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Abstract 
 

Interoperability between communicating objects is the main goal of the Internet of 

Things (IoT). Efforts to achieve this have generated several architectures' proposals; 

however, no consensus has yet been reached. These architectures differ in structure, 

degree of centralisation, routing algorithm, routing metrics, discovery techniques, search 

algorithms, segmentation, quality of service, and security. Some are better than others 

depending on the environment in which they perform, and the type of parameter used. 

The most popular are those oriented to events or actions based on rules, which has 

allowed them to enter the market and achieve rapid massification. However, their 

interoperability is based on alliances between manufacturers to achieve compatibility. 

This solution is achieved in the cloud with a dashboard that unifies the different allied 

brands, allowing the introduction of these technologies into users' everyday lives but 

does not solve problems of autonomy or interoperability. Moreover, it does not include 

the new generation of smart grids based on smart things. 

The architecture proposed in this thesis takes the most relevant aspects of the four most 

accepted IoT-Architectures and integrates them into one, separating the IoT layer 

(commonly present in these architectures) into three layers. It is also intended to cover 

proximity networks (integrating different IoT interconnection technologies) and base its 

operation on artificial intelligence (AI). Therefore, this proposal increases the possibility 

of achieving the expected interoperability and increases the functionality of each object 

in the network focused on providing a service to the user. 

Although the proposed system includes artificial intelligence processing, it follows the 

same technical aspects as its predecessors since its operation and communication is still 

based on the application and transport layer of the TCP/IP protocol stack. However, in 

order to take advantage of IoT-Protocols without modifying their operation, an additional 

protocol is created that encapsulates and adapts to its payload. This protocol discovers 

the features of an object (DFSP) divided into functions, services, capabilities, and 

resources, and extracts them to be centralised in the network manager (IoT-Gateway). 

With this information, the IoT-Gateway can make decisions such as creating autonomous 

workgroups that provide a service to the user and routing the objects in this group that 

provide the service. It also measures the quality of experience (QoE) of the service. 

Moreover, manages internet access and integrates with other IoT-Networks, using 

artificial intelligence in the cloud. 

This proposal is based on a new hierarchical system for interconnecting objects of 

different types controlled by AI with centralised management, reducing the fault 

tolerance and security, and improving data processing. Data is preprocessed on three 

levels depending on the type of service and sent through an interface. However, if it is 

data about its features, it does not require much processing, so each object preprocesses 

it independently, structures it and sends it to the central administration. 



 

 

The IoT-Network based on this architecture can classify a new object arriving on the 

network in a workgroup without user intervention. It also can provide a service that 

requires high processing (e.g., multimedia), and user tracking in other IoT-Networks 

through the cloud. 

A major advantage of this architecture is that the data extracted from the objects and 

reflecting the preferences and habits of their users would not be controlled exclusively 

by the manufacturers but can be managed directly by the user, and it is the user who 

decides what to do with their data. Another great advantage is to leave the dependence 

on already manufactured objects without the possibility of being modified. Any everyday 

object can be converted and reinvented into a smart object by incorporating 

commercially available IoT technologies and devices. Thus, giving users the ability to 

control and transform their environments using AI. Similar to the options that users 

currently have to create their apps on their smartphones. 

The proposed architecture is scalable since the number of Io-Networks with objects 

with the ability to process and connect to the internet is continuously growing. Moreo-

ver, it means that its potential use would provide an alternative for the compatibility of 

objects from different manufacturers. It could generate special interest in developing 

new integrated systems within reach of all users. 
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Resumen 
 

La interoperabilidad entre los objetos comunicados es el objetivo principal del internet 

de las cosas (IoT). Algunos esfuerzos para lograrlo han generado diversas propuestas de 

arquitecturas, sin embargo, aún no se ha llegado a un conceso. Estas arquitecturas 

difieren en el tipo de estructura, grado de centralización, algoritmo de enrutamiento, 

métricas de enrutamiento, técnicas de descubrimiento, algoritmos de búsqueda, 

segmentación, calidad de servicio y seguridad, entre otros. Algunas son mejores que 

otras, dependiendo del entorno en el que se desempeñan y del tipo de parámetro que se 

use. Las más populares son las orientadas a eventos o acciones basadas en reglas, las 

cuales han permitido que IoT ingrese en el mercado y logre una rápida masificación. Sin 

embargo, su interoperabilidad se basa en alianzas entre fabricantes para lograr su 

compatibilidad. Esta solución se logra en la nube con una plataforma que unifica a las 

diferentes marcas aliadas. Esto permite la introducción de estas tecnologías a la vida 

común de los usuarios pero no resuelve problemas de autonomía ni de interoperabilidad. 

Además, no incluye a la nueva generación de redes inteligentes basadas en cosas 

inteligentes. 

La arquitectura propuesta en esta tesis toma los aspectos más relevantes de las cuatro 

arquitecturas IoT más aceptadas y las integra en una, separando la capa IoT 

(comúnmente presente en estas arquitecturas), en tres capas. Además, está pensada para 

abarcar redes de proximidad (integrando diferentes tecnologías de interconexión IoT) y 

basar su funcionamiento en inteligencia artificial (AI). Por lo tanto, esta propuesta 

aumenta la posibilidad de lograr la interoperabilidad esperada y aumenta la 

funcionalidad de cada objeto en la red enfocada en prestar un servicio al usuario. 

Aunque el sistema que se propone incluye el procesamiento de una inteligencia artificial, 

sigue los mismos aspectos técnicos que sus antecesoras, ya que su operación y 

comunicación continúan basándose en la capa de aplicación y trasporte de la pila de 

protocolo TCP/IP. Sin embargo, con el fin de aprovechar los protocolos IoT sin 

modificar su funcionamiento, se crea un protocolo adicional que se encapsula y adapta a 

su carga útil. Se trata de un protocolo que se encarga de descubrir las características de 

un objeto (DFSP) divididas en funciones, servicios, capacidades y recursos, y las extrae 

para centralizarla en el administrador de la red (IoT-Gateway). Con esta información el 

IoT-Gateway puede tomar decisiones como crear grupos de trabajo autónomos que 

presten un servicio al usuario y enrutar a los objetos de este grupo que prestan el servicio, 

además de medir la calidad de la experiencia (QoE) del servicio; también administra el 

acceso a internet e integra a otras redes IoT, utilizando inteligencia artificial en la nube. 

Al basarse esta propuesta en un nuevo sistema jerárquico para interconectar objetos de 

diferente tipo controlados por AI con una gestión centralizada, se reduce la tolerancia a 

fallos y seguridad, y se mejora el procesamiento de los datos. Los datos son 



 

 

preprocesados en tres niveles dependiendo del tipo de servicio y enviados a través de 

una interfaz. Sin embargo, si se trata de datos sobre sus características estos no requieren 

mucho procesamiento, por lo que cada objeto los preprocesa de forma independiente, los 

estructura y los envía a la administración central. 

La red IoT basada en esta arquitectura tiene la capacidad de clasificar un objeto nuevo 

que llegue a la red en un grupo de trabajo sin la intervención del usuario. Además de 

tener la capacidad de prestar un servicio que requiera un alto procesamiento (por 

ejemplo, multimedia), y un seguimiento del usuario en otras redes IoT a través de la 

nube. 

Una gran ventaja de esta arquitectura es que los datos extraídos de los objetos y que 

reflejan las preferencias y hábitos de sus usuarios no serían controlados exclusivamente 

por los fabricantes, sino que pueden ser administrados directamente por el usuario, y es 

el quien decide qué hacer con sus datos. Otra gran ventaja es la de dejar la dependencia 

con los objetos ya fabricados sin la posibilidad de ser modificados. Cualquier objeto 

cotidiano puede ser convertido y reinventado en un objeto inteligente incorporando 

tecnologías y dispositivos IoT disponibles en el mercado. Dándole la posibilidad a los 

usuarios de controlar y transformar sus propios entornos usando la AI. Similar a la opción 

que tienen actualmente los usuarios de crear sus propias aplicaciones en sus teléfonos 

inteligentes. 

La arquitectura propuesta es escalable ya que el número de redes IoT con objetos con la 

capacidad de procesar y conectarse a internet crece continuamente. Esto significa que su 

potencial uso supondría una alternativa para la compatibilidad de más objetos de 

diferentes fabricantes, lo que podría generar un especial interés en el desarrollo de 

nuevos sistemas integrados al alcance de todos los usuarios. 
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Resum 
 

La interoperabilitat entre els objectes comunicats és l'objectiu principal de la internet de 

les coses (IoT). Alguns esforços per aconseguir-ho han generat diverses propostes 

d'arquitectures, però, encara no s'arriba a un concens. Aquestes arquitectures difereixen 

en el tipus d'estructura, grau de centralització, algoritme d'encaminament, mètriques 

d'enrutament, tècniques de descobriment, algoritmes de cerca, segmentació, qualitat de 

servei i seguretat entre d'altres. Algunes són millors que altres depenent de l'entorn en 

què es desenvolupen i de el tipus de paràmetre que es faci servir. Les més populars són 

les orientades a esdeveniments o accions basades en regles. Les quals li han permès 

entrar al mercat i aconseguir una ràpida massificació. No obstant això, la seva 

interoperabilitat es basa en aliances entre fabricants per aconseguir la seva compatibilitat. 

Aquesta solució s'aconsegueix en el núvol amb una plataforma que unifica les diferents 

marques aliades. Això permet la introducció d'aquestes tecnologies a la vida comuna dels 

usuaris però no resol problemes d'autonomia ni d'interoperabilitat. A més, no inclou a la 

nova generació de xarxes intel·ligents basades en coses intel·ligents. 

L'arquitectura proposada en aquesta tesi, pren els aspectes més rellevants de les quatre 

arquitectures IoT mes acceptades i les integra en una, separant la capa IoT (comunament 

present en aquestes arquitectures), en tres capes. A més aquesta pensada en abastar 

xarxes de proximitat (integrant diferents tecnologies d'interconnexió IoT) i basar el seu 

funcionament en intel·ligència artificial. Per tant, aquesta proposta augmenta la 

possibilitat d'aconseguir la interoperabilitat esperada i augmenta la funcionalitat de cada 

objecte a la xarxa enfocada a prestar un servei a l'usuari. 

Tot i que el sistema que es proposa inclou el processament d'una intel·ligència artificial, 

segueix els mateixos aspectes tècnics que les seves antecessores, ja que, la seva operació 

i comunicació se segueix basant en la capa d'aplicació i transport de la pila de protocol 

TCP / IP. No obstant això, per tal d'aprofitar els protocols IoT sense modificar el seu 

funcionament es crea un protocol addicional que s'encapsula i s'adapta a la seva càrrega 

útil. Es tracta d'un protocol que s'encarrega de descobrir les característiques d'un objecte 

(DFSP) dividides en funcions, serveis, capacitats i recursos, i les extreu per centralitzar-

la en l'administrador de la xarxa (IoT-Gateway). Amb aquesta informació l'IoT-Gateway 

pot prendre decisions com crear grups de treball autònoms que prestin un servei a l'usuari 

i encaminar als objectes d'aquest grup que presten el servei. A més de mesurar la qualitat 

de l'experiència (QoE) de el servei. També administra l'accés a internet i integra a altres 

xarxes Iot, utilitzant intel·ligència artificial en el núvol. 

A l'basar-se aquesta proposta en un nou sistema jeràrquic per interconnectar objectes de 

diferent tipus controlats per AI amb una gestió centralitzada, es redueix la tolerància a 

fallades i seguretat, i es millora el processament de les dades. Les dades són processats 

en tres nivells depenent de el tipus de servei i enviats a través d'una interfície. No obstant 

això, si es tracta de dades sobre les seves característiques aquests no requereixen molt 



 

 

processament, de manera que cada objecte els processa de forma independent, els 

estructura i els envia a l'administració central. 

La xarxa IoT basada en aquesta arquitectura té la capacitat de classificar un objecte nou 

que arribi a la xarxa en un grup de treball sense la intervenció de l'usuari. A més de tenir 

la capacitat de prestar un servei que requereixi un alt processament (per exemple 

multimèdia), i un seguiment de l'usuari en altres xarxes IoT a través del núvol. 

Un gran avantatge d'aquesta arquitectura és que les dades extretes dels objectes i que 

reflecteixen les preferències i hàbits dels seus usuaris no serien controlats exclusivament 

pels fabricants, sinó que poden ser administrats directament per l'usuari, i és el qui 

decideix que fer amb les seves dades. Una altra gran avantatge és la de deixar la 

dependència amb els objectes ja fabricats sense la possibilitat de ser modificats. 

Qualsevol objecte quotidià pot ser convertit i reinventat en un objecte intel·ligent 

incorporant tecnologies i dispositius IoT disponibles al mercat. Donant-li la possibilitat 

als usuaris de controlar i transformar els seus propis entorns usant l'AI. Similar a l'opció 

que tenen actualment els usuaris de crear les seves pròpies aplicacions en els seus 

telèfons intel·ligents. 

L'arquitectura proposta és escalable ja que el nombre de xarxes IoT amb objectes amb la 

capacitat de processar i connectar-se a internet creix contínuament. Això vol dir que el 

seu potencial ús suposaria una alternativa per a la compatibilitat de mes objectes de 

diferents fabricants. El que podria generar un especial interès en el desenvolupament de 

nous sistemes integrats a l'abast de tots els usuaris. 
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Chapter 1.                    

Introduction 

 Introduction 

The Internet of Things (IoT) and the Internet of Everything (IoE) are two closely related 

but different concepts. The IoT seeks to interconnect Things directly to the internet, 

while the IoE is a vision that seeks to connect users to Things and Things to each other. 

It will create new possibilities in understanding the current concept of “Network” and 

revolutionise how we design it. This new challenge also introduces other new concepts 

and different views of what is expected to be the IoE from those who create and develop 

technologies [1]. 

These new IoE-Networks will include different types of Things from different 

manufacturers, and we will have to rethink the way we design the new generations of 

networks taking into account how they connect and how they communicate through 

different protocols and interconnection technologies [1]. 

Nevertheless, we should first know that there are already some advances in IoT-

Networks that will allow then, through the appropriation of some already accepted 

concepts, to reach the first IoE-Networks. These advances in this topic can already be 

seen through some everyday things, for example, in the house (appliances) in the office 

(registration and access control) and the car (geographic location) are connected to the 

internet. However, there is still a high percentage of things that are not yet connected or, 

are in the process of doing, and each represents an IoE-Network. E.g., in the home (light 

bulbs, doors, windows, bicycle), in the office (desk, chairs), and the car (automotive 

parts, doors, stereo and systems in general), including those devices that a user is wearing 
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(wearables such as, clothing, watch, glasses, bracelets). In this way, Things near each 

other will be able to form proximity IoE-Networks since the vision of these IoE-

Networks enables interconnection between multiple proximity IoE-Networks [2]. 

If additionally many of these conventional Things are Smart Things, able to deduce 

typical behaviours of their users through usage statistics and autonomously publish, 

discover and connect to Machine-to-Machine (M2M) services through the network [3], 

to the cloud or other users, giving rise to the creation of Smart Networks connected [4], 

then would be obtained proximity smart IoE-Networks. 

This work proposes an intelligent centralised management architecture that brings 

together all these connectivity and interoperability needs to network Things. Things are 

classified, according to their features in capacities, functions, services, and resources and 

are organises in layers. Following this organisation, it is possible to create multiple 

network configurations around a central entity. It is also a flexible and reprogrammable 

architecture, which helps it to readapt and evolve, enabling high scalability. 

The idea is to show with different applications and through different scenarios its 

scalability and easy adaptability. These scenarios were mostly recreated in domestic 

environments, easy to understand and experiment. In order to the user’s activities been 

the as a central element for providing a service. In other words, one of the central focuses 

in this work is to ensure that the architecture allows the generation of network designs 

aimed at providing a service to the user. Service that will require working together 

through collaboratives workgroups to achieve it whereby it is necessary to manage its 

M2M relations, routing, grouping and Internet access. In this way, the machines involved 

in providing a service can be controlled by Artificial Intelligence (AI) through the 

features that define their capacities, functions, services, and resources shared in the 

network.  

A clear IoT or IoE concept is essential to design, create, and modify the relations between 

IoT-Interconnection technologies, IoT-Protocols, IoT-Gateway, and IoT-Platforms 

necessaries to propose a new concept. The proposed architecture is born from this 

concept and based on studying current concepts issued by organizations and alliances in 

IoT. Taking these approaches and establishing a network model that incorporates 

Machine Learning (ML) techniques or other AI technologies, the architecture is expected 

to offer a design option for smart IoE-Networks. 

An IoT network design that an organisation follows under this architecture’s interaction 

policies allows conventional and intelligent things to be integrated with ease. Whereby 

smart things that are currently being marketed, they will have an architecture that takes 

advantage of the functions and services they offer, auto-integrating it into the network 

without user intervention and focusing on offering intelligent services. 
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 Objectives and motivation 

The growing rise of IoT-Networks and the problems in their multiple forms of 

implementation, promote the generation of different architectures that allow the 

interoperability of the Things like objects that need to connect to the Internet. This 

thesis’s main objective is to present an architecture that facilitates the interconnection of 

Smart Things, manages them and organises them hierarchically to share resources and 

provide services based on users’ needs. 

1.2.1. Objectives 

The objectives of this thesis are the following ones: 

1. Study which IoT-Protocols are the most accepted, studied at an academic level and 

implemented at a commercial level. 

The IoT-Protocols currently used are numerous and diverse. However, three were 

selected due to its ability to reach the architecture’s sensor layer and its applications. 

Among them MQTT, CoAP and HTTP-RESTful, among which MQTT was the 

most used in the experiments. 

2. Study the architectures and applications where each of the IoT-Protocols performs 

best according to their functions and according to the network topology in which 

they are implemented. 

The architectures found so far are scarce and are defined differently with connection-

oriented and software-oriented structures, going through all the topological 

configurations. It allows the use of Frameworks based on these architectures and 

takes advantage of the most used technologies. Some of them have been 

implemented commercially, without having gone through arduous standardization 

processes before, to respond immediately to the high demand from users. Therefore, 

although they are already being used, they still require improvements and 

specifications. However, his study allowed to define the architecture proposed in 

this thesis. 

3. Selection of an IoT-Protocol designed to be used in proximity networks, easily 

modified in its operating mechanics to improve its architecture and put it to the test 

together with the other protocols already characterized, compare it and document its 

performance. 

The selected protocols and frameworks are open source, but the protocol that was 

easiest to modify and adapt to the proposed architecture operation was MQTT. At 

first, it was thought to work with the AllJoyn framework, but a framework is not the 

same as an IoT protocol, so it was decided to use MQTT. This protocol has some 

limitations that were gradually improved by recent versions, however, during this 

thesis’s development, it was necessary to modify it before these improvements 
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arrived, understanding its operating mechanics and adapting it to the requirements 

of the proposed architecture to verify its operation. 

4. Design an architecture from on the results found to the improvements proposed in 

one of the IoT-Protocols, allowing both the exchange of information between all the 

proximity networks interconnected to this architecture and the exchange of services 

with centralized management.  

The proposed architecture was designed from the architectures found, observing 

how they have been implemented to preserve their most important parts and 

complement them with new functions, obtaining a hybrid architecture. This 

architecture allows the operation with the current frameworks widely spread among 

users and manufacturers. Its centralized management is based on the intelligent 

operation of the IoT-Gateway and intelligence in Things. What gives it an additional 

functionality capable of responding autonomously to changes in the network. 

5. Include artificial intelligence methods and techniques so that M2M communication 

through the announcement of services on the network, allows them to make logical 

decisions without user intervention. 

The system’s centralized AI was tested with different ML classifiers and different 

datasets obtained by creating an additional protocol that adapts to the size of the 

payload of each M2M protocol. With this protocol, the information required by the 

AI is transported through different messages to the different layers of the 

architecture. It is a simple protocol that kept the initial idea of taking advantage of 

different IoT-Protocols, including those with small payloads for reaching low 

capacity devices in the sensor layer. To demonstrate the use of an AI on the 

architecture, different IoT-Networks applications are designed, where the need to 

make use of AI and how it integrates Artificial Intelligent Assistants (AIA) is 

observed. Therefore, the central AI automates various services by grouping things 

involved in providing a service, and that commonly work collaboratively to achieve 

it. Hence the possibility that the central AI can distribute the work through direct 

connections between the Things involved without going through the central AI.  

6. Create test scenarios based on mobile applications developed under the Java 

language using the Android and Android Things platform, in different types of 

topologies to demonstrate the architecture’s viability.  

Many of the experiments were based on scenarios; the most common and the main 

one was the Smart home. Then it was integrated through AI in the cloud to other 

scenarios based on proximity networks such as Smart Office and Smart Microgrids, 

resulting in a Smart City. Programmable development cards with different 

communication capacities and modules were used for each Cosa, using Java and 

Python languages and some mobile applications developed for Android. 
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7. Measure and collect data on the network scenarios implemented through capture 

tools and protocol analyzers and analytically model the designed architecture. 

Several simulators were used to test the scenarios, and also it is was test in real 

environments with hardware devices. Measurements and data were captured with 

protocol analyzers such as Wireshark and other data with simulators. This data was 

used to observe the network’s performance under the proposed architecture and the 

other part for the ML. The data captured from the networks designed based on this 

architecture showed a variation in the packets’ size and speed that carried the 

proposed protocol. Through this protocol, information collected in the IoT-

Networks allowed building a network model based on workgroups to test ML 

techniques. Afterwards, some of them were experimented with to find the most 

appropriate one according to the data extracted from each connected thing. 

8. Develop and implement a prototype to evaluate and analyze the performance of the 

designed architecture. 

An IoT-Gateway was designed and implemented, programmable to route, store, 

manage, support an AI and host services. This device is the central administrator of 

the architecture and assigns a specific layer’s roles to a device based on its functions. 

The Gateway uses an AI that controls different algorithms, including creating 

workgroups and the management of internet access. 

 Precedents 

Before IoT, everything was computer networks, and only one way was known to connect 

them. Physical cabling and local interconnections were the first forms of communication 

between machines. When talking about the network, one could only imagine a group of 

interconnected computers. This interconnection spread over great distances with high 

volumes of information and gave rise to the Internet. With this new vision of 

connectivity, the evolution of the concept of the Internet and of sharing resources at a 

broader level, allowed the network of networks to provide greater coverage and reach 

everything that could be connected. The meaning of connectivity born with personal 

computers and that was believed to be unique to these computers went out of its standards 

when the network began to share its resources with other devices such as printers and 

projectors locally and to other networks through the Internet. At that time, there was 

already talk of globalization and the possibility of an interconnected world. With the 

evolution of electronics and faster and smaller processors, the possibility of 

incorporating computing and communication utilities to everything gave rise to the 

current mobile devices. Devices currently continue to improve their utilities with 

applications that range from people’s everyday lives to their work and family activities. 

In this case, the use of the mobile phone (Smartphone) stands out as the main 

technological tool and the highest priority in modern life. 
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This idea of expanding connectivity to everything includes all kinds of objects, as long 

as technology and its use justify it. Therefore, it is now possible to see many 

implementations that include common and everyday objects. 

This approach of leveraging available technologies to interconnect objects in the known 

world of networks is a new terrain, and integrating them creates a host of challenges and 

different ways of rethinking the old concept of networks and the Internet. Like mobile 

devices, networks and the Internet have adapted to incorporate them, but still, it is 

difficult to think of an Everything’s Internet, so it is still premature to formulate a 

unification theory for all Things. 

However, these objects or Things have gradually been incorporated into networks and 

the Internet, initially through isolated efforts of manufacturers, and then through 

increasingly strong strategic alliances that have formed the manufacturers’ consortiums. 

Some of these early initiatives were related to local wireless connections. For example, 

if was wanted to connect a Thing to the Internet, it only had to directly connect to the 

Internet through its mobile or a WiFi connection at home or office. Here is born a new 

concept, which offers the virtual storage and management service called the Cloud. It 

allows managing these Things by a user through a web or mobile application, inside or 

outside the same proximity area but with an Internet connection. 

In some cases, there are already alternative developments that allow direct control of 

Things in small proximity areas or personal, through mobile applications with WiFi and 

Bluetooth connections, and all improved versions of these technologies. In addition to 

this, for long-distance solutions but with low bandwidth, other manufacturers made 

available other technologies different from those known, such as LoRa and SigFox. 

However, many devices already had control connections such as Radio Frequency (RF) 

or infrared, which can be found in everyday things such as televisions, stereos, air 

conditioners and heating, which would later be used by smart assistants such as “Alexa” 

and “Google Home” among others. These connections range from simple data of ON / 

OFF to data streaming with low bandwidth, e.g., to adjust sound and light intensity. 

Nevertheless, even so, they are still seen as isolated and independent cases outside the 

concept of IoT. 

With the arrival of IoE, the idea is to give cover all these Things and include all the other 

existing proximity IoT-Networks. This, in turn, integrated with the new generations of 

Smart Things and its connectivity technologies. In order to open new possibilities in the 

development of architectures and protocols, aimed at making these networks 

interoperable and facilitating collaborative work between Things for offering services to 

users. 

However, the integration of these Things has been done progressively, since these 

conventional networks are still based on TCP / IP architecture. Therefore, to improve its 

operation and allow the integration of AI to improve its performance and thus obtain 
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greater benefits, it is necessary to analyze current scenarios and refocus them with more 

appropriate architectures. 

For example, before if it was wanted to create a proximity network between different 

types of Things from different manufacturers, it could only be achieved if the same type 

of connection was maintained, only Bluetooth or only WiFi or only Zigbee. In a few 

cases where the development effort at the hardware level was great, an additional router 

was implemented with other interconnection technologies to provide a solution to a 

network with Things of different technologies [1]. The problem was that the Things had 

to be from the same brand, from the same manufacturer. 

To solve this problem of interoperability in proximity networks, it appears several 

architectures and protocols proposals [5] to convert conventional proximity networks 

into networks under the IoT concept. Simultaneously, some consortia create frameworks 

for this same purpose, such as the AllJoyn initiative [6]. AllJoyn was an open-source 

project developed by Qualcomm’s innovation centre (Qualcomm, 2011), and sponsored 

by AllSeen Alliance (AllSeen Alliance, 2016). Its purpose was to provide a universal 

framework that would allow interoperability between different types and manufacturers’ 

technology products. However, this idea persists through IoTivity, a new open-source 

IoT standard. 

AllJoyn and IoTivity are open source M2M protocols implemented under one 

framework, but currently, there are others, that are not frameworks but are accepted and 

used by most manufacturers. Some of these are, Message Queue Telemetry Transport 

(MQTT), Restricted Application Protocol (CoAP), Hypertext Transfer Protocol with 

Representational State Transfer (HTTP RESTful), among others [7]. 

 Memory organization 

This thesis begins with the introduction in Chapter 1, which addresses how the document 

is developed, describing the proposal and the importance of this topic, and describing 

this thesis’s main and specific objective.  

The rest of the document is organized as follows: 

Chapter 2 presents the state of the art of the architectures, concepts, protocols, devices, 

and technologies most used in IoT. 

In Chapter 3, the architectures’ features, and advantages of the current or most popular 

are analyzed, and the interconnection architecture of this thesis is proposed.  

Then, Chapter 4 presents the proposed architecture and its model, which shows the 

proposed protocol for the operation of the architecture and the analysis of each model to 

perform grouping, routing, and quality of experience on a specific service. 
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In Chapter 5, the tests and evaluations are carried out based on the models proposed in 

Chapter 4. Therefore, some experiments based on implementations of the proposed 

architecture on real hardware through simulations are shown. 

Chapter 6 shows how the simulations were implemented and present some applications 

through use cases with the proposed architecture. 

Finally, in Chapter 8, the conclusion and future lines of research are presented. 
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Chapter 2.                       

State of the art 

 Introduction 

Communicating Things with each other and connecting them to the Internet implies that 

all Things must first have the ability to establish one communication. That is, to achieve 

this, at least the combination of some processing mechanism and at least one module 

with some connectivity technology must be incorporated into a Thing. 

From this point of view, it could be said that all the network concepts that were known 

up to now have evolved, taking new forms, and therefore are going through a new stage 

of redefinition. Part of these new challenges can be observed with the appearance of 

mobile devices (Cell Phones, Tablets, laptops) which brought with them the 

massification of new technologies (Bluetooth, WiFi and NFC) and gave strength to the 

need to implement a system IP addressing broader (IPv6). In addition, this type of “all-

in-one” mobile devices that include voice, video, and Internet browsing among others, 

has changed how users use data, as the amount of bandwidth necessary to have good 

service is increasingly demanding. 

Figure 1 shows a simple example of a conventional home network, which was previously 

only possible at a business level, and which also allows voice, broadband and television 

through a router connected to an Internet Service Provider (ISP). In this example from 

Figure 1, the router (WiFi and Ethernet) connects in a star topology with the old devices 

(black colour) and supports the new devices (red colour) such as mobile phones, tablets, 

laptops through the same WiFi connection. 



Chapter 2. State of the Art 

 

10 

 

Figure 1. Conventional Network with Mobile Devices 

This type of network allows us to understand how networks have grown and evolved 

with the appearance of new and different devices, modifying users’ lifestyle in an 

increasingly connected world. To this evolution in the networks, the incorporation of 

“Things” is added as one more element of the network and then the vision changes from 

every point of view, giving space to new proposals that allow the integration of 

everything with everything. 

To approach this thesis’s architecture design, it is necessary first to study the 

architectures and approaches that currently exposed to the public to establish a difference 

and a contribution when designing an IoE-Network. 

Therefore, state of the art presented here shows how proximity IoE-Network can be 

designed, combining different IoT concepts and architectures with different operating 

systems, programming languages, interconnection technologies, IoT-Protocols, 

frameworks, IoT-Platforms in the cloud, artificial intelligence algorithms and different 

IoT-Gateway proposals since in this last, resides the centralized management. 

 Concept of Internet of Things and Everything (IoT & IoE) 

The Internet of Everything (IoE) is an extended concept of the Internet of Things 

(IoT) where Machine-to-Machine (M2M), Machine-to-People (M2P) and People-to-

Machine (P2M) communications describe complex systems derived from the relations 

that exist between people and processes [8]. 

In this sense, it is important first to define the IoT’s initial and operational criteria 

currently used to have a more accurate IoE concept. 

Today’s IoT devices that are design and manufacture are released to the public with a 

wide range of network protocols, applications, and special configurations network. In 

addition, the IoT technology that connects the “Things” to the Internet is done through 
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various types of short-range or long-range wireless technologies depending on the type 

of network and the management policies associated with the network. 

If we focus on some real implementations’ specific cases, what is found are “Things” 

connected directly to the Internet, without any relationship with other Things [9]. This 

does to the concept of IoT being seen as simply connecting a “Thing to the Internet”, and 

gives rise to confusion with other concepts such as Domotics and Telemetry. In reality, 

establishing a difference between them would generate even more confusion when they 

are such close concepts that converge with many common elements. Let us remember 

that Domotics began with the automation of Things in a specialized way and tailored to 

users’ needs, making a remote control over them through available communication 

systems. When mobile devices appeared, and with them, the mobile applications, it 

became possible to perform remote control from a mobile phone or tablet. However, 

when making remote measurements of physical magnitudes, for example, through 

sensors in the house, we would be talking about Telemetry. If we join both concepts and 

use IoT-Protocols to seek interoperability between different manufacturers, we get a 

concept closer to the IoT as we know it today. 

In Figure 2, an example of a network is observed where some Things with 

communication capacity can connect to the Internet and be managed from a mobile 

application. 

 

 

Figure 2. Conventional Network with Mobile Devices and Things 

Much of what is related to this concept depends on manufacturers, as they are the ones 
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2.2.1. Organizations and alliances working on the IoT 

All companies, organizations, working group and consortia are made up of people who 

are dedicated to the study and manufacture of the elements that make up the 

“technological integration systems; These meet in order to determine which is the best 

system, to standardize it, relating it to IoT networks, thus generating an ideal language, 

which facilitates intercommunication between things [10]. 

In addition to defining standards such as IoT, they also do it in concepts related to IoE, 

Internet, WoT, IIoT and M2M, as shown in Figure 3 [11]. This figure shows how each 

concept is contained within the other as a subset of the great concept of IoE. 

 

 

Figure 3. Internet of Everything 

As seen in the figure, the IoE concept contains all the connected objects and conventional 

network devices. It also suggests possible architectures since the internet coverage in the 

figure does not completely encircle the sub-concepts of IoT, IIoT, WoT and the relations 

between machines and people (M2M, M2P, P2P). It suggests that it includes those not 

connected to the internet and could maintain their operation within a local network 

connection as proposed in the Fog Computing architecture. In the case of WoT, IoT 

platforms suggest using a Cloud Computing architecture where data processing is done 

in the “Cloud” and visualization on the “Web”. 

▪ Internet Engineering Task Force (IETF) 
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The main institution in Internet standardization has a direction fully committed to the 

IoT, which together synchronizes the efforts of all its working groups, in order to review 

thoroughly, absolutely all the specifications, verifying the coherence of each one, and 

monitoring various activities, all linked to the IoT, which, in turn, perform other 

standardization groups [12]. 

