

Escuela Técnica Superior de Ingeniería de Telecomunicación

Universitat Politècnica de València

Edificio 4D. Camino de Vera, s/n, 46022 Valencia

Tel. +34 96 387 71 90, ext. 77190

www.etsit.upv.es

DESPLIEGUE DE RED LPWAN EN ENTORNO INDUSTRIAL CON

MOVILIDAD

Ricardo Hernández Álvarez

Tutor: Sempere Paya, Víctor Miguel

Trabajo Fin de Grado presentado en la Escuela Técnica

Superior de Ingeniería de Telecomunicación de la

Universitat Politècnica de València, para la obtención del

Título de Graduado en Ingeniería de Tecnologías y

Servicios de Telecomunicación

Curso 2021-22

Valencia, 13 de marzo de 2022

http://www.etsit.upv.es/

Abstract

The technology that started massively connecting people decades ago has been developed to begin

connecting devices as well. The resulting global connectivity network is called the Internet of Things. It

has useful applications in every sector and is set to lead the fourth industrial revolution. Efficiency through

data gathering is the goal of an ever-increasing number of devices. Energy efficiency is key to make this

network scalable without skyrocketing electrical consumption. Covering big spaces with as few hardware

resources as possible also helps at reducing costs. This is exactly where Low-Power Wide-Area Networks

come into play.

The aim of this project is to create a tool that allows the fast and easy deployment of a LPWAN network

in an industrial environment in a mobility context. The author has selected the LPWAN technology that

best fits the project (LoRaWAN) and a solution based on it, ChirpStack. A functional web application has

been developed as an ideal candidate to be the tool that allows LPWAN mobility deployments.

Further cost efficiency is unlocked by the developed web application, which saves the user multiple

tedious configuration steps before activating a new end-device. This tool also achieves further abstraction

from the technology that is being implementing, making it accessible to an even greater market.

An analysis of the results obtained highlights the success in achieving both secondary goals, a reduction

in end-device activation time and an abstraction of the telecommunications technology, apart from being a

mobility tool for industrial deployment of LPWAN networks.

Keywords: LoRa, LoRaWAN, ChirpStack, end-device, API.

Resumen

La tecnología que comenzó a conectar masivamente a las personas hace décadas se ha desarrollado para

conectar dispositivos también. La red de conectividad global resultante se denomina el internet de las cosas.

Tiene aplicaciones útiles en todos los sectores de la economía y está preparado para liderar la cuarta

revolución industrial, que busca la eficiencia a través de la recopilación de datos. Para lograrlo se necesita

un número cada vez mayor de dispositivos, que deben ser eficientes energéticamente para permitir que estas

redes sean viables tanto económica como ambientalmente. Cubrir grandes espacios con la menor cantidad

posible de recursos de hardware también ayuda a reducir los costes de despliegue, y aquí es exactamente

donde entran en juego las redes LPWAN (Low-Power Wide-Area Network).

El objetivo de este proyecto es crear una herramienta que permita el despliegue rápido y sencillo de una red

LPWAN en un entorno industrial en un contexto de movilidad. El autor ha seleccionado la tecnología

LPWAN que mejor se adapta al proyecto (LoRaWAN) y una solución basada en ella, ChirpStack. Se ha

desarrollado una aplicación web funcional como candidata ideal para ser la herramienta que permita

despliegues de movilidad LPWAN.

El uso de la aplicación web desarrollada conlleva además una mayor eficiencia de costes, ya que ahorra al

usuario múltiples pasos de configuración tediosos antes de activar un nuevo nodo. Esta herramienta también

logra una mayor abstracción de la tecnología de comunicaciones que se está implementando, haciéndola

accesible a un mercado aún mayor.

Un análisis de los resultados obtenidos destaca el éxito en la consecución de dos objetivos secundarios, la

reducción del tiempo de activación del dispositivo final y la abstracción de la tecnología adyacente, además

de ser una herramienta de movilidad válida para el despliegue industrial de redes LPWAN.

Palabras clave: LoRa, LoRaWAN, ChirpStack, nodo, API.

Resum

La tecnologia que va començar a connectar persones massivament fa dècades s'ha desenvolupat per

començar a connectar dispositius també. La xarxa de connectivitat global resultant s'anomena Internet de

les coses. Té aplicacions útils en tots els sectors i està preparat per liderar la quarta revolució industrial.

L'eficiència mitjançant la recollida de dades és l'objectiu d'un nombre cada cop més gran de dispositius.

L'eficiència energètica és clau per fer escalable aquesta xarxa sense augmentar el consum elèctric. Cobrir

grans espais amb el mínim de recursos de maquinari possible també ajuda a reduir costos. Aquí és

exactament on entren en joc les xarxes d'àrea àmplia de baixa potència.

L'objectiu d'aquest projecte és crear una eina que permeti el desplegament ràpid i senzill d'una xarxa

LPWAN en un entorn industrial en un context de mobilitat. L'autor ha seleccionat la tecnologia LPWAN

que millor s'adapta al projecte (LoRa) i una solució basada en ella, ChirpStack. S'ha desenvolupat una

aplicació web funcional com a candidat ideal per ser l'eina que permeti els desplegaments de mobilitat

LPWAN.

