this moment on, we assume that γ(H) = 1. By Equation (1) and Theorems 1 and 2
we deduce that γs

tR(G) = ξ(G) = γtR(G ◦ H) ≤ γs
tR(G ◦ H). We only need to prove that

γs
tR(G ◦ H) ≤ γs

tR(G). Let f (V0, V1, V2) be a γs
tR(G)-function and {v} a γ(H)-set. No-

tice that the function g(W0, W1, W2), defined by W2 = V2 × {v}, W1 = V1 × {v} and
W0 = V(G ◦ H) \ (W1 ∪W2), is a STRDF on G ◦ H. Hence, γs

tR(G ◦ H) ≤ |W1|+ 2|W2| =
|V1|+ 2|V2| = γs

tR(G), which completes the proof.

As shown in [27], the general optimization problem of computing the total domination
number of a graph with no isolated vertex is NP-hard. Therefore, by Theorem 6 (considering
the case γ(H) ≥ 2) we immediately obtain the analogous result for the strongly total Roman
domination number.

Theorem 7. The problem of computing the strongly total Roman domination number of a graph
with no isolated vertex is NP-hard.

4. Primary Combinatorial Results

The first result of this section provides bounds for the strongly total Roman domination
number in terms of the order of a graph. For this purpose, we need to recall the following
well-known result.

Theorem 8. Ref. [5] If G is a connected non-complete graph of order at least three, then G has
a γt(G)-set D such that every vertex v ∈ D satisfies epn(v, D) 6= ∅ or is adjacent to a vertex
v′ ∈ ipn(v, D) satisfying epn(v′, D) 6= ∅.

Theorem 9. For any connected graph G of order at least three,

3 ≤ γs
tR(G) ≤ n(G).

Furthermore,

(i) γs
tR(G) = 3 if and only if γ(G) = 1.

(ii) γs
tR(G) = 4 if and only if γt(G) = γ(G) = 2.

Proof. The lower bound is straightforward. Now, we proceed to prove the upper bound.
If G is isomorphic to a complete graph, then γs

tR(G) = 3 ≤ n(G), as desired. From this
moment, we assume that G is different of a complete graph. Let D be a γt(G)-set which
satisfies Theorem 8 and D = V(G) \ D. Now, we consider the following sets.

De = {v ∈ D : epn(v, D) 6= ∅} and De = {v ∈ D : N(v) ∩ De 6= ∅}.

Let us define f ′(V′0, V′1, V′2) as a function of minimum weight among all functions
f (V0, V1, V2) on G satisfying the following conditions.

(a) V1 ∪V2 = D.
(b) De ⊆ V2.
(c) N(v) ∩V2 6= ∅ for every vertex v ∈ D \ De.

By (a), it is straightforward that V′1 ∪V′2 ∈ Dt(G). By (b) and (c) we deduce that every
vertex in V′0 = D has a neighbor in V′2. Now, let v ∈ V′1. By definition, v ∈ D \ De and
thus Theorem 8 results in N(v) ∩ De 6= ∅. Hence, N(v) ∩V′2 6= ∅ by (b). This implies that
V′2 ∈ D(G). Therefore, f ′ is a STRDF on G and thus γs

tR(G) ≤ ω( f ′).
We only need to prove that ω( f ′) ≤ n(G). Let v ∈ D \ De. By definition, we have

that N(v) ∩ D ⊆ D \ De and |N(v) ∩ D| ≥ 2. Hence, by (a) and (c) we deduce that
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N(v) ∩ V′2 \ De 6= ∅. Thus, the minimality of f ′ results in |V′2 \ De| ≤ |D \ De| and it is
straightforward that |V′2 ∩ De| ≤ |De| ≤ |De|. Therefore, the following

ω( f ′) = |V′1|+ 2|V′2|
= |D|+ |V′2 \ De|+ |V′2 ∩ De|
≤ |D|+ |D \ De|+ |De|
= |D|+ |D|
= n(G),

is as required. Hence, the proof of the upper bound is complete.
We then proceed to prove (i). By Theorem 2 we deduce that γs

tR(G) = 3 if and only if
γ(G) = 1. Hence, (i) follows.

Finally, we proceed to prove (ii). If γt(G) = γ(G) = 2, then Theorem 2 leads to
γs

tR(G) = 4. Conversely, if γs
tR(G) = 4, then by (i) we deduce that γ(G) ≥ 2. Thus,

Theorem 2 results in γt(G) = γ(G) = 2. Therefore, (ii) follows.

The upper bound above is tight. For instance, it is achieved for the graph G given
in Figure 1. Moreover and as an immediate consequence of Theorems 2 and 9, it is also
achieved for the graphs G with γtR(G) = n(G). This family is defined in [14].

We continue by providing additional upper bounds. As shown in Theorem 2, the strongly
total Roman domination number is bounded from above by 3γ(G). Since γR(G) ≤ 2γ(G),
the next result improves this upper bound for any graph G with no isolated vertex. We
need to introduce the following result.