▪ Institute of Electrical and Electronics Engineers (IEEE) 

A part of the organization of this institute is completely dedicated to the IoT, about its 

research, implementation, application, and use, through a great diversity of technologies; 

structured from an information centre for the existing technical community and a 

magazine that publishes articles on the latest advances in IoT, along with various topics, 

including system architecture, network protocols and communication. Additionally, 

futuristic visions (based on IoT) of smart cities built entirely from IoT (walls, roads, 

transportation, among others) are captured [13]. 

The IEEE defines the IoT based on the complexity degree of the environment and 

application scenario: 

1. Low complexity level defines the IoT as a network of objects or things connected 

(physical or virtual) to the internet with unique identification. For example, the 

fingerprint on the index finger of every human being. It means that "things" have 

programming and detection/performance capabilities. Whereby can extract 

information from objects and modify their state at anytime and anywhere [14]. 

 

2. Medium/high complexity levels propose that the IoT is an adaptable and auto-

configurable network, capable of interconnecting objects or things (physical or 

virtual) to the internet, using standard communication protocols. These objects also 

can program and detect/actuate. In addition, the information extracted from each 

connected object contains its identification, status, location, commercial and social 

data, and the service it offers. This service can be provided with or without human 

intervention through intelligent interfaces. Its main importance is what is available 

to any being (human or machine) that needs to run applications under a secure 

environment [14]. 

This thesis combines the previous definitions to describe part of the architecture 

proposed in Chapter 4. 

▪ Alliance for the Internet of Things and Innovation (AIOTI) 

Created by the European Commission (EC) and composed of large companies, SMEs, 

and startups. This alliance was formed in order to support a purely European IoT 

ecosystem, in which it would have content and standardisation policies. More than 75% 

of AIOTI's functions and activities are carried out using planned innovation, research 

and standards working groups, which focus their unified effort on fully defined areas of 

development [15]. 
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▪ Safety Committee for Industrial Control and Automation Systems (ANSI / ISA) 

This committee is in charge of developing standards, protocols, procedures, and 

technical reports to implement safe automation and control systems. It always has the 

priority to protect industrial automation and control systems against cyber attacks. 

Without the protection of said committee, it may be subject to external or internal 

malicious penetrations, causing losses in production levels and violation of regulations 

established or environmental damage, among other negative consequences [16]. 

▪ Internet Industrial Consortium (IIC) 

This consortium is developing in line with IIoT (Industrial IoT) innovations, with 

activities such as updating the industrial IoT vocabulary, specifically about architectures, 

security and analytics, which organisations can use to improve their communication. 

In order to accelerate the delivery of an industrial IoT architectural framework, IIC 

partnered with the Open Interconnection consortium [17] to publish in 2015 such an 

architecture, which would serve as an IoT reference [18]. 

▪ International Organization for Standardization (ISO) 

This institution has a “non-governmental” and non-profit philosophy; developed for 

international norms and standards applicable to manufacturing and services. It provides 

a “map” of the various layers that receive and send data. Each IoT protocol, belonging 

to the IoT system architecture, provides communication between various devices [19]. 

One of the first preliminary reports on IoT and later on “smart cities” was published in 

2014, under the file name: ISO/IECTC-1 [20]. 

▪ International Telecommunication Union (ITU) 

This governmental organization regulates telecommunications worldwide, being the 

oldest (since 1865). Initially, it was created to control the interconnection of existing 

telecommunication systems between all countries. 

In order to create global standards for IoT, in 2015, ITU developed a new study group 

whose central axis is reflected in applications in IoT [21]. 

La ITU bajo una visión normalizada, define a IoT como una infraestructura mundial, 

para uso y desarrollo de la sociedad de la información, la cual permita utilizar servicios 

complejos, mediante la interconexión de objetos, ya sean físicos o virtuales, todo a través 

de la interoperabilidad entre tecnologías en comunicación e información, tanto a nivel 

actual, como a futuro. 

The ITU, under a standardized vision, defines IoT as a global infrastructure for the use 

and development of the information society, which allows the use of complex services, 

through the interconnection of objects, whether physical or virtual, all through the 

interoperability between communication and information technologies, both currently 

and in the future [22]. 
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▪ Organization for the Advancement of Structured Information Standards 

(OASIS) 

It is an international non-profit consortium oriented towards the adoption and 

convergence of structured information standards in electronic commerce and web 

services.  

OASIS works on three open-source standards such as the Message Queuing Telemetry 

Transport Protocol (MQTT), Advanced Message Queuing Protocol (AMQP) and OASIS 

Open Building Information Exchange (OBIX) in order to guarantee interoperability in 

IoT. The IoT protocol chosen by the working group is that of MQTT, and the MQTT-

SN protocol, which is adapted and optimized for wireless sensor networks, the latter in 

order to provide compatibility with different technologies, such as M2M [23]. 

▪ Internet Protocol for Smart Objects (IPSO) 

This non-profit organization founded in 2008 was a forum of allied companies that 

promoted a protocol for smart objects or things. One of its main goals was to lead the 

use of open IoT standards and establish the use of the Internet Protocol (IP) for the 

connection of intelligent objects through the applications of IoT and M2M [24]. 

2.2.2. Concept according to the IETF 

According to the IETF, the IoT is the network of physical objects and “Things” 

integrated with electronic components, software, sensors, and connectivity to allow 

objects to exchange data with the manufacturer, the operator and other connected 

devices. 

It further defines IoT as devices that are often limited in their computing and 

communication capabilities and are now more commonly connected to the Internet and 

various services that build on the capabilities that these devices jointly offer. This 

development is expected to generate more M2M communication using the Internet 

without user intervention. 

The IoT is a fast-growing technology trend that adapts with other emerging technologies. 

Several IETF working groups from different areas are developing protocols that are 

relevant to the IoT. These protocols are used by various companies, as well as 

organizations and alliances dedicated to creating IoT standards, in order to obtain 

specifications for interoperability. Due to the diversity in the development and use of 

IoT protocols, it is usually necessary to coordinate between the different groups working 

on IoT to reach agreements. 

2.2.3. Concept according to some manufacturers 

Some technology manufacturers have followed the IETF concept to apply it to their 

products and offer them to users as soon as possible. However, its main objective is to 

achieve a presence in the new IoT market just as device manufacturers do in the industry 
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as quickly as possible. This eagerness to enter the market quickly makes many of these 

products difficult for users to handle and install in the home and industrial networks. 

Therefore, few people are interested in this, as did those who acquired the first personal 

PC for the home and those who relied on electronic commerce in its early days. Now the 

challenge is that people are interested and trust in all their objects connected to the 

internet. However, step by step, people have become familiar with these technologies 

since mobile devices have been part of people's lifestyles since before, so it is possible 

that they also trust that they now have everything connected. However, it is also 

necessary that manufacturers continue to improve their products so that the connectivity, 

installation and handling of the objects are easy to use as smartphones. In this way, the 

future in the trade of these connected objects would lead to massification, becoming a 

further opportunity for digital transformation (evolution of things). 

Next, some manufacturers are presented and how they conceive the connection of their 

products in a home network, making use of mobile apps, cloud platforms, and additional 

network elements to make it possible to connect objects to the internet. 

▪ Samsung SmartThing 

This brand of manufacturers, as well as others, are connecting their products to the 

internet. These products are mostly household appliances. It adds value to their products 

as users can control and monitor them on and off the local network through the internet. 

In this way, a user can access from the office or anywhere in the world know the on/off 

status of their devices and put them into operation before arriving home or during the 

journey home.  

 

 

Figure 4. IoT-Network: Samsung 
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In the network connection example in Figure 4 an intermediary gateway is required 

between the appliances and the home router. Current versions already allow direct 

connection through the home router using WiFi. However, its administration only works 

with objects from the same manufacturer and those of some allies. 

▪ Ozom 1.0 

Ozom [25] is an IoT brand that launched devices for everyday use in the home and 

connected to the internet. Most of these devices are security and lighting devices such as 

cameras, sensors, light bulbs, among others. The brand requires that the objects be 

connected through an additional router (ozom box) with WiFi and ZigBee connectivity, 

which connects to the home router. In addition, the brand provides an Android or IOS 

mobile application for monitoring and control. Figure 5 shows its connection and 

describes how the application is used within the home (local network) and outside the 

home (via the internet). According to the figure, acquiring a new brand different from 

those traditionally acquired by users in the trade is necessary. It means that if a user 

decides to have his home or office interconnected, he will have to buy a single type of 

brand and in which, in this case, it does not include electrical appliances. So, if he wanted 

to connect with electrical appliances as described in Figure 4, it would not be possible 

since they are different brands, have different applications and different routers. 

Interoperability for a user would be complicated to manage due to the large number of 

applications used for each thing acquired. 

Figure 5 describes a typical connection of a mixed network in a house where it is 

necessary to use an ozom box. Once installed and connected to the main router, ozom 

brand objects can be connected to the internet and controlled through the ozom 1.0 App. 

Some sensors of this brand use ZigBee technology, for which this intermediary is 

necessary. Once logged in, the user must register on the platform via the app, where all 

the usage data of each object will be recorded every time it is used. In this version, it is 

not yet possible to download the data set to be managed by the user. They can only be 

accessed for use through usage rules and the history of some objects. 
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Figure 5. IoT-Network: Ozom 1.0 

▪ Ozom 2.0 
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observed, from which objects can be controlled using voice activation. 
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Figure 6. IoT-Network: Ozom 2.0 

As in the version of ozom 1.0, seen in Figure 5, this new version covers a greater number 
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among others, but not electrical appliances [30]. In this version, it is also not possible to 

download the dataset of all features and events of things, together with their network 

parameters for the user to analyse. 

2.2.4. Concept according to Cisco 

The concept of the Internet of Everything (IoE), according to Cisco [31], proposes IoE 

as "the intelligent connection between people, processes, data and Things" since, in IoT, 

all communications are between machines. However, IoT and M2M are considered as 

its synonyms. It means that IoE is the extended concept of IoT, which includes, in 

addition to M2M communications, machine-to-person (M2P) and person-to-person 

(P2P) relations [32]. 

This IoT concept extended includes any physical or virtual object or element with a 

communication module, transmitting data without human intervention (P2M input). In 

addition to being everyday elements such as sensors and electrical appliances, these 

objects also include any other element that had not been connected before. Moreover, 

how communication is interconnected and automatically established, including those 

established by the user, is also a central part of this concept. On the other hand, the IoE 

also includes the coverage and bandwidth of each connection and the relationships 

between the devices on the network. 

Figure 7 shows a typical connection under this concept in which a control agent is 

necessary where the connection rules between things are established. In the local 

network, these rules are programmed on a server, or if there is one, the cloud platform 
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Figure 7. IoT-Network according to Cisco 
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others, these are still in the development and testing phase. Some of these architectures 

are implemented based on the concepts and definitions previously described. For 

example, there is a European project called the Internet of Things Architecture (IoT-A), 

which also proposes, based on a concept, the theoretical basis for designing IoT 

architectures. 

As long as there is no general agreement between all the actors and their proposals, the 

challenge will continue to be the unification of a reference IoT architecture. Creating a 

new proposal should take into account the previously mentioned concept aspects and the 

design of the architectures that will describe in this section. Then it will be possible to 

obtain an architecture that integrates the most relevant attributes of the various IoT 

architectures to build a hybrid or mixed architecture. 

With this idea is intended that the new architecture can respond to the handling of events 

and times, that is, an architecture oriented to events, and based on the hardware 

capabilities of the elements that compose it. These events would respond to the 

integration of AI models to put available new services depending on the requirements of 

the network and users. 

From the multiple proposals is derive a generic level-based model, starting from three-

level models to five-levels. Then is presents the architectures based on processing and 

the proposals of architectures that are specific to the application level based on the 

concept of the framework. The following architectures are currently the most relevant 

[33]: 

2.4.1. Level-based architectures 

As there is no reference or standard model for IoT as is the OSI model for TCP / IP, most 

of the proposals deployed based on generic three, four, and five-level models. Which 

separate and organize the devices according to its function in different planes called 

layers. In these plans, roles and responsibilities defined independently and its 

functionalities can relate through interfaces. 

2.4.1.1 Three levels architecture 

This is one of the most knows and popular architectures in the different websites that 

talk about emergent IoT technologies. These refer to a typical system that is composed 

of three layers: detection, communication, and application, and were initially structured 

for the control and monitoring of sensors. This a basic architecture, and in some other 

sources, it is known by other similar names but with the same function, such as 

perception, network, and application. The objective is the same, actuators and control. 

Each layer is described below in order from bottom to top: 

▪ Detection or perception level 

It is the physical level, where the sensors capture the physical signals, transform these 

into information, collect it, and then send it. Each sensor as an end device responds to 
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the requirements of the network layer according to its capabilities in terms of information 

protocols, interconnection technology, and topology. 

▪ Communication or network level 

It is commonly present in most IoT-Architectures that provide medium access control 

through a switch or a router for local interconnection and access to the internet. The 

configuration and requirements of the network will depend on the type of data and the 

function of the sensors. 

▪ Application level 

It is the level where the information is processed and depends on the use that gives to the 

data. Commonly it is associated with some type of server that hosts a service related to 

the monitoring and control of the sensors. Its location can vary between offering its 

services from the Internet as a cloud or something local that does not require an Internet 

connection. 

2.4.1.2 Five levels architecture 

This architecture, unlike the previous one, has the same layers, but with two additional 

layers distributed as follows: levels of perception, transport, process, application, and 

business. 

▪ Process level: 

This level separates the information processing function that was previously part of the 

application layer, leaving it as an independent layer. This level separates the information 

processing function that previously formed part of the application layer, leaving it as a 

separate layer. In this level, it is possible to store, analyze, and process large volumes of 

data (Big data) collected from the perception level. In addition, it is possible to manage 

data through databases and cloud computing. 

▪ Transport level: 

This level is similar to the communication or network level presented in the previous 

architecture, but with extended functions. In this level includes IoT interconnection 

technologies that are new or that have evolved from the best known. Such is the case of 

technologies such as RFID, Bluetooth, WiFi, and 3G/4G, which evolved improving their 

bandwidth, topology, and coverage. It is the intermediate level between the levels of 

process and perception through which transport the data of the sensors. 

▪ Business level: 

This level object to obtain an economic benefit from the increasing interaction of users 

with machines and from generating greater consumption of technology by people. The 

applications are endless in multiple fields and ecosystems, but this layer dedicated to the 

specific business model that generates profitability in each designed application. Some 

business models currently have incorporated the concept blockchain, oriented to the 
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encryption of information, some more common applications are cryptocurrencies, 

database management, bank transactions, smart contracts, energy trading, and electronic 

signatures. This level uses its own protocols for the transport of information; however, 

there is a recent open-source proposal is the IOTA protocol. This protocol has its own 

architecture (Tangle) and offers better performance than blockchain, but it is still under 

development and testing. 

2.4.2. Computing based architectures 

In addition to the previous architectures, others show a clearer interaction with the 

Internet and data processing. The connection of objects to the internet and the possibility 

of establishing the processing in a shared infrastructure depending on the advantages of 

its location gives way to the following architectures. 

2.4.2.1 Cloud computing 

The infrastructure that processes the data is in the cloud and organized in three layers, 

level 1 the devices as the data source, the process level is the intermediate or central 

level, that is, the cloud, and in level 3 the applications. 

When it was possible to connect to the Internet with better bandwidth, and when 

applications began to require more storage space, it was then that companies and 

individuals decided to migrate their storage infrastructure from local to virtual servers 

managed by third parties through internet providers (ISP). This practice became more 

and more common, giving force to the massive storage of information in high-capacity 

virtual media called the cloud. Now, the cloud is essential in the work done with IoT; 

since, in addition to offering data storage services, it allows hosting platforms to do its 

processing. 

This architecture model allows a direct connection to the cloud through any Internet 

access or with access from the same device. Moreover, it can access the consultation, 

exchange, download, and storage of the data (processed or unprocessed) from any place 

or machine. The versatility described in this last type of access is a quality that gives rise 

to the concept of ubiquitous computing. Therefore, the National Institute of Standards 

and Technology (NIST) of the United States of America [34], defines this architecture 

through recommendation SP 800-145. Which presents cloud computing as a model that 

allows network access under the concept of ubiquitous computing with on-demand 

processing. In turn, it shares resources such as applications, storage, and services, 

quickly with a minimum of effort on the part of the ISP. This model is exposed through 

three principles: essential features, service models, and deployment models. 

The following three essential features described thus: 

▪ On-demand self-service: Clients can reserve and do use of the server and store 

information automatically when these need it, without human interaction with 

each ISP. 
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▪ Broad network access: Accessibility to cloud capabilities can be done from 

any type of client (mobile phones, tablets, laptops, and desktops) using any 

conventional means of communication available to users. 

▪ Resource pooling: All the provider’s resources are pooled and made available 

to multiple users, dynamically assigned according to demand.  The user is 

unknown the location of these resources. However, know some of these 

resources (storage, processing, memory, and network bandwidth) and their use. 

Service Models: 

Initially, a cloud was considered a place or storage space; Later, as it evolved, it became 

a resource management method in IT information technologies over time. 

The term "Cloud Computing" is currently a technological trend that reflects any action 

involving providing content services within the Internet, limiting its charge only for 

"what is consumed." These services are divided into three main categories: 

▪ Software as a Service (SaaS). 

Model in which a cloud provider manages infrastructure and platform components and 

put to available to users. 

▪ Platform as a Service (PaaS). 

It facilitates companies and industries' development, execution and management of 

applications (increasing their development speed, since they allow programming at a 

higher level), more simply and flexibly, at a much lower cost than that of "maintaining 

some platform directly within a facility. 

▪ Infrastructure as a Service (IaaS). 

This model provides companies with the way to host IT infrastructures and access to 

computing, storage, and network capacities, always in an ascending way. Its subscription 

models enable IT to cost savings. In this case, the user is solely responsible for 

administering a specific operating system and related platforms for this purpose, while 

the responsibility to support and maintain the infrastructure falls directly on the provider. 

2.4.2.2 Fog computing 

Considering that the infrastructure responsible for data processing, when it is in a fog or 

a “cloud closer to the ground”, under the perspective of the “fog”, its processing is carried 

out directly between the Smart Objects, without needing to send them to the cloud, whose 

functionalities range from data processing and decision-making. This type of 

architecture is open and standard (essential for development in the IoT ecosystem), 

unlike closed and private solutions. 

▪ SmartFog 



Chapter 2. State of the Art 

 

25 

This architecture can take computing beyond where the devices are or where the sensor 

network is located, having the ability to adapt according to the application's needs. The 

“fog nodes”, unlike how they are perceived in a network or electrical circuit, is a dynamic 

system capable of allowing applications and functionalities to be implemented in 

different layers within itself. 

▪ Cisco fog computing 

For Cisco, fog computing (seen as “a cloud closer to the ground”), is a platform that has 

a high level of virtualization, capable of providing computing, storage, and networking 

services between the “Big Data” (located in the cloud) and “Smart Objects”. 

2.4.2.3 Edge computing 

This type of computing occurs, either in the user's physical location or where the data 

source is. As a result of this, users obtain faster and more reliable services, having, in 

turn, the possibility that companies can distribute resources to different locations. 

2.4.2.4 Mobile edge computing (MEC) 

“Multiple Access Edge Computing” amplifies your capabilities in the cloud when you 

take it directly to the edge of the network. As computing occurs on remote servers (away 

from the user and the device), MEC makes the processes take place in base stations in 

the network, reducing latency and congestion in mobile networks. 

2.4.3. Framework based architecture 

It reflects the encapsulation of a basic set of practices and requirements which are used 

by devices or artefacts that delimit the architecture of a given system. 

2.4.3.1 OCF Architecture 

It is based on the REST architectural style, being resource oriented. Additionally, OCF 

specifies functional interactions such as CRUDN, messaging, maintenance, and 

monitoring. Additionally, this architecture has a resource for assigning the AllJoyn 

interface and the OneM2M module. 

2.4.4. REST architecture 

The term originated in 2000, coined by Roy Fielding (creator of the HTTP protocol). It 

reflects a software architecture style, designed for “hypermedia” systems, called or 

distributed as World Wide Web (W.W.W). 

2.4.5. HTTP Proxy Service (HPS) architecture 

Taking into account the concept of proxy as an "intermediary" between requests for 

resources made by a certain client to a certain server, on the web said proxy must be used 

with the HTTP protocol, providing a "cache memory that can be shared to web pages 
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and all the contents that have been downloaded, this is called: proxy-cache; As all users 

share this memory, access times are improved. 

 M2M Interconnection 

In the classic Internet model, where servers, routers and various clients interact with each 

other, direct M2M communication was already known, referring to the solutions that 

allow said communication between devices (machine to machine) of the same class and 

specific application, highlighting the sensors (which detect changes in their 

environments and communicate through electrical impulses) as the main elements within 

this technology, and always connected at all times to a wireless network. 

M2M generates a base level in communication to be used by the IoT; This type of 

intercommunication is taken into account when considering any technology capable of 

allowing different devices that are in the same network to share information mutually 

and to carry out actions completely autonomously and independently, without the help 

of another external machine or human operator. 

 IoT Interconnection Technologies 

IoT stores an immense amount of data due to many connected devices in a diverse variety 

of connectivity technologies such as: 

▪ Wired 

▪ Short-range wireless (wifi, Bluetooth, Zigbee and Z-Wave) 

▪ Long-range wireless (cellular technologies such as GSM, LTE, LTE-M, NB-

IoT, EC-GSM-IoT and 5G) 

▪ Low power (unlicensed such as SigFox and LoRA) 

▪ Satelite 

The current 5G network significantly reduces the delays in interface communication, 

becoming super reliable and low latency (URLLC). However, it cannot improve the 

“quality of status update,” causing control and performance to depend mostly on wireless 

communications. 

 IoT-Protocols 

They allow communication between IoT devices with the network; they guarantee that 

all “Smart Objects”, gateways, or services, can come to understand all the information 

sent by other objects. 

In the “application interface”, it will find: 
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▪ Advanced Message Queuing Protocol (AMQP) 

▪ Restricted Application Protocol (CoAP) 

▪ Data Distribution Service (DDS) 

▪ Message Queue Telemetry Transport (MQTT) 

▪ HTTP Restful 

At the transport level there are: 

▪ Transmission Control Protocol (TCP) 

▪ User Datagram Protocol (UDP) 

At the network level, there are: 

▪ IP 

▪ 6LoWPAN 

At the data link level are: 

▪ IEEE 802.15.4 

▪ LPWAN 

On the physical level, there are: 

▪ Bluetooth Low Energy (BLE) 

▪ Long-term evolution (LTE) 

▪ Data transmission in proximity (NFC) 

▪ Power Line Communication (PLC) 

▪ Radio Frequency Identification (RFID) 

▪ Wi-Fi / 802.11 

▪ Z-Wave 

▪ Zigbee 

 Router 

Among all the network equipment necessary to form LAN and WAN networks, the 

router stands out for this specific case, which is key in interconnecting a network. This 

equipment, clearly initially developed to operate under TCP / IP architecture, have 

provided networks with the ability to provide IP addresses and route packets between 

different networks, in addition to providing Internet access. Before, these networks were 

exclusive to companies or providers of communication or Internet services, and they 
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were reaching homes little by little. With the evolution of electronics and the need to 

improve services at the residential level, given the growing demand for the use of the 

Internet in homes, the costs of this equipment were decreasing. This meant the possibility 

of residential internet access through routers with the capacity limited to the type of 

service needed. Although this is a Layer 3 device and is named after business routers, its 

functions are not the same, and it is used in home environments as a more basic version. 

The best-known cases are routers with unlimited local telephone, television and internet 

access. 

Just as these devices were adapting to the needs of these services, new needs were also 

generated with the arrival of new IoT technologies. Some of these IoT routers, as shown 

in Figure 4 and Figure 5, were created to connect everyday Things on the same network 

but under the dominance of a single type of manufacturer. Some things with the ability 

to communicate that have already been introduced in the market are available for users 

to purchase using an additional router. Although it can be a low-cost device, one of the 

difficulties faced with this type of solution is the dependence on a single type of 

manufacturer, which makes the user must buy things only from a specific brand. This 

would limit the user in choosing it and would take away the option of acquiring other 

types of Things with better functionalities offered by other manufacturers. 

In the same way that the router is created for business networks, IoT routers also offer 

different services with good technical capacity but at very high costs. These routers try 

to respond to cover the most used IoT interconnection technologies, even if they do not 

cover other needs. Therefore, the need for interoperability in the IoT ecosystem becomes 

evident as a goal to which an IoT router must respond. In addition, these routers mostly 

have only ethernet and WiFi interconnection technology, which makes it difficult to 

communicate with objects that have other types of technologies. 

The idea is to bring together in a single routing device both needs, interoperability and 

low cost, and the possibility of expanding its capabilities to the point of allowing the 

reprogramming of its functions. This, together with artificial intelligence, can lead to a 

Smart IoT-Gateway, such as the one proposed in this thesis. 

 IoT-Gateway 

The IoT-Gateway is the device that is expected to replace the conventional routers used 

in proximity networks. An approach to this device has already been given through 

gateways sold by some manufacturers' brands to connect their objects to traditional 

networks as an extension of the router on the local network. However, it still lacks 

features to become an IoT-Gateway. Some of these features are resource sharing, data 

storage, multiprotocol, and multi-connection, manageable and secure. This thesis uses a 

prototype that allows data storage and internet connection management through an AI. 

This thesis uses a prototype that allows data storage and internet connection management 

through an AI. Also, to be the device responsible for centralizing network information, 
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it maintains its organization through the proposed architecture. In this case, the AI of the 

IoT-Gateway is responsible for segmenting the network into workgroups, resource 

sharing and routes the objects using the mechanism for selecting the best node. 

A gateway, in general, is a device that is used as a connection point between one network 

to another using different protocols and architectures. Although it can be used the same 

as the router, it can communicate different IoT environments, protocols, and 

architectures. That is, the local or main network does not need to use the same 

communication protocol as the internal or external networks. This device can act as a 

translator between protocols carried from within the network over different connections 

and send it over others outside the network. However, depending on the network layer 

and the environment, it can also be used for different functions. Among them, the 

simplest is the outgoing connection or internet access. 

The main difference between the router and the gateway is that the gateways are used in 

many IoT networks, from corporate environments to home environments, but with more 

advanced functions than a conventional router. 

2.9.1. Centralized Management 

Of the three types of the grade of centralization explained above, centralized 

management is the main requirement of the architecture of this thesis. Therefore, the 

function of a device that performs this type of operation will be briefly described. 

Considering that there is currently a large increase in the number of interconnected smart 

devices, the vast majority still have low storage, processing, and connection capacities, 

which requires reprogramming and updating. Therefore, a network management system 

is necessary, centralized, and synchronized with the applications in the IoT devices, 

which allows managing the sensors used by the IoT devices easily. 

2.9.2. Gateway agent 

When there is no physical device, that is, hardware dedicated to gateway functions, a 

software agent can be used, which for this case is the virtual or digital representation of 

the physical device. This can be housed within any other physical entity with sufficient 

hardware characteristics to emulate the operation of a Gateway. Each agent has specific 

tasks; in this case, the IoT agent within the gateway assumes the translator role between 

specific protocols. This can be housed within the hardware of a Gateway or directly 

within the end device (sensor); however, it maintains its dependence on the local network 

router in any of these scenarios. In the proposal of this thesis, the router and the gateway 

are integrated into a single device together with artificial intelligence, which manages 

internet access and proposes a different way of segmenting and routing things connected 

to the network. 

 IoT-Platforms 
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These components are considered the most important within the IoT ecosystem. They 

are used for data processing, data collection, visualization, and management in data 

devices, allowing interaction between devices and applications to transmit information 

through the standard protocols existing on the Internet. 

The main applications that facilitate the development of projects in IoT are: 

▪ Azure 

▪ Zetta  

▪ Arduino IoT Cloud 

▪ ThingsBoard 

▪ ThingSpeak 

▪ Thinger.io 

▪ Nodo-RED 

 IoT security 

Consumer applications aimed at the control of everyday things by users under the IoT 

concept and the desire of manufacturers to accelerate their acquisition has put security 

aside. Few are IoT objects that are safe; they are still working on a security scheme that 

allows users to give peace of mind when taking an IoT product to their homes. The 

vulnerability of the information is high before a model of commercialization of Things 

connected to the internet, without having previously gone through arduous 

standardization processes or being under architectures with good security schemes. 

 Artificial Intelligence in IoT (IoT-AI) 

AI is a data analysis model that can automate complex processes where traditional 

algorithms cannot work due to large volumes of data processing. AI establishes patterns 

and generates actions from these patterns using different learning models. AI is a 

transversal system for all applications in different areas of knowledge, including IoT. 

The data obtained from connected objects in IoT has been little explored since this data 

is not always available to users for analysis. However, this thesis analyses the data 

obtained from connected objects through the proposed architecture, giving functionality 

to the entire IoT-Network.  

2.12.1. Machine Learning (ML) 

2.12.1.1 Selection of the ML algorithm 
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Some AI techniques like Machine Learning can be chosen for an application according 

to its dataset size, training speed, interpretability, tuning [35]. Below is a brief description 

of each of them: 

▪ Dataset size 

ML algorithms depend on the size of the data set. However, no specific rule indicates 

which algorithm should be used according to its size (less than 50 MB or more than 1 

TB). Table 1 shows the algorithms that are used according to the amount of data. 

Therefore, these are the algorithms that can be used considering that the sample dataset 

is balanced [36]. 

Table 1. ML algorithms accord dataset size 

Small Medium Large 

Decision trees 
Linear models (including logistic 
regression and linear discriminant) 

(Nonlinear) SVM 
Naïve Bayes 
Nearest neighbor 
Neural network (shallow) 

Deep nets 
Ensembles 

 

▪ Training Speed 

Training speed is the time it takes for a model to build and train to solve computational 

problems. Some factors such as algorithm architecture and time complexity can affect 

the speed at which the model will be trained. Table 2 shows the algorithm according to 

its speed if the system is required to be fast in training [37].  

Table 2. ML algorithms according to their training speed 

Very fast Moderately fast Moderately slow Very slow 

Decision trees 
Linear models (including logistic 
regression and linear discriminant) 
Naïve Bayes 

Ensembles 
Nearest neighbor 
Neural network 
(shallow) 

(Nonlinear) SVM Deep nets 

 

▪ Interpretability  

ML models can be unintuitive and difficult to understand since the best models are 

usually the least interpretable. These models look for patterns through relationships 

within a high number of variables in a high-dimensional space. Therefore, they can 

identify relationships and information that are very difficult to capture and interpret by 

a human being. Therefore, when applying an ML model in real problems, it must choose 

between two aspects, accuracy or interpretability. The simple model is less precise but 

easily understood, or the complex model is very precise but less interpretable. Table 3 

shows the classification of some algorithms according to the level of difficulty in 

interpreting them [38]. 
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Table 3. Interpretability 

Easy to interpret In the middle Difficult to interpret 

Decision trees 
Linear models (including logistic 
regression and linear discriminant) 

Nearest neighbor 
Neural network (shallow) 
Naïve Bayes 

(Nonlinear) SVM 
Ensembles 
Deep nets 

 

▪ Tuning 

The tuning is used when changing the parameters or hyperparameters that modify the 

operation of a model, improving its result. Some algorithms do not have many 

parameters or hyperparameters, which limits the optimization of the model. Therefore 

this tunning can determine the performance and precision of a model and affect its 

optimization. Table 4 shows how to choose the model for training based on the amount 

of tunning required to achieve the desired result [39]. 

Table 4. Tuning 

Minimal Some Lots 

Linear models (including logistic 
regression and linear discriminant) 
Nearest neighbor 

Decision trees 
(Nonlinear) SVM 
Ensembles 
NaÏve Bayes 
Neural network (shallow) 

Deep nets 

 

 Conclusion 

The previous chapter shows a literature review of the concepts, technologies and 

architectures most commonly used in IoT and related to AI.  Without the previous review 

of these concepts, the proposed architecture would not have been possible. After 

comparing and analysing in-depth the existing works, the solution proposed in this thesis 

will be presented in the following chapters.
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Chapter 3.                       

Proposed 

interconnection 

architecture 

 IoE concept applied to this architecture 

This architecture integrates the Cisco IoE concept from a Fog and Cloud computing 

architecture with a higher degree of troubleshooting at the Fog level. However, it also 

takes the Edge computing concept applied to objects, since if they can host an AI, it will 

store and process its data to provide and improve services directly on users. Outside the 

main network, the Edge Movile Computing concept is applied, which maintains a 

connection with the user's main network and groups all the objects belonging to the same 

user. In the same way that this proposal is conceived with integrating the most popular 

architectures, it is done with the concepts, such as the concept according to IETF 

integrated with the Cisco IoE concept and others. 

The objects connected in the network can be of any type, with any IoT connection and 

IoT protocol. The topology and coverage do not imply a problem for the network either, 

since each object is connected following the order of the architecture in Figure 8, and 

artificial intelligence is in charge of assigning it a work role within a group and one 

architecture layer. In this way, a control is maintained in the network organisation, and 

each object takes on an identity depending on its features. 