L'aplicació web desenvolupada permet una major rendibilitat econòmica, que estalvia a l'usuari diversos

passos de configuració tediosos abans d'activar un nou dispositiu final. Aquesta eina també aconsegueix

una major abstracció de la tecnologia que s'està implementant, fent-la accessible a un mercat encara més

gran.

L'anàlisi dels resultats obtinguts destaca l'èxit en la consecució dels dos objectius secundaris, una reducció

del temps d'activació del dispositiu final i una abstracció de la tecnologia de telecomunicacions, a més de

ser una eina de mobilitat per al desplegament industrial de xarxes LPWAN.

Paraules clau: LoRa, LoRaWAN, ChirpStack, nodo, API.

Contents

INTRODUCTION 1

1.1 MOTIVATION 1

1.2 SUMMARY OF THE METHODOLOGY FOLLOWED 2

1.3 STRUCTURE OF THE THESIS 3

1.4 OBJECTIVES 4

1.5 SATE-OF-THE-ART REVIEW 5

TECHNOLOGICAL FRAMEWORK 6

2.1 LPWAN TECHNOLOGY SELECTION 6

2.1.1 SigFox 6

2.1.2 RPMA (Ingenu) 7

2.1.3 LoRaWAN 8

2.1.4 DASH7 9

2.1.5 Conclusion 10

2.2 LORAWAN 10

2.2.1 LoRaWAN network topology 11

2.2.2 Activation of an end device in LoRaWAN 13

2.3 LORAWAN TECHNOLOGY SELECTION 17

2.4 WEB DEVELOPMENT CONCEPTS 18

METHODOLOGY 22

3.1 UNDERSTANDING THE NETWORK 23

3.1.1 Test suit and development platform 24

3.2 UNDERSTANDING THE TASK - REVERSE ENGINEERING 27

3.3 WEB APPLICATION DESIGN 35

3.3.1 The home view 42

3.3.2 The scan view 44

3.3.3 The connect view 45

RESULTS 53

4.1 USER INTERFACE 53

4.2 TIME SAVING WITH NODESAPP 57

4.3 TESTING NODESAPP 59

CONCLUSIONS AND FUTURE WORK 61

BIBLIOGRAPHY 63

ANNEXES 64

List of figures

FIGURE 1 - REPRESENTATION OF THE LORAWAN ARCHITECTURE .. 9

FIGURE 2 - LORAWAN NETWORK TOPOLOGY .. 11

FIGURE 3 - PRE-PROVISIONED KEYS FOR LORAWAN 1.0.X ACTIVATION BY PERSONALIZATION 14

FIGURE 4 - OVER-THE-AIR ACTIVATION OF LORAWAN NODES, MESSAGE FLOW BETWEEN END-DEVICE, NETWORK

SERVER AND APPLICATION SERVER. ... 15

FIGURE 5 – LORAWAN NETWORK ARCHITECTURE USED IN THIS THESIS ... 23

FIGURE 6 - ORGANIZATION OF CODE IN NODESAPP ... 37

FIGURE 7 - SCHEMATIC OF THE NODESAPP FEATURES .. 41

FIGURE 8 - FLOWCHART NODESAPP ... 41

FIGURE 9 - FLOW CHART OF THE CONNECT VIEW ... 45

FIGURE 10 - SCREENSHOT OF THE PC VERSION OF THE HOME VIEW USER INTERFACE .. 54

FIGURE 11 - SCREENSHOT OF THE MOBILE VERSION. SCAN VIEW HTML TEMPLATE WITHOUT ERROR MESSAGES. 55

FIGURE 12 - SCREENSHOTS OF THE MOBILE VERSION. CONNECT VIEW HTML TEMPLATE SUCCESSFUL ACTIVATION ... 56

https://ezentis-my.sharepoint.com/personal/ricardo_hernandez_ezentis_com/Documents/Desktop/TFG%20Teleco/2022-03-09%20Despliegue%20de%20red%20LPWAN%20en%20entorno%20industrial%20con%20movilidad.docx#_Toc97808555
https://ezentis-my.sharepoint.com/personal/ricardo_hernandez_ezentis_com/Documents/Desktop/TFG%20Teleco/2022-03-09%20Despliegue%20de%20red%20LPWAN%20en%20entorno%20industrial%20con%20movilidad.docx#_Toc97808557
https://ezentis-my.sharepoint.com/personal/ricardo_hernandez_ezentis_com/Documents/Desktop/TFG%20Teleco/2022-03-09%20Despliegue%20de%20red%20LPWAN%20en%20entorno%20industrial%20con%20movilidad.docx#_Toc97808558
https://ezentis-my.sharepoint.com/personal/ricardo_hernandez_ezentis_com/Documents/Desktop/TFG%20Teleco/2022-03-09%20Despliegue%20de%20red%20LPWAN%20en%20entorno%20industrial%20con%20movilidad.docx#_Toc97808559
https://ezentis-my.sharepoint.com/personal/ricardo_hernandez_ezentis_com/Documents/Desktop/TFG%20Teleco/2022-03-09%20Despliegue%20de%20red%20LPWAN%20en%20entorno%20industrial%20con%20movilidad.docx#_Toc97808562