Theorem 10. Ref. [9] Let f (V0, V1, V2) be a γR(G)-function on a graph G with no isolated vertex
such that |V1| is minimum. Then the following conditions hold.

(a) N(v) ⊆ V0 for every vertex v ∈ V1.
(b) N[x] ∩ N[y] = ∅ for any two different vertices x, y ∈ V1.

Theorem 11. For any graph G with no isolated vertex,

γs
tR(G) ≤ γR(G) + γ(G).

Proof. Let f (V0, V1, V2) be a γR(G)-function such that |V1| is minimum. Hence, conditions
(a) and (b) of Theorem 10 are satisfied. Now, we consider a function g′(W ′0, W ′1, W ′2)
of minimum weight among all functions g(W0, W1, W2) on G such that the following
conditions are satisfied:

(i) V2 ⊆W2.
(ii) N(v) ∩W2 6= ∅ for every vertex v ∈ V1.
(iii) N(v) ∩ (W1 ∪W2) 6= ∅ for every vertex v ∈ V2.

We proceed to prove that g′ is a STRDF on G. By definitions of f and g′, it is straight-
forward that W ′1 ∪W ′2 ∈ Dt(G). Now, let v ∈ V(G) \W ′2. By (i) we deduce that v ∈ V0 ∪V1.
Moreover, if v ∈ V0, then N(v) ∩W ′2 6= ∅ because N(v) ∩ V2 6= ∅. Otherwise, if v ∈ V1,
then (ii) results in N(v) ∩W ′2 6= ∅. Hence, W ′2 ∈ D(G), which implies that g′ is a STRDF
on G, as desired. Thus, γs

tR(G) ≤ ω(g′).
Now, let D be a γ(G)-set. Hence, N[v] ∩ D 6= ∅ for every v ∈ V(G). In addition,

notice that N(v)∩ (W ′2 \V2) 6= ∅ for every v ∈ V1. Thus, by (ii) and (iii), conditions (a) and
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(b) of Theorem 10 and the minimality of g′, we deduce that 2|W ′2 \V2|+ |W ′1| ≤ |V1|+ |D|.
From the inequalities above we obtain

γs
tR(G) ≤ ω(g′)

= |W ′1|+ 2|W ′2|
= |W ′1|+ 2|W ′2 \V2|+ 2|W ′2 ∩V2|
≤ |V1|+ |D|+ 2|V2|
= γR(G) + γ(G).

Therefore, the proof is complete.

The bound above is tight. For instance, it is achieved for any graph G = G1 + G2 such
that γ(G1) = 1. In this case, Theorem 3 results in γs

tR(G) = 3 = γR(G) + γ(G).
The following characterization is an immediate consequence of Theorem 11 and the

well-known inequality γR(G) ≤ 2γ(G).

Theorem 12. Let G be a graph with no isolated vertex. Then γs
tR(G) = 3γ(G) if and only if

γs
tR(G) = γR(G) + γ(G) and γR(G) = 2γ(G).

From Theorem 4 and the fact that γR(G1 � G2) = 2γ(G1 � G2) = 2n(G1) we deduce
that γs

tR(G1 � G2) = γR(G1 � G2) = 2γ(G1 � G2) for any graph G1 with no isolated
vertex and any nontrivial graph G2. This previous equality chain shows that the condition
γR(G) = 2γ(G) is a necessary condition but is not sufficient to satisfy γs

tR(G) = 3γ(G).

We continue the study by providing a new upper bound, which improves the classical
inequality γs

tR(G) ≤ 2γt(G). We need to introduce some concepts and tools. For any
γt(G)-set D, let D∗ ⊆ D be a set of minimum cardinality such that D∗ ∈ D(G). Observe
that D∗ is not necessarily a γ(G)-set. For instance, for the graph G given in Figure 2 we
have that γt(G) = 4 and γ(G) = 3. However, the set D of black-colored vertices is the only
γt(G)-set; moreover, the only dominating set that is a subset of D is D itself.

Figure 2. The set of black-colored vertices is the only γt(G)-set.

We define KG(D) = D \D∗ as the kernel of D. The maximum cardinality among all ker-
nels KG(D) from all γt(G)-sets D is the kernel of G and it is denoted by k(G). For instance,
k(G1 � G2) = 0 and also if γ(G1 + G2) = 1, then k(G1 + G2) = 1.

Theorem 13. For any graph G with no isolated vertex,

γs
tR(G) ≤ 2γt(G)− k(G).

Proof. Let D be a γt(G)-set such that k(G) = |KG(D)|. Let D∗ ⊆ D ∩ D(G) be the set
such that KG(D) = D \ D∗. Notice that the function f (V0, V1, V2), defined by V2 = D∗,
V1 = KG(D) and V0 = V(G) \ D, is a STRDF on G. Hence,

γs
tR(G) ≤ ω( f )

= |V1|+ 2|V2|
= |KG(D)|+ 2|D∗|
= 2|D| − |KG(D)|
= 2γt(G)− k(G).
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Therefore, the proof is complete.