The fusion of these four architectures and the inclusion of AI for their administration 

gives rise to an IoT-SmartArchitecture, presented as a proposal in this thesis. 

 Centrally managed architecture 
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The degree of centrality for the case of this architecture is located in the IoT-Gateway, 

which allows concentrating the data and the data flow in a single point. Although some 

objects or sensors can connect directly to the cloud and work in cloud computing 

architecture, the idea is that they follow this architecture and always report their data to 

the IoT-Gateway. 

 Architecture description 

We propose a grouping model for different types of objects that attend the same service 

type to a user. The grouping is carried out by an AI hosted within an IoT-Gateway and 

is based on ML techniques to analyze the data extracted from each object connected to 

the network. 

The AI controls the algorithms that make the network operational and interconnects with 

the other AIs located in the different architecture layers through an interface. This 

interface is described in the operation of the architecture on which this proposal is based. 

The workgroup creation algorithm, which uses ML, analyzes the features that define an 

object’s functions and capabilities. With this information, the ML classifies an object 

and assigns it within a workgroup according to the type of service it can collaborate and 

assigns it a role within an architecture layer. All objects are different in terms of 

capabilities and functions and can provide different services and share different 

resources; therefore, an ML can help predict which group an object can belong to and in 

which layer should be assigned. 

 Architecture components and their functions 

This IoT-Architecture with AI (IoT-SmartArchitecture) and centralized management 

encompasses the most important aspects of Cloud, Edge [40] and Fog computing through 

SmartFog [41] and integrates them with other architectures to give place to smart objects 

in a IoT-Network. It is an architecture with additional functionalities that allows, through 

the fusion of different architectures [42], solving problems of adaptation and recognition 

of functions and services in connected objects. This architecture organizes objects in 5 

layers with an ascending hierarchical structure in a tree or star between layers 2 to 5 and 

an ad-hoc structure in layer 1. With this structure, it is possible to propose new routing 

and grouping algorithms for a Smart IoT-Network, designed under this architecture. 

Each layer has a predetermined functionality, so the AI assigns a role to an object 

according to the degree of coincidence of its features with these functionalities. It does 

not matter which layer an object is assigned, due to the flexibility of the architecture, the 

same structure is still maintained. The objects’ features are directly related to the 

processing capacity, memory, and connectivity of the electronic device. That is, the 

assignment of the role is oriented to the hardware’s capacity of the objects and the 

functions that they can perform. 
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According to Figure 8, this architecture comprises the next five layers: Internet, 

Management, Artificial Intelligence Assistant (AIA), Things, and Sensors. Each one of 

them is briefly described below in descending order. Moreover, shows the three 

processing levels (AI-Interface) over the three main layers. 

3.4.1. Layer 5 (𝑙5) 

Internet layer attends to queries from local IoT-Networks identified with the same user 

profile, that is, it can maintain a connection and provide service to the user inside or 

outside their home, making parameter groupings. The AI within Cloud assumes the 

user’s local home network to use as the main network, and its functionality is based on 

maintaining and restricting access to queries, only to the AI of the IoT-Gateway of local 

networks, such as home, office, and any place of the city, connected under the same type 

of parameter [43], [44].  

3.4.2. Layer 4 (𝑙4) 

Management layer is the main layer of the architecture and is controlled by an AI within 

an IoT-Gateway. This a multi-protocol gateway with decision-making that also works 

with different interconnection technologies [45]. It is similar to the network layer that 

uses the other architectures, but with the difference that it is interoperable and intelligent, 

and it centralizes de information. Its main and most important function is to create 

workgroups and manage internet access. AI controls the algorithms that interact with the 

other AIs in the upper layer (Internet) and the lower layers (AIA, Things, Sensors) 

through interfaces. This interface is achieved using DFSP [45], a simple protocol that 

adapts to each IoT-Protocol payload’s sizes. 

When the AI does not know the IoT-Protocol, it consults the AI in the cloud for its 

structure, learns it, adapts DFSP to its payload size. In this way, the AI extracts the data 

from each object’s features to learn it and classify it. When a new object is connected to 

the network, the AI does not know what type of object it is, so it evaluates it through its 

features and, depending on the nearness of these features with the objects established 

previously in the network, assigns it a role. With this role, the AI knows if the object is 

a Cloud, a Gateway, an AIA, a Thing, a Sensor, or an Actuator. 

In other words, the device on which the Gateway is built under this architecture must 

have the capacity to control several algorithms such as routing and grouping, store, AI 

support, M2M broker support, and manage Internet access. 

3.4.3. Layer 3 (𝑙3) 

The task of AIAs is the usual and similar to virtual assistants. These capture command 

and execute it, but with the difference that it is no longer done under cloud computing 

architecture, that is, information processing is no longer done in the cloud. When the 

AIA receives a command to activate a object, it is first analyzed by the Gateway’s AI, 

and based on its evaluation, it will decide if it is necessary to do a query or processing in 
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the cloud or to process it locally. Moreover, to achieve that an object is actuated locally, 

the commands must be sent over some IoT-Protocol and perform an M2M connection. 

For this, the IoT-Gateway must have the ability to host a Broker that allows objects 

within the architecture to connect via M2M. 

3.4.4. Layer 2 (𝑙2) 

Things layer identifies objects of more complex capacity with diversified uses and 

physical structures designed for specialized tasks. As the case study of this work is on 

Smart Home, most of the objects are built from large capacity devices designed to 

operate as household appliances. These devices have good processing capability since 

they can support an AI and, in some cases, handle various types of connection. The AI 

in these devices has two fundamental tasks: learning from the usage habits of its user and 

reporting the changes and features to the central AI. Most of the time, objects classified 

as Things contain sensors for their operation, which does not imply dividing the object 

into two layers. However, if the Thing is a device responsible for collecting information 

from sensors in a system, the architecture does divide them. 

3.4.5. Layer 1 (𝑙1) 

Sensor layer is a layer that contains sensors and actuators or objects with both functions. 

In this layer, these objects can capture analog and digital signals and transmit it, or even 

depending on their ability, can process them. Most of these final objects perform type 

ON / OFF or data streaming actions and can operate directly by connecting to the IoT-

Gateway or the Cloud. However, according to this architecture, its connection point must 

only be the layer immediately above (layer 2). The communication between them keeps 

under the same M2M connection policies that the IoT-Gateway. However, the 

connection may not support an IoT-Protocol. Therefore, to use an end-to-end IoT 

protocol in this architecture, it is recommended to use, e.g., MQTT-SN, in this layer [46]. 

3.4.6. Processing levels (L) 

This architecture operates under three processing levels integrated and communicated 

through an interface. Level 1 begins where the data is generated through objects with AI 

(SmartThings), which process or pre-process information about the user’s daily activity. 

Level 2 or central, is the IoT-Gateway with AI (SmartGateway), which centralizes, 

processes, and classifies the information. Level 3, the cloud with AI (SmartCloud), 

processes high volumes of information and compares and relates them to those of other 

clouds. These processing levels allow the separation of functionalities, decrease latency, 

and reduce the response time when there is a loss of communication with the cloud. This 

processing distribution gives autonomy to the SmartThings to process data from Sensors 

and its users' direct obtained. That, in turn, lowers Level 2 latency. Moreover, it is 

possible to extend this autonomy if the central AI allows a partially distributed 

management under its supervision. That is, things are directly connected to other things 
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without the intervention of the SmartGateway. That also lowers Level 2 latency. 

However, this work will not use this type of connection. 

3.4.7. AI-Interface 

This interface is made to transport the information required by the AI between 3 different 

processing levels and coordinate their priority. These levels are communicated through 

DFSP messages, specifically the COMPUTING message. Every time a user uses an 

object, the internal AI stores the information (Level 1) and processes them to statistically 

learn which resources are commonly used and what purpose they are used. It then uses 

the interface to send the information to the next level of processing. This information 

travels through the DFSP messages and allows the centralized AI to build a database of 

all connected objects’ features through the following profiles of features, Functions, 

Services, Resources, and Capabilities. The centralized AI informs the connected objects 

using COMPUTING messages about the number of features and the order they should 

be sent. 

3.4.8. Pre-processing 

This event occurs before sending the features to the Smart Gateway. The features’ data 

is organized according to the specifications of the central AI. Some of them are converted 

to binary data types to reduce the payload’s size and sent in JSON format. Furthermore, 

there may be no coincidences between the manufacturer’s features concerning those 

requested by the central AI. Therefore, it transmits the order of the most relevant features 

and a translation table. With this table, the text is processed, and the AI of the object only 

returns binary values corresponding to whether the feature exists or not. In turn, if the 

feature is a text value returns the corresponding number assigned in the table. The rest 

of the features with integer or decimal values return this value with the name feature 

associate. 

On the other hand, the object’s AI can learn which features have been accepted correctly 

in each request and improve this table. In addition to this, the object’s AI can pre-process 

data related to user preferences based on its use and create different profile users. 
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Figure 8. IoT Stack SmartArchitecture 

 Operation of the Architecture 

This architecture is organized in five layers called the Internet, Management, Assistants, 

Things and Sensors with ascending hierarchy and tree structure. The network model of 

this architecture allows elements based on M2M protocols to be grouped and routed at 

the management layer level, and by groups of parameters, at the Internet layer. 

Furthermore, this architecture is flexible and designed to allow artificial intelligence (AI) 

algorithms. The intermediary device is the management layer node that hosts an AI and 

manages Internet access. 

AI performs troubleshooting locally through the central administration of the Gateway 

and the information provided by the group of things involved in the execution of a 

service. Managing this access is primarily based on reducing dependency on the cloud 

platform to solve a problem at the local network level. For example, the AI will decide 

when to query the AI in the cloud, give objects access to the Internet, or block any access 
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until the problem is resolved. Thus, this carries with it good fault tolerance and improves 

network security. 

 IoT-Gateway 

The current data networks allow to connect “Things”, but under their policies and 

protocols. Although protocols such as transmission control (TCP/IP) are flexible and 

allow transport to other protocols in the network, it is a low level protocol, which does 

not solve all the problems that appear in an IoT network [47]. Things must be managed 

differently and the resources that Things need are not the same as a conventional 

network. 

Some IoT-Protocols such as MQTT can exchange messages on these types of networks, 

as well as the Constrained Application Protocol (CoAP) and Representative State 

Transfer (REST) [48]. MQTT and CoAP are M2M protocol and REST uses HTTP to 

perform operations between client and server.  

However, the operation of these protocols is not designed to share, use or allocate 

resources on the network.  

For that, is necessary a protocol or autonomous entity that allow to Things talk between 

them without human intervention, only machines. In this case, it has been decided to 

work with MQTT protocol [49], since is open source and allow modifying its operating 

mechanics. MQTT performs the M2M communication through a central server (MQTT 

Broker) inside a Gateway or directly through the cloud (Cloud Broker). This is a 

publication/subscribe protocol and was initially aimed at IoT sensors networks [50], 

since its main target was to optimize bandwidth and minimize the hardware and the 

processing [51]. 

However, is possible that when creating an adaptive algorithm, it is can take advantage 

of its own messages to send over they the new messages of the DFSP protocol designed 

for this proposal. 

Another problem is that wireless routers in home networks are not flexible and do not 

allow reprogramming of protocols. Commercially this type of devices are obtained, but 

with very limited functions. To achieve modifications in the network and that Things 

operate under another type of architecture, it is necessary to change the traditional router 

to replace it with a reprogrammable one. 

In addition, Things do not have the capacity to process information because their factory 

functions are limited and they cannot collaborate and interact with other things in a 

network. It is not enough to have a means of communication to the internet, it is 

necessary to increase the processing capacity.  

From the above, it is evident that the devices that make up a conventional data network, 

such as the host, the router and the cloud platform, must be reconsidered. 
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3.6.1. Proposal 

The next proposal consists of creating three control agents of the same type but in 

different environments. This control agent is the AI, which will be inside the smart 

things, in the Gateway with centralized administration and the platform in the cloud. The 

AI is based on the same principle and has two main functions, managing the algorithms 

based on Machine Learning techniques and learning the relations Machine to Machine 

(M2M) as the product of the joint work of a group of Things. 

It is necessary to see the problem first since the perspective of the “Things”, because 

these just work when its user controls it or if before it had a previous programming. For 

that, the things carry its own control, it is necessary to know that resource, function or 

service is shared between the things. 

This paper addresses the study of the problem through the analysis of the exchange of 

DFSP protocol messages between smarts things, the gateway, and the cloud platform. In 

this way, it is can see how each Thing that connects announces its functions and services 

and shares it on the network. 

On the other hand, the AI that administers the algorithm that assigns the role to each 

Thing decides that Thing is a resource or makes available a resource. This is an adaptive 

algorithm and changes according to the role that each Thing assumes within the group 

work. 

3.6.2. Use of this architecture 

To understand the architecture that will use in this proposal is fundamental to explain it 

through of three actors and its relation: Smart Things, the IoT-Gateway and the IoT-

SmartPlatform, each contain an AI.  

Through the communication of the AI between these three devices, it is possible to 

achieve a harmony of collective learning in the entire network. 

The design of this architecture is thought for a Wireless Local Area Network (WLAN), 

connecting Things with different interconnection technologies and IoT-Protocols, 

depending on their use, bandwidth, processing capacity, and distance [52]. The idea is 

to modify a network home conventional and become it in a WLAN for IoT. The Figure 

9, show an example of IoT-WLAN network, with different topologies and IoT-Protocols. 

The connection of the Gateway to the intelligent platform in the cloud is done through 

the Internet and constantly monitors what happens in the house. If it is realized queries 

to the cloud, the platform validates the type of request, classifies it and decides if it is 

necessary to connect to other platforms else the AI into gateway decides if the problem 

can be resolved on the local network through the M2M connections [43]. 

3.6.2.1 Object + AI (Smart Things) 
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The importance of things acting intelligently, not just improves its internal functions, but 

it also allows defining functions and services that put to disposition to other things in the 

network. 

Things, in this case study will be appliances inside a house. These require the ability to 

process and communicate with different communication technologies. 

In the architecture of Figure 9 accord to Figure 8, it is can see how everything connects 

directly to other things or through the Gateway. This connection type will depend on the 

permissions and relations established by the Gateway. 

For example, yellow line of Figure 9 depicts the relation M2M established for the 

gateway where creating a group with something in common. 

 

Figure 9. Network IoT-WLAN architecture 

3.6.2.2 Router + AI ( IoT-Gateway like G0 node) 

This multiprotocol device allows managing and centralizing all of the information 

regardless of the underlying technology of interconnecting. It carries out the 

management in a centralized way in the network and allows all the Things in the network 

to connect with each other, initially passing through it.  In this way, the M2M relation 

are only made at the gateway level, that is, the central server (MQTT Broker) is not in 

the cloud. 
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For this reason, the AI learns about the relation that are commonly established between 

Things when a group of Things works together. Another indispensable resource is to 

manage access to the internet. The AI will decide whether the packets are forwarded 

within the same network or outside the network, based on the relation, the resolution of 

a problem and a clear reason for the requests to be sent out of the network to an IoT 

platform in the cloud. 

3.6.2.3 Monitoring dashboard + AI (IoT-SmartPlatform) 

Its function is to maintain network monitoring through the gateway and deliver 

information only when the gateway requests it. 

With the information consulted to Internet through of platform in the cloud [52], the 

Things on the network can complement the local information and make a better decision. 

3.6.3. Actors’ integration 

Using the architecture of Figure 9, all things are connected to each other through the 

Gateway (MQTT Broker + AI). Only the MQTT protocol will be used to establish M2M 

relations over WiFi connections. The AI that resides on the Gateway reviews and 

analyzes the payload of each MQTT packet continuously and creates statistics for each 

request. When it detects that there are continuous requests for common activities between 

the machines, it creates logical workgroups. In Figure 10, these three things highlighted 

in Figure 9 are isolated to explain their relation in more detail. In this case, it has not yet 

been established who or what resource is needed. This assignment, is the job that the 

adaptive algorithm of resource allocation controlled by the AI must perform, see Figure 

11.  

Figure 10 shows a group of Things doing a joint work. The M2M relation that the AI 

establishes depends on the functions and the service provided by the Things. For 

example, it could be assumed that something in common between this group of Things 

is the preparation of Coffee as a service to the User and each Thing can perform a 

function that helps with the provision of this service. Coffee is a resource that has the 

kitchen cupboard and milk is a resource that has the refrigerator. The AI activates the 

algorithm that is responsible for the allocation of resources and the DFSP protocol 

collects the information. 
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Figure 10. Allocation of resources by group of things 

In Figure 11, the IoT-Gateway controls different types of algorithms through the AI and 

learns from them through the training matrix they provide. Each training matrix is a data 

file with information about the usage habits and how a machine has been used. This 

provides information to the system about what kind of operations the user usually 

performs in front of the machine.  

Each petition or service is registered and then analyzed to obtain a statistical history of 

behaviour. After analyzing it with the AI algorithm, things send the resulting matrix to 

the centralized AI in the gateway. In Algorithm 1, is observe the general steps of the 

pseudocode of the control algorithm that allows the IA to delegate tasks. 

 

 

Figure 11. AI controlling the algorithms 

Into the gateway, the AI can handle a number of algorithms and can accommodate as 

many as necessary and if the capacity of the machine allows it. 

The algorithm "share resources" works with the information sent from the Things in the 

network through the MQTT payload. In the payload, another protocol has been specified 

that determines the type of information depending on the type of message, called DFSP. 
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The other algorithms provide information and perform tasks in parallel to the other tasks 

of the network depending on the decisions made by the AI. In this case, it will only 

control two algorithms, the algorithm to establish relation and share resource. 

 

Algorithm 1: Control into IoT-Gateway 

1. Set an event listener (Connection request from Clients) 
2.      Initialize MQTT_Broker 
3.      Received updates on a subscribed topic 
4.      Update the information of connected Things 
5.      Activates the algorithms “establish relation” and “share resources” 
6.      Supplies initial conditions to the AI 
7.      Read training matrix of Things 
8.      Set an event listener (MQTT_Broker) 
9.      If MQTT_Broker is down then 
10.           Disconnect from the Clients 
11.      end if 
12. End. 

 

3.6.4. AI Operation 

As noted in the Algorithm 1, the purpose of the basic algorithm AI of control in the 

network, is that of administering to the other algorithms that are executed in secondary 

and independent threads. Each algorithm is responsible for a different task but it depends 

on the problem that needs to be solved. 

The basic target of an intelligent network is to be able to provide better attention to the 

user without the need for the latter to control the machines. The idea is that the machines 

do so autonomously through the AI. 

In Figure 12, the AI is observed administering only two algorithms and learning from 

the user's habits when he is at home. When a problem cannot be resolved internally, the 

AI decides to search the Internet for possible solutions, learns it and saves it for future 

problems. The circle that indicates the AI in Figure 12 has the two algorithms that it 

controls on the sides. Below, the AI analyzes the MQTT payload with the information 

from the DFSP protocol that comes from Smart Things. Both at the gateway and in smart 

things AI are present. However, in the flowchart has represented as only one because 

both have the same information exchange technique. 

The next thing the AI assesses is whether the information that comes through the DFSP 

is a resource or is a conversation between things. If it is about a conversation that tries 

to solve a problem, learn it and store it. If it is about a resource then it classifies and 

stores it. In both cases, the iteration is direct between things, but the information passes 

through the gateway. Unlike other architectures, the MQTT Broker is present in the 

Gateway and not in the cloud. This possibly decreases network delays, since for any 
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operation at the local level, it is not necessary to go to a server in the cloud that is far 

away. 

To control internet access, the gateway evaluates whether the requests for things merit 

it. If the gateway already has, this information previously stored or because you learned 

it before, then answer the request without having to go to the internet. The cloud platform 

delivers information requested by the gateway and monitors only what the gateway 

allows. 

 

Figure 12. Flowchart of the IoT-Gateway + AI 
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All the algorithms that the AI manages reside in the IoT-Gateway and are based on 

computational learning techniques (Machine Learning). This algorithm is who allows 

the Gateway to respond to requests and announcements of resources through the DFSP 

protocol. The messages of this protocol are encapsulated within the MQTT messages. 

Its logic is fundamentally based on establishing the role that each Thing plays and the 

assigning of resources. 

The algorithm must know how to differentiate a function or a service from a resource 

depending on the joint work performed by a group of Things. From this, another 

algorithm controlled by the AI determines the M2M relation of a group of Things. With 

this information of the groups created by the AI, the algorithm can be adapted 

dynamically according to the service required by a user. 

3.6.6. DFSP Protocol 

Function and Service Discovery Protocol (DFSP). This protocol was developed to be 

introduced within the payload of the PUBLISH messages of the MQTT protocol. That 

is, everything that is contained in this protocol is a string encoded in UTF. 

The main function of this protocol is to discover the functions and services that announce 

the “Things” when connecting to the network. The algorithm that allows sharing 

resources in the network takes this information and decides between these two features, 

if a Thing can be a resource or have a resource. Once the function of this protocol has 

been defined, the types of messages, their formatting, and the message exchange rules 

are presented. The header and body of the message of this protocol are simple and like 

the MQTT header, the size is fixed. Figure 13 shows the protocol format with an example 

of the ANNUNCEMENT message that transport the FUNTIONS of a thing. 

3.6.6.1 Header 

It has a fixed size of 1-Byte with four fields, each of 2-bits (Message Type, Data Type, 

Flags, RESERVED). In the red box in Figure 13, highlight the protocol header and below 

is the body. The format of the messages is shown in 8-bit linear datagrams per n-Bytes 

(8-bits x n-Bytes) one above the other. 

3.6.6.2 Body 

The body carries the information of the type of message that has been defined in the 

header. This information is a string encoded in UTF, starting from the second Byte up to 

250-MBytes. This information is concatenated through commas (,) to separate each of 

the items from functions and services from things. 

3.6.6.3 Message exchange rules 

The exchange of these messages depends on the mechanics of exchange of MQTT. The 

AI of each thing sends an ANNOUNCEMENT message over the MQTT PUBLISH 

message to the MQTT Broker. 
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Figure 13. DFSP protocol format 

This is a one-way message generated automatically by the AI every time a Thing is 

connected to the network. The identifier (Id) of the Smart Thing that was connected is 

found in the same PUBLISH message with the field named topic name. 

On the other hand, the DISCOVER message is sent from the MQTT Broker every time 

a change occurs in the network or when the AI within of the IoT-Gateway needs to update 

information. 

3.6.7. M2M Communication 

Information of the start sequence of M2M communication algorithm is explained in 

Algorithm 2. The observation of the algorithm shows that, at the beginning a listener is 

provided to process connecting the IoT-Gateway then the start sequence algorithm 

allows the AI in the Gateway to establish relations between the machines. When a 

relation is created between MQTT client and broker, the AI creates a thread of 

independent processing for the Things to talk to each other.  

Therefore, in Figure 14 depicts the exchange of messages between a group of things 

through the DFSP/MQTT. The IoT-Gateway is a common netowk system to share the 

things among the devices. It is also observed between the messages the control that one 

machine can have over another through an M2M protocol like MQTT. Therefore, the 

case is observed according to the figure, the autonomy that the machines can have around 

a common resource after the AI know through DFSP the functions and services of each 
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Thing. It can also be observed in the exchange of the messages as dipected in the figure, 

the control commands on/off of the machines. 

The protocol messages create a table with the functions and services of each Thing in 

the IoT-Gateway that can be consulted by any algorithm and the AI. 

 

Algorithm 2: M2M Relations Establishment 

1. Set an event listener (Process connect to IoT-Gateway) 
2.      The AI takes control and manages the Things 
3.      The AI initializes MQTT_Client 
4.      The AI connects to the MQTT_Broker 
5.      The AI subscribes to a topic 
6.           The main topic is the name of the smart thing 
7.      The AI publishes with the main topic 
8.           Functions and services through DFSP 
9.           Matrix training 
10.      The AI evaluates which machines need common resources. 
11.           If the machines are related then 
12.                The AI directly controls the related machines 
13.      If MQTT_Broker is down then 
14.           Disconnect from the Clients 
15. End. 

 

3.6.8. MQTT PUBLISH/SUBSCRIBE Architecture 

The MQTT architecture over the architecture of this proposal is simple. 

The AI of each thing subscribes to the gateway (MQTT Broker) with its identifier (Id) 

and publishes its functions and services following the DFSP format. 

In this architecture, all things are at the same level so it is not necessary to use a level 

separator (/). 

It is could use something like /home/living-room/bulb or /home/kitchen/bulb. However, 

it this would only apply if all things are of the same type and therefore it is need to know 

their location. In this case, things are different and what matters is knowing their relation 

according to the work together. The syntax would be as follows: Topic/Payload/QoS. 

Then, the AI of each thing publishes the following structure: Id/Payload[DFSP]/0, every 

time it wants to talk to something else or control it. 

In this structure, the cloud platform has not taken into account because communication 

between the gateway and the cloud have other structure. 
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Figure 14. DFSP message exchange 

This platform ha based on connections by group of parameters between other clouds 

using AI [43]. In both cases, the techniques are similar, local level the AI creates working 

groups and in the cloud is done by groups of parameters. Figure 15 shows the operation 

of the workgroup that attends the "coffee for the user" service, sharing and requesting 

the resources available to fulfil the service. 
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Figure 15. Operation of the proposal 

3.6.9. Model for auto-tuning DFSP to IoT-Protocol 

In this case, the MQTT Protocol is used, analyzing the Remaining Length (RL) 

algorithm, to calculate the size of DFSP that can be transported Figure 15. 

This algorithm can also be understood mathematically knowing that the MQTT packet 

or message format consists of a Header (always present) + Variable Header (not always 

present) + Payload (not always present) [53]. The above depends on the type of message. 

The Figure 16 illustrates the MQTT packet format. 

 

Figure 16. MQTT packet format 

The MQTT packet size (PS) is calculated according to the type of message through the 

following Eq. 1. 

 PS = [C + XL] + RL, Bytes Eq. 1 
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The length of the Control field (C) will always be 1 Byte and if the value to be saved in 

the Packet length field (PL) is less than or equal to 127, then the header will have a fixed 

value of 2 Bytes. However, if the value calculated by the RL is greater than 127, the 

length of the PL field changes, modifying the total size of the package (PS). 

The packet length field (PL) saves the size of the calculated packet and can occupy a 

length of between 1 and 4 bytes. To know how many bytes it is used and how is to save 

the size in this field, it used the following Eq. 2. 

 

 XL = ∑ Xn
3
n=0 *128n Eq. 2 

 

XL is the calculation in Bytes needed to represent the number that corresponds to the 

value of RL, and that will be transported within the PL field located in the header. The 

representation of this number in Hex can occupy a space of the range between 1-Bytes 

to 4-Bytes. Since the length of this field is 8-bit linear, Xn is used to evaluate with the 

restrictions of the Eq. 3, if this number requires more than 8 bits to be represented. For 

this, the 7 least significant bits (LSB) are used and bit 8 is left as carry to indicate the 

next field as shown in Figure 16. 

f: ℝ  →  {1, 2, 3, 4} = #Bytes 
 

 XL = {

1,                                   if  0 < Xn ≤ 127

 2,                          if  128 < Xn ≤ 16383 

3,                  if  16384 < Xn ≤ 2097151

 4,           if  2097152 < Xn ≤ 268435455

 Eq. 3 

 

The Remaining Length algorithm (RL) calculates the package size depending on the type 

of message, in some cases; the variable-header is not present. The equations for each of 

the cases is shown in Table 5. 

Table 5. Equations of the Algorithm RL 
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RL = 2 + ( ∑ Topic ame n   ayload nn
i=1 )

RL = 2 + ( ∑ Topic ame nn
i=1 ) + 1

RL = 2 + ( ∑ Topic ame nn
i=1 )



Chapter 3. Proposed interconnection architecture 

 

52 

condition in the MQTT Broker, if the Client ID contains more than 23 characters, the 

broker responds to the CONNECT message with a CONNACK return code 2: Identifier 

Rejected [32]. A condition was created to control the minimum and the maximum 

message size. Considering that XL = 4-Bytes for any PL between 2-MBytes at 256-

MBytes and the MAX-PS is 256-MBytes. Then the payload of a PUBLISH message that 

corresponding to DFSP is 250-MBytes. PL will carry the information obtained from the 

calculation of PS = 1M-Byte + 4-Bytes + 250-MBytes without exceeding the MAX-PS. 

Therefore, the calculation of RL does not affect the DFSP protocol because it already 

takes into account in PS. 

 Clustering 

As a case study, the behavior of connected objects within a house is analyzed through 

how they connect and share information between them and Internet. Currently, a user 

can acquire everyday objects for their home based on electronic devices with the ability 

to process and communicate. However, the service they provide to the user through their 

main function is basic, independent, and isolated, and not based on cooperative behavior. 

An extension of its main function is limited to its control and monitoring over Internet 

or through a local connection. For example, an IoT coffee maker is an object with the 

ability to prepare coffee and connect to Internet, but it depends entirely on the user’s 

control, it is not autonomous, nor does it work collaboratively with other objects within 

the house. Most of these objects work in the same way, although commercially, the 

arrival of objects based on high-capacity devices that include AI (Smart Things) is 

expected. Nevertheless, the conventional network of a house limits them since the router 

is low capacity. Moreover, the architecture on which networks are currently based is not 

intended to transport the information required by an AI between connected everyday 

objects. 

In other words, IoT objects are not joined to meet the needs of a user through the same 

service automatically. They work independently and through different types of 

commands for their activation. An IoT object does not auto-identify or auto-classify, 

neither assume work roles in the network according to its function, nor create automatic 

relations with other objects. Much of this problem may be due to the element that 

performs the network administration, in which, for this case study, it could be due to the 

router. This network element is a device that only performs two main tasks; it processes 

automatic network addressing and Internet access, although it allows connectivity 

between devices on the same network.  It is a limited capacity device with low processing 

and memory level, it does not store high volumes of information, and it is not 

reprogrammable. Another additional problem is that it only offers two interconnection 

technologies, WiFi and Ethernet. Regarding the architecture, it is important to mention 

that, although up to now it has been possible to work with traditional architectures to 

interconnect IoT-Networks, such as Transmission Control Protocol (TCP / IP), there is 

no standard architecture to do so. There are some proposals, but none of them is designed 
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to provide interfaces between layers to an AI or handle multiple connections of different 

technologies or multiple IoT-Protocols. That is, there may be a cloud that supports AI 

and objects that support AI, but there are still neither Gateway devices on the market that 

supports AI, nor an architecture to allow their integration. 

3.7.1. Collaborative workgroups 

The literature reviewed in section 2 shows that some group-based networks are grouped 

according to something in common. E.g., groups of nodes share the same type of 

resource, function, relations, topology, data, interconnection technology, bandwidth, 

route, capacities, parameters. In other words, this type of groupings only select elements 

of the same type. In the case of grouping by services, an element of a group could not 

contribute to other groups because they do not have the same service. On the other hand, 

in this proposal, each object is analyzed and classified within a group if the features 

related to its resources, capacities, and functions, can help other objects to fulfill a 

service. Moreover, they can collaborate in one or several workgroups. In other words, 

this proposal, based on collaborative workgroups, are groups of objects that share a 

common work to serve a user. In this sense, the AI can decide which group to assign an 

object to and coordinate its intervention to collaborate within the group, measuring its 

percentage of participation and its degree of importance. The work to be done by each 

group is previously characterized by the IoT-Gateway’s AI to fulfill a service. These 

services are defined from interprets’ the object’s AI’s data collected about its users’ 

lifestyle habits. Our goal is to automatically let any new object join the IoT network and 

serve the users without their intervention, just Plug-and-Play (PnP). 

3.7.2. Network Model 

Let U be the universe of Smart IoT-Networks (SmartHome, SmartOffice, 

SmartFactories, SmartCity), connected through clouds. According to the design of 

Figure 17, we will model the case of Smart Home. Where B and C are two disjoint sets 

(different networks) connected under the same architecture. The B set spans layers 1 to 

4 of the architecture while C set is located in layer 5. 

The B set is defined as a Wireless Local Area Internet of Things Network (IoT-WLAN) 

like a Smart Home or any other like a Smart City with this same architecture, which can 

be defined and mathematically modeled as follows. Let B = (W, λ, E) be a network of 

connected objects (shown in Figure 17), where W is the set of objects, λ is the set of their 

capacities, and E is the set of links between objects. All this collection of sets and subsets 

are distributed in the different layers of the architecture (shown in Figure 8). 
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Figure 17. Architecture of smart IoE proximity networks 

Figure 18 shows the connected objects according to the network shown in Figure 17. Nodes 
are grouped into sets and subsets. Here, W = {b0, b1, b2,…, bn}, where bi represents the i-th 

object before assigning it a workgroup. Wi represents the subsets called workgroups and W
c
 

the nodes that are not within a group. bi could be in two different groups, then the workgroups 
are not disjoint sets. 
 

Considerations: 
 
1. (n + 1) it is the total number of objects since b0 is the only IoT-Gateway node within 

the network, and where all other nodes are connected to. Then the equation given for 

W is shown in W = (⋃ W𝑖
𝑚
𝑖=1 ) ⋃ W𝐶 Eq. 4, where m is the total number of 

subsets. 