List of tables

TABLE 1 - MEANING OF THE BITS IN THE LORAWAN DEVADDR ... 13

TABLE 2 - BYTES AND COMPONENTS OF THE JOIN-REQUEST MESSAGE ... 16

TABLE 3 - BYTES AND COMPONENTS OF THE JOIN-ACCEPT MESSAGE ... 16

1

Chapter 1

Introduction

Advanced technologies and a proliferation of devices have helped fuel the growth of Internet of Things

technologies. After years of steady uptake, the IoT seems poised to cross over into mainstream business

use. Sensor technology will continue to become cheaper, more advanced, and more widely available,

which will in turn increase the cost-effectiveness of this technology and make new sensor applications

possible. As computing power keeps increasing and mobile connectivity improves, the worldwide market

for IoT solutions across multiple sectors has observed an annual growth rate of 20% CAGR (Compound

Annual Growth Rate), according to the International Data Corporation (IDC). Furthermore, an even more

impressive growth rate is expected during the 2020 to 2030 decade [1]. Thus, large companies are already

investing in IoT in various sectors, which is shaping a varied, enormous, and steadily growing IoT market.

However, can small businesses benefit from the IoT? [2] Studies show that small and medium-sized

businesses are not making the most out of the possibilities that IoT gives them. The required technical

knowledge and consume of resources prevents the expansion of the Internet of Things into these segments.

These resources can be time and energy related. That is why the necessity of fast, efficient, and easy-to-

deploy telecommunication networks is at its all-time high. Low-Power Wide Area Network (LPWAN)

technologies are aimed exactly at making networks as energy efficient as possible while covering large

distance and achieving a resilient and reliable communication.

1.1 Motivation

This thesis was presented by Ricardo Hernández Álvarez as the final project of his degree in

Telecommunication Technologies and Services Engineering in September 2021.

2

This document contains a study of the technology that is currently being used to deploy private

LoRaWAN networks and develops the process of creating an application to automate end device

connection and activation for ChirpStack [3] networks. ChirpStack provides open-source components for

LoRaWAN networks under the MIT license and can be used for commercial purposes. Together, these

components form a ready-to-use solution called the ChirpStack LoRaWAN Network Server stack.

In this context, this thesis finds its motivation in leveraging the potential of the open-source technology

and its modular architecture to create an extra layer of abstraction in the creation and activation of an end

device in a ChirpStack network. This is currently the most tedious task for a network owner, but the most

common one. Thus, its simplification will significantly enhance user experience.

The scope of this work is to present an advanced prototype of a tool that accomplishes the task. The

finalized application should then undergo further testing and refining in a real production environment.

1.2 Summary of the methodology followed

For the execution of this work, a methodology was followed that lasted from May 2021 until the end of

August of that same year. During the whole process conversations and reviews were held with the thesis’

supervisors to ensure that the project was headed in the correct direction. In short, the methodology

followed during that time can be divided in the following parts:

Preliminary work: The first task was to get familiar with the main topics handled in this thesis in order

to deeply understand and be able to write about them. Furthermore, an introduction to the tools used to

develop this work was also necessary. This part of the thesis preparation can be summarized in the

following tasks:

Extensive review of specialized bibliography on LPWAN networks [4] and MQTT [5]. The latter was

already introduced to the author in a course completed in the last year of his degree.

In depth study of the available LPWAN technologies to carry out the objectives and selection of the most

appropriate one, LoRaWAN [6].

Proposal and practical approach to the technology: Once the problem and its possible approaches

were known, their feasibility and possibilities were studied. Based upon that, a solution was proposed. At

this point the author had to get hands-on experience with the hardware and software selected to realize

the project’s goals. This part of the thesis preparation can be summarized in the following tasks:

1. Selection and documentation of the most feasible and cost-effective LoRaWAN project to base this

thesis on, ChirpStack[3]. The project’s architecture and characteristics have been documented.

3

2. Subsequently, the ChirpStack network used to test and develop the thesis had to be built. The author

achieved expertise in the network’s architecture to set it up and access its configuration from an

external computer. The required hardware to build the LoRaWAN network was provided by ITI and

the entire process was carried out in the author’s home.

3. Testing end device registration and activation in ChirpStack networks. The process followed by the

Application Server to complete the actions was reverse engineered through repetition using several

tools such as Google Chrome Developer Tools and Postman. A MQTT client was also scripted using

python to detect any message in the network.

4. Lastly, the planning of the steps required to build the application was carried out. This will consist

of two main phases. First, the core functionality of the application, which is the API that

automatically connects and activates an end device. After that part is finalized and tested, the

development of the web application which will make use of it will be carried out.

Development of the project: This part of the thesis is the one that required more dedication and time.