The following result provides a necessary condition for the graphs G satisfying
γs

tR(G) = 2γt(G).

Theorem 14. Let G be a graph of order at least three with no isolated vertex. If γs
tR(G) = 2γt(G),

then epn(v, D) 6= ∅ for every γt(G)-set D and v ∈ D.

Proof. If there exist a γt(G)-set D and a vertex v ∈ D such that epn(v, D) = ∅, then
|KG(D)| ≥ 1 because D \ {v} ∈ D(G). Hence, k(G) ≥ 1 and Theorem 13 results in
γs

tR(G) < 2γt(G), which completes the proof.

The following results provide lower bounds for the strongly total Roman domination
number in terms of order, maximum degree and total domination number of a graph.

Theorem 15. For any graph G with every component of order at least three,

γs
tR(G) ≥ γt(G) +

n(G)− γt(G)

∆(G)− 1
.

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. As V1 ∪V2 ∈ Dt(G), we deduce that

|V2| = ω( f )− (|V1|+ |V2|) ≤ γs
tR(G)− γt(G).

Now, it is easy to deduce that |V0| ≤ (∆(G)− 1)|V2| because V2 ∈ D(G). Hence,

γs
tR(G) = |V1|+ 2|V2|

= n(G)− |V0|+ |V2|
≥ n(G)− (∆(G)− 1)|V2|+ |V2|
= n(G)− (∆(G)− 2)|V2|
≥ n(G)− (∆(G)− 2)(γs

tR(G)− γt(G)).

Therefore, we deduce that γs
tR(G) ≥ γt(G)+ n(G)−γt(G)

∆(G)−1 , which completes the proof.

In order to show a class of graphs satisfying the equality in the previous bound, we
consider the corona product graphs K2 � H. For these graphs we obtain that

γs
tR(K2 � H) = 4 = γt(K2 � H) +

n(K2 � H)− γt(K2 � H)

∆(K2 � H)− 1
,

because γs
tR(K2 � H) = 4 by Theorem 4, γt(K2 � H) = 2, n(K2 � H) = 2n(H) + 2 and

∆(K2 � H) = n(H) + 1.

In [15], the authors showed that γtR(G) ≥ 2n(G)
∆(G)

for any graph G with no isolated
vertex. The following result is a direct consequence of this previous inequality and
Theorems 2, 5 and 15.

Theorem 16. For any graph G with no isolated vertex,

γs
tR(G) ≥

⌈
2n(G)

∆(G)

⌉
.

Furthermore, if γt(G) = n(G)
∆(G)

, then the previous bound is achieved.
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The next theorem shows another relationship between our parameter and the order,
maximum degree and total domination number of a graph. This result improves the bound
given in the previous theorem whenever γt(G) ≥ 2n(G)

∆(G)
.

Theorem 17. For any graph G with no isolated vertex,

γs
tR(G) ≥

⌈
2n(G) + γt(G)

∆(G) + 1

⌉
.

Proof. Let f (V0, V1, V2) be a γs
tR(G)-function. As V1 ∪V2 ∈ Dt(G), we deduce that

γt(G) ≤ |V1|+ |V2| = ω( f )− |V2| = γs
tR(G)− |V2|.

Now, notice that the following is the case:

∆(G)γs
tR(G) = ∆(G)ω( f )

= ∆(G) ∑
x∈V(G)

f (x)

≥ ∑
x∈V(G)

|N(x)| f (x)

= ∑
x∈V(G)

∑
u∈N(x)

f (u)

≥ 2|V0|+ 2|V1|+ |V2|
= 2n(G)− |V2|.

From previous inequality chains we deduce the following:

2n(G) + γt(G) ≤ ∆(G)γs
tR(G) + |V2|+ γs

tR(G)− |V2| = (∆(G) + 1)γs
tR(G).

Therefore, γs
tR(G) ≥

⌈
2n(G)+γt(G)

∆(G)+1

⌉
, as desired.

The bound above is tight. For instance, it is achieved for any graph G such that
∆(G) = n(G)− 1.

5. Conclusions and Open Problems

In this article we introduced the concept of strongly total Roman domination number
and showed that this parameter is an appropriate framework to study the total Roman
domination number of lexicographic product graphs. Moreover, we obtained new tight
bounds and provided exact formulas for some product graphs. As a consequence of this
study, we showed that the problem of computing γs

tR(G) is NP-hard.
We next propose some open problems which we consider to be interesting:

(i) Since the optimization problem of finding γs
tR(G) is NP-hard, it would be interesting

to compute the value of this parameter for other families of graphs.
(ii) We propose the problem of characterizing the graphs satisfying the following equalities:

(a) γs
tR(G) = n(G);

(b) γs
tR(G) = γR(G) + γ(G);

(c) γs
tR(G) = 2γt(G)− k(G).
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