 W = (⋃ W𝑖
𝑚
𝑖=1 ) ⋃ W𝐶 Eq. 4 

It can also be noted that: 

 n + 1 = |W𝐶| + |⋃ W𝑖
𝑚
𝑖=1 |  Eq. 5 
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 |⋂ W𝑖
𝑚
𝑖=1 | ≥ 1 Eq. 6 

2. Initial working conditions are pre-established from the design shown in Figure 17. It 
assumes that there are already three workgroups and that the objects are organized in 
the architecture shown in Figure 8. Under these conditions, it is possible to characterize 
each of the objects and structure a dataset used to find the best classifier. 

 

Figure 18. IoT-Network model workgroups-based 

In Figure 18, these groups are made up of heterogeneous objects (bi) called nodes and 

whose only similarity will be based on the degree of collaboration to attend a service. 

The dataset obtained contains the features of each node’s functions and services 

previously classified within a workgroup and with a role assigned according to the 

architecture layer. With this dataset, when entering a new instance, bi will be assigned as 

C, G, AIA, Th, or S according to the layer, and to a wi according to the workgroup. 

Whereby is defined: 

− IoT-Gateway: b0 = G0, keeps network management. 

− ei ∈ E, where e0 is the connection between set B and C. 

• Objects connected in the network: 

− nodes: bi ∈ W = {b1, b2, b3, … , bn}. 

− feature: fi ∈ F = { f1, f2, f3, … , fm}. 

− function 1: 𝑓(W) = { 𝑓:W →{0, 1}}. 

• Register of features in a dataset: 

− class:C j  ∈ C  = {C 1, C 2, C 3, … , C k}. 

− dataset: ⅆi ∈ D = {ⅆ1, ⅆ2, ⅆ3, … , ⅆp}, where ⅆi = { f1(bi), f2(bi), fj(bi), …, fm(bi), C j }. 

− function 2: 𝑓(D) = { 𝑓: D → C  }, such that each ⅆ𝑖 is assigned to a class C j. 
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F is defined as a finite set of features related to a node and predefined in a dataset 

structure. Therefore features of a node (bi) are obtained through the feature function 𝑓: 

W → {0, 1}, where fj(bi) = 1, it means that it has these features, otherwise fj(bi) = 0. The 

ⅆi indicates the i-th node (bi) data register, each characterized with fj(bi) and using toC j 

as class features. 

To achieve that an ML model assigns a node to a group, and a layer through its features, 

it is necessary to find an ideal way to classify it through a function 𝑓: D → C   such that 

each fj(bi) is assigned to a C j class. 

𝑓: D → C   could be a K-Nearest Neighbor (K-NN), a K-Means, a Neural Network, a 

Multi-Layer Perceptron (MLP), a Decision Tree (DT), a model based on Discriminant 

Analysis, or a Gaussian Naive Bayes (GNB) or any other. 

Given a collection of registers of D, each register contains a set of variables (features) 

that define a profile and will be denoted by Xp = [f1(bi), f2(bi), f3(bi), … , fk(bi)], with an 

additional variable (feature) of class that will be denoted by y = [C j]. Therefore, the 

register could be rewritten as ⅆi = {(X1, C 1), …, (Xi, C j), …, (Xn, C n)}. 

In a K-NN classifier, dataset DX
K, has been classified previously utilizing like training 

matrix (XTn, C Tn) through the class labels called workgroup and layer. This classification 

is based on the distance between the K neighbors with similar features. When a new 

instance enters the system, it is assigned to a group and an architecture layer. The 

standard distance for this classifier is Euclidean (de), but others can also be used 

depending on the data type. In the case of boolean values, it is possible to use the 

Manhattan distance (dM) and others as Chebyshev distance (dCh) and Minkowski distance 

(dMk). 

If a node’s features are present in one or more sets, it uses the simple matching coefficient 

(SMC) or the Jaccard index (IJ). If there is a node at the intersection between sets, its 

features (functions, services, resources, and capabilities) are shared. SMC encodes 1 and 

0 if one feature is present or absent in both sets, while IJ only encodes when the feature 

is present. For binary data types 1 and 0, SMC is the most appropriate as it obtains a 

better measure of similarity and more computationally efficient. 

Once the system has trained with N cases for DX
K, the ML can predict how it will classify 

the new instance depending on the distance of its features between K neighbors. 

Figure 19 shows how some nodes of Figure 18 would look organized by groups and 

layers. 
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Figure 19. IoT-Network model organized in workgroups and layers 

3.7.3. Algorithms implementation 

Below are the algorithms implemented in the simulations and the time to compute it. 

Each algorithm and procedure preexisting in [54], [55], was taken and modified using 

the previous equations. 

The running time or time complexity is estimateed based on the system runs any of these 

algorithms [55]. This running time is shown in Table 6. 

 

Table 6. ML Techniques Time Complexity 

Classifiers Time complexity 

K-NN O(nd + nK) 

K-Means O(nKd) 

Radial Basis Neural Networks (RBNN) O(nKD) 

Support Vector Machines (SVM) O(n2  |F|) 

Decision Tree (DT) O(|X||F| log |F|) 

Gaussian Naive Bayes (GNB) O(|X||F|) + O(|C   ||F|) 

 

For the proper run of the algorithm, it is necessary to consider that there is a dataset 

structure with four feature profiles (Xp) in the IoT-Gateway (G0). In other words, all node 

features are divided into four profiles. Each profile is delimited by a specific number of 

features and a classifier class. These are extracted from the node through the 
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ANNOUNCEMENT or DISCOVERY messages, using the FUNCTION, SERVICES, 

RESOURCE, and CAPACITY profile sub-messages. The data obtained through each 

message is organized and stored in the dataset. 

The total structure of a dataset register would be as follows, ⅆi = {(X1, C 1), (X2, C 2), 

(X3, C 3), (X4, C 4)}. To realize the grouping of the objects and classify a new object in 

one of these groups, only necessary to work on a dataset made up of the profiles of 

functions and services. So the dataset for grouping only uses the first two segments 

defined like this: ⅆi = {(X1, C 1), (X2, C 2)} and for routing the last two segments defined 

like this ⅆi = {(X3, C 3), (X4, C 4)}. The class label for C 1 is “workgroups”, and forC 2 

it is “layer”. 

Figure 20 shows the flowchart of the ML classifier. The G0 establishes an event listener, 

waiting for the connection of a new object. When there is a “new object” within the 

network, this must announce its features using the “features number” and the “features 

sequence” that the AIs have previously exchanged. In turn, it activates a timeout of 10 

sg. If the new object is not announced, the G0 sends a DISCOVERY message. In both 

cases, the messages extract the object’s features, and then the ML processes them. Once 

it completes the features’ register, the ML classifies the object into a workgroup and a 

layer. 

 

 

Figure 20. Flowchart of the ML classifier 
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• fj (bi)  ←  ew object's features

• ⅆi = { f1(bi), f2(bi), fj(bi), … , fn(bi), C j }

• Running Algorithm 2 and 3:

wi,  i ← ML [ ⅆi ]

• Running Algorithm 1: Update {D} 
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The following training methodology was used for each ML classifier. It was taken n = 

54 different objects and features about their functions and services were extracted. X1 = 

20 for the functions profile and X2 = 10 for services. Then they were classified into three 

test groups (m=3) with (C 1 ) and in an architecture layer (C 2 ). That is, the input values 

of the classes function are initially set by default. The values of C 1 are set as {1, 2, 3} 

representing {w1, w2, w3} respectively. The C 2 values are set to {1, 2, 3, 4, 5} 

representing the layer {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5} respectively. With this dataset previously-stored 

and predefined, each ML is trained. 

Table 7 shows the parameters used to train each of the ML classifiers. Depending on the 

classifier, the parameters change and are adjusted according to its operating structure. 

However, some parameters are common to all classifiers, like input nodes, workgroups 

number and iterations’ number. 

 

Table 7. Parameters used to train different classifiers 

Classifiers 
Parameters 

n = 54, m = 3, Iterations’ number =100  

K-NN K=3, metric=‘chebyshev’, n_jobs=100 

SVC gamma=2, kernel=‘rbf’, probability=True, C=1 

GP 1.0 * RBF(1.0) 

DT max_depth=5 

RF max_depth=5, n_estimators=10, max_features=1 

MPL alpha=1, max_iter=1000 

AB 
n_estimators=50, learning_rate=1.0, 
algorithm=‘SAMME.R’ 

GN var_smoothing=1e-09 

QDA store_covariance=False, tol=0.0001 

 

Data preprocessing and standardization of the dataset are very important since it will get 

less accurate predictions when using a machine learning estimator. In the K-  ’s case, 

the scaler used was “MinMaxScaler” the rest of the classifiers used “StandardScaler.” 

Table 8 indicates the parameters’ notation be used in the algorithm and its corresponding 

meaning. 

 

Table 8. List of parameter’ notations and its meaning 

Notation Meaning 

n_neighbors (K) Number of neighbors. 

metric The distance metric to use for the tree  

n_jobs 
The number of parallel jobs to run for 
neighbors search. 

gamma Kernel coefficient. 

kernel Specifies the kernel type. 

probability Probability estimates. 

C Regularization parameter. 
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RBF 
The kernel specifying the covariance 
function. 

max_depth The maximum depth of the tree. 

n_estimators The number of trees in the forest. 

max_features The number of features to consider. 

alpha Regularization term. 

max_iter Maximum number of iterations. 

learning_rate Learning rate. 

SAMME.R Real boosting algorithm. 

var_smoothing Variances for calculation stability. 

store_covariance Storage of covariance matrices. 

tol 
Absolute threshold for a singular 
value to be considered significant. 

 

As shown in the flowchart, when starting the central AI, this already contains an ML that 

has been previously trained with a predefined dataset, which was selected for its high 

percentage of accuracy in the tests. This ML is ready to classify a new object by features 

in a workgroup (Algorithm 4) and an architecture layer (Algorithm 5). Then, it is 

updating the new information in the dataset (Algorithm 3) and stores it. 

Algorithm 3 updates the dataset’s information hosted in G0 when a new node (bi) is 

connected, or due to a change in the network, e.g., a node is turned on or off. Therefore 

this algorithm, each time a DFSP message arrives, updates the dataset. 

 

Algorithm 3: Updating dataset {D} 

Input: DFSP messages over any M2M protocol. 
Process: 
1. Update dataset {D}. 

2. Function ← ANNOUNCEMENT [X1, C 1 ] 

3. Services ← ANNOUNCEMENT [X2, C 2 ] 

4. D ← { ⅆi = X1 + X2, C 1 + C 2}.  

Output: Updated dataset for two feature profiles {D}. 

 

Algorithm 4 classifies a new instance di within a group wi in the network through any 

classifier from Table 1 or any other with high accuracy. This algorithm begins by reading 

the predefined table and training the ML. Read the first two profiles from the dataset and 

use the class feature to start the training. Then the dataset is divided into training and 

tests, taking 75% and 25%, respectively. The next step is to normalize the data and use 

an ML model. The model with the highest accuracy will be selected for further training 

and implementation. It will evaluate the features of bi and assign it to a workgroup (wi). 

 

Algorithm 4: Creating collaborative workgroups (AI) 

Input: dataset { D }, di 
Process: 
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1. Read and load to { D }. 
2. X ← [X1 + X2]. 

3. y ← [C 1 ]. 

4. Splitting the dataset into the Training set and Test set. 
5. x_train, y_train ← 75% of the D for train. 
6. x_test, y_test ← 25% of the D for test. 
7. Normalizer, scaler and transform the data 
8. x_train ← scaler (x_train) 
9. x_test ← scaler (x_test) 
10. Set fitting training classifiers (Using Table 1). 
11. Set the metric according to the selected classifier. 
12. Calculate the predictor accuracy and error. 
13. Print accuracy of the classifier on training and test. 
14. While accuracy ≥ 80% do 
15.  For i=1 to m do 
16.   wi ← classifier.predict(X). 
17.  End for 
18. End while. 
Output: New node assigned to a workgroup (wi). 

 

Algorithm 5, like Algorithm 4, classifies a new instance di in an architecture layer 

through any classifier in Table 1 or any other with high accuracy. Steps 1 through 14 are 

similar to Algorithm 4, except that use class C 2. In step 16, the algorithm renames the 

identifier of the object according to the layer. 

 

Algorithm 5: Allocation in architecture layer (AI) 

Input: dataset { D }, di 
Process: 
1. Read and load to { D }. 
2. X ← [X1 + X2]. 

3. y ← [C 2 ]. 

4. Splitting the dataset into the Training set and Test set. 
5. x_train, y_train ← 75% of the D for train. 
6. x_test, y_test ← 25% of the D for test. 
7. Normalizer, scaler and transform the data 
8. x_train ← scaler (x_train) 
9. x_test ← scaler (x_test) 
10. Set fitting training classifiers (Using Table 1). 
11. Set the metric according to the selected classifier. 
12. Calculate the predictor accuracy and error. 
13. Print accuracy of the classifier on training and test. 
14. While accuracy ≥ 80% do 
15.  𝑙 ← classifier.predict(X) 
16.  Switch( 𝑙 ) 
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17.      case 1: 
18.   Rename(bi) ← S 
19.      case 2: 
20.   Rename(bi) ← th 
21.      case 3: 
22.   Rename(bi) ← AIA 
23.      case 4:  
24.   Rename(bi) ← G 
25.  End Switch 
26. End while. 
Output: New node assigned to a layer (𝑙). 

 

Figure 21 shows the DFSP datagram and the messages used in Algorithm 3 to update the 

feature dataset. 

 

 

Figure 21. DFSP Messages 
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generating delays. Also, this device does not allow reprogramming a host or a broker, so 

an object with an M2M protocol based on MOM routing must go to the cloud to 

subscribe or publish. That makes the system’s autonomy difficult since one object could 

not be related to another by itself. In this case, the user must do this task. It means that it 

is necessary to apply to the network’s design a smart architecture with centralized 

management (IoT-SmartArchitecture) [56], in which the data processing is distributed 

between the cloud, the IoT-Gateway, and the final objects. Therefore, in this case, the 

conventional wireless router must be replaced by an IoT-Gateway [45] with the capacity 

to host a broker, store network information, and host an AI. 

Once this architecture is applied to an IoT network, the AI can perform grouping and 

routing in the network. However, although the architecture already creates and manages 

workgroups, it also needs to route intelligently. Therefore, it is necessary to modify the 

current operation of MOM routing and manage it with an AI engine. The data processing 

starts at the management layer with the IoT-Gateway (Broker + AI), where one of the 

routing problems appears when using an event-oriented middleware through Pub/Sub 

since the requester node does not know the route of the subscriber nodes. A node cannot 

request a resource directly to another node since it does not know its resources (only the 

broker knows it). Thus, the node must request the resource it needs from the broker, and 

this it allocates the node with the resource. One of the most useful techniques to do this 

type of search in a dataset is searching by content (Content-based filtering), but this can 

give several results. Among these, it may get several nodes that meet the requirement, 

and only one is needed. In this case, the system must solve which node to choose. 

This question is difficult to answer, implementing traditional algorithms since the 

decision criteria change according to the environment. Therefore, a more advanced 

system that adapts and learns according to these changes is necessary whereby an AI 

engine is the most appropriate solution. However, it is first necessary to know other 

network operation variables to adequately model the AI technique for the system. 

3.8.1. Proposal model 

The following proposal uses an AI engine to select the most optimal node with the 

necessary resources to render a service. Therefore, to find it, the system performs a 

content-based search to find the routes of possible candidates that meet the IA’s 

minimum selection criteria. In this way, the AI decides which node is the most optimal 

to provide the resources that another requesting node needs without affecting the 

network’s efficiency. 

Based on the routing of Pub/Sub systems, the following solution is designed to take 

advantage of the routing tables created when an object is subscribed. The idea is to 

combine these tables with the dataset (𝔇) created from the feature’s profiles of each 
object’s functions, services, capacities, and resources in the network. The central node 

or Gateway stores all types of change when an event occurs in the network (Event 
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Storage) and associates it with the object that generates it, merging everything in a single 

dataset. 

Figure 22 shows an architecture with centralized management in an IoT-Network [56] 

with predefined workgroups as wi = {b1, b2, b3, …, bn}. The connected objects are 

represented as nodes, where bi represents the i-th object before assigning it a workgroup 

and a layer. 

 

 

Figure 22. IoT-SmartArchitecture where bi assumes a role per layer 

W = {w1, w2, w3, …, wn}, where wi represents the sub-sets or workgroups, and W is the 

set of groups where the nodes belong. In turn, these workgroups offer services (one or 

more), represented like a set S = {s0, s1, s2, …, sn}. Each service has a set of resources 

RS = {r1, r2, r3, …, rn} necessary to offer that service. Within these workgroups, new 

nodes will be added, and each node announces what functions, services, capacities, and 

resources it has. Consequently, each node offers a set of resources RN. Therefore, it is 

possible to say that Si is the set of services offered by group i. If a group needs to offer a 

service, its nodes request the resources from the Gateway (G0) to attend the service, and 

it evaluates its capacity (λi) to fulfil the service. Then, Ri can be defined as the set of 

resources that a node requires to collaborate on the service i, as shown in Eq. 7, where 

Br defines the subset of nodes requesting resources. 

 ∀ bi ∈ Br  ∃  Ri : {ri, rj, rk}  |  Ri ∩ R  = ∅ Eq. 7 
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In other words, for every node belonging to a workgroup, there is a set of resources that 

are needed to implement the service. E.g., given S1 then RS (S1) = {r1, r2, r3, r4, r7, r8}, 

being b3 a node that collaborates in the service S1 and has the resources RN(b3) = {r1, r2, 

r10, r12}, therefore the set of remaining resources so that b3 can implement S1 is defined 

as Ri(b3) = {r1, r2}. That means, to collaborate with this service, the node needs these 

resources beforehand. Eq. 8 shows the decision criteria to find a node bo that belongs to 

the same workgroup wi that br (the requesting node) so that br can implement the service 

Sj if the selection satisfies a criterion set (𝒦). For example, a criterion used in a 

conventional routing protocol to select the best route is to do it through the least number 

of hops or the minimum cost of the link. For this case, the routing algorithm finds the 

route by selecting the best node using 𝒦. Criterion k1 is based on finding which node 

has the requested resources but with fewer additional resources. In this way, the total 

amount of resources that bi offers to implement other services is the minimum not to 

waste resources. This criterion is defined in Eq. 9. 

 bo= bi ∈ wi | Rj(bi ) ∋ RN(br)  ↔ K Eq. 8 
 

 |RN(bo)| <  |RN(bk)|  ∀  bk ∈ wi Eq. 9 
 

With the k1 criterion of Eq. 9, the AI select the route if the condition is met that the 

number of resources offered by the selected node (bo) must be less than the number of 

resources offered by any other node (bk) of the same group (wi). 

However, the AI’s inclusion allows the routing algorithm to have a set of criteria such 

as 𝒦= {k1, k2, k3, …, kn}. Therefore, the routing algorithm could choose another node 

as  b𝑜, based on a different criterion that the one shown in Eq. 9. 

Another possible criterion is to choose the best node with more energy available (k2). 

Depending on the conditions, saving energy in the objective nodes can be a key factor. 

Therefore, being ℰi the available energy of b𝑖, this criterion can be defined in Eq. 10. 

 ℰo > ℰk  ∀  bk ∈ wi Eq. 10 
 

Other criteria could take into account network parameters. Criterion (k3) in Eq. 11 and 

Eq. 12 consider metrics like packet losses of a node (L𝑖) and delay in the communication 

between one node and the IoT-Gateway, b𝑖 and G0 (D𝑖0), respectively. 

 Lo <  Lk  ∀  bk ∈ wi Eq. 11 
 

 Dor <  Drk  ∀  bk ∈ wi Eq. 12 
 

Regarding this network point of view, the connectivity and the bandwidth of the nodes 

can be the key factor to choose the objective node depending on the network status. 

Consequently, Eq. 13 and Eq. 14 defines this criterion (k4): 
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 |Eo| > |E𝑘|  ∀  b𝑘 ∈ wi Eq. 13 
 

 |Bw(e
𝑖
)| > |Bw(e

𝑘
)|  ∀  b𝑘 ∈ wi Eq. 14 

 

Where 𝑒𝑖 is the i-th connection of the set E= {e1, e2, e3, …, en} of one node that have 

direct communication with G0, and Bw(𝑒𝑖) is the bandwidth of 𝑒𝑖. Therefore, the greater 

the number of connections in a node (𝑒𝑁), the lower the possibility of being isolated, so 

the node is a better choice. Eq. 14 shows that greater bandwidth, better is the connection, 

and so the node is a better choice. 

Finally, the criterion (k5) can be the layer (𝑙i) where the node belongs. Therefore, the 

algorithm can take advantage of the architecture shown in Fig. 1 to select one node or 

another. This allows the routing algorithm to save the nodes with more capabilities if the 

state of the network requires it. On the other hand, the algorithm could select a node in 

an upper layer to get better performance. Consequently, Eq. 15 and Eq. 16 defines two 

different criterions that use this concept: 

 𝑙o > 𝑙k  ∀  bk ∈ wi Eq. 15 
 

 𝑙o < 𝑙k  ∀  bk ∈ wi Eq. 16 
 

𝑥𝑖  represents all the features like resources (ℛ), capacities (𝒞), network parameters (ℵ) 

and architecture (𝒜) that a node has within the dataset (𝔇) stored in the IoT-Gateway. 

Let 𝔇 be the structured dataset storage within IoT-Gateway. Therefore, each register in 

𝔇 is a bi node that comprises a series of 𝑥𝑖 features segmented into profiles. E.g., the 

resource features profile ℛ = {x0, x1, x2, …, xr}. Where each data has a value of 1 if there 

is a resource otherwise 0. 

Function 𝑓1(x) in Eq. 19 is defined from the criterion of Eq. 9 that uses the matrix ℛ to 

search for the bo node with the requested resources. This could generate several results. 

However, the following functions allow choosing the most optimal one. 

Eq. 17 and Eq. 18 define the cost equation and the capacity of a node. These equations 

are based on the objective functions, defined in Eq. 19 to Eq. 22. 

Function 𝑓2(x) in Eq. 20 is defined from the criterion of Eq. 10 that uses the matrix     
𝒞 = {xr+1, xr+2, …, xc} to know which node has better energy availability. 𝑥g = 𝑥𝑟+1 

informs if the node can connect to the power grid and 𝑥𝑎 = 𝑥𝑟+ 2 to an alternative 
energy source such as a solar panel. 𝑥𝑏 = 𝑥𝑟+ 3 reports if the node has a battery and 

reports the amount of energy remaining in percentage between 0 and 100%. 

Function 𝑓3(x) in Eq. 21 is defined as the link’s cost between each bi node and G0, stored 

within IoT-Gateway. These data are stored like matrix ℵ = {xc+1, xc+2, …, xℵ} but only 

are used the Delay and Packet loss parameters. In the criteria of Eq. 11, Eq. 12, Eq. 13, 
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and Eq. 14 are described its use and its relation in the cost’s calculation. In conventional 

routing protocols such as EIGRP [57], the cost equation is used to choose the best route. 

In this case, the cost calculation is proposed similar to [58] to choose the best node bo, 

as shown in Eq. 17. 

 𝐶𝑜𝑠𝑡 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (
K1

𝜆 ∙ 𝑙
+ K2 ∙ 𝐷𝑒𝑙𝑎𝑦 + K3 ∙ 𝐿𝑜𝑠𝑠 + 1) Eq. 17 

 

Where λ is the capacity of bi as λ(bi) and is defined in Eq. 18. 

 λ = 4 (
𝜎

𝜎𝑚𝑎𝑥
) + 3 (

𝑚𝑃

𝑚𝑃𝑚𝑎𝑥
) + 2 (

𝐵𝑊

𝐵𝑊𝑚𝑎𝑥
) +

𝑒𝑁

𝑒𝑁𝑚𝑎𝑥

 Eq. 18 

 

In Eq. 18, λ is defined as the node capacity and related to the features profile 𝒞 and ℵ. 

The parameter σ = 𝑥𝑟+6 measures processor performance in Millions of Instructions Per 

Second (MIPS). Other parameters used for its calculation are the Bandwidth in Kbps as 

Bw = 𝑥𝑐+1, the number of connections as eN = 𝑥𝑟+5, and the RAM defined as the 

processor’s memory in GBytes as mP = 𝑥𝑟+7. Each of these values is normalized to its 

maximum value in order to handle orders of similar magnitudes. Each term has been 

given different weight according to the importance it is considered to have. An advantage 

of defining λ in this way is that it will never be 0, so the cost will not be infinite. 

The presence of 𝑙i in Eq. 17 stored in matrix 𝒜 = {xℵ+1, xℵ+2, …, xn} allows major priority 

to nodes in higher layers making the cost decrease. The cost also depends linearly on the 

delay as 𝑥𝐷 =  𝑥𝑐+2 and packet loss as 𝑥𝐿 =  𝑥𝑐+3. K1, K2 and K3 have been chosen so 

that the three terms of Eq. 17 have similar weights. Finally, the value 1 has been added 

so that the cost is an integer greater than or equal to 1. 

Function 𝑓4(x) in Eq. 22 is defined to select the node that consumes the minimum power. 

𝑥P = 𝑥𝑟+4 is the variable in the features profile 𝒞 that contains the power values. 

Table 9 shows the notation used in this model. 

Table 9. Notations 

Notation Description 

b𝑖  Node that represents the connected object. 

b𝑟  Node requesting resources. 

b𝑜  
Node that selects the Gateway to provide the resources to 
render the service i. (objective node) 

R𝑆 Required resources of a service. 

R𝑁  Resources that a node has. 

R𝑖  Resources required by a node  b𝑟 to provide the service i. 

ℰi  ode’s energy availability b𝑖. 

𝑒𝑁 Number of connections in a node b𝑖. 

L𝑖 Average packet losses of b𝑖. 
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D𝑖 Average delay between b𝑖and G0. 

E𝑖 Set of b𝑖  connections directly connected to G0. 

𝑙𝑖 Layer where the node b𝑖  is located. 

ℒi AI’s interface processing level. 

i  ode’s capacity b𝑖 . 

3.8.2. AI Technique 

After defining the criteria, one needs to use an AI technique. In this case, a search engine 

is needed to find the best node (bo) that satisfies the criteria of the requesting node (br). 

The IoT-Gateway knows the route and features of its subscriber nodes (bi), whereby the 

AI engine of this proposal is based on a multi-objective optimization model using an 

evolutionary genetic algorithm. This algorithm used for the objective node’s choice is 

called the Non-dominated sorting genetic algorithm (NSGA-II)[59]. It is a technique 

characterized by being fast and elitist. That is, it only considers the best solutions found 

during the search process. It has a time complexity of (𝑚𝒵𝔇
2), where 𝒵𝔇 is the size of 

the dataset to be classified, and 𝑚 is the number of objectives. 

First, defining the problem must define which criteria will be optimized and then define 

them as the objective functions. The multi-objective optimization problem [60] can be 

formulated from several objective functions 𝑓𝑚(x), which will depend constraints 

functions of gj(x) ≤ 0 and equality hk(x) = 0. Therefore, the objective functions set is 

given by, ℱ = {𝑓1(x), 𝑓2(x), 𝑓3(x), …, 𝑓𝑚(x)} defined from 𝔇. Each deduced from the 

criteria of equations Eq. 9 to Eq. 16. 

Let 𝑔 = {g1(x), g2(x), g3(x), …, g𝑚(x)} be the constraints function set. 
 

Problem: 

 min 𝑓1(x) = ∏ 𝑦
𝑟

𝑚
𝑟=0 ∑ 𝑥𝑟

𝑛
𝑟=0  Eq. 19 

 

 max 𝑓2(x) = 𝑥g + 𝑥𝑎 + 𝑥𝑏 Eq. 20 
 

 min 𝑓3(x) = Int (
K1

λ∙𝑙
+ K2 ∙ 𝑥𝐷 +K3∙ 𝑥𝐿 + 1) Eq. 21 

 

 min 𝑓4(x) = 𝑥𝑃 Eq. 22 
 

Subject to: 

g1(x) = ∏ 𝑦
𝑟

𝑚
𝑟=0 = 1 Guarantee that the selected node has the required 

resource (Ri). 

g2(x) = 𝑥𝑟 ∈ {0, 1} ∀ 𝑟 Guarantee that (xr) is binary. 
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Lower and upper variable boundaries: 

0 ≤  𝑥𝑟  ≤  1 0 ≤  𝑥g  ≤  1 0 ≤  𝑥𝐷  ≤  100 

0 ≤  𝑦
𝑟

 ≤  1 0 ≤  𝑥𝑎  ≤  1 0 ≤  𝑥𝐿  ≤  16 

 0 ≤  𝑥𝑏  ≤  1 0 ≤  𝑥𝑃  ≤  4 
 

Such as: 

𝑥𝑟:  ode’s resource features matrix. 

𝑦𝑟: Matrix containing Ri. 

𝑥g, 𝑥𝑎, 𝑥b : Available energy for node bi. 

𝑥L: Average packet losses of node bi. 

𝑥D: Average delay. 
 

3.8.3. Algorithms implementation 

The IoT-Gateway’s AI administers 𝔇 by applying the NSGA-II algorithm from the 

search model of this proposal using the designed functions. Algorithm 6 shows how the 

data is loaded, and the most relevant variables are chosen since all the features sent from 

each node are not used, only those related to routing. 

Algorithm 6: AI search engine using NSGA-II with Pymoo 

Input: dataset {𝔇} 

Process: 

1. Class NSGA-II Multi-Objective Optimizer with Pymoo 
2. Read and load to {𝔇}. 

3. x ← [ℛ + 𝒞 + ℵ + 𝒜]. 

4. y ← [Ri]. 
5. K1= 5, K2 = 1, K3 = 6 
6. Class Class RoutingM2M(Problem): 
7.  super(n_var, n_obj, n_constr, xl, xu, type_var) 

8.  evaluate (x) 
9.  y = 𝑥0  ×  𝑥1 
10.  σ = 𝑥𝑟+6/10000 
11.  mP = 𝑥𝑟+7/32 
12.  Bw = 𝑥𝑐+1/1000000000 
13.  eN = 𝑥𝑟+5 
14.  𝑙 = 𝑥ℵ+5 
15.  𝑥𝐷 =  𝑥𝑐+2 
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16.  𝑥𝐿 =  𝑥𝑐+3 
17.  Calculate λ 

18.  Minimize 𝑓1(x) 

19.  Maximize 𝑓2(x) 

20.  Minimize 𝑓3(x) 

21.  Minimize 𝑓4(x) 

22.  Constraints: g1(x) 
23. problem = RoutingM2M() 

24. F, G = problem.evaluate(x) 

25. pf = problem.pareto_front(x) 
26. algorithm = NSGA2(pop_size, n_offsprings, sampling) 
27. res = minimize(problem, algorithm, (‘n_gen’, 10)) 
28. opt = res.opt[0] 
29. X, F, CV = opt.get 
30. Print res.X, res.F, res.G, res.CV 
Output: optimal bo = X 

 

Algorithm 6 has several stages or steps to find the best node from a multi-objective 

optimiser, which selects the best node by calculating the optimum called X (capital letter) 

and which corresponds to the node bo of this IoT-Network. 

The first step is implementing the problem defined in the AI Technique through the 

RoutingM2M(Problem) class, where each of the functions and constraints is 

programmed using the previously structured dataset. In the super method, the number of 

variables, the number of objectives, the number of constraints, and the limits of the 

variables are defined. From each segment of the dataset, the variables used to calculate 

the functions according to equations Eq. 19, Eq. 20, Eq. 21, Eq. 22 of the model are 

obtained. These functions are evaluated with the x (lowercase) values through the 

evaluate (x) method. 

The second step is the initialisation of an Algorithm (in this case NSGA2), where mainly 

the population size, descent, and sampling are defined. This method may contain other 

types of algorithms such as R-NSGA-II, NSGA-III among others [61]. 

In the third step, the minimise method is used to return the Result object (res), which 

contains the results when are executing the three Algorithm 6 methods: the problem, the 

algorithm, and the definition of a termination criterion. 

Finally, the result (res) contains the best values found in the corresponding spaces. These 

include the feasible solution space, the objective space and the optimal (X). 

 Quality of Experience (QoE) 
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The Quality of Service (QoS) of the architecture is defined according to each IoT-

Protocol used in communication. However, the QoE is analyzed using an Artificial 

Intelligence System for Multimedia services in Smart Home Environments [62]. 

This proposed system works with the user to reduce the intrusion that an automatized 

service management can introduce to the user’s experience. Moreover, the system is 

oriented to especially reduce the impact of bad predictions on multimedia services, trying 

to guarantee a good QoE from the user’s point of view. Finally, to overcome the possible 

difficulties that a deep learning classifying method may provide to the system, we 

introduce a reinforcement learning (RL) adapted method into the Smart Home. 