Following the detailed planification of the phases required to complete this project, the development of

the application was carried out. The process can be divided in two big tasks:

1. The first step was to build an API to perform the registration and activation of an end device

automatically given its joinEUI and devEUI. It consists of a python script and was tested using

Postman and creating virtual and real nodes in the available ChirpStack Network.

2. Coding the web application to host the finalized API and surround it with a user interface to

open its usage to as many people as possible. Therefore, minimalism and ease of use have

been of particular importance to provide a practical and simple tool.

Writing and revision of the thesis.

1.3 Structure of the thesis

This section summarizes the structure of the thesis. This is also reflected in the content index.

Chapter 1 is the introduction to the work. Sections 1.1 and 1.2 serve as a preface, defining some of the

concepts that will appear recurrently in the document, as well as a declaration of intent, exposing the

motivation of the work and some considerations, such as the methodology followed. Next, Section 1.4

summarizes the objectives of the present work, separating the general ones from those related to

sustainable development. Finally, Section 1.5 is a review of the state-of-the-art in the specific task of

automatically connecting and activating end nodes to a LoRaWAN network.

4

Chapter 2 develops the theoretical framework of the thesis. An introduction to LPWAN and LoRaWAN

is provided. In this context, after a succinct overview of LPWAN, the author focuses on its use cases and

the technological alternatives that currently exist to implement such networks. One of them is LoRaWAN,

which is subsequently studied in the depth that is required to comprehend this thesis.

Chapter 3 defines the methods used to accomplish the project’s objectives. Firstly, the general project

design is put into perspective. That is, which LoRaWAN technology is our work applied to and which

part of the network is affected by it. Next, software and hardware used during the preparation of the thesis

are presented. Finally, the selection of the Django framework for python backend web development is

explained. Furthermore, key concepts of application development that are important for the project are

introduced.

1.4 Objectives

This section presents the general objectives of the work. These serve as a guide and are directly related

to the conclusions stated in Section Conclusions and future work. The main objectives of this thesis are

as follows:

• To study the importance of IoT technology in today’s economy and demonstrate how its

implementation could help the small and medium size businesses. Deepen in the analysis of

LPWAN networks and how they are used nowadays.

• To define the advantages and disadvantages of LoRaWAN and how it compares to other popular

LPWAN technologies. Provide information about open-source projects based on this technology.

• To understand how ChirpStack networks work. Emphasize in the mechanism used by the application

server to allow the connection of an end device.

• To develop an application to automatically connect a new end device to a working ChirpStack

network.

• To provide a tool that facilitates the deployment of LoRaWAN technology in a mobility

environment by technic and non-technic users.

• To document the application appropriately to allow this thesis to serve as the groundwork for the

development of similar technologies in the future.

Furthermore, it is relevant to highlight objectives directly related to sustainable development. Since the

present project aspires to have a real application, it is necessary to establish how it is going to favor the

economy and society:

5

• Favor the automatization and subsequent optimization of large areas through lowering the technical

barriers present today.

• Democratize the internet of things technology, especially LPWAN, among businesses with less

technical resources.

1.5 Sate-of-the-art review

In the field of LPWAN, the LoRa Alliance has published recommendations as a baseline for the

development of automated deployment of LoRaWAN end-devices through QR code detection [7].

Mandatory values, optional extensions and data organization are recommended. Following this, The

Things Industries, a reference in the open-source LoRaWAN community with The Things Stack (TTS)

LoRaWAN network server, has developed a QR-centered system that automates the claiming of devices.

If a device has been set up to be claimable in a TTS application, someone else can move the device out

of it in a secure and legal manner. To do this, the device needs to be added first in TTS and then registered

on The Things Join Server, without linking it to a Network Server or Application Server. Once this is

settled, the claiming settings can be set up using TTS console or CLI. The environment also allows the

automatic creation of a device-personalized QR-code to industrialize this procedure.

At the same time, TTS has added API endpoints to perform actions on the network directly via the API.

For that, the user needs to make calls to the Identity Server, the Join Server, the Network Server, and the

Application Server to create a device using the Over-The-Air-Activation procedure. A similar procedure,

but simpler, is also possible to register a gateway.

This thesis aims to achieve a similar level of automation as the claiming mechanism but focused on the

registration and activation of an end-device via the API, as the creation mechanism in TTS allows.

6

Chapter 2

Technological framework

2.1 LPWAN Technology Selection

The first and more important task to begin this project is the selection of the low-power long-range

technology most suited to the thesis’ goal. Multiple competing LPWAN technologies are being developed.

One of them must be chosen to carry out the proposed study of a LPWAN deployment in an industrial

mobility scenario.

An overview of existing LPWANs can be started dividing them into two groups, Infrastructure Based

LPWAN Technologies and Infrastructure-less LPWAN Technologies. The first group comprises LTE Cat

M1 and 5G, among others. They do not serve our purpose, since we aim to provide a tool which can be

used in as many scenarios as possible, while these make use of infrastructure which many places lack.

Therefore, infrastructure-less LPWAN Technologies are the way to go.

Regarding their popularity and world-wide usage, the most important Infrastructure-less LPWAN

Technologies are LoRa, Sigfox and RPMA (Ingenu). To select the communications protocol to base this

project on, a brief analysis of their main characteristics is presented.

2.1.1 SigFox

The SigFox network provides IoT devices with a low-power low-speed data connection in selected

countries around the world. It is a private-initiative paid public-access network. This means that the

infrastructure (for example gateways) is not dedicated to only one customer, although the network

protocol and architecture can be used for private LAN networks. Apart from its own deployments, SigFox

licenses other companies (operators) to provide coverage in countries that they do not reach with their

own.

7

The SigFox network uses ISM bands to communicate, employing the 868 MHz band in Europe and the

902 MHz band in the US.

Technical overview

Sigfox uses D-BPSK (Differential Binary Phase-Shift Keying) UNB (Ultra Narrow Band) modulation in

both uplink and downlink transmissions. The bitrate of its transmission can be either of 100 bps or 600

bps, depending on the region of operation. Uplink (Mobile Station to Base Station) messages are of a

maximum length of 26 bytes, conformed by a 14 bytes protocol header and a 0-, 4-, 8- or 12-bytes user

data payload. A payload of 0 bytes is used as a heartbeat. The current Sigfox regulation limits the amount

of uplink packets to a maximum of 140 messages per day. These messages are usually sensor information.

Downlink (BS to MS) messages can handle up to 8 bytes of user data. The current Sigfox regulation limits

the amount of downlink packets to a maximum of 4 messages per day. These are usually control messages

issued by the owner or operator of the devices.

The architecture is composed by 4 types of devices:

• The Objects: sensors or devices that capture information and communicate it to the Network.

• The Sigfox stations: gateways that connect Objects to the Sigfox cloud through an IP network

(the Internet).

• The Sigfox cloud servers: The routers of the network. They direct uplink and downlink traffic

between the Objects and the Customer’s IT servers and are responsible for the coordination of

the network.

• The Customer IT servers: Application servers used by the customer to store and process the data

collected by the Objects associated with them.

Usage, Availability and Cost

Prices for communication hubs (end nodes/objects) compatible with Sigfox are as low as 20$ and

provide full access to the communication capacities of the network. Multiple real-life Sigfox projects and

implementations can be found on its official web page.

2.1.2 RPMA (Ingenu)

Random Phase Multiple Access (RPMA) technology is a communications stack solution (from the

physical layer to the MAC and network) provided by Ingenu, an American company.

8

RPMA is a technology designed specifically for the IoT wireless machine-to-machine (M2M) ecosystem

which and, unlike other low-power networks, uses the popular 2.4 GHz band available around the world.

It’s able to offer low-power, wide-area coverage using the band’s minimum duty-cycle.

The spreading technique used by RPMA is the Direct-Sequence Spread Spectrum (DSSS) modulation

scheme for uplink communication, while downlink packages are transmitted using CDMA.

Ingenu’s RPMA networks present a star topology [Ingenu, Inc., "The Making of RPMA," Ingenu, 2016].

End nodes communicate with the base station, which in turn communicates with the backend of the

network via gateways to orchestrate the network’s behavior. Packet sizes range from 6 bits to 10 kbits,

thanks to Ingenu’s RPMA flexible packet size.

Usage, Availability and Cost

RPMA is focused on scalability and coverage, being able to support an ever-increasing number of

connected devices with enough capacity in the network while optimizing the infrastructure usage with

extra broad coverage.

Some RPMA networks have been deployed (mostly in America), but its high scale world-wide

deployment is still pending, and it is not sure that there will be any, because RPMA has not taken over its

competitors in its 10 years in the market (by 2018). Development kits are available from Ingenu, Inc. The

cost of the development kits is not specified in their webpage.

2.1.3 LoRaWAN

LoRaWAN is a wide-area networking protocol and architecture for long range IoT communications

which makes use of the LoRa and FSK radio modulations. The star topology of a LoRaWAN network is

based on gateway to end-node communication, like the mobile-station to base-station GSM scheme. As

this topology suggests, gateways and end-nodes in a LoRaWAN network are not capable of peer-to-peer

communication.

LoRaWAN defines different data rates depending on the band of operation and region. Different spreading

factor-bandwidth combinations are implemented to achieve different bit rates. The use of FSK modulation

instead of LoRa is also supported to allow a data rate of up to 50 kbps.

The application payload for the lowest data rates is limited in Europe by the European

Telecommunications Standards Institute (ETSI) to a maximum of 51 bytes per packet. For the highest

transmission rates, the application payload can reach up to 222 bytes.

9

A LoRaWAN network has the physical layer, which includes telematic transmission in the 863 to 870

MHz band (in Europe), MAC layer and application layer. The tasks to be carried out in each of these

layers are distributed among different hardware and software components. The scheme is presented in

Figure 1.