This architecture is used to design Smart IoT-Networks, which contain interconnected 

objects with integrated AI (Smart Things). Some of these networks are Smart Home, 

Smart Office, Smart City, Smart Factory, among others. For this case study, the scenario 

is based on the connected objects in a Smart Home. The IoT-Gateway's AI classifies the 

objects connected in the network into workgroups and roles by layer [56], and then, when 

an object requires resources, the IoT-Gateway routes it, selecting the best node to provide 

them. The AI creates these groups to provide an automatic service to a user based on 

their features of functions, resources, and capacities. The following is a case of service 

within the Smart Home, e, g., when a visitor arrives at the house, the AI selects the 

objects with nearby features to provide this service. The system searches inside the house 

if there are users or not and automatically attends the door's visit. The necessary 

resources for this service are multimedia such as video and sound necessary to show the 

image of the visit on the objects that have this resource and that are close to the user 

inside the house. If there are no users inside the house, it will send them to objects or 

mobile devices in any location. One function that would be activated would be facial 

recognition and identity verification and then sent to be processed in the cloud. The first 

object to interact in the service would be the smart main door at the front of the house. 

This would be the requesting node for the resource and would execute the recognition 

and verification function. The IoT-Gateway's AI would be in charge of distributing and 

transmitting the video and voice to the objective objects that have this resource and that 

meet the condition of being close to a user and with the capacity to reproduce it. Figure 

23 shows a case study for a workgroup that attends the door's visit service in a Smart 

Home through this architecture. This workgroup is organized according to the layers of 

the architecture in Figure 8. When the smart door attends a visit, it activates a request to 

send video and image processing data. The image processing data (facial recognition) is 

sent through the AI interfaces until the visitor's identification is obtained. The video is 

sent to each connected object with multimedia playback functions that is close to the user 

and routed through the IoT-Gateway. Therefore, the smart home announces a visit and 

the identification of a person located in the main door. If the user is away from home, 

the IoT-Gateway will send the information through the cloud to the closest objects with 

multimedia functions to the user (E.g., Smart Car, Smartphone, Tablet). 
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Figure 23. Case study with a single workgroup 

In Smart Home, with this architecture, the IoT-Gateway, through the IoT nodes, can 

provide multimedia services. Through user requests given to the smart assistant placed 

in the IoT-Gateway, either by voice commands or either by a smartphone application, 

the user can play their favorite music in the audio system on the distributed speakers in 

the house, watch movies-on-demand, or automatic record surveillance videos of the 

house. 

3.9.1. Intelligent System architecture 

Once the network architecture has been explained, the system architecture must be 

discussed. The aim of the system is to improve the QoE of the services in the Smart 

Home, focusing on multimedia services. In order to achieve that, the intelligent system 

must enable or ask the user to enable the services the user may want to use after other 

services and learn how to disrupt the user’s activity the least number of times. 

The intelligent system is composed of several modules, located in the IoT-Gateway, that 

are interconnected to provide the desired functionality. The architecture of the system is 

depicted in Figure 24. 
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Figure 24. Intelligent system architecture 

The first module in the system is the recording module. This module is not an intelligent 

system, but it is the necessary first step to get the data the system needs. Each time the 

user consumes a service, the IoT-Gateway records a data array with the structure shown 

in Table 10. Due to space constraints in the table, the user id column has been omitted 

and fields like the time, the options or the duration are shown as unique columns. 

However, in the dataset, they are split. For instance, the time and duration fields are split 

into day (only regarding the time column), hour, minute and second. As regards options, 

the entry is a set of columns, from option 1 to option 5, represented by binary values. 

The meaning of the options is meaningless for the system. Only the service finds this 

meaning useful. In Table 10, the first row means that the user enabled the heating service 

the second day of the week at 5:39 PM for one hour 42 minutes. Moreover, that day was 

a working day (the type of day field shows us this) and that service is not a multimedia 

service. The options here show us that the system was enabled in heat mode. The IoT-

Gateway manages equivalency tables to transform the meaning of these fields into their 

values. Consequently, the smart system works with integers and that makes easier the 

processing of the data. Table 11 shows an example of an equivalency table. The options 

used in this record can be non-exclusive options. 

 

Table 10. Record data example 

Time Type of Day Service Description Options Duration On/ Off Multimedia 

2:17:39:17 1 2 Heat 10000 1:42:24 1 0 

2:18:33:51 1 0 Lights 01001 0 0 0 

3:9:11:25 0 3 Smart TV 10000 11:2:1 1 1 
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Table 11. Equivalency table example 

Service Option 1 Option 2 Option 3 Option 4 Option 5 

0 Bedroom Bathroom Kitchen Dining Room Others 

1 Main Door Garage Other Doors Window 1 Window 2 

2 Heat Cool Auto Fan Sleep Mode 

 

The second module of the system’s architecture is the data preprocessing module. This 

is a software module that computes the data to transform it into the input of the next 

modules. 

After the data has been processed, the datasets extracted from the logs provided by the 

record module are sent to the classifying module. Here we have to distinguish between 

the training phase and the prediction phase. In the training phase, the dataset extracted is 

used to train the classifying. Therefore, a training, validator and test dataset are extracted. 

Once the classifying system has been trained, the classifying module is used to predict 

the next service to be consumed. Consequently, the data sent by the data preprocessing 

module are the next inputs for the classification. In that case, the classifying module 

returns the predicted service. 

The next module in the system is the RL module. The RL module receives information 

about the services from the data preprocessing module. This information is used to build 

the initial states and to calculate the required metrics. For instance, the RL module needs 

to know if a specific service is a multimedia service. When the classifying module 

predicts a service consumption, that prediction is an input for the RL module. The RL 

module chooses the best action, and that action is the output of the RL module.  

Finally, the IoT-Gateway has an actuator module that performs the action chosen by the 

RL algorithm.  

In the next section, the data preprocessing and the classifying modules are described. 

3.9.2. Preprocessing and Classifying Algorithms 

In this section, the data preprocessing and the classifying modules are explained. First, 

the data preprocessing process is described. Its process and algorithms are detailed. Then, 

the classifying model chosen is described. 

3.9.2.1 Data Preprocessing Process 

Once the logs are provided to the preprocessing module, this module starts extracting 

some features from them. Firstly, the RL module uses some data features that are outputs 

of the preprocessing module. For the RL module, the statistical probability of changing 
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from one state to another and the mean of the timestamp when it does are important data. 

Consequently, the preprocessing module transforms the data extracting these statistics. 

In order to achieve this, the module manages Markov chains. The definition of these 

chains adapted to the problem is described in Eq. 23: 

 P[𝑋𝑛+1 = 𝑥𝑛+1|𝑋0 = 𝑥0, 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑋𝑛] = P[𝑋𝑛+1 = 𝑥𝑛+1 | 𝑋𝑛 =  𝑋𝑛] Eq. 23 
 

Where 𝑋𝑛+1 is the next service consumed, 𝑋𝑛, the service consumed in the iteration 

number n and 𝑥𝑛 is the service number n in the services set S. 

In this system, the data will be processed regardless the time. That means, regarding the 

preprocessing, the time does not change the probability of the transition between 

services. That is depicted in Eq. 24: 

 P[𝑋𝑛+1 = 𝑗|𝑋𝑛 = i =  P[𝑋1 = j | 𝑋0 =  i] ∀𝑖, 𝑗 ∈ 𝑆 Eq. 24 
 

The fact that the Markov chain does not consider time to set the probability does not 

mean that in the system the time is not considered an important input. However, the RL 

algorithm will use time in a different manner.  

Once the records have been read, the preprocessing module turns them into matrices so 

that the RL algorithm can operate efficiently with them. The first data the RL will need 

is the probability of consuming a service. To set this probability, depending on the last 

service consumed, the preprocessing module builds a transition matrix. This matrix, 

given a consumed state 𝑖 and a possible next consumed state 𝑗, defines the probability 𝑝 

of demanding 𝑗. The preprocessing module must satisfy the constraints defined in Eq. 25 

and Eq. 26: 

 p(i, j) ≥ 0 ∀𝑖, 𝑗 ∈ 𝑆 Eq. 25 
 

 ∑ 𝑝(𝑖, 𝑗) = 1𝑗∈𝑆  ∀𝑖 ∈ 𝑆  Eq. 26 
 

Where p(i, j) is the probability of consuming the service 𝑗 after consuming the service 𝑖.  

In this system, the probability of consuming a service is not enough. Another important 

statistical data is the time between transitions. If the time is not considered, the system 

could ask for the right service hours before the user wants to enable it. This, although 

will not be treated as a feature of the definitions in the RL algorithm, will be necessary 

information to implement some of the actions of the RL system. For these calculations, 

the preprocessing module uses the time and duration of the records for each service. As 

regards the means of time and duration, and to take advantage of the incremental 

processing of records, the calculation will use a recursive formula. In order to calculate 

the mean, the equation defined in Eq. 27 is used. 

 µ𝑛 =
(𝑛−1)∗µ𝑛−1+ 𝑡𝑛 

𝑛
  Eq. 27 
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Where µ𝑛 is the media with 𝑛 records, 𝑛 is the number of records and 𝑡𝑛is the time or 

duration of the record number 𝑛. From this equation, we need to define the basic case as 

in Eq. 28: 

 µ1 = 𝑡0 Eq. 28 
 

The variance is calculated in a similar way. The recursive formula described in Eq. 28 is 

used to avoid iterating through each past record when a new service consumption is 

ended. 

 s𝑛
2 =  s𝑛−1

2 +  
(𝑡𝑛 −  µ𝑛−1)2 

𝑛
−  

s𝑛−1
2 

𝑛 − 1
 Eq. 29 

 

With these definitions, we can set the algorithm of the data preprocessing module. This 

algorithm is shown in Figure 25, in a flow diagram that describes the algorithm. First, 

the data needed is initialized. Then, all the records are processed until there is no more 

records left. For each day of the week, that is why the next condition is compared with 

Eq. 29, the Markov and the stats are calculated. The pseudocode of the algorithm is 

described in Algorithm 7. This algorithm defines the main procedures of the data 

preprocessing module. Given a set of records from the IoT-Gateway, the module 

processes the records to assign them to users and days (User_Records). Then, the Markov 

transition matrix (Markov) is calculated. This is done in an iterative way. The algorithm 

of the Markov data building is shown in Algorithm 8 and explained later. Then, the other 

statistics needed are extracted from the time and duration data. This subroutine is 

explained in Algorithm 9. Finally, the datasets for training and validating the 

classification module are extracted. 
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Figure 25. Data preprocessing algorithm 

 Algorithm 7: Data Preprocessing 

1. Given: Records //Ununstructed Records from the Gateway 
2. Var User_Records, var Markov, var Stats 
3. For each record in Records do 
4.  If Get_User(record) not in User_Records 
5.   Add_User_Record(User_Records, Get_User(record)) 
6.  End If 
7.  Add_Record(User_Records, record) 
8. End For 
9. For each record in User_Recods 
10.  For each day in range(1:7) 
11.  daily_records = Get_Records_From_Day(day) 
12.   For each d_record in daily_records 
13.    Calculate_Markov(Markov, day, d_record) 
14.    Calculate_Statistics(Stats, day, d_record) 
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15.   End For 
16.  End For 
17. End For 

 

As regards the Markov structure, it is calculated as it is shown in Figure 26, that depicts 

the flow diagram of this algorithm. In order to calculate the transition matrix, we need 

to know how many times a certain service is consumed after another one. We need to 

store the data in the Markov structure. In Figure 26, it is shown how this info is read 

from the record. The structure is indexed based on the day, the first service and the 

second service, which is consumed after the first one. Moreover, for each first service, 

we need the total amount of transitions, totalCases. If we find a record and the structure 

is not created, we need to create it. And then, the totalCases is set to 1, as shown in Figure 

26. If that service is the first time that is consumed, the following service consumed has 

a 100% of transitions. Otherwise, we need to iterate through all the previous transitions 

from that service to calculate the probability for each second service. That is shown in 

the last loop in Figure 26. Algorithm 8 describes the same process with more detail. 

 

 
Figure 26. Markov transition matrix calculation algorithm 

Algorithm 8: Markov transition matrix calculation 

1. Given: Markov, day, d_record 
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2. Var preService = d:record.service 

3. Var postService = d.record.nextService 

4. If Markov[day, preService, postService] is empty 

a. mark = Create_Markov(); //Create the structure 

b. mark.adyacency(preService, postService) = 1 

c. mark.service_cases(preService) = 1 

d. mark.totalCases = 1 

5. Else 

a. mark = Markov[day, preService] 

b. mark.totalCases++ 

c. mark[postService].cases++ 

d. For each service in mark 

i. tempMark = mark[service] 

ii. tempMark.adyacency = tempMark.cases/mark.totalCases 

e. End For 
6. End If 

 

Finally, we find the statistics calculation in Figure 27. Figure 27 shows the flow diagram 

that corresponds to Algorithm 9. It depicts the two different ways of calculating the 

statistics. If there was no previous statistics for a specific day when the record is read, 

the data structure is created and initialized Otherwise, the statistics must be recalculated. 

By using equations Eq. 27, Eq. 28 and Eq. 29 these statistics can be recalculated each 

time a new service is consumed after another one in the same day or each time the new 

service ends its consumption (for calculating the duration). 

In the following subsection, the classifying module is explained. That module uses some 

of the data provided by this module. In the training phase, the records are split to create 

the datasets. In the prediction phase, each new record is sent to the classifying module. 

3.9.2.2 Classifying Module 

The classifying module is based on neural networks. Then, we have a deep learning 

method to predict the next service consumed by the user. The entries of the system will 

be the different measurements of the record (time, day, type of day, service consumed, 

duration and so on). In the records, we have 20 different features. As output, the different 

services provided. We define 7 different services, shown in Table 12. A weak point of 

having a classifying system as the single method to predict service consumptions is that 

if a new service is added to the system, the classifying model has to be redefined and 

trained again. However, with an RL as a supervisor, that process can be delayed, and a 

provisional action can be added to avoid a QoE reduction until the classifying model is 

trained again. 
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Figure 27. Statistics calculation algorithm 

Algorithm 9: Statistics calculation 

1. Given: Stats, day, d_record 

2. Var preService = d:record.service 

3. Var postService = d.record.nextService 

4. If Stats[day, preService, postService] is empty 

5.  stat = Create_Stats(); //Create the structure 

6.  stat.meanDelta = postService.time-preService.time // (6) 

7.  stat.varDelta = 0 

8.  stat.meanDuration = preService.duration // (6) 

9.  stat.varDuration = 0 

10.  stat.totalCases = 1 

11. Else 

12.  stat = Stats[day, preService, postService] 

13.  stat.totalCases++ 

14.  stat.varDelta += pow(postService.time - stat.meanDelta, 2)/stat.totalCases -  

 stat.varDelta/(stat.totalCases-1) // (7) 

15.  stat.meanDelta = (stat.totalCases-1)*stat.meanDelta + postService.time/ stat.total

 Cases // (5) 

16.  stat.varDuration += pow(postService.duration - stat.meanDuration, 2)/stat.total

 Cases -  stat.varDuration/(stat.totalCases-1) // (7) 

17.  stat.meanDuration = (stat.totalCases-1)*stat.meanDuration + postService.duration/ 

 stat.totalCases // (5) 
18. End If 
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Table 12. Services description 

Service 0 Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 

Lights Doors Heat Smart 
Leisure 

Music 
Player 

Door 
Surveillance 

Video 
Streaming 

 

The classifying model will be based on a neural network whose architecture is depicted 

in Figure 28. Classifying neural network architecture. We define a number of neurons in 

the input layer equals to the number of features in the data. In our case, we will have 20 

features, so 20 different neurons in the input layer. The number of hidden layers, 𝑛ℎ, and 

the number of neurons in each hidden layer, 𝑚ℎ, will be parameters of the model. After 

testing the model varying these parameters, the model used will be the one with the 

highest accuracy. 

 

 

Figure 28. Classifying neural network architecture 

As regards the output layer, it will be composed of 7 neurons, one for each class to be 

detected by the system. If the number of different services in the Smart Home increases, 

the system would need to extract more relevant features and the model would need to be 

adapted. However, this adaptation is not going to be considered in this paper, and it will 

be considered as future work. 

The loss function will be cross-entropy and the optimization method will be Root Mean 

Square Propagation (RMSprop), which achieves good results in multi-layer neural 

networks [63]. 

Another aspect of the model that has to be chosen is the activation function. We will use 

the ReLU function as the activation function of the hidden layer, 𝑎ℎ [64]. The softmax 
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function will be used as the activation function of the output layer, 𝑎𝑜, to get the 

probabilities of belonging to each class [65].  

With the model presented, the next service consumed by the user can be predicted. In 

the next subsection, we define the RL module, that will choose the best action to perform 

based on this prediction. 

3.9.3. Reinforcement Learning Module 

This section describes the RL algorithm that will be used to reduce the impact of bad 

predictions. First, the environment, the states and the actions are defined. Then, the data 

structures that the algorithm needs to work on are described. Finally, the rewards 

calculation and the policy of the system are detailed. 

3.9.3.1 Environment, States and Actions 

In this subsection, the environment, the states and the actions that the algorithm will use 

to implement the reinforcement learning will be described. 

Firstly, we have to define the environment. The reinforcement learning will act in the 

Smart Home environment. Exactly, it will notify the IoT-Gateway which command must 

perform. Therefore, the agent of the reinforcement learning algorithm will be the IoT-

Gateway. Initially, it could be thought that the user would be the agent, but the user will 

be only the source of information of the actions performed by the agent. For instance, 

when the user consumes a service and the algorithm decides to start another service after 

a certain amount of time, the user may not need that service and give the order to turn it 

off. The user, then, is an input for the algorithm. In this case, the user is saying that the 

action performed was not chosen correctly. This fact would affect the reward of the 

action. We will discuss that in the next subsections. For now, it is important to notice 

that the user will be an input, not the agent that modifies the environment. Despite this 

fact, the user is the one who starts enabling the services. Consequently, if the definition 

of the states would be only based on the current service running in the Smart Home, the 

definition of the environment and the agent would be more complicated. Furthermore, 

the algorithm would be incomplete, due to the fact that we need to know which service 

is supposed to be necessary to activate. It is there when we need the classifying module. 

Moreover, due to the user patterns, the day and the current time are also relevant data. 

From the previous discussion, the following definition of the states is obtained. The RL 

algorithm will decide which action needs to be performed based on the current service 

consumed, the next service predicted and the current day. This presents a problem that 

will not be addressed in this paper: how new states are generated through the use of the 

system. We will consider in this paper that the states are statics and are generated from 

the transition matrix obtained from the preprocessing module. However, new patterns 

can be adopted by the user and this will be discussed in future works. 
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Usually, the states of an RL algorithm can be depicted in a state diagram. However, in 

this scenario, the state diagram can be composed of a high number of states, depending 

on the number of services. This can make the algorithm not scalable. Nevertheless, the 

Smart Home environments do not have a high number of services. Furthermore, not all 

the services can be important enough to define a state. In this paper, we will use all of 

them but, in future works, a categorization of services can be proposed to reduce the 

space of states.  

Figure 29 shows an example of a diagram of states with three different services to enable. 

In this case, there is no probability of transitioning from state 2 (S2) to state 3 (S3). 

Therefore, there is no transition between those states in the graph. Furthermore, 

depending on whether the user actually consumes the predicted service, the next state 

might be with the same service being consumed. That may happen when the classifying 

module does not predict the next service accurately or when the prediction was to 

consume again the same service. The state diagram is not, then, a direct representation 

of the Markov chain derived from the transition matrix. There are transitions to states 

with the same current service that do not represent the same service being consumed 

twice. In Figure 29, in order to make easier the readability of the diagram, the states are 

composed only of the current service. However, the diagram is more complex because 

the algorithm defines the state as a pair of states. The first state is the current state and 

the second one is the predicted state. Figure 30 depicts the diagram of states of the state 

S2 of Figure 29. Within each state of Figure 29, there would be a subdiagram with similar 

transitions. Although this can add some difficulty to understand the algorithm, the 

number of states is finite and not big enough to present a deep-learning algorithm for the 

policy function as in [66]. However, it could be a future work to study. 

For each state defined, a set of actions can be performed. The actions, however, must be 

classified based on how much they interrupt the user’s activity. This helps the algorithm 

to not reduce the user’s QoE as much if the predictor fails to predict the next service. For 

this proposal, six different actions are going to be defined and classified depending on 

this intrusion level. The actions are shown in Table 13, where the level of intrusion and 

the description are detailed. The simplest action is to wait, without executing any service. 

This has the lowest impact on the user because they do not have to do anything. However, 

this does not mean it is always the best action, because sometimes enabling a service or 

turning on a node can reduce the waiting time for the user or implying other advantages 

(for instance, saving energy or heating up the house before the user arrives). An 

alternative with low impact would be to ask if the user wants to enable the predicted 

service or another one from a list of similar alternatives (services from the same group). 

This is not too different from a manual service selection. If the system only asks to enable 

a certain service or it turns on a node it will have a higher intrusion from the user’s point 

of view. We have to take into account that certain services are more intrusive than others. 

This is reflected in the actions. The system can automatically start a predicted service, 

with some options or subfunctionalities that are not too intrusive, such as perform a 

search on Internet or increase or decrease the temperature a few degrees. However, other 
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services, like opening a door, turning on the TV or start playing a song or video have a 

bigger impact on the user. Finally, stopping services that the user is using or turning off 

nodes automatically has the biggest impact on the user, so transitions that require disable 

services will have the biggest level. 

Table 13. Actions 

Level Action 

0 Wait 

1 Ask with alternatives 

2 Enable a node or ask to start a service 

3 Start a low-impact service 

4 Start a high-impact service 

5 Stop services or turn off a node 

 

The definitions of the actions are not simple actions as they could be found in other RL 

algorithms, but there are actions that will depend on the predicted service. That means, 

that enabling a node will enable a node that provides the predicted service, starting a 

service will start the service predicted or a module of the service and so on. 

 

Figure 29. State diagram with three services 

These actions provoke changes in the network performance, and, depending on the next 

values obtained from the Statistic Analyzer, the reward value of the action taken will be 

updated.  

The way the rewards are assigned and calculated and how the actions are performed are 

described in the next subsections. However, we first need to know the data structures 

and concepts. 
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Figure 30. Subdiagram of state S2 

3.9.3.2 Data Structure 

In this subsection, the data structures that the RL algorithm uses are described. 

First of all, the RL algorithm needs a structure where the reward of each action for each 

state is stored. This data structure will be a matrix, where the rows will be the states and 

the columns will be the different actions of the algorithm. In this case, the states are a 

pair of current service and predicted service values. Table 14 shows an example of the 

data structure for three different services, following the same state diagram that is shown 

in Figure 29. 

Table 14. Reward-State Matrix 

State Action 1 Action 2 Action 3 

𝑆1, 𝑆1 1.3 7.5 2.21 

S1, S2 0.4 1.2 2.05 

𝑆1, 𝑆3 1 2 0.75 

𝑆2, 𝑆1 1 2 0.75 

𝑆2, 𝑆2 1 2 0.75 

𝑆3, 𝑆1 1 2 0.75 

𝑆3, 𝑆3 1 2 0.75 

 

Secondly, the algorithm will need information about the services. This information is 

given by the data preprocessing module. For each service, the following data is required: 

the group where the service belongs, the impact that the service has on the user and if 

the service is multimedia. The group of the service is data that the IoT-Gateway knows 

because it is that agent who categorizes the services attending to the architecture 

presented in Figure 8. If the service is multimedia it also comes from the IoT-Gateway. 

Like the group of the service (workgroup), this is information that is presented in the 

dataset. However, the last data that is needed, the impact of the service on the user, must 

be set by the RL algorithm. A simpler classifying module could be added in the system 

architecture just before the RL module to determine which services have a bigger impact 

on the user. However, to make the proposal simpler, the IoT-Gateway provides the RL 
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module with this information, obtained statically from the group of the service. Table 15 

shows an example of this data structure, which we will name as infoServices. The impact 

field is a positive integer. The bigger the impact value, the more intrusive the service is. 

 

Table 15. InfoServices Matrix Example 

Service Workgroup Multimedia Impact 

𝟏 1 0 5 

3 2 1 4 

𝟒 3 1 4 

 

The last data structure needed to implement this RL algorithm is the Input User Matrix. 

This data structure will store how much a user input is needed for each action. That 

means, that the algorithm will be able to know the impact of having a certain input for 

the user for each action chosen. This will be useful for knowing how much a certain 

action was appropriate for a state, that is, how the RL algorithm should be rewarded. For 

instance, if a set of services is given to the user to choose which one should be started, if 

the user selects the predicted, the reward will be different from the one obtained if the 

user discards all the possibilities. This will be discussed in more detail in the next 

subsection, where the policy of the RL algorithm is detailed. Table 16 shows an example 

of this matrix. 

Table 16. Input User Matrix Example 

Action User Option 1 User Option 2 User Option 3 

𝑎 1 0.2 0.25 0.1 

𝑎 2 0.4 0.8 0.1 

𝑎 3 1 0 0 

3.9.4. Rewards, Policy and Objective Function 

In order to define the reward properly, we have to analyze the problem we are dealing 

with, because it is the problem, and the scenario, the one that defines the appropriate 

method to obtain and calculate the reward. The reward will indicate to the system 

whether the action chosen was effective in the same state or, otherwise, if there are better 

options. If reinforcement learning is applied to a game, the effects that a performed action 

over the player determines the reward. If the game provides an actual reward such as 

finishing a level or defeating an enemy, the reward will be positive. If other actions 

usually drive to losing a life, losing objects and so on, the reward will be lower and will 

decrease if we choose that action, even being able to contain a negative value. 
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In the environment previously defined, the goal of the system is to avoid the user from 

enabling services or nodes. However, it is also important to reduce the intrusion of the 

system, especially regarding multimedia services. Therefore, the input of the user will 

be quite important to know if the action chosen by the system was appropriate.  

Applying the RL system to the result of a classifying algorithm modifies the way the 

reward is calculated. In this case, the reward will be a measure of the number of times 

the classifying module has predicted correctly which service would be consumed. 

Therefore, if the module provides high accuracy with certain services, the actions with a 

high level of intrusion can work well. On the other hand, when it has low accuracy, 

performing an action with a low level of intrusion could be a better option.  

The algorithm has a set of actions, 𝐽. We are going to describe the general case where 

several actions can belong to the same level classification. However, this definition will 

also be valid when there can be only one action per level. Consequently, we can define 

the reward obtained after choosing an action 𝑗 as in Eq. 30. 

 r𝑗 = u , where   Eq. 30 
 

 u = 1 ↔ Input(User) <  𝛽 Eq. 31 
 

 u = −1 ↔ Input(User) ≥  𝛽 Eq. 32 
 

where Input(User) is a parameter that returns the IoT-Gateway and its value depends on 

the action chosen and the action the user does after. The possible values were defined 

previously, as an example, in Table 16. Moreover, 𝛽 is a threshold defined to classify 

the action performed by the user as corrective or not. Then, if the action was corrective, 

the reward should be decreased. 

Nonetheless, if we only consider the reward like that, we can drive the system to a point 

where the actions of less level, due to the fact that they are less intrusive, present a higher 

reward. In order to solve this, the reward should be incremented regarding the level of 

the action chosen. Consequently, the reward given to an action 𝑗 in the iteration 𝑖 will be 

defined by Eq. 33. 

 r𝑖,𝑗 = u𝑖,𝑗 ∗  
𝑙𝑒𝑣𝑒𝑙(𝑗)

𝑀𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
 Eq. 33 

 

Where level(j) is the level of the action 𝑗 chosen. 

The last adjustment that needs to be done is to give extra importance to multimedia 

services. That means, for those actions coming from a state whose current service is 

multimedia, the reward should increase or decrease at a higher rate. In Eq. 34 we can see 

this adjustment. 
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 r𝑖,𝑗 = (1 + multimedia(s)) ∗ u𝑖 ∗  
𝑙𝑒𝑣𝑒𝑙

𝑀𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
 Eq. 34 

 

Where 𝑚𝑢𝑙𝑖𝑚𝑒𝑑𝑖𝑎(𝑠) is the flag in the dataset that identifies the service 𝑠 as a 

multimedia service. 

We can define, then, the total reward of an action 𝑗 as Eq. 35. 

 R𝑗 = ∑ r𝑖
𝑛
𝑖=0  where  R𝑗 ≥ 0 ∀ 𝑗 ∈ 𝐽 Eq. 35 

 

Initially, the rewards are calculated depending on the level and the probability of 

transitioning from the initial state S𝑎 to S𝑏 as is defined in (14): 

r0,𝑗 = (1 + multimedia) ∗ (P(S𝑎, S𝑏) ∗  
𝑙𝑒𝑣𝑒𝑙(𝑗)

𝑀𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
 + (1 − P(S𝑎, S𝑏)) ∗  

𝑀𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)− 𝑙𝑒𝑣𝑒𝑙(𝑗)

𝑀𝑎𝑥(𝑙𝑒𝑣𝑒𝑙)
) Eq. 36 

 

We need to define then the policy of the system. In subsection 5.2 we defined a matrix that 

contains the rewards for each pair of state and action. Usually, RL algorithms choose the 

action with the highest reward. However, in this case, the policy will have a component of 

exploration. This component will force the algorithm to try actions that had not been tried for 

a high number of iterations. Eq. 37 defines the function ρ that represents the probability of 

choosing and action 𝛼 that has less reward than the action with the maximum reward, n, for 

the same state. 

 ρ𝛼 =  
𝑅𝑛 −  R𝛼

|𝑙𝑒𝑣𝑒𝑙(𝑛) − 𝑙𝑒𝑣𝑒𝑙(𝛼)|
+  𝜔 ∗ 𝑖 Eq. 37 

 

Where 𝑖 is the number of iterations that have passed since the last time action 𝛼 was chosen 

and ω is a parameter that sets a weight to the exploration. 

The policy function can be described then by Eq. 38: 

 𝜋(𝑠) = 𝑎𝑗| 𝜌𝑗 ≥ 𝜌𝑛 ∀𝑗, 𝑛 ∈ 𝐽 Eq. 38 
 

 

 

 Conclusion 

A new algorithm has proposed for allocating and sharing the common resources among 

the heterogeneous devices in the scenarios of IoT. 

Although, the MQTT protocol is redesigned to consume a low bandwidth of QoS.  It was 

demonstrated through simulation that with a simple protocol like DFSP, the length of the 

payload of the PUBLISH message was sufficient to transport the information about the 

functions and services of the Things. 
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Notwithstanding each training matrix of each thing requires many iterations of the user, 

the simple matrix used that proved that the algorithm AI works ideally in the system. 

While there is still no simulator that completely emulates an SBC like the RPi3, the 

Packet Tracer simulator can be a good option to see the behavior of the algorithms 

designed within the network. 

After successfully modifying the MQTT protocol of the python code example that is in 

the Packet Tracer simulator, it is likely that the code for the CoAP and HTTP-Rest 

protocols can also be created and simulated in the network. 

In a conventional WLAN, a WiFi router can not intelligently manage Internet access, 

storing datasets, host an IoT-Broker, or support AI. For this reason, it is proposed the use 

of low-cost SBC and freely developed boards and convert them into programmable IoT-

Gateways to let them use the algorithms proposed in this paper. In this way, the objects 

connected can send information to AI through IoT-Protocols using this architecture. 

The IoT environment provides a set of several services whose constraints and 

requirements vary from each other. In addition, the different features of the IoT nodes 

turns the problem of selecting which nodes must implement which service into a complex 

question. M2M communications and publisher-subscriber models can be used to route 

the information and create bonds between consumers and publishers. However, the IoT 

environments and their services may present different scenarios. Therefore, the routing 

protocol that interconnects the nodes should manage different criteria and select the most 

appropriate. In this paper, a new routing protocol for M2M communications in IoT 

environments has been proposed. The problem has been formulated, the architecture has 

been discussed, and both the model and the algorithm have been detailed. Moreover, 

some criteria that may be relevant in IoT environments have been defined. The proposed 

protocol uses an AI algorithm that selects the most relevant criteria to establish a cost 

function. The AI algorithm that has been chosen is the NSGA2 algorithm. Then, the 

protocol has been simulated to test its functionality. 

IoT has provided new ways of networking, communicating and sensor development. In 

addition, with its introduction, several new applications have been designed in several 

fields. Smart Home is a new way of understanding services at home. With the 

communication that this technology offers, users can access new services at home. In 

addition, AI can help automatizing tasks at home using these services and architectures.  

In this paper, we have introduced an intelligent system to automatize Smart Home 

services management. The aim of the intelligent system was to avoid user interruptions 

to guarantee a good QoE, prioritizing the multimedia services. In the system, we have 

designed the data preprocessing process, the classifying algorithm and the RL system 

that improves the performance, defining all the related concepts needed to describe the 

scenario and so that the system can interact and provide functionality.
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Chapter 4.                       

Test and evaluation of 

the proposed 

architecture 

 Introduction 

Next, the DFSP protocol is tested in an IoT-Gateway by measuring the data packets with 

an IoT-Protocol as MQTT. Each object connected to the experiments' IoT-Networks is 

organised accord proposes architecture. With the dataset extracted from each object 

using DFSP, it is analyzing the intelligent clustering algorithm (based on machine 

learning classifier), the intelligent routing (based on the NSGAII optimiser) and the 

quality of experience (QoE) based on deep learning and reinforcement learning. 