Figure 1 - Representation of the LoRaWAN architecture

Usage, availability, and cost

LoRaWAN networks were already deployed and are working in multiple regions. LoRaWAN networks,

due to LoRaWAN openness to custom implementations, can be built using any device capable of hosting

the Network Server and communicate via radio using LoRa and FSK modulations.

2.1.4 DASH7

The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium

called DASH7 Alliance. It is an open-source network protocol with range of up to two kilometers, which

is characterized by its low latency, the multiyear battery life of its wireless sensors and a very small open-

source protocol stack [8]. Unlike most LPWAN technologies, DASH7 supports tag-to-tag

communications. It operates in the 433 MHz, 868 MHz, and 915 MHz unlicensed ISM band. DASH7

networks are ideal for low power usage and sporadic data transmission. With this niche in mind, the

concept of B.L.A.S.T. was designed.

• Bursty: Data transfer is small and abrupt, perfect for sensor applications.

• Light: For most applications, packet sizes are limited to 256 bytes.

• Asynchronous: DASH7’s main method of communication is command-response, which by

design requires no periodic synchronization with the network.

• Stealth: DASH7 devices do not need periodic beaconing to be able to respond in

communication.

10

• Transitive: DASH7 is upload centric. Thus, devices do not need to be managed extensively by

fixed infrastructure.

Usage, availability, and cost

DASH7 implementations can be found in applications that require modest bandwidth like text messages,

sensor readings, or location-based advertising coordinates. DASH7 components are inexpensive, with

single chip silicon purchased in volume for 5€ each and remaining components available for even less.

However, the networking stack solution OpenTag is not as read-to-use as some other LPWAN

alternatives.

2.1.5 Conclusion

Ideally, this project could be based on any of the three technologies presented in this section. However,

the real difference between them in the scope of this thesis is their availability and easiness of

implementation. LoRaWAN and Sigfox networks can be deployed with few resources. LoRaWAN has a

very rich open-source community. Some of them offer a ready-to-use all-in-one package to deploy a

LoRaWAN network on a Raspberry Pi. Therefore, LoRaWAN is the chosen LPWAN communication

protocol.

2.2 LoRaWAN

After the selection of LoRaWAN as the LPWAN protocol of choice for this work, this section presents

the LoRaWAN characteristics that affect this thesis. LoRaWAN 1.0.2 is has been used to develop the

project and the following explanations always refer to that version.

The key aspects of LoRaWAN that are of interest to this thesis are the network’s topology and the

procedure of activating end-devices.

11

2.2.1 LoRaWAN network topology

Figure 2 - LoRaWAN network topology

It is necessary to detail the functions of each component to understand how these types of networks

work.

End devices are of particular importance in this work. LoRa End Nodes (devices) are usually sensors.

They can be of many types, depending on the use given to the network. Their task is to send the collected

information to the LoRaWAN Network Server through one or more LoRa Gateways. The nodes are

connected to the gateway that provides the best communication quality among the detected ones. In order

to join the network and take advantage of the benefits of the protocol, the node must send a series of

identification and security keys, which is explained in detail in the next section.

Depending on their capacity to receive and send information, which greatly affects their power

conservation, LoRa End Nodes are split in three categories. They range from the extreme power-saving

Class A nodes to the continuously alert Class C devices, which are more power hungry. A summary of

the characteristics of each class of end devices:

• Class A, device-initiated communication: Devices are typically in deep sleep and send

messages on intervals and/or events. Only after uplink transmission, there is a receive window

for downlink messages. This is best for most sensor applications because of the increased battery

conservation achieved throughout the deep sleep state.

• Class B [9], time synchronized communication: The network broadcasts beacons for devices

to sync time. In so-called ping slots, devices wake up and the network may send downlink

messages. This class is the preferred selection for most downlink intensive applications.

12

• Class C, network-initiated communication: The devices are continuously listening, often

temporarily or on power supply. The network can send downlink messages at any given time.

This approach is best for downlink intensive applications that require low latencies.

LoRa Gateways operate in the physical layer. In uplink communication, a LoRa gateway receives LoRa

modulated packages from end nodes in its range, demodulates them and sends them to the Network Server

through an internet protocol. This process is inverted to handle downlink communication. Currently, LoRa

gateways are able to exchange information with up to 8 end nodes simultaneously.

The software responsible for receiving and sending the information is called Packet Forwarder. The

most known implementations are the Semtech UDP Packet Forwarded and Semtech Basic Station Packet

Forwarder.

A LoRa Network Server monitors the network's state. Therefore, it is considered one of the most

critical components in a LoRaWAN network. Among others, a LoRa Network Server performs the

following actions:

• Keep track of the gateways and end nodes connected to the network, their state (active, on hold,

etc.).

• Activation and authentication of new end nodes that are to be connected to the network. This

process is handled by a dedicated service, the Join Server.

• Uplink communication: Deduplication of identical information packages received from

different LoRa gateways, which have probably communicated with the same end device because

it is in both of their range areas. Transmission of the deduplicated data to the Application Server.

• Downlink communication: Keep the information packages that have been received from the

Application Server in cue until they can be forwarded to the appropriate end nodes. This is

extremely important in LoRa networks based on Class A or Class B end nodes.