 Test on IoT-Gateway 

This proposal's tests are carried out to demonstrate that the algorithm can encapsulate 

the information extracted by the DFSP protocol and send it over MQTT to the IoT-

Gateway. 

4.2.1. Implementation of the devices 

The development of this proposal involves the use of single-board computers (SBC) such 

as the Raspberry Pi 3 Model B+ (RPi3) [67]. Each actor in this proposal, it has 

implemented with an RPi3, except for the cloud platform. It has tested on two different 

platforms for IoT: ThingsBoard [68] and ThingSpeak [69]. 
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The idea is that each thing is controlled by an RPi3 including the IoT-Gateway, under 

the Android Things operating system [70]. Using the Java programming language and 

the Android Studio development environment [71]. 

4.2.2. Testbed 

The technical implementation of this proposal is possible through the implementation of 

the RPi3, three of it emulating three Smart Things and one emulating the IoT-Gateway. 

Another way to verify the operation of this proposal can be done through a simulation. 

Several simulators were studied, including Cooja [72], [73], NS-2 [74] (Network 

Simulator 2), GNS3 [75] and Cisco Packet Tracer [76]. Most of the simulators are 

oriented to IoT sensor networks (Motes, mostly 8 and 16 bit Microcontroller based). 

Some of these simulators do not support the use of the RPi3 because it falls into the SBC 

category and cannot run a full Operating System (OS). Sometimes also, the OS of the 

simulators are not compatible with OS of RPi3. Currently, there is an RPi3 simulator 

[77], [78] that can emulate the operating system (OS-RPi3), but cannot simulate it in a 

network. 

Cisco Packet Tracer simulator was the best option in this case, although it has limitations 

when emulating the speed of processing of the packets and the time of decision in the AI 

algorithm. This simulator allows illustrating the behavior of the RPi3 in a network 

environment and seeing the operation of the MQTT protocol. It also allows you to 

modify the pre-installed sample programs and adjust them to the design of this proposal. 

The modified program was the MQTT Client and MQTT Broker protocol in Python code 

into each RPi3. An algorithm was added to both to calculate the length of each of the 16 

messages of the MQTTv3.1.1 protocol [79], called Remaining Length (RL). Using the 

model described in the previous session, the algorithm adjusts to the size of the IoT-

Protocol payload, in this case MQTT. 

The MQTT Client and MQTT Broker initially worked manually, but now due to this 

modification, it is the control algorithm in gateway whose controls them automatically. 

In the payload of the PUBLISH message the algorithm sends the protocol DFSP 

announcing and sharing information about the services and functions of the Things. So 

a simple network design was proposed, starting with a group of Things where a specific 

task is assumed. The network of this test supposes an IoT-Gateway based on a centralized 

management architecture following a star topology. 

Figure 31 shows the simulation performed with the Cisco Packet Tracer simulator 

version 7.2.1. 

The IoT-Gateway of the simulation is represented as the next set of elements, a wireless 

router WiFi, a Cisco 2911 router (NFExplorer) and SBC-RPi3 (inside is content the 

MQTT broker and AI control algorithm). A real implementation would be done only 

with an SBC-RPi3, who would be integrated by MQTT Broker and the AI control 

algorithm. 
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Smart things are also integrated by an SBC-RPi3 and host the MQTT client and the AI 

algorithm, which is responsible for announcing its functions and services. To simulate 

the operation of each Smart Things, a component called "Thing" was programmed and 

connected to an SBC-RPi3. Then in this way, it is possible to simulate the set (Thing + 

SBC-RPi3) as a refrigerator, a cupboard and a coffee machine. 

All these devices are connected with WiFi technology following a star topology that 

supports the transport of IoT-Protocols [80]. In this case, the MQTT protocol selected 

and modified for all the reasons explained above. 

With the target of evaluating the system, it was used to capture the packets in the 

network, a special configuration with the Cisco 2911 router and a personal computer 

(PC) with NetFlow Traffic Analyzer [81].  

The DFSP protocol is transported over MQTT, which in turn is transported throughout 

the network over TCP sessions, established at the beginning of the connection. For this 

reason, all TCP packets are analyzed, as their traffic and bandwidth changes depending 

on the other protocols. 

 

Figure 31. Simulation of the IoT-Network 
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The capture of the data was achieved with NetFlow Traffic Analyzer through the PC and 

then was crossing it with the information obtained by the router NFExplorer and the 

information provided by Eq. 1 and algorithm RL.  

Once all the elements of the network have been configured, is measures the system with 

two types of tests. Both tests have the same initialization process autonomously through 

the AI. This test consists in seeing the behavior of the network with or without DFSP 

protocol [82]. 

The captured data are analyzed and graphed to interpret it through four graphics. 

The three first is composed of three operation mechanisms, connection with the broker 

(CONNECT message), PUBLICATION/SUBSCRIPTION message and 

DISCONNECT message. The fourth describes these mechanisms separately in five 

operation segments. 

Figure 32 and Figure 33, the behaviour in the length of the packets are observed when 

the network is started without carrying the DFSP protocol, and when it is started carrying 

the DFSP protocol, in both cases, it is realized the same process. 

In both figures, the lines that describe the length of the packets corresponding to the 

connection and disconnection mechanism remain the same.  

However, in the mechanism corresponding to subscription and publication the length 

changes in relation to the data of the DFSP protocol. 

The data sent in the DFSP tests were small, only functions corresponding to "on and off", 

and short services such as "Make Coffee". Therefore, package sizes are not of the order 

of Mega Bytes, but only of some Bytes. 

 

Figure 32. Length of the MQTT/TCP packets 
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As can be seen in Figure 33. Length of the DFSP/MQTT/TCP packets, the length of the 

packets shows that the DFSP protocol has been introduced in the payload of MQTT 

compared to what was seen in Figure 32. Length of the MQTT/TCP packets. 

 

Figure 33. Length of the DFSP/MQTT/TCP packets 

The length of the TCP packets given during the test is shown in Figure 33. Length of the 

DFSP/MQTT/TCP packets. The maximum values are peaks of 209 bytes, while the 

minimum value has been 81 bytes, which belongs to an UNSUBSCRIBE message. The 

average number of bytes transferred has been 116 Bytes. 

Figure 34 shows the relation between numbers of packets is transmitted per seconds 

along the tests. The captured time is the real time of duration each packet sent in the 

network, which is measured in milliseconds (ms). The maximum time transmission of 

packets was at 0.1 ms, with 5 packets. The rest of the packets remain constant after the 

connection is established through the TCP socket. 

In this time interval, PUBLISH/SUBSCRIBE messages are exchanged. The average time 

of the TCP packets transporting them is 0.070 ms. 
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Figure 34. Number of packets transmitted 

In Figure 35, it is can see the data transfer rate (DTR) in Bytes per seconds between each 

Smart Thing and the IoT-Gateway. In the simulation, the AI makes a boot of the smart 

things automatically and start to send the messages of MQTT protocol to the Gateway. 

 

Figure 35. Data transmission rate 

In Figure 35, the transmission of a message different from the MQTT protocol is 

observed in a sequential test process performed by the AI. This sequence begins with the 

CONNECT message and ends with the DISCONNECT message. The bit rate of each 
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transmission from the customers is on average between 1000 Bps and 2100 Bps. In the 

disconnection segment, a higher speed is observed, on average, between 2100 Bps and 

3600 Bps. 

In the simulation seen in Figure 36 has added to each Thing (fridge, cupboard and coffee 

maker) a training matrix based on statistics of usage and user preferences.  

These data are assumed through a text file, in order to observe the operation of the system 

and thus be able to capture the packages evidencing the transport of information 

autonomously to other machines. 

 

Figure 36. Implementation of the proposal 

The simulation also allows us to observe the functioning of Things by controlling other 

things with basic functions such as on/off (on, red color), selection of type coffee 

preparation and the ingredients available for its preparation.  

In a real implementation within a smart home, everything will be smart [83], [84]. Each 

of the things in this proposal, including the gateway, is built with an RPi3 and 

programmed with AI. As shown in Figure 34, it also connects to the cloud where there 

is also a platform with AI. As in the simulation, this proposal is expected to use other 

types of connections such as Bluetooth 5.0, WiFi and Ethernet. The idea is that protocols 

M2M, in this case, MQTT can be transported throughout the network, regardless of the 

type of the underlying connection. 

 Test on clustering 

This section provides the performance test. The tests aim to observe how the objects 

behave under this architecture using the algorithms and the proposed model. 
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The idea is that the conventional router in a home will be replaced by an IoT-Gateway, 

with the ability to support AI, routing, grouping, storage, management, and hosting of 

services. These include hosting a Broker for M2M connections and allowing 

reprogramming to accommodate a ML classifier. However, the scope of the tests is only 

limited to grouping based on classification-oriented algorithms. 

4.1.1. Implementation of the devices 

The development of this proposal involves the use of single-board computers (SBC) such 

as the Raspberry Pi 3 Model B+ (RPi3) [67]. Each object in this proposal between layers 

2 and 4 have been implemented with an RPi3 device, except for the Cloud and Sensor 

layers. In layer 1, the sensor devices are implemented on a Programmable System-on-

Chip (PSoC) as the ESP8266-01, which is integrated with a microcontroller and a Wi-Fi 

network module or is also used a WIFI LoRa 868 (V2) board [85], to implement a sensor. 

4.1.2. Considerations for the simulations 

Since it is not possible to modify a wireless router in a house to include network 

management capabilities with this architecture, it is used an RPi3 to replace it. In this 

way, it is possible to program all the algorithms, modify them, and adjust them as often 

as necessary to achieve good tests. Therefore the RPi3 will be the IoT-Gateway, 

implemented as a Wi-Fi router with expanded capabilities, and adjusted to this 

architecture’s operation. Among these capacities are the different IoT-Technologies of 

interconnection it can handle and the different IoT-Protocols with which it can 

communicate. However, we will only use Wi-Fi over TCP protocol in the simulation 

connection in order to facilitate the tests. The RPi3 devices of layer 3 are things and they 

connect with the Layer 1 sensors via Wi-Fi and Bluetooth. 

The first part of these tests show how the dataset os established in the IoT-Gateway. It is 

preconfigured with several features, organized through feature profiles, and select the 

features that will act as classifying classes for each profile. Once the dataset is structured, 

the data extracted from all the objects connected in the network is stored following the 

number and order that the AI requires through the interface. 

In the second part, the capacity λ of the devices on which objects are developed (Layer 

2 to Layer 4) are considered the same because all the objects are based on an RPi3, and 

therefore, the capacities are the same. In the case of the connections from Layer 2 to the 

boards of the devices in Layer 1, the capacities are different and lower, so in this case, it 

is considered that λ equals the lowest. 

The third part tests the grouping algorithm, based on the fact that the IoT-Gateway 

establishes routing over TCP. Then the case is considered that the network is previously 

established and that the IoT-Gateway is the one who discovers objects or waits for them 

to be announced. 
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This simulation scenario uses a fixed number of objects and groups. It is designed 

assuming each object’s participation within a group when attending a service type. In 

this way, each object reports the data of its features under these conditions. This data is 

stored in the IoT-Gateway's dataset. Then, it is analyzed using different classification 

techniques, testing each one separately until the classifier is found with the highest 

precision in the prediction. 

The data obtained from the objects in the simulation are transported under the 

architecture’s AI Interface policies. Whereby, our system uses the DFSP protocol over 

IoT-Protocols such as MQTT (layer 2 to 4) and MQTT-SN (layer 1) [86] over TCP for 

transport. The data is pre-processed in level 1 according to the centralized AI 

requirements and finally processed in level 2; for this case, only level 3 is used when it 

is necessary to process very dense information such as sound and images. 

Once the entire network converges and is stable, with a previously pre-established 

dataset and the selected classifiers and trained, the network is finally ready to receive a 

new object. Therefore, if a “New object” enters the network, the ANNOUNCEMENT 

message is activated and sent through DFSP/MQTT protocol to the IoT-Gateway, or the 

opposite, after some time the IoT-Gateway discovers it using the DISCOVERY message. 

In this case, the network is evaluated when the user places the New Thing observing how 

the AI assigns it, according to its features, to a workgroup and the architecture layer. 

4.1.3. Simulators 

The simulation was carried out with several simulators such as Cisco Packet Tracer 7.3, 

Jupyter [54], and iFogSim [87], [88]. Each of them complements the other. 

With Cisco Packet Tracer, the proposed architecture and model was emulated over an 

entire network on. This simulator does not have pre-installed network algorithms in RPi3 

as in real implementations, but it allows programming in Python and Java. It is a great 

advantage because it allows modifying and programming the proposed algorithms and 

putting the network into operation according to the architecture. It can simulate a real 

connection to the cloud (IoT-Platform: Thingspeak) and capture packets using 

Wireshark. 

With Jupiter, the ML of Table 6 and Table 8 is simulated in Python language, testing 

each classifier. The goal is to predict where will be assigned a new object according to 

its features of a group given and previously characterized, depending on whether its 

features are closest enough to the group or not. The library used was scikit-learn 0.23.2 

[55], together with other important libraries for data preprocessing. 

4.1.1. Testbed 

The simulation scenario is organized in groups and layers, and each group is arranged so 

that they can collaboratively provide a service. As it was observed in the network model 

presented in the previous section, an object can participate in providing a service in one 
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or more groups. Therefore, each object in Figure 37 is labeled with Wi, representing its 

participation in each group. With this scenario, the initial data for ML training is 

collected. 

 

 

Figure 37. Simulation scenario organized by groups and layers 

The first test is assumed that the IoT-Gateway connects with Wi-Fi to all network objects 

sending data over the DFSP/MQTT protocol. While the network converges, it storing 

data in IoT-Gateway, updating the features dataset pre-established. Then, the number of 

features versus the number of objects in the dataset network is previously analyzed. If 

there are too many features that are not relevant, this can affect the result. Therefore, a 

correlation map is made between all the feature profiles that define the connected objects' 

functions and services. The objective was to evaluate which features were relevant (they 

had an average absolute correlation coefficient greater than 0.68) to evaluate the 

workgroup and layer. With this information, the most representative variables were 

selected to perform the classification. 
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It caused a change and a minimal reduction in the dimensions of the dataset. The 

parameters that varied were X1 = 20 decreased to X1 = 14 and X2 = 10 decreased to X2 

= 7. It was also observed that the results are affected by increasing the number of objects 

in the network. When the number of objects was increased while maintaining the same 

number of feactures, the results improved. Because of a new object added, the number 

of registers in the dataset increased from n = 54 to n = 59. In other words, five new 

objects were used in the test. 

Figure 38 shows the ML using a classification method based on discriminant analysis to 

categorize the three groups. The workgroup label was used as the classifier class of the 

discriminant function to make the prediction. The two discriminant functions with P-

values lower than 0.05 are statistically significant with a confidence level of 95.0%. 

 

 

Figure 38. Discriminant Analysis 

Figure 38 shows these workgroups as the collaboration between different types of objects 

joined to attend a service by interpreting its features; in this case, there are three services. 

The red squares, blue circles, Xs, and asterisks observed in Figure 38 shows the objects 

that belong to different groups. Some of these elements are very close to each other, 

which represents their nearness in their features. It is also observed how some of these 

features intervene in one or more workgroups. For this reason, it is seen that in some 

cases, objects overlap one over the other, indicating that there is an interception between 

the groups. 

The results obtained through the discriminant analysis suggest that it is possible to obtain 

better results by applying a classifier based on the nearness of its features. For this reason, 

it is initially tested with a K-NN classifier, and the dataset is evaluated to know what 

precision will be when a new object is classified after it reaches the network. 

The best choice of K depends fundamentally on the data; generally, large values of K 

reduce the effect of noise on the classification but create boundaries between similar 
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classes. Figure 39 shows that with values K = 3, greater precision is achieved, so it is 

selected for all tests. 

 

Figure 39. Selection the best value of K 

The four distance metrics used to test the K-NN model are defined below: de, dM, dCh, 

dMk. The dataset was divided into 75% for the training model and 25% for the testing 

model. It is then applied data preprocessing and standardization of the dataset with 

“MinMaxScaler” and “StandardScaler.” 

To select the best configuration of the K-NN classifier, we have realized different tests. 

First, it is tested with “StandardScaler” and all the distances in metric parameter, and 

then with “MinMaxScaler.” It is observed that with “StandardScaler,” most results were 

high. However, using “MinMaxScaler” with metric =  dCh gives the best result for the 

“workgroups” class. On the other hand, with the “layer” class, each parameter’s best 

result give using “StandardScaler.” 

Figure 40 shows the best results for the different tests using K-NN for two classes. The 

experiment is performed 100 times for each combination of parameters. 

The running time that the algorithm takes to learn the parameter in the two best results 

in Figure 40 is 0,47 seconds for the “workgroup” class and 0,44 seconds for the “layer” 

class. It is run all experiments using a Python program on a DELL PC with a Core i7 

microprocessor and 4 GB RAM. 
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Figure 40. Comparison of distance metric in a KNN classifier (K=3) 

Figure 40 compares the results of different distance metrics for each classification label. 

It is observed in the results that the accuracy ≥ 68% in all the tests, being de and dCh the 

best. With de is obtain an accuracy = 95% to predict an architecture layer and with dCh 

an accuracy = 90% to predict the workgroup. 

Figure 41 shows the error in the previous tests. Results show very low error for most of 

the distances evaluated. 

 

Figure 41. Comparison of Error Rate in a KNN classifier (K=3) 

As it is observed in Figure 41 the error rate at K = 3 was 0.14 for most of the distances, 

while dCh, which previously showed the best precision for the workgroups, was 0.23. 
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The dataset obtained from the network test of Figure 5 is small in the number of samples 

or registers per object. This dataset may have more features (variables) than objects 

because they are necessary to describe functions, services, relations, resources, and each 

device’s location in the house. However, it can happen that after a threashold, the 

performance of the model will decrease due to the number of features. If features are 

continuously added without increasing the number of samples, then the space between 

the features increases and it becomes more dispersed. Therefore, to adequately process 

the data and reduce random variables, it is only considered the main variables using 

dimensional reduction methods. That allows it to remove redundant variables that do not 

add new information to the dataset and make it easier to view it. 

In order to improve the results of the K-NN classifier, it is applied it several 

dimensionality reduction techniques. The reduction tests were performed for the 

“workgroup” class with K = 3, metric = de, and 100 iterations. 

Figure 42 shows the Principal Component Analysis (PCA). It identifies the combination 

of features and helps examine relations between groups through the main or most 

relevant features of the dataset. The orange, gray, and red points represent the features 

of each workgroup. Although it applies a large dimensionality reduction to the dataset, 

still it is being observed more features than in the other two figures. 

 

 
Figure 42. PCA, K-NN (K=3) Test accuracy = 0,67 

Figure 43 shows a Linear Discriminant Analysis (LDA). This technique is used to 

observe the differences between the groups since classifying can cause overlapping and 

the shared features are not appreciated. 
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Figure 43. LDA, K-NN (K=3) Test accuracy = 0,74 

Figure 44 shows a Neighborhood Components Analysis (NCA). It tries to find a feature 

space to improve accuracy. 

 

 
Figure 44. NCA, K-NN (K=3) Test accuracy = 0,74 

In any case, none of the three figures shows a clustering of the data that is visually 

meaningful, like in Figure 38. 

The results of these reduction techniques PCA, LDA, and NCA applied to the K-NN 

model are compared with those obtained in Figure 10. It is observed that using PCA and 

NCA, the accuracy is improved from 0.71 to 0.74. However, the PCA technique even 

lowered from 0.71 to 0.68. 

After realizing the tests, the K-NN classifier with the best results is selected. We obtained 

a precision of 0.9 in training and 0.71 for tests with the workgroup class using dCh. For 

the layer class, the best results were obtained using de with a precision of 0.95 in the 

training and 0.86 in the tests. 
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K-NN results are now compared with other types of classifiers, which use different 

techniques and metrics. Figure 45 shows a comparative graph with the other classifiers. 

 

 

Figure 45. Comparison of accuracy with different classifier 

Figure 45 compares the accuracy obtained between the classifiers K-NN, SVM, 

Gaussian Process (GP), Decision Tree (DT), Random Forest (RF), MLP, AdaBoost 

(AB), Gaussian Naive Bayes (GNB), and Quadratic Discriminant Analysis (QDA). In 

the results of the figure, it is observed that the classifier with the lowest accuracy was 

QDA and the highest was MPL. However, it is also appreciated that the K-NN classifier 

hasan average value like the other classifiers. The results obtained for the workgroup 

class with Neuronal Net MPL were 100% accurate in the prediction and 90% for the 

layer class. 

Furthermore, the training time for KNN = 0,44 seconds, SVC = 0,043 seconds, GP = 

0,675 seconds, DT= 0,049 seconds, RF= 0,7 seconds, MPL= 0,5 seconds, AB= 0,8 

seconds, GNB= 0,5 seconds, QDA= 0,8 seconds. 

Figure 46 shows each classifier's error rate, and it can be seen that the MPL classifier has 

the lowest error of all (workgroup class) compared to the rest. In addition, the class layer 

for the same classifier has no value. 
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Figure 46. Error Rate’s Comparison each classifier 

Figure 47 shows the cross-validation technique applied to the models used. In this case, 

it is using a cross-validation process with ten interactions. This technique just was 

applied to workgroup class for all classifiers. 

 

 

Figure 47. Comparison of models with the cross-validation technique 

The figure shows that the best classifier is MPL since the accuracy value (orange line) is 

the highest, and the upper and lower error margins are lower than the rest. However, the 

precision depends on the test and training datasets, which may be biased, so cross-

validation is a better approximation. The difference between some values compared with 

those obtained in figure 15 probably is due to inadequate data randomization. Therefore, 

rather than just measuring accuracy, efforts should be focused on improving the 

algorithm. If the algorithm is improved, the accuracy will also improve compared to 

previous approaches. 
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 Test on Routing 

This section presents the experimental part of this paper in order to test the proposed 

model. For this reason, several experiments are carried out using simulation and different 

types of tests. Figure 48 shows the objects connected inside a house to an IoT-Gateway. 

Users use these objects at different times of the day according to their habits. The data 

stored in the objects and pre-processed are sent to the IoT-Gateway, where they are 

stored together with data of features and network parameters. From there, the centralized 

dataset of the entire network is obtained. The objects can be from different manufacturers 

and have different types of interconnection technology depending on the board 

capabilities of each object. However, in this scenario, only WiFi and Bluetooth 

connections are observed for ease of simulation. 

 

Figure 48. Smart Network Scenery: An Smart Home IoT-WLAN 

4.2.1. Implementation of the devices 

Most networked objects are appliances, and the others are smart assistants, mobile 

devices, actuators such as light bulbs and sensors such as gas meters, air quality, 

humidity, water, and electricity. In the implementation in the simulator, the single-board 

computers (SBC) such as the Raspberry Pi 3 Model B + (RPi3) [67] were used with 
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which the objects between layer 2 and 4 were simulated. However, the system is 

designed to be used with a WisGate Developer D4 + (EG95-NA) / US915 [89] as the 

IoT-Gateway. In layer 1, the bulbs use Bluetooth Low Energy (BLE) technology in Mesh 

Topology [90] using board nRF51822 [91], and the meters are implemented on a 

Programmable System-on-Chip (PSoC) as the ESP8266-01. 

4.2.2. Considerations for the simulations 

It starts with a structured dataset previously created by the IoT-Gateway's AI. The objects 

were simulated by sending their features and pre-processed data to the IoT-Gateway 

through the DFSP/MQTT/TCP Protocol [45]. The IoT-Gateway unifies them with the 

network parameters and the Pub/Sub tables of the MQTT Broker under a single 

identifier. This identifier is bi which refers to the connected object. 

4.2.3. Simulators 

A combination of simulators was used to achieve the main dataset, such as Cisco Packet 

Tracer 8.0 and MatLab, to simulate the scenario in Figure 48. Algorithm 1 with the model 

of this proposal was simulated using Jupyter Notebook (anaconda3). 

4.2.4. Clustering and routing 

From the scenario in Figure 48, only three workgroups are represented and explained 

through Figure 49. In this figure, the objects are organized following the structure of the 

IoT-SmartArchitecture to observe the role of each object according to the model. 

However, also when comparing it with Figure 1, it can be seen how each of these objects 

is represented as nodes and their meaning in the model. 

The IoT-Gateway's AI creates each workgroup to fulfil a service. This grouping was 

already carried out in a previous paper [56], where the objects were classified in 

workgroups according to its features of Functions and Services through ML. In this case, 

the dataset already has the scenario objects classified in groups and an architecture layer. 

Therefore, in this simulation, an initial state is assumed where the workgroups were 

previously created. 

An object within a workgroup has resources available to collaborate in a service. 

However, when this resource is exhausted, another object must perform the work or 

replenish this resource. The simulation shows how the proposed model algorithm can 

find a route based on the best node with the requested resources. 

From now on, the tests are focused on making requests for the necessary resources to the 

IoT-Gateway's AI to fulfil a service. Previously, the requests in an M2M connection to 

the Broker were made by the user through topics. With the modification and introduction 

of this model, the object autonomously requests resources from the Broker. 
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Figure 49. Case study of M2M routing within a workgroup. 

4.2.5. Testbed 

Although the scenario in Figure 8 or Figure 22 supports multiple users and multiple 

services, these tests assume a single user and a single service on the network. 

This scenario could have several services such as Saving electrical energy (w1), Visit at 

the door (w2), Toxic gas emergency (w3), among others. However, it was chosen to do 

the first tests starting with w2 as a reference experiment. 

Figure 49 shows the objects connected in the network through the IoT-Gateway, which 

has created collaborative workgroups to fulfil the services RS(S1), RS(S2) and RS(S3). 

However, the constraints of the model indicate that routing must is done between objects 

in the same workgroup to fulfil the service. Therefore, each test only uses the data from 

the same workgroup. 

According to the proposed model, Algorithm 1 is used as a search engine to find the best 

object that provides the requested resources. 

The simulation was carried out in  ython language on Jupyter. The device’s features 

used was an HP Pavilion personal computer with an AMD Ryzen 7 processor and 16 GB 

of RAM. The Pymoo [92] library was used to program the NSGAII multi-objective 
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optimizer [93] using the proposed model. With the parameters in Table 17, Algorithm 6 

is set and executed. 

Table 17. Parameters for the execution of the Algorithm 6 

Parameters used in NSGA-II with Pymoo 

n_var = 21 number of variables uses for w2 

n_obj=4 number of objective functions 

n_constr=1 number of constraints 

xl = 0 variables’ lower boundaries as a NumPy array 

xu = 1 variables’ upper boundaries as a  um y array 

pop_size= 40 population size 

n_offsprings=10 number of offspring 

sampling= x array x with n=18 rows and m=21 columns of the w2 

crossover get_crossover("real_sbx", prob=0.9, eta=15) 

mutation get_mutation("real_pm", eta=20) 

‘n_gen’, 10 generations number 

 

In this first test, an object br from workgroup (w2) requests from the IoT-Gateway (G0) 

the Ri = {r1, r2} to collaborate on the S2 service. The test is performed with Algorithm 6, 

keeping the default configuration defined by Pymoo. 

The problem method is configured with the dataset, and the sets ℱ and 𝑔 obtained from 

the analyzed model in this proposal and using table 2. The NSGA2 algorithm method is 

initially configured with a population size of 40 (pop_size = 40) instead of generating 

the same number of descendants (n_offsprings = 40), whereby only creating 10 

(n_offsprings = 10). In order to implement an alternative that improves optimizer 

convergence. Additionally, duplicate checking is enabled (eliminate_duplicates = True) 

so that the mating produces different offspring of themselves and the existing population 

relative to their design space values [93]. It is also necessary to define a termination 

criterion to run the algorithm for several generations through the parameter ("n_gen", 

10). 

Finally, Algorithm 6 calls the minimize method when it solves the problem and 

algorithm methods. 

For this, the functional interface of Pymoo is selected to solve the optimization problem, 

which provides the minimize method. This method uses the problem, algorithm and 

termination parameter to find the optimum through the X and F values. 

The algorithm was executed for 100 iterations with 4 objectives and 1 constraint, so 400 

function calls are necessary for evaluation. Although Pymoo allows using parallelization, 

in these tests, it was not used. Therefore, the time required for running was t = 0.073 

seconds. 

It obtains a design space with 18 solutions from which are obtained 5 sets of feasible 

solutions, including the optimal solution. Figure 50 shows how it represents. 
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Figure 50. Representation of a solution X 

Figure 51 shows the result of the algorithm evaluated for three functions 𝑓1(x), 𝑓2(x), 

𝑓3(x). The red point is the optimal solution, the blue points represent the feasible 

solutions space and the black points the design space. The optimal solution is found at 

the coordinate F: [ 2. -6. 15.]. 

 

 

Figure 51. Objective Space for three functions from test 1 

Figure 52 shows the four objective functions of this proposal 𝑓1(x), 𝑓2(x), 𝑓3(x), 𝑓4(x), 

and Figure 4 shows the result obtained of this test, in the coordinates F: [2. -6. 15. 10.]. 

This is the best node or object bo within the workgroup (w2) that can provide the 

resources with fewer additional resources without affecting network performance. From 

the data contained in the array X, it can be deduced that the node has the requested 

resources r1 and r2 as [1 1], it does not have additional resources [0 0 0 0 0], it has the 

highest energy availability [1 1 1], it has the lowest cost and power, calculated from the 

rest of the X parameters. 
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Figure 52. Multi-objective function space from test 1 

Figure 52 shows between the first row of graphs and the second column that by following 

the location of the red point, it is possible to see the sequential composition of the optimal 

solution.  In all three graphs on the 𝑓1(x) axis, the red point is located on the position 

[2.]. In this same row, in the first graph, it finds on [-6.], and then in the second on [15.] 

and the last one on [10.]. Finally, it obtains the optimal solution F: [ 2. -6. 15. 10.]. In the 

same way, the sequences of the rest of the rows and columns can be deduced. 

With the history of the algorithm, the number of each function evaluations and its values 

each iteration are extracted. Figure 53 shows that the algorithm managed to converge, 

and a set of feasible solutions and an optimum was obtained. 
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Figure 53. Convergence of objective functions from test 1 

The behavior of the objective functions as the algorithm iterates can be seen in Figure 

53. In all four cases, it is observed that the functions converge. This occurs approximately 

after 50 iterations. Function 𝑓1(x) (dashed blue line) converges to a value of 2 and 

function 𝑓2(x) (dashed orange line) to a value of -6. Otherwise, 𝑓3(x) (dashed green line) 

converges to a value of 15, and finally, 𝑓4(x) (dashed red line) reaches a value of 10. 

Once convergence is achieved, the values of functions are taken as optimal. 

Figure 54 shows if the constraint is violated or not. The graph shows that the first feasible 

solution found after 18 evaluations presents an interception of 0.00 CV. Therefore, there 

is no violation of the restrictions. 

 

Figure 54. Constraint Violation (CV) from test 1 

These results show that, in the first generation, a feasible solution was already found and 

that the constraints of the problem are satisfied in the initial population. 

𝑓1(x) 

𝑓2(x) 

𝑓4(x) 

𝑓3(x) 
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The second test is performed on the workgroup dataset (w3), which contains different 

objects with different features. In this case, the object br requests the resources Ri = {r1, 

r2, r3} from the IoT-Gateway (G0) to collaborate on the S3 service. 

Algorithm 6 is configured the same as the first test with the difference that three 

resources are requested in this case. 

Figure 55 shows the result of the algorithm, the red point being the optimal value in the 

coordinate F: [3. -6. 11. 25.] and X = [1 1 1 0 0 0 0 1 1 1 25 3 5 8000 4 72000 3 1 2 1 1]. 

This algorithm took time to execute t = 0.065 seconds and did not violate the restrictions, 

shown the same results as in Figure 54. 

 

Figure 55. Multi-objective function space from test 2 

Following the same interpretation of Figure 52, the result of X is divided into parts to 

obtain the values of the functions. Whereby the first part corresponds to 𝑓1(x), indicating 

that the node contains the three resources requested as [1 1 1] that is to say r1, r2 and r3. 

This is the best node or bo object chosen by the IoT-Gateway’s AI. 

Figure 56 shows the convergence of the objective functions in this second test. 
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Figure 56. Convergence of objective functions from test 2 

It is observed in Figure 56 that for all functions, the algorithm converges approximately 

after 30 iterations. 

In the third test, test 1 is repeated, but in this case, the object br requests the resources Ri 

= {r1} from the IoT-Gateway (G0) to collaborate on the S2 service. It is possible that the 

network conditions have changed and, therefore, the dataset as well. It means that 

different results can be obtained. For example, the battery of some sensor has gone down 

or that some resource of the collaborating nodes in the group has been exhausted. 

Moreover, in most cases, requests are made for a single resource. 

The simulation is performed using the same parameter settings of test 1 in algorithm 1. 

The result obtained is F: [ 2. -6. 32. 3.] and X: [ 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 3 1 1 

600 1 1 72000 4 4 4 1 1 1 3]. This algorithm took time to execute t = 0.052 seconds and 

did not violate the restrictions. 

Figure 57 shows the result of the optimiser for the single resource request to the 

workgroup (w2). 