• Authentication of the forwarded packages.

The LoRa Application Server is, as its name may suggest, the one responsible for the application layer

in a LoRaWAN network. This makes it another critical component of a LoRaWAN network along with

the Network Server. The Application Server receives and decodes information packages coming from the

network server. Analogically, it encrypts the data it sends to the network server, which is therefore unable

to understand the content of the packages it handles.

User applications or end applications connect with the Application Server to send information to the

nodes. An end application usually serves data analysis and visualization, security or monitorization

purposes, among many other.

13

2.2.2 Activation of an end device in LoRaWAN

To participate in a LoRaWAN network while maintaining security, an end-device must be personalized

and activated. Activation of an end-device can be done in two ways. Over-The-Air Activation (OTAA)

and Activation by Personalization (ABP), in which the end-device personalization and activation are done

simultaneously.

After an end-device has been successfully activated, it stores the following information:

End-device address (DevAddr)

The DevAddr is a 32-bit logical address that identifies the device within the network. It is used for all

subsequent communication with the network.

Bit number [31:25] [24:0]

Components NwkID NdkAddr

Table 1 - Meaning of the bits in the LoRaWAN DevAddr

The most significant 7 bits form the Network identifier (NwkID) to separate device addresses of

territorially overlapping networks of different network operators and to prevent roaming issues. The

remaining 25 bits form the network address (NwkAddr) of the end-device, which can be arbitrarily

assigned by the network manager.

Application identifier (AppEUI)

The APPEUI is a global application identifier in IEEE EUI64 address space. It uniquely identifies the

entity able to process the join request frame. The AppEUI is stored in the end-device before the activation

procedure is executed.

Network session key (NwkSKey)

The NwkSKey is a network session key specific for an end-device. It is an encryption key used by the

end device and Network Server to calculate and verify the Message Integrity Code (MIC). It is also used

to encrypt and decrypt payloads with MAC commands.

Application Session Key (AppSKey)

The AppSKey is an application session key specific for an end-device. It is an encryption key used by

the Application Server and the end-device to encrypt and decrypt application payloads in data messages

to ensure message confidentiality.

14

Activation by personalization (ABP)

Activation by Personalization directly ties an end-device to a pre-selected network. It requires

hardcoding the DevAddr as well as the two session keys (NwkSKey and AppSKey) in the device.

Therefore, an end device activated using the ABP method can only work with a single network, since it

is only equipped with the required information for participating in that specific LoRa network. It also

keeps the same security session for its entire lifetime.

Figure 3 - pre-provisioned keys for LoRaWAN 1.0.x Activation by Personalization

 The main advantage of activation by personalization is that the deployment of an end-device doesn’t

require any action after the preparation of the node. However, security concerns render this connection

solution as the least favorable choice when adding an end-device to a network. The lack of flexibility of

the end-device after being hardcoded with the device address and session keys is also a big downside of

this method.

Over-the-air activation (OTAA)

This is the most secure and recommended activation method for end devices. It consists of a join

procedure between the end-device and the network, during which a dynamic device address is assigned

to the end-device and the security keys are negotiated between the actors. The main advantage of the

OTAA is security, as an end-device must go through the join procedure every time it loses the connection

and therefore the session context information.

15

This join procedure requires two MAC messages to be exchanged between the end-device and the

network server. The end-device initiates the communication with a join-request sent to the network server,

which, after being processed by its recipient, should result in the respective join-accept message being

sent back to the end-device. Before activation, apart from the AppEUI detailed before, the end-device also

needs to be personalized with the following information:

• End-device identifier (DevEUI): Global end-device ID in IEEE EUI64 address space that

uniquely identifies the end-device.

• Application Key (AppKey): Specific to an end-device AES-128-bit secret key known as root

key. The AppKey is used to derive the session keys NwkSKey and AppSKey specific for that

end-device. This allows the roaming of end-devices across networks of different providers.

The AppKey is never sent over to the network and, thus, remains secret. The AppEUI and DevEUI are

not secret and are visible to everyone.

The following flowchart describes the message exchange between an end-device and the network and

application servers of a LoRaWAN deployment.

Figure 4 - Over-The-Air activation of LoRaWAN nodes, message flow between end-device, network server and application

server.

As marked in Figure 4, the OTAA procedure comprehends mainly 5 steps:

16

Step 1: The node requests a join (or login) to the network with the configuration data and opens the

reception window. The join-request message includes the DevNonce, a 2-byte value generated by the end

device. The network server uses the DevNonce of each end-device to keep track of their join requests,

rejecting one if a previous join request with the same DevNonce is already registered. As previously

stated, the AppKey is not sent with the join-request message, as it is not encrypted.

The join-request message can be transmitted using any data rate and using one of the region-specific

join channels. In Europe an end-device can transmit the join-request message by randomly choosing

among the 868.10 MHz, 868.30 MHz, or 868.50 MHz frequencies.

Size (bytes) 8 8 2

Components AppEUI DevEUI DevNonce

Table 2 - Bytes and components of the join-request message

Step 2: The network server processes the incoming join-request message. It generates two session keys

(NwkSKey and AppSKey) and the join-accept message if the end-device is permitted to join the network.

This message has the following fields:

• The AppNonce: A random 3-bytes value. It is used by the end-device to derive the two session

keys.

• The NetID: The most significant 7 bits of this field are occupied by the network identifier

(NwkID)

• The DevAddr, as explained above.

• The DLSettings, 1 byte containing the downlink settings which the end-device should adapt to.

• RxDelay, which contains the delay between TX and RX.

• CFList, a list that contains region-specific channel frequencies for the network the end-device

is joining.

Size (bytes) 3 3 4 1 1 (16)

Components AppNonce NetID DevAddr DLSettings RxDelay CFList

(optional)

Table 3 - Bytes and components of the join-accept message

Step 3: The network server calculates a Message Integrity Code (MIC), which is added to the join-accept

message. This message is then encrypted with the AppKey and sent back to the end-device as a normal

downlink message. If the join-request message was not accepted, no response is given by the network

server.

17

Step 4: The network server keeps the NwkSKey and shares the AppSKey with the application server.

Step 5: Upon receiving the join-accept message, the end-device uses the AppKey and AppNonce to

derive the network session key and the application session key. It is now activated on the network. After

activation, the required information (DevAddr, NwkSKey and AppSKey) is stored in the end device.

2.3 LoRaWAN technology selection

There are a lot of LoRaWAN technologies, which offer network architecture, protocol, or partial

implementations. However, two open-source technologies stand out from the rest, ChirpStack and The

Things Stack. These two grow in popularity every passing year and offer a full stack LoRaWAN

implementation, which means that a network deployment can be achieved without heavy development.

Their popularity also gives developers the chance to exchange ideas and knowledge with thousands of

developers, casuals, and professionals.

On the one hand, ChirpStack and The Things Stack share a lot of similarities. Both are complete and

open-source LoRaWAN solutions designed for various deployment scenarios, supporting all existing

LoRaWAN versions, operation modes A, B and C, and all regional parameters as released by the LoRa

Alliance. Furthermore, these technologies can be implemented in an industrial environment and be used

for business.

On the other hand, ChirpStack and The Things Stack differ in one very important aspect. While every

component of a ChirpStack network can be installed separately and privately, The Things Stack offers an

enterprise grade LoRaWAN Network Server based on an open-source core. The Things Network is a free

LoRa Server environment in the cloud, building a community in which members agree that their

infrastructure (gateways) can be used by anyone. This option is not recommended for commercial

deployments since capacity for end-devices is not guaranteed. The Things Industries is the commercial

offering of The Things Network. Here, the network elements are not shared, and members can get expert

consulting to achieve their goals with The Things Stack. ChirpStack is a more economical solution, but

one that requires more expertise because every element of the network must be set up and configured

before deploying.

As the technical part of the network is not a problem in this thesis, ChirpStack is the chosen LoRaWAN

technology. It offers a full stack solution but gives all the freedom you need to set up a custom network

to develop and test a project of this scale. The configuration possibilities and the ever-growing integration

18

opportunities make ChirpStack a great alternative to the more popular The Things Stack, in particular for

this work.

Lastly, ChirpStack is more appropriate for the scope of this project since it can be directly installed in

the gateway itself. This way, the project can be done with only one Raspberry Pi 3 hosting every

LoRaWAN network component needed to build a private testing network.

2.4 Web development concepts

This section serves as an introduction to core concepts of web application development used for the

completion of this thesis. Web development has been on the rise since the world-wide web's potential was

recognized. From video streaming services on the web to simple informative sites without an active task,

internet hosts more information every passing day.

Countless technologies and application architectures have been used to develop said web services. An

Application Programming Interface, usually known by its initials as API, allows different software

components to be connected and share information and functionalities between them through a secure,

flexible, and efficient integration.

This thesis aims to streamline the task of managing LoRaWAN Network’s components in a mobility

environment. An application to automate the process needs to be created. Its design needs to be

lightweight and in accordance with its functionality.

This section defends the selection of a specific architecture for the API created in this work and the file

format used to allow its communication with the LPWAN service of choice, the LoRa Network Server of

ChirpStack.

Representational State Transfer API

A Representational State Transfer (REST) API is a very popular API category because it does not

establish any specific protocol as, for example, the Simple Object Access Protocol API does. REST-style

APIs are data-driven, not functionality-driven, which is perfect for replicating the MQTT message fields

that are performed for node registration.

REST establishes a series of principles that the API architecture must follow and allows developers

freedom to choose the type of file to work with for the exchange of information and the corresponding

transmission protocol. APIs designed following the REST principles, stated below, are called RESTful

APIs.

19

1. Client-Server architecture: The REST principle works on the concept that client and server

should be isolated from one another and permitted to develop independently. This way, you can

improve manageability across numerous platforms and increase scalability y streamlining server

components as user interface concerns are separate from the data storage concerns