𝑓1(x) 

𝑓2(x) 

𝑓4(x) 

𝑓3(x) 
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Figure 57. Multi-objective function space for request one resource 

The figure above shows that there are more feasible solutions than in Figure 52 of the 

first test. It may indicate that by requesting a single resource, the algorithm must choose 

the optimal one from a larger number of candidates. However, the execution time was 

shorter than in the first test. 

Figure 58 shows the new convergence of all functions when requesting a single resource. 

 

Figure 58. Convergence of objective functions for request one resource 

In this case, the algorithm converges approximately after 18 iterations. 
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In the tests of the three previous cases, it is observed that the algorithm responds well 

and finds the target node with different requests, changes in the dataset and maintaining 

the same problem defined in the model of this proposal. 

However, the following test is performed by changing the main algorithm NSGA2 of the 

algorithm method for other available in Pymoo’s library. Among them is RNSGA2, 

NSGA3, RNSGA3 [61]. According to each algorithm, the test was carried out under the 

same conditions of reference test 1, modifying only the algorithm method and the default 

parameters. It is important to clarify that not all the algorithms available in this library 

can be applied since only those requiring multiple objectives are required. Each works 

with a different technique, but all three find the optimal value. Figure 59 to Figure 61 

shows the convergence of each function using each algorithm. Function 𝑓1(x) (dashed 

blue line) and function 𝑓2(x) (dashed orange line) are superimposed. On the other hand, 

𝑓3(x) (dashed green line) and 𝑓4(x) (dashed red line) fluctuate throughout the process. 

 

 

Figure 59. Using RNSGA2 algorithm 

In configuring the RNSGA2 algorithm, it was necessary to use the termination criteria 

with a number of generations equal to 250. Therefore, this algorithm took time to execute     

t = 5.41 seconds. Analyzing Figure 59 shows that approximately 10000 function 

calculations were required to reach some level of convergence. However, except 𝑓1(x) 

(dashed blue line), the values found for the functions did not match those found with the 

NSGA2 algorithm. 
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Figure 60. Using NSGA3 algorithm 

With NSGA3, it was configured with an offspring equal to 40 and a termination criterion 

of 100 generations. The time it took to execute the algorithm was 1.57 seconds. In Figure 

60, it is observed that after having evaluated the functions 4000 times, 𝑓3(x) and 𝑓4(x) 

still do not converge. Furthermore, 𝑓1(x) and 𝑓2(x) converged to values that are not 

optimal. 

 

Figure 61. Using RNSGA3 algorithm 

In order to obtain the optimum with RNSGA3, it was necessary to configure the 

termination criteria in 300 generations. The time it took to execute the algorithm was 

7.54 seconds. The figure shows that the algorithm needs to calculate all the functions 

approximately 11000 times before converging to the values. Additionally, the values 

found are not optimal for this problem. 

Comparing Figure 59 to Figure 61 with Figure 53 shows that the NSGA2 algorithm 

requires much less computation of the functions to reach convergence. Moreover, this 
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algorithm is the only one of the four tested that finds the optimal function values. On the 

other hand, if we compare the execution time required by the four algorithms, NSGA2 

is the most efficient. 

 Test on Quality of Experience (QoE) 

In this section, the tests performed and the results obtained are discussed. First, the 

classifying model will be tested in order to obtain goods parameters. Then, the QoE will 

be measured to check if the introduction of an RL algorithm improves it. 

4.3.1. Classification analysis 

The classifying model was defined based on two parameters. These parameters, the 

number of hidden layers 𝑛ℎ, and the number of neurons in each hidden layer 𝑚ℎ, are 

analyzed in this subsection. In order to get the better values for these parameters, the 

model will be trained, given the same dataset, for the values of 𝑛ℎ, and 𝑚ℎ shown in 

Table 18. 

Table 18. Parameters for Classification analysis 

Parameter Val 1 Val 2 Val 3 Val 4 Val 5 Val 6 Val 7 

nh 1 2 3 4 5 - - 

mh 1 2 5 10 12 15 20 

 

The results of the evaluation of the model for each pair of parameters values are shown 

in Figure 62. In the figure, the accuracy for each number of neurons is shown for each 

model with a different number of hidden layers. The size of the training dataset 

corresponds to two weeks of user activity. Although the mean of the values of each series 

could be interesting for other experiments, we only need here the maximum value of all 

the series to select the values of the parameters with the best accuracy. In this case, the 

model works better with this kind of data when it has 5 hidden layers and 10 neurons per 

hidden layer. With those values, the accuracy of the classifying model is 54%. Despite 

the fact the accuracy might be improved with further feature selection or with larger 

datasets, this is a good accuracy to prove the hypothesis of this work.  

Furthermore, the results of the deep learning model are tested against another classifying 

algorithm. In this case, we chose the KNN algorithm to implement a classifying 

algorithm that predicts the next service. In this case, the KNN algorithm is parametrized 

depending on the number of neighbors. Figure 63 shows the results obtained from the 

KNN algorithm for a number of neighbors from 1 to 18. The maximum obtained 

accuracy, with the same dataset that the deep learning model, is 41.21% with 3 

neighbors. 
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Figure 62. Classification model results 

 

Figure 63. KNN classification results 

Figure 64 shows an example of how preparing the data from the Smart Home 

environment may help to get good levels of accuracy. The figure depicts the violin graph 

of the feature “type of day”. This feature has two values: 1 if the day is a working day 0 

it is not. Since the services with higher ID are the services regarding multimedia and 
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leisure (see Table 12), the probability of having a high value in service is higher when 

the type of day is 0. 

 

Figure 64. Violin graph of service depending on the type of day 

Finally, Table 19 shows the running time of the different parts of the algorithm. We have 

measured the mean of the running times from the different parts of the proposal. The 

experiments were carried on an AMD Ryzen 5 5600X with 32GM RAM DDR4. The 

results show that the times fit the environment restrictions, which are not extremely 

demanding in terms of running time 

Table 19. Running Time  

 Data 

Preprocessing 

Classifficator 

 (KNN) 

Classifcator 

(NN) 

Reinforcement Learning 

 prediction 

Running 

Time (ms) 
24 9 21 1 

 

4.3.2. QoE in Smart Home results 

In this section, the most important metric for this work, QoE at Smart Home, will be 

calculated for a KNN classifying system, the deep learning system and the deep learning 

system with the RL as a supervisor. 

However, we need to define first how we calculate QoE applied for the Smart Home 

scenario. At Smart Home, unlike in multimedia scenarios, the delay, bandwidth and jitter 

will not be our concern. We are going to put aside the network resources and focus on 
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the user. Thereby, the QoE decreases when the user is interrupted with consults about 

services they do not want to use. Moreover, if the system starts a service the user does 

not want to consume or to stop a service the user wants to keep consuming, the QoE will 

also be decreased. After each prediction, the QoE will be updated based on the loss using 

the function λ in Eq. 39. 

 λ = L(y, 𝑦̂) ∗ (1 + multimedia) Eq. 39 
 

Where L(y, 𝑦̂) = {
0 𝑖𝑓 𝑦 =  𝑦̂ 
1 𝑖𝑓 𝑦 ≠  𝑦̂

  , and multimedia refers to the current service. 

Note that the loss defined is only applied to the classifying. For the RL algorithm, the 

loss is defined by the user input matrix, depending on the action chosen. 

Therefore, let 𝛼 be a parameter to weight the decreases, the total QoE after the 𝑛 

iterations (transitions) of the system is determined by Eq. 40. 

 QoE(n) = Max(QoE) −
∑ λ 𝑖

𝑛
𝑖=0

𝛼
 Eq. 40 

 

In order to maintain similarity with the QoE defined in multimedia, the max value of 

QoE in our experiments will be 10. As regards 𝛼, it can be adjusted depending on the 

length of the measurement. We will show three different experiments where the 

parameter 𝛼 is different, but the number of iterations does not vary. The number of 

iterations will be 88 for each measurement. 

Figure 65 depicts the QoE obtained during all the iterations with an 𝛼 value of 20. With 

this  𝛼 value, the RL algorithm obtains a QoE of 8.7. the deep learning algorithm obtained 

a QoE of 6.56 and the KNN algorithm of 5.89. Although the RL obtains a high QoE, the 

other two methods are not too far from each other in terms of QoE. Despite the good 

QoE obtained with the classifying methods without RL, the accuracy of the predictions 

has been low. This 𝛼 value only shows a real behavior when the user cares less about 

interruptions. 
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Figure 65. QoE after 88 iterations with α=20 

The QoE values obtained with an 𝛼 value of 15 are shown in Figure 66. Again, the RL 

algorithm obtains better QoE than the other alternatives, with an 8.26. In this experiment, 

the deep learning algorithm obtains a 5.53 of QoE. The KNN algorithm is again the one 

that provides the worst performance with a QoE of 4.26. These results might represent 

with more accuracy the average user, whose QoE decreases with the interruptions. In 

addition, the RL presents the least decrease with the change of the 𝛼 value. 

 

Figure 66. QoE after 88 iterations with α=15 
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Finally, Figure 67 illustrates the results when the parameter 𝛼 is reduced to 10. In this 

case, the bad predictions that have as a consequence to interrupt ongoing services 

decrease quickly the QoE. The RL supervisor, by choosing actions that prevent 

interruptions when the classifying algorithm does not give an accurate prediction, 

presents the best QoE with 7.39. One more time, the deep learning classifying model 

presents better results than KNN, with 3.59 and 1.53, respectively. The decreased pace 

of the QoE, in this case, may show an unrealistic situation where the user punishes the 

system too much. However, it shows how the RL algorithm improves the performance 

of the system. 

 

Figure 67. QoE after 88 iterations with α=10 

 Conclusion 

Smart Things need to exchange much more information than a sensor node, while there 

is not a standard protocol that carries more information, as showed in the simulation, 

working with MQTT is better to achieve the goal. 

In future work, we plan verifying that the DFSP algorithm over the MQTT protocol by 

implementing over using real devices and obtain measurements at runtime and obverse 

the energy consumption. 

The following work consists in showing the results of this system implemented in a real 

environment, with centralized administration through a Multiprotocol IoT-Gateway 

controlled by AI. 
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It is expected that in the next results on the real network, it will be possible to observe 

and measure the designation of M2M relations by the AI and how the AI manages 

Internet accesses to solve problems. 

The K-NN classifier, being a simple method, is ideal for classifying the most similar data 

points, and it is also easy to implement, although compared to the other classifiers, it was 

not the best. However, it remained within the average results. The tests showed that the 

MPL classifier is the best to classify both classes. The obtained results were very high 

compared to the other classifiers. It is necessary to continue testing other classifiers for 

the group creation algorithm with ML. However, the tests showed that the architecture 

design widely allows the use of ML for its operation. 

It is expected to perform architecture tests on a real network, testing the clustering 

algorithm used in this simulation and observing its behavior when a new object joins the 

network. Thus, larger input datasets could be handled by further improving the 

classifier’s results, e.g., proposing a recurrent learning classifier such as RB   or a deep 

learning technique. 

The simulation results show that the proposed model algorithm allows the IoT-Gateway's 

AI to find the best node and establish an M2M connection. Furthermore, it is shown that 

it allows evaluating several criteria, functions with different values. For the chosen 

criteria, the values converged being 𝑓3(x) the function with the highest value. In 

addition, the constraint was not violated. Consequently, the proposed model may 

implement the routing protocol in the IoT scenario. With this proposal, objects will not 

have to know in advance the network topics to control other objects, it is enough to 

request a resource, and the AI connects them. 

This proposal, however, opens several lines of future works. Firstly, the criteria chosen 

in this work are generical criteria for every IoT environment. However, this protocol 

allows us to define functions depending on our needs. Therefore, the study of objective 

function selection for specific IoT environments such as Smart Home or Industrial IoT 

will be addressed in the future. Nonetheless, other improvements can be applied to the 

protocol. The AI can be enhanced with other algorithms. The optimizer proposed in this 

paper can be complemented with other ML techniques. In future works, we will study 

the application of reinforcement learning techniques to explore other functions or 

features to select the best criteria, a solution already studied in other areas like software 

defined networks (SDN) [94]. 

We have also defined QoE for this scenario and we have measured it for different 

parameters and systems. 

Results show that the deep learning classifying model proposed achieves better accuracy 

than other algorithms like KNN, improving their performance around 33%. The QoE of 

the deep learning algorithm shown with different values of the parameters has always 

been higher than the K   algorithm. With high values of the parameter α, the QoE 

obtained is higher, being in the experiment 5.53 for the deep learning algorithm and 4.26 
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for the KNN. This difference, based on the difference in accuracy, gets higher when the 

weights of the prediction increase. That is when α has lower values. This difference 

raised up until 2.06, with QoE values of 3.59 for deep learning and 1.53 for KNN. 

Nevertheless, the most remarkable results are the ones obtained from the RL system, 

which manages the predictions to reduce the impact and obtains QoE values of 8.7 when 

α has the highest value and 7.39 when it has the lowest. That makes a difference of 3.17 

in the first case and 3.8 in the second one. That shows that the inclusion of an RL system 

improves the QoE in Smart Home environments when the classifying cannot predict the 

next service with high accuracy. 

There are several aspects that can be studied in future works. Firstly, the system can be 

evaluated against better classifying models. That would include the study of improving 

the accuracy obtained in this work. The feature selection could be enhanced, reducing 

dimensionality [95] or an automatized label system could be included in the system [96]. 

Other parameters, such as the activation function or the optimization parameters could 

be changed to improve the accuracy. The scalability of the system could be studied. 

Mechanisms to adapt the system to new services could be defined to efficiently control 

a bigger number of states. Moreover, the system could be compared to other classifying 

models, besides K  . The QoE metric could add an intelligent method to select the α 

parameter based on the user profile. Thereby, some actions to correct low QoE could be 

included in the system. Finally, this system could be adapted to face other problems in 

IoT, such as video surveillance or Industrial IoT environments. 
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Chapter 5.                       

Implementation of the 

proposed architecture 

 Air quality monitoring in a smart city  

The air we breathe is essential to living and is increasingly contaminated by different 

factors affecting the health of all living beings. In the process of breathing, it is not 

possible to know through the upper airways (nasal and buccal cavities, pharynx, larynx, 

and trachea) if the air is clean and without risks to health. Some environments are more 

polluted than others and with different types of toxic gases and concentrations that, 

combined with air, are imperceptible to our senses. 

Intoxication by continuous inhalation of gas in high quantities and for a long time can 

lead to the death of a person or family group, especially in homes with poor ventilation. 

But, also when a person moves from his home through the city to his work can be 

dangerously exposed to different environments with toxic gases, making their usual route 

from home to work every day. 

Due to the above, it is very difficult to take air quality data in different environments in 

which a person moves in the day, and thus establish, what was the amount of toxic air to 

which he was probably exposed, and use them to know how it affects your health. 

5.1.1. Proposal 

The following proposal consists of a collaborative system of things that communicate 

with each other within a Wireless Local Area Network (WLAN) extended to other 

networks through an intelligent platform in the cloud (AI-Cloud), under the concept of 



Chapter 5. Implementation of the proposed architecture 

 

128 

the Internet of Things (IoT) [12]. This system is implemented experimentally using IoT 

protocols and technologies with the aim of solving a case study based on the need for a 

user to have a wearable intelligent assistant that manages the information regarding the 

quality of the air that it breathes in three different environments (at home, at work, and 

through the city). Allowing control and establishing acceptable parameters of air quality 

to reduce possible risks of respiratory diseases. 

This document addresses the study of the problem through the methodology of a case 

study based on a scenario. 

Each scenario is an IoT-WLAN network interconnected through an intelligent platform 

in the Cloud (AI-Cloud) that monitors air quality. 

In the Figure 68 it is observed, the first scenario is located in a Smart Home. For this 

specific case, it was chosen to study the air quality in this environment, starting from the 

Machine-to-Machine ratio (M2M) between the following actors: smart gas stove and gas 

heater, smart ventilation system (which is made up doors, windows, ventilators, and 

extractors that take actions of opening or closing through requests on the network) and a 

system of measurement of all types of gases, which are interconnected with each other, 

with the target provide a safe environment for the user. This implementation is made 

through the use of computer learning algorithms (Machine Learning) and a network 

connection using WiFi and Bluetooth technologies [97] with MQTT Information 

Protocols over a centralized management architecture based on a Gateway with Artificial 

Intelligence (AI-Gateway). 

 

Figure 68. First scenario: SmartHome connected to AI-Cloud 
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Figure 69 shows the second scenario, which is located in the streets of the city. This IoT 

network is responsible for monitoring, through a system of sensors, the quality of the air 

breathed by the user in different areas of the city, when he goes from home to work. This 

measurement is made through several Gateway with LoRa technology located at 

strategic points of high pollution in the city. Each Gateway connects to the cloud through 

its own platform and its own LoRaWAN protocol. In the cloud, the LoRaWAN platform 

communicates with AI-Cloud through the MQTT protocol to interconnect the networks. 

 

Figure 69. Second scenario: Worksite connected to ThingsBoard Cloud 

The third scenario seen in Figure 70, uses the ZigBee [98] and LoRa technology [99] to 

collect the information of air quality sensors of the central monitoring system of the 

user's work site, through an open source IoT multiprotocol Gateway called ThingsBoard 

[68]. The data are published and transmitted to the AI-Cloud through the MQTT 

protocol, interconnecting the three IoT-WLAN networks. 

AI

Id: 0x04Id: 0x03

Type: 0x01Type: 0x01

000010111011

111111101111

Id: 0x01 Id: 0x02

000000011110

101010101101

001011110111

111010101101

Type: 0x01

010101010101

111010101101

Type: 0x01

MQTT

Network: IoT-WLAN (Worksite)



Chapter 5. Implementation of the proposed architecture 

 

130 

 

Figure 70. Third scenario: City connected to LoRa Cloud 

5.1.2. Interconnected data network (Integration cloud) 

The main network (SmartHome), is focused on maintaining a suitable environment, free 

of toxic gases, for the user. We propose an algorithm to allow the conversation between 

the machines and to solve by itself a local problem in the network and so make more 

efficient use of the Internet connection. The Artificial Intelligence (AI) system constantly 

measures the levels of Carbon dioxide (CO2) and Volatile Organic Compounds (VOC) 

in the house and if it finds any risk, it solves the problem. For example, the AI system 

inside the house can know the location and vital signs of the user through the watch he 

is wearing, and know if he is asleep or if he has suffered any health alteration according 

to the air quality system reports (Bluetooth 5: Thingy52).  

When an event occurs in which the levels of CO2 increase inside the house, it consults 

on the internet if they are acceptable levels for the user and it is establishing risk 

indicators, if the event is due to a gas leak due to some failure, the system solves the 

problem autonomously and reports the failures to the user or if the event is more serious 

it calls the emergency systems through the Internet, safeguarding the user. 

In the Figure 71, the connection of the Gateway to the intelligent platform in the cloud 

is done through the Internet and constantly monitors what happens in the house. If it is 

realized queries to the cloud, the platform validates the type of request, classifies it and 

decides if it is necessary to connect to other platforms or if the problem can be resolved 

internally through the M2M connections. 

Another risk is the time of daily exposure of toxic gases in other environments that is 

outside the controlled environment of the smart home. When the user leaves the house, 
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it is out of reach of the intelligent assistant of his house and enters other environments 

where there is little air quality information or nothing. 

Some cities already have IoT networks to monitor air quality, but they are very new and 

little known. In addition, they do not have good coverage, but they are still growing, 

which means that in the future we will have more information available about CO2 

concentrations in some sites with higher incidence. Such is the case of LoRa networks 

[99], which currently use SmartHuman sensors (Air Quality Monitor) with LoRaWAN 

protocol [100]. These are connected through Gateways strategically placed throughout 

the city, forming a network of its own.  

Each sensor connects to the nearest Gateway and the Gateway connects to a management 

platform via the Internet. So when the user leaves his house, during the route to his work 

the clock he carries connects to the Internet and to the AI platform of the house that is in 

the cloud. The AI knows the location of the user through the watch and looks to the cloud 

closest to its location, so it can report information about the pollution indexes of the area 

in which it is located. When the user arrives at your workplace, where the user spends 

most of his time on a weekday, he switches to another environment with other pollution 

indices. Depending on the type of work to which the user is dedicated, the type of 

contamination also changes. If it is an office job, the contamination is relatively low, but 

if it works in the industry and if it is dedicated to the manufacture of different types of 

elements, the pollution could be higher and also with different pollutants in the 

environment 
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Figure 71. Interconnected data network (Integration cloud) 

However, this work is aimed at measuring relatively low CO2 values in a work 

environment, with the aim of measuring the levels of exposure of a user at the end of a 

day. Upon returning home, the user and the AI system will know the level of 

contamination to which the user was exposed within 24 hours, during their usual route. 

The clock also takes the vital signs of the user in the same 24 hours and crosses the data 

to send them to a health professional who can interpret the information and diagnose if 

this has influenced in some way to your health. 

5.1.3. AI operation 
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makes an exchange of requests and inquiry through the protocol messages. These 

messages are managed by an AI algorithm in the Gateway, which tags them according 

to its type of parameter and then forwards them to the destination Things inside the 
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forwarded within the same network or outside the network, depending on the type of 

relationship and the type of resolution to a problem. In this way, the Gateway forms a 

group of evidences to verify if there is a clear reason for the requests to be sent out of 

the network. If not enough, the Gateway will decide that the problem can be controlled 

locally. Once the data is sent out of the network, they travel over the MQTT protocol 

making use of another type of message where the information that will be served by the 

IoT platform in the cloud is packaged. Inside the cloud, the AI algorithm is more complex 

and requires more resources to operate. For example, the management of large databases 

(big data) and permissions to give the necessary security to the entire system. 

In the cloud, the IoT platform is divided into sections with an identifier (Id) for each 

connected network, becoming an interface that receives and classifies the information 

according to its types of parameters. Depending on the type of service, it organizes 

horizontally in interfaces to give greater flow to the information and more processing 

capacity to the IA. The data sent from the Things are organized in the platform by the AI 

in groups of parameters common to the IoT networks that are linked to the cloud. In this 

case, the group of parameters to process corresponds to a monitoring system on air 

quality and the service layer could be: Alarms for overexposure to high levels of toxic 

gases, exposure time and geographical location. In this way, the messages issued by the 

Gateway of each network, would add to the package a header with information regarding 

the type of the parameter and the AI would be responsible for deciding which service it 

belongs to and would also add it in the header. The body of the message, would take the 

data processed by each protocol depending on its destination. In this sense, the function 

of the protocol is more relevant when the communication is established between the IoT-

Gateway AI and the IoT platform AI in the cloud. 
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Figure 72. Flowchart of the Gateway and the Cloud 
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The tests were carried out with the objective of establishing the amount of gas 

disseminated in relation to the distance that the sensors could detect. Then, the system 

through AI would decide if with this amount of gas, it was necessary to activate the 

ventilation and closing systems of the gas valves. In this way, the minimum parameters 

were evaluated in case of an event, to keep the user at home in a controlled and safe 

environment for their health. However, all the CO2 values present in the home 

environment (harmful or not), are stored in the database of the cloud platform, with the 

aim of carrying an accumulated data of exposure time versus the quantity of gases to 

which a person could become subject for several years. But, these tests only show data 

taken at very short time intervals during a day. 

5.1.5. Environment sensors 

It is used three Nordic Thingy: 52 boards [101] inside the house, connected via Bluetooth 

5 low-energy wireless technology (BLE 5.0) in a mesh network. Each module contains 

an environmental sensor that can measure temperature, humidity, air pressure and air 

quality (CO2 and VOC). In the streets of the city, a project [102] is being implemented 

with SmartHuman sensors with LoRa technology [103], which can measure VOC, CO2, 

temperature and humidity. It requires connection to a LoRa network, either with its own 

Gateway or a contracted service.  

In different work sites, low-cost alternatives can be used with open source platforms, 

implementing CO2 sensors with Arduino boards [104] and SmartHuman LoRa sensors. 

5.1.6. Testbed 

To test the need to have networks interconnected through the cloud, a pilot test was 

carried out with a Nordic Thingy: 52 board, carrying it through the three environments 

by the daily route of a user (home, city and work site). The experiment was carried out 

without ventilation, to obtain the maximum values of gas saturation. In the smart house 

intentionally blocked the requests for ventilation by saturation of toxic gases in the AI 

system. In the route through the city the vehicle had the windows closed.  

The experiment begins in the smart home from 8:45 a.m. until 5:16 p.m. at the user's 

workplace. During the journey through the streets of the city, the route is made through 

the main avenues of high traffic.  

The first data are collected inside the house in three different areas in the following order: 

main room, living room, laundry room and kitchen (when it is cooking). When leaving 

the house, the sensor records the data inside a vehicle until it reaches the user's 

workplace. 

In the Figure 73 it is observed, the high levels of CO2 inside the house in the kitchen, in 

the city the data show high values of CO2 and VOC in the first main avenue of high 

traffic. In the third part of the route through the streets of the city, it shows average and 

constant values of CO2, when arriving at the destination it decreases the CO2 values 
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similar to those found inside the house when it is cooking. In the Figure 74, is can see 

the exposure time in minutes to CO2 and VOC gases, during the route. For example, for 

values between 2158-2509 ppm of CO2 and 267-321 ppb, there was an approximate time 

of 10 minutes of exposure. These are the highest values of the Figure 74, and its location 

was on a high traffic road in the city. If the user would have been longer, the amount of 

inhaled gases would be even greater. 

According to the world health organization [105] and the world system for measuring 

global warming [106], they indicate that the average values recorded since 2017 in the 

atmosphere of the planet are 400 ppm. The above indicates that, with the data shown, 

this proposal could be of great help to know the amount of toxic gas in which a person 

is exposed on a daily day in their life. 

 
Figure 73. CO2 and VOC values in one day 

 
Figure 74. Time concentration profiles in CO2 and VOC measurements with device Nordic 

Thingy: 52 
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 IoT-WLAN proximity network for Potentiostats 

Potentiostats are devices used to make an electrochemical analysis of different 

substances and determine its composition. Nevertheless, it requires continuous 

monitoring and data collection to control the reference voltage and observe the changes. 

Some of the current systems store the different measurements represented in 

voltammograms that have already been characterized. However, these results cannot be 

compared in real-time with another device measuring along at the same time. Although 

the potentiostats are smaller and more portable, they have appeared recently and are not 

yet networked. Nevertheless, potentiostats are increasingly been used as biosensors, 

though it is still not possible to have several measurements at the same time in different 

locations. Therefore, it is not possible to correlate the distance between them and the 

external factors that may affect the sensor measurements. 

Another problem is that most sensors only send information of its measurements, 

although the potentiostat requires sending and receiving information to adjust its 

operation. That is, some potentiostats developments operate in client-server 

configuration but not in a network, which makes automatic synchronization difficult 

between several clients. Moreover, these configurations do not offer long-distance 

communications with the device that processes the information. 

5.2.1. Proposal 

Taking advantage of IoT technologies and protocols, we propose a wireless local area 

network for potentiostats (IoT-WLAN) that will be monitored through an App. This 

potentiostat network design follows a proposed architecture of the Interconnection of an 

IoT smart network of proximity with centralized management. 

To explain this proposal, we will start presenting the mechanics of the interactions 

between the defined nodes through Figure 75 and explain the architecture on which the 

network was designed. Finally, we will present a mobile application. The network 

measures different substances of an area, identifies them, and reports them to the broker. 

Whenever the system needs to know whether the same substance is present in all the 

areas or its distribution; the sensor takes data more precisely and synchronizes it one by 

one with the other sensors. 
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Figure 75. M2M protocol over Potentiostats Network 

The Broker M(0) can be an IoT-Gateway or a mobile device, depending on the topology 

and network configuration. Nodes M(1, 2, 3, 4) of Figure 75 represent wireless 

transmission modules connected to a sensor (Sn). In Figure 75, the sensors S (0, 1, 2, ..., 

n) are potentiostats (e.g., S0 and S1 concerning its current (I) and voltage (V) 

parameters). In this example, M(1) measures the current of S0, because these values are 

a function of the voltage V(t). This voltage is a reference value that controls the 

measurements through a V(t) ramp function signal. That is, M(1) injects V(t) into S0 to 

obtain the values of (I). 

Through an M2M protocol, a sensor can establish a relation with another sensor to 

synchronize the same measurement on both sensors. If M(1) obtains measurements in 

expected or minimum acceptable ranges with Vx, then it is possible to change the values 

of other sensors making Vx = Vy. This way, if Ix ≠ Iy we can conclude that some 

additional element is interfering or altering the measurement. Therefore, Sn{I, V} will 

be the set of measurements of node M. However, if more parameters are obtained from 

Sn, then Sn{I, V, P, T, H, L}. 

Let Si and Sj be the set of measurements of two nodes so that Si and Sj are the 

measurements of all possible Sn sensor that meets the condition of the precision factor 

(fp). 

Then (r) in Eq. 41 represents the set of all M2M relations established by the Broker in 

an ordered pair (Si, Sj). 

 r(𝑆𝑖 , 𝑆𝑗) ∀𝑖,𝑗 | 𝑖, 𝑗 ≥ 0 ⋀ 𝑖, 𝑗 < 𝑛  ⋀  𝑓𝑝(𝑆𝑛) ≥ 90% Eq. 41 
 

Let M be a set of sensor-nodes and R the set of all relations established by Broker M(0). 

The sensor-node is the union of two disjoint sets between the node in the Things layer 

and the sensor in the Sensors layer. 
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 𝑀(𝑛) = 𝑀(𝑛) + 𝑆𝑛 {𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠} Eq. 42 
 

Then the relation between M(i)-to-M(j) will be shown as in Eq. 43. 

 𝑅(𝑀(𝑖), 𝑀(𝑗)) Eq. 43 
 

This proposal is an application of a network model based on workgroup theory [45]. In 

this case, each Sn is a directed graph that maintains a reference to its parent node M(n), 

according to the graph theory [107] and data structure [108], merging both architecture 

layers into one. 

5.2.2. Implemented this architecture 

This article presents the proposed architecture in [43] and [52], where the IoT network 

is organized in five layers called: Internet, Management, Assistants, Things, and Sensors 

in an ascending hierarchy and tree structure. The network model of this architecture 

allows grouping things based on M2M protocols, at the level of the management layer 

and by groups of parameters in the Internet layer. 

Moreover, this architecture is flexible and was designed to allow interaction with 

artificial intelligence (AI) algorithms. The broker device is the node of the management 

layer that hosts the AI and manages Internet access. 

In this network design, the client nodes M(n) are the transmitting devices in the Things 

layer of the architecture, while the broker node M(0) is in the Management layer. The 

potentiostats (Sn) are located in the Sensors layer, and its parent node, the wireless 

modules M(n) are in the Things layer. In any network configuration, any device can 

assume the role of the broker (a smartphone or a PC or an IoT-Gateway). It is important 

to state that the connection is performed in a star topology and routed through the device 

of layer 3. Therefore, the ideal way to fulfill this condition is to do it on an IoT-Gateway 

device located on layer 3 of this architecture. 

In this case, the supervision and control of the network are done locally. However, it is 

possible to do it from the Internet by adding an IoT platform to the Internet layer. 

5.2.3. Mobile Application (App) 

This application was developed in Android Studio so that it can be installed on an android 

mobile device (smartphone or tablet). The app has two functions. Its main function is to 

monitor the footprints based on voltammograms sent from the sensors to the broker and 

visualize them. Its second function is to act as a backup whenever the broker in layer 3, 

running in the background is not available. Although the M2M protocol passes through 

the broker with the collected data from a client node to another client node, the algorithm 

checks the payload every time it passes through. With this information, the modified 

algorithm of the broker intervenes and decides the most appropriate network sensor. 
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Once selected, it is matched with the source sensor and synchronized with the same 

parameters (Vx=Vy and Ix=Iy).  

The flowchart in Figure 76 shows how the sensors are synchronized to assess whether 

the measurements are the same or not. Each time a sensor finds a measurement that 

corresponds to the previous characterization of some substances or materials, it sends 

the information of its Voltage parameters to the entire network. The broker compares the 

voltammograms of the measurements of each sensor and evaluates its precision 

percentage (fp). If any of these percentages is fp ≥ 90%, it saves the location of the sensor 

and evaluates other variables. This way, the algorithm can establish the distance (d) 

between the nodes and create a map, which could be a contamination map if that was the 

case. 

The algorithms developed for the Broker App or IoT-Gateway (Broker) [45], are based 

on Eq. 41, Eq. 42, and Eq. 43. The algorithm comparing the previously stored typical 

voltammograms with those obtained from the potentiostats has been developed with Eq. 

41. This comparator is shown in the flowchart and evaluates the factor of precision of 

each sensor-node as fp(Sn). The algorithm responsible for collecting the parameters sent 

from each sensor-node was based on Eq. 42. This algorithm reviews the payloads of the 

protocol and identifies its source address. The Broker's pairing algorithm based on Eq. 

43 establishes machine-to-machine relations for sensor pairs to synchronize. Once the 

acceptable fp values of each sensor are established, this algorithm performs 

synchronization by sending the parameters (V and I) to the selected destination sensor. 

The Broker App has a user interface from which the different voltammograms are been, 

monitor. Each voltammogram is built with (V) and (I) parameters using a cyclic 

voltammetry technique [109]. That is, the node applies a ramp voltage signal V(t) 

between two voltage values to the sensor and reads its current (I) answer. Therefore, the 

voltammogram will be the footprint of the substance or material that has been analyzed. 

The sensor-node sends this information through the network on an M2M protocol for the 

App Broker to process it. 
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Figure 76. Flowchart of the App 

The typical substance footprint (TSF) is stored in the cloud and the Broker App or IoT-

Gateway, and the query via the Internet whenever it needs to compare it with the one 

obtained by a sensor. The footprint is also temporarily stored in the internal memory of 

the wireless module (node). 
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demonstrate that the broker algorithm can create new M2M relations so that the sensors 

synchronize with the most precise measurement given by another sensor. Following the 
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of hardware devices used on the implementation. The second one is the design of the 

wireless network on Wi-Fi technology in a star topology and with MQTT protocol. The 

third one is the resulting analysis of the operating network. 

Although the architecture supports any M2M protocol to perform these tests, MQTT was 

selected because of its adaptability and extensive documentation. 

5.2.5. Implementation of the devices 

The development of this proposal involves the use of ESP8266-01 board [110] with a 

Programmable System-on-Chip (PSoC), integrated with a microcontroller and a Wi-Fi 

network module. The transmitter module of the Things layer sends the parameters (V) 

and (I) from the sensor to the broker. These parameters are obtained from the LMP91000 

potentiostat [111] and its 3-Lead Electrochemical Cell. The rest of the parameters (P, T, 

H, L) were added to the test and demonstrated the versatility and scalability of the 

system. The program in the ESP8266-01 microcontroller provides a ramp signal in 

voltage to the potentiostat while recording the currents produced during the reaction. The 

resulting data is sent to the mobile application and is represented by a plot current vs. 

voltage called voltammogram. 

The ADS1115 module is an ADC with four channels of 15-bits + 1-bit of precision. 

Therefore, each port can be used to collect more parameters. The port A0 of the ADC 

measures (I) on the potentiostat and the module MCP4725 12-Bits DAC applies V(t). 

The modules BME280 measure (P, T, H), and the Ultimate GPS Breakout v3 measures 

(L). Figure 77 shows the sensor node circuit and the set of parameters of each module as 

a single sensor. 

 

Figure 77. Sensor-Node circuit (M(1) + S0) 

The Wi-Fi transmission module is the node M(n), and the potentiostat and the other 

measuring circuits are the sensors Sn{I, V, P, T, H, L}. Both sets are a sensor-node. The 

entire circuit is shown in Figure 77 and was performed with the fritzing tool [112]. 

The ESP8266 was programmed to collect all sensor information using the Inter-

Integrated Circuit (I2C) protocol. Then the ESP8266 puts this data on a PUBLISH 
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message of the MQTT-Client protocol and sends it to the network with the Broker's 

destination address. 

5.2.6. Testbed 

The technical implementation of this proposal was possible through the mentioned 

modules. The target was using a low cost, fast and easy implementation to focus the tests 

on the communication system.  

The network design was adapted to this architecture to convert a conventional network 

into an IoT network. The idea with this architecture is to take advantage of the access 

points of a home network and reuse it. Therefore, Figure 78 presents an IoT network 

design using a conventional Wi-Fi Access Point (AP) and a mobile device such as a 

Broker. 

 

Figure 78. IoT-WLAN proximity network design 

For the MQTT-Broker protocol to work on the Mobile App, it was necessary to install 

Mosquitto on the smartphone [113]. The Arduino code of the ESP8266 uses a library 

called <PubSubClient.h> to implement the MQTT-Client protocol. The Arduino code of 

the ESP8266 uses a library called <PubSubClient.h> to implement the MQTT-Client 
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protocol. In both cases, the Broker and the Client are connected to the network through 

the AP with Service Set Identifier (SSID: IoT-WLAN). MQTT is an open-source M2M 

protocol [79], and therefore, it is possible to modify its operation mechanics. This 

advantage allows new proposals by modifying the already developed code that has been 

shared through communities of programmers. 

The tests were performed following the design of Figure 78. Additionally, a personal 

computer (PC) connected by Ethernet cable to the AP was included. On the PC, the 

Wireshark tool was used to capture the sent data from the sensor nodes to the Broker. 

The captured data is used to analyze the Broker's performance after modifying the 

protocol algorithm of its usual operation. That is, the speed of the data may be affected 

by the intervention of the Broker in the processing of MQTT payloads. Therefore, the 

following measures were made: first with standard MQTT packages to have a reference 

and observe the system changes, and then, the MQTT packets were measured with the 

algorithm proposed one-to-one to know how the transmission speed was affected when 

the number of sensor-nodes increased. 

Figure 79 represents a reference information flow of a M2M synchronization. The test 

was performed by initially transmitting a standard MQTT establishment process, 

including TCP sessions of connection initiation and termination (filter: tcp.stream eq 0). 

The transmission was made from the source address 172.30.0.101 with the messages 

Connect, Subscribe, Publish, Unsubscribe, and Disconnect with destination 

172.30.0.102. Where the Connect Message is IP-Broker: 172.30.0.100, the Subscribe 

Message is Topic:/S1, and Publish Message is Topic:/S1, Payload: V, I. Figure 79 shows 

the number of packets per second TCP between a M2M synchronization after the broker 

pairs it. The filter used in the test to capture the packets was as follows: (ip.addr eq 

172.30.0.101 and ip.addr eq 172.30.0.102) and (tcp.port eq 52620 and tcp.port eq 1883). 

The maximum peak value was 83 Bytes, while the minimum value was 54 Bytes, which 

belongs to an Unsubscribe Message. The average number of Bytes transferred was 63 

Bytes. 

In Figure 80, the broker intervention process is more evident. The values sent of V and 

I are longer data strings. This Figure shows the relation between the numbers of packets 

transmitted per second. The average duration of each packet sent through the network 

was 77s. 

In Figure 81, the maximum values are peaks of 1392 Bytes, while the minimum values 

were 42 Bytes and the average values were 266 Bytes. 
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Figure 79. Machine-to-Machine synchronization M(S0)-M(S1) 

 

Figure 80. Datastream M(S0)-M(S1) with values payload of V and I 

 

Figure 81. Pair M(S0)-M(S1) 
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 Conclusion  

The data collected during this route, showed that this type of connection architectures in 

the cloud is necessary to maintain an updated information system with accurate data. By 

having a platform with intelligent management and a mobile application in a smart 

watch, one could cross the information of the user's vital signs at the same moment of 

time and location with the data of environmental contamination to which a person is 

exposed. 

The importance of having installed air quality IoT networks constantly monitoring the 

contamination of different environments, allow to have more stable and reliable values. 

Although the tests performed were made with a sensor in motion, these data allow us to 

see the need to monitor these environmental variables and extend this initiative in all 

cities with pollution problems. 

The integration of different technologies, protocols and architectures through a 

centralized management in a Gateway on a level of the Platforms in the cloud, a complex 

of tools to manage, due to the large amount of information that all things, for What is 

evident is the use of decision methods through artificial intelligence (AI) algorithms. 

Most things are programmable and have the ability to connect to the Internet, which 

means the possibility of integrating intelligent artificial intelligence systems that make 

users, this facilitates communication between things, Gateway and Platform are even 

more efficient, because they would all be controlled by the AI. The AI can use the main 

Internet connection channel, if it first evaluates and decides that Things (M2M) can solve 

a problem locally. 

Currently, there are some experimental implementations of potentiostats on small boards 

that are very efficient in comparison to the traditional desktop stations used in 

laboratories. However, its connectivity is limited to the monitoring of information. With 

this contribution, the possibility of using the IoT concept to configure proximity wireless 

networks and transmit its information in a collaborative environment is feasible. 

The architecture on which the network was designed allows flexibility in adapting 

existing networks to the IoT. Therefore, it can be used in any application such as the 

electrochemical measurement and analysis system (potentiostats) of this work. 

The algorithms of the App Broker, built from the deduced equations from the 

architecture, improve the information processing. As a result, the tests showed that the 

MQTT packages are not affected in its speed due to the intervention of the Broker in the 

payloads. 

In the network tests a conventional Wi-Fi AP was used and, although outdoor distance 

reaches an approximate coverage of 100 to 150 meters, it is possible to use GPS as an 

optional parameter (L). There are many applications and where this solution may be 

necessary such as, for example, whenever the coverage is extended with repeaters or a 

low-power wide-area network (LPWAN) is used. 
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We expect to do the same experiment with more client sessions (at least 10 to 15 clients) 

to see the performance. In the same way, we would like to try other M2M protocols such 

as CoAP and HTTP Restful. Moreover, it would be interesting to implement the Broker 

on an ESP8266 or replace the AP with an IoT-Gateway (Broker) based on a single-board 

computer (SBC) such as the Raspberry Pi 3 Model B + (RPi3). 

In future works, we will perform more tests that measure the bandwidth based on the 

size of the parameters, including not only transmitted parameters such as (V, I), but also 

the rest of parameters (P, T, H, L).
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Chapter 6.                       

Tests on real 

implementations 

 Introduction 

This chapter will see two ways to obtain the data: the first, through Cisco Packet Tracer 

using an external connection to the cloud, and the second on real devices. In both cases, 

Wireshark was used to capture the packets of the MQTT and REST protocols. As 

explained in previous chapters, achieving a complete scenario in real life is very difficult 

because there is no interoperability between different manufacturers, nor are they 

reprogrammable. Therefore, it was necessary to acquire several appliances with these 

characteristics to operate under the proposed architecture to carry out these tests, but it 

was not possible for the above reasons. However, experimental prototypes with SBC 

devices (RPi3 in household appliances and RPi4 in IoT-Gateway) and MCU (ESP8266 

in sensors and actuators and some electrical and security objects) were implemented. In 

addition, to complete the entire implementation scenario, it was necessary to support 

some tests using the simulator in mixed configuration with external connection and 

complement the tests together with the real devices. From the simulator, the deployment 

of the service was for monitoring using ThingSpeak Cloud. Likewise, the data extracted 

from the objects were stored in the IoT-Gateway using MySQL Workbench with a JDBC 

connection between the Python application and the relational SQL tables. Then this same 

service was deployed in the cloud using Oracle Cloud; however, although they were 

deployed in different clouds, one for monitoring and the other for storage, both were 

connected to the same application. We will see both implementations separately below. 
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 IoT-HOME App 

It is a desktop application developed for Cisco Packet Tracer (PT) in Python and 

Javascript and divided into several stages. However, to create a design based on this 

architecture, the concepts of IoT-Gateway, IoT-Protocols, IoT-Thing, IoT-Network were 

defined first, as shown in Figure 82. 

 

Figure 82. Design parameters of an IoT-Network on IoT-Smart Architecture using PT 

6.2.1. M2M relation between sensor-actuator based on MQTT payload 

Initially, separate tests are performed based on each architecture; in the case of Figure 

83, a Fog Computing architecture with MQTT protocol is presented. This simple system 

seeks to initially test the connection and the sending of data through the protocol. The 

exercise results are simple but allow an M2M relationship between a sensor and an 

actuator, each of which will subsequently belong to layers 1 and 2 of this architecture. 

In this scenario, data is sent to the IoT-Gateway, which previously contains a table of the 

objects subscribed to the network. With this information, the Broker hosted in the IoT-

Gateway routes the MQTT packets to the destination object using a “topic”. In the case 

of the test simulation in Figure 83, the actuator (led) turns on when it receives a 

temperature greater than 22 degrees Celsius from the temperature sensor measurements. 

In the second scenario in the same figure, the same principle is used to turn on a lamp if 

the motion sensor detects movement. In both cases, it uses the same principle and can be 

used for any other implementation of the rule-based sensor-actuator type. 
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Figure 83. Examples of MQTT data transport between sensor and actuator 

6.2.2. M2M relation between sensor-actuator using JSON into MQTT 

The architecture shown in the previous Figure 82 presents an M2M connection in Fog 

Computing architecture. This configuration can be applied to any object in the network 

regardless of the classification assigned by the AI. Therefore, in the initial tests for data 

extraction, it is not necessary to specify the layer, level and workgroup. Each object 

connected to the network through the IoT-Gateway has been made using WiFi 

technology. On this technology, the TCP transport protocol is used over IP addresses, 

and on this, the data is sent using the MQTT protocol. Once communication is 

established, each object sends the IoT-Gateway information about its technical 

specifications segmented into Resources, Capabilities, Functions and Services. Initially, 

an object by factory configuration only contains technical specifications, which then is 

structured by an internal algorithm (AI of the object) that sends them using the DFSP 

protocol developed in this proposal. In other words, the complete transmission in the 

system is of the form DFSP / MQTT / TCP / IP / WiFi. As already explained in previous 

sessions, the data is transmitted using a JSON structure through DFSP messages within 

the MQTT payload. That is, with the following syntax everything is encapsulated within 

the payload, [Json {"TypeMessage": message, "data": data}]. The following Figure 84 

shows an example of a DSFP login or initialization message. 
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Figure 84. Example of a DFSP initialization message 

Figure 85 shows the network design using PT to extract data from the objects in two 

ways. The first one extracts data from each sensor and publishes it to the ThingSpeak 

Cloud. The second uses a single card to collect the data extracted from the sensors and 

turn it into a single object called a subsystem. In this configuration, based on the 

proposed architecture, a standalone system is maintained each board is in separate layers, 

layer 1 (sensors) and layer 2 (mainboard), respectively, but working together. In this 

way, it is observed that with sensors separate the data arrive at different times to the 

cloud, while in the second part, the data is collected by layer 2 (mainboard) and sent in 

a single JSON at the same time. In addition, under this configuration, the layer 2 board 

can have more processing capacity, allowing hosting an AI for data pre-processing. 

 

Figure 85. Monitoring data using JSON and published with RESTful on ThingSpeak Cloud 
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Figure 86. Example of structured data on JSON extracted from each connected object 
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Figure 87. IoT-Gateway AI response 

Once the process of discovering or announcing the features of the new object in the 

network reaches the Gateway, the AI classifies it and sends a response message, see 

Figure 87. The following DFSP messages will be sent with the information obtained in 

the response message as part of the topic into the publish message. The topic will contain 

the workgroup, the layer, the level of processing, and the name of the object. It will only 

update the information required by the AI using specific DFSP messages such as 

capabilities, resources, services, and functions within the payload. The following 

example reflects the syntax, publish (topic, payload) like, publish (w1 / layer1 / level0 / 

name, capabilitiesMessage). 

 Real devices 

This session shows some devices based on the architecture explained in the PT 

simulation of Figure 83. In this case, the sensors are implemented on the ESP8266 

devices in Fog Computing architecture using the local router connected to the RPi3 as 

MQTT Broker. The transmitted data corresponding to the temperature and humidity 

values using a JSON structure on the MQTT payload. The test consists of capturing with 

Wireshark the data that is transmitted between two objects. Each object initially sends a 

JSON structure with the object information in the order previously requested by the AI 

of the IoT-Gateway. This information is organized as shown in Figure 84  and displayed 

as shown in Figure 86. After this, updates are sent every time there is a temperature 

change. An RPi connected to a router is used in this architecture, and this set represents 

an IoT-Gateway. The RPi provides the MQTT broker, in this case, Mosquitto, and the 

router provides the routing in the network. The publications that arrive from each object 

in the network can be viewed and monitored in the Mosquitto Broker. Figure 88 hows 

the initial transmission with the topic and the JSON payload that contains the object's 

information. This information is organized according to the DFSP protocol messages 

using JSON. This information is organized according to the DFSP protocol messages 

using JSON. The instruction used to view the publication on the network is: C:\Program 

Files\Mosquitto>mosquitto_sub -h 192.168.10.39 -v -t # -u MQTT -P MQTT. 

Figure 88 shows that sometimes no data is transmitted, posting the message "no data", 

this means that there was some problem in the network, and the algorithm retransmits it. 

Every time this happens, TCP connection re-establishment packets are resent, and this 

causes additional delay and packet loss in that event. However, in the re-establishment 
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process, packet snatching also occurs due to the addition of the TCP packets. They are 

two devices whose topic is sensor-actuator (s1_a1) and the other (s2_a2), which means 

that one device assumes both roles. 

Figure 88. Captures M2M communication using JSON shows the M2M connection 

between these devices, sending a DFSP message announcing their characteristics to the 

IoT Gateway. Then, under this topic, only updates the data that corresponds to each 

sensor. 

 

Figure 88. Captures M2M communication using JSON 

All tests are based on measuring with the same devices in different scenarios and under 

different conditions. The final result is the one shown in the previous Figure. 

In the first scenario, the data is sent independently without JSON to an IoT-Gateway 

shared with network traffic. 

The captures of this scenario are observed in Figure 89 
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Figure 89. Wireshark capture of data without JSON structure 

From the above screenshot, Figure 90 shows the number of packets needed to transmit 

the publish message that contains the device data. From the graph it can be seen that a 

constant number of packets are maintained except for those necessary when the TCP 

connection fails and restarts transmission, which vary between 3 and 9 packets in a local 

network connection. 

 

Figure 90. Number of packets transmitted in M2M connection without JSON 

Figure 91 shows the Round Trip Time (RTT) of the first 250 seconds of sampling with 

a maximum of 250 milliseconds (ms) and an average of 130 ms, which is considered 

very high for a local network. 
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Figure 91. RTT of the M2M connection within the local network witout JSON 

Figure 92 shows the capture of the data transmitted between the two devices using JSON 

in the data structure. The same topic is maintained with the difference that the sensors' 

measurements, in this case, Temperature and humidity, are sent simultaneously in a 

single message. 

 

Figure 92. Wireshark capture using JSON 
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Figure 93 shows the number of packages used in each publishes using a JSON data 

structure. It is observed that each publishes sent every 5 seconds with only one (1) packet 

constantly. Every 50 seconds, the system retransmits to maintain a more stable 

connection at the TCP level. This retransmission requires two (2) packets and can be 

seen in the figure with a time interval of 50 seconds. In the 800-second time sample 

performed in the test, they remain error-free until time interval 589. There, a TCP 

connection error is observed while the algorithm performs the reconnection. In this figure 

compared to Figure 90, good transmission stability is observed and with fewer errors. 

 

Figure 93. Number of packets transmitted in M2M connection using JSON 

Figure 94 shows the RTT of the M2M connection of the two devices within the same 

local network or Fog Computing architecture. The figure shows that the test was taken 

with a duration of 800 seconds. The maximum duration of the RTT was 0.063ms, the 

lowest was 0.01ms, and the average was 0.0365ms. It indicates that the reduction in time 

concerning that observed in Figure 91 was quite significant. 

 

 

Figure 94. RTT of the M2M connection within the local network using JSON 
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A similar test is performed with the same JSON packaging algorithm but connected to 

the Thingspeak Cloud. The test is carried out with the same network conditions as the 

previous one. Figure 95 shows the Wireshark captures of the connection of the devices 

to the Thingspeak cloud. 

 

Figure 95. Connection to Thingspeak cloud 

The screenshot in the previous figure shows the data sent from a single device with a 

length between 56 and 84 Bytes per packet. This data is only monitored from the cloud 

and displayed in behaviour graphs. These messages are only published as they are used 

for display. In 5 seconds, three publish messages are sent, a ping request and a ping 

response are obtained. The test is repeated with a topic and a longer payload since it 

connects to an MQTT broker in the cloud. Figure 96 shows the packages needed to 

connect to the broker in the cloud. Among these are: Connect command, Connect Ack, 

Subscribe Request, Subscribe Response, and then three publish messages followed by a 

ping request and a ping response. All in an average of 5 seconds, and then they are 

repeated successively to publish new data.  
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Figure 96. Connection with MQTT Broker in the Thingspeak cloud 

In Figure 96, it can see that the packets are larger than the previous one; each publishes 

kept at a constant value of 148 Bytes in each publication. Figure 97 shows the behaviour 

of the packets in a test interval of approximately 800 s.  

 

Figure 97. Number of packets transmitted to the Thingspeak cloud 

The figure above maintains an average of 1 packet for the broadcast of the publish 

message, initially, with reconnections every 5 s. In a 50 s sample range, 10 publish 
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messages are sent 5 s apart. This interval is repeated throughout the transmission, with 

drops of the TCP connection, increasing the packets’ size from 1 minimum packet to 8 

maximum packets. In some of these transmission errors, communication is re-established 

by sending all the 7 MQTT messages between requests and responses again. This makes 

these ridges appear high in the figure. 

Figure 97 shows the RTT of the data going from the local network through the IoT-

Gateway and then arriving at the new Thingspeak. 

 

 

Figure 98. RTT with the Thingspeak cloud 

The RTT times of a local connection for IoT devices seen in Figure 94 have an average 

of 0.0365ms; even when there is a disconnection, the peak reaches a maximum value of 

0.063ms. Compared to this figure, the average value is approximately 150ms, which is 

still too high to maintain an M2M connection through the cloud. 

Figure 99 shows M2M data capture between MQTT virtual clients such as MQTT 

Explore and MQTT Len. These devices can test send data and JSON structures in a 

development environment before deploying it on the devices. 
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Figure 99. Wireshark capture using JSON and MQTT Explore and MQTT Lens virtual clients 

 Conclusion 

The time results obtained in the data transmission tests between objects in a local 

network compared to the same objects, but connected through the cloud, evidenced a 

high delay when controlling an IoT device using the cloud. These results support the use 

of IoT networks locally and proposing a different use of the cloud, such as consultations 

with other clouds and storage of large volumes of information and its processing, 

consulted asynchronously. This allows a high degree of fault tolerance since objects can 

be controlled locally without the internet. In this way, it can continue to take advantage 

of cloud resources through asynchronous connections only when the local or main 

network requires it. 
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Chapter 7.                       

Conclusion and future 

lines of research 

 Introduction  

This thesis has largely been done with simulations because there are still no smart IoT-

Networks interconnected through the cloud in different environments. Although in a real 

situation, a user acquires a Thing with AI included and connects it to his usual network 

in his home or office, these networks could not intercommunicate things locally because 

their system is simple and designed for traditional devices and not for things with AI. 

The only way to get a minimum profit is for the device to send the information to a cloud 

platform so that this is the one who manages all its requests. Hence the need for this 

architecture, which manages all information and internet access locally through a 

Gateway and externally through AI in the cloud. However, the results of the tests showed 

how smart things would perform on an intelligent architecture designed for this type of 

scenario. There are conclusions presented at the end of each section in which the models 

(Chapter 3) and the testbed of each experiment (Chapter 4) using these models are 

shown. Therefore, the global conclusions of this thesis are presented below with an 

overview of their contribution and advantages when implementing them in real 

situations. 

 Conclusion and contributions 

By centralizing the data in the programmable IoT-Gateway, which replaces the Fog or 

Network layer with a single device or leader, it is ensured that each object reports its data 

in a structured way to the same point in the network. Therefore, the data extracted from 
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the objects (features) are combined with the network parameters facilitating their 

treatment. In this way, a single dataset is created, which the Gateway’s AI uses for 

grouping and routing and, in turn, in managing internet access and its relations with the 

cloud’s AI (Level 3). 

By separating the IoT layer into three layers maintaining the functionalities of each 

object as a stand-alone system, it makes it easier for the Gateway’s AI (Level 2) to more 

accurately group objects. In addition, it allows better identification, and thus it can create 

M2M routing between objects in the same group based on their resources as evidenced 

by the tests. In the same way, by maintaining its functions stand-alone, the object’s AI 

(Level 1) can do deep learning and reinforcement learning on the habits of use of its 

users, estimate a profile, preferences and most used resources and even predict when and 

how it will be used. 

In the cloud, the architecture shows an integration between different clouds based on the 

type of parameter and the service it provides to its main local network. This extension of 

the IoT proximity networks through the cloud constitutes an advantage over other types 

of conventional networks since the Cloud's AI learns which clouds process information 

based on the types of parameters it requests and puts it at the user's service in any location 

in the world. Through the implemented applications shown in section 5.1.2, it is possible 

to observe the coverage and scope of the network through the internet at any user 

location. 

Currently, users do not have access to their data or their objects connected to the internet. 

These are managed directly by the manufacturers of the objects that the user buys and 

connects to the internet through the mobile application they provide for their control and 

monitoring. It means that a user delivers his data through the objects that he buys from 

the manufacturers, without the possibility in most cases to manage his data. According 

to them, this is done to improve and make new versions of Apps available to users to 

provide a better service. But in reality, it is only possible to create rules that automate 

some tasks and unify several manufacturers' brands through alliances on a single 

platform to make them compatible. For now, there is no cloud computing architecture 

service that does it through an AI, as proposed in this thesis. That is that the management 

and automation are completely limited to the manufacturers' rules available in the Apps. 

In addition to delays, many devices cannot be controlled locally if there is no internet 

connection. Not being enough, these manufacturers continue to keep the data extracted 

from users for other purposes such as marketing analysis and user consumption 

preferences. Data that are not used to intelligently improve the interaction between 

objects and thus revolutionize the operation of IoT-Networks, but is used for commercial 

benefits. This thesis shows that when using this architecture, the data stays in the local 

network and is only shared with the cloud within the same network domain. In this way, 

data management is intelligent, and AI can structure its data set adjusted to the profile of 

its user and the services it must provide. In this case, manufacturers should ask 

permission to use this data and even buy it. In this order of ideas, each network would 
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be adjusted to each user, and although they are based on the same architecture, the data 

set may be structured differently depending on the analysis of each AI. 

There is no source of datasets available on the internet under these scenarios to do 

research, nor on real networks since they do not exist. Therefore, the data used was 

extracted from the objects using simulations or some real implementations. With this 

data, it was possible to show how an AI hosted in a Gateway can be trained to create a 

dataset structure that is then shared through the AI interface using the three levels of 

processing. This communication and mutual agreement between these AIs solve 

preprocessing, connection management, and network scope and coverage problems. 

Today's IoT-Networks are based on events, rules and permissions that require constant 

monitoring by the user. The contribution of this thesis will allow the machines to work 

collaboratively, intelligently and without supervision. This, in addition to its ease of 

installation through architecture, also allows the response times of systems that are 

grouped together to provide faster service to the user. Therefore, a user does not have to 

waste time connecting through an application or an assistant to activate one Thing in 

different environments (home, city, or work). Each Thing is automatically connected in 

anticipation of the service before the user requests it. This reduces the time to establish 

the connection since the integration of the architectures allows the resolution and 

attention of service to be made from where the data originates (Edge) or from where it 

is managed (Fog) or from where it is processed (Cloud) using a single architecture. 

Although throughout the thesis there has been talked of IoT-Networks, the truth is that 

the IoT as it is currently known and as it is being commercialized is still far from 

becoming IoT-Networks, since they could not be called IoT-Networks since they do not 

have an integrated system of shared resources, segmentation and own routing. The 

traditional conventions based on IP computer networks are still used. However, through 

its architecture and taking advantage of AI, this thesis presents new alternatives to share 

resources, changing the conventional segmentation by clustering (creating collaborative 

workgroups) and the conventional IP routing by routing based on the best node. 

 Future lines of research 

ML, PL, RL algorithms have been little applied to data extracted from objects in the IoT. 

Few the datasets can be obtained from a real IoT-Network that contains the features of 

the objects, events, and parameters of the network to apply these models. However, 

through this thesis, it was demonstrated that it has a dataset of different connected objects 

is possible to use different AI models on the proposed architecture and obtain IoT 

networks with new features and functionalities according to smart things. Therefore, it 

is possible to extend the study carried out in this research in multiple directions. In the 

following, we describe some proposals that may be interesting for further research in 

terms of interoperability and the use of AI. 

▪ Extend the architecture functionalities: 
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The implementations of this IoT-SmartArchitecture require a smart IoT-Gateway, where 

the network administration is centralized, and a Smart IoT-Platform in the cloud where 

the network is extended through the interconnection with other clouds. Therefore, 

continuing with the development and implementation of different AI models at these 

points where the information is centralized would expand the functionalities of the 

architecture that integrates smart things. 

It has been seen that with the increase of WiFi and BLE modules in sensors and everyday 

objects complemented with wired networks (Ethernet), they allow IoT-Gateway to be 

easier to implement through SBCs. With these two technologies, a complete IoT-

Network can be built. However, some sensors and objects remain using short-range 

(ZigBee, 6LoWPAN) and long-range (LoRA) wireless networks. Some IoT-Gateway 

could be implemented and gather a complete dataset with features of this type of object 

and network parameters of these connections. Thus, it could be observed with more 

information how the AI would classify these objects within workgroups and how it 

would route them. 

 Faced problems 

The main difficulties presented during the realization of this thesis were the simulation 

and implementation of the IoT network scenarios. It is because simulators are still in the 

development stage and are used for teaching some IoT technologies, so using them to 

test data transmission and see how the network behaved was very difficult. It had to 

complement it with real tests on real devices since, in the simulation, It could only see 

the behaviour of the data transmission and the protocol, and with the real devices, the 

behaviour at the network level. The architecture proposed in this thesis seeks to classify 

the objects of the IoT layer (according to other architectures) in different layers through 

their characteristics. Among them, separating this layer is carried out based on its 

functions, maintaining its layer independence but collaborating as a group to provide a 

service. So achieving a scenario of using the things layer in the tests was a great challenge 

since there are still no smart or reprogrammable things in the current market. We had to 

use an RPi3 to emulate the operation of smart things, such as appliances. These were 

easier to implement through a smart home setting, as it uses WiFi and Bluetooth 

technology and is more affordable to test in a local environment. In this way, tests can 

be done at home and not necessarily in a laboratory.  

The dataset of an IoT network under certain architectures is not easy to obtain, nor is it 

available in the current literature sources, so it was necessary to build it from multiple 

tests under the organizational policies of the proposed architecture. It involved a great 

effort since to achieve these tests, it was necessary to coordinate between simulated and 

implemented in real devices. As projected at the beginning of the thesis, these scenarios 

do not yet exist in homes or industries; there are only some commercial approaches to 

what the IoT is thought to be from a commercial point of view. 
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 Personal contributions 

From the thesis, I learned how to propose better design schemes for IoT networks from 

everyday life. Most people do not distinguish the engineering concepts embedded in the 

systems because they are manipulated by commercial advertising that seeks to sell. 

However, from these business schemes and current academic proposals, I could discern 

differences and potential changes that would help improve the next generations of IoT 

networks. I learned to take advantage of simulators that are seen only as teaching, and I 

was able to simulate systems in scenarios that do not yet exist. In addition, real devices 

were implemented with operations different from those commercially conceived, 

changing their logic and accommodating it to the proposed architecture.   

The appearance of the Smart IoT-Networks, together with the massification of objects 

with AI included (Smart Things), implies a greater challenge than required by a 

conventional data network. Many IoT objects are activated by the user in these networks 

through commands, either with the mobile phone or an intelligent assistant. On the other 

hand, in Smart IoT-Networks, the objects can be autonomous and create their relations. 

However, no one knows yet how they will behave, since there are not yet a significant 

number of objects working together to achieve a common goal. There is very little 

information about these types of networks and how they will work in the future. 

Therefore, it is possible to suppose different scenarios in different ways to propose its 

possible operation. Considering the above, it opens opportunities to propose different 

architectures that support the transport of information that an AI requires and solves 

interoperability between heterogeneous objects. 

The main goal is to use the proposed IoT-SmartArchitecture architecture as the basis for 

the future design of Smart Networks. However, there are no real Smart Network 

scenarios that provide a suitable ecosystem for smart objects. For this reason, it is 

proposed a possible Smart Network scenario on this architecture, assuming that smart 

objects will work collectively to provide automatic services to users. Therefore, this 

paper focuses on the algorithm for creating workgroups (grouping) in a Smart IoT-

Network and its routing. In which the Architecture’s AI uses an ML classifier with a 

dataset based on the features extracted from different objects. With this information, the 

classifier assigns a workgroup to a “new object” connecting to the network’s first time. 

In addition to this, it classifies it and assigns it a role in one layer of the proposed 

architecture. Although IoT can be a much broader vision that implies a global 

infrastructure in all aspects, we will only study the cases present in proximity networks. 

Therefore, the test scenario is a Smart Home based on wireless technologies due to its 

ease of simulation. 

Currently, conventional networks can include everyday objects with the ability to 

connect. However, if the object includes AI, this type of network can limit its potential. 

This paper shows what a Smart Home would look like in the future and recreates possible 

scenarios where objects are related to serving users. The above is necessary since the 

proposed architecture is designed to organize objects that include AI. Therefore, without 



Chapter 7. Conclusion and future lines of research 

 

167 

scenarios based on an AI’s control, it would not be possible to test this architecture. In 

turn, the obtained algorithms can be used in similar applications like Industrial Internet 

of Things (IIoT) environments, among others. Furthermore, this work shows the 

Discovery of Functions and Services  rotocol (DFS ) protocol’s use over an IoT-

Protocol and implementing new messages that facilitate AI work on the architecture. It 

also presents the accuracy of different AI techniques to classify objects in workgroups, 

which will help determine which the most adequate to apply in Smart IoT-Networks. 

Finally, it is shown the importance of replacing the conventional router with one more 

specialized and higher capacity that keeps the network’s centrality. 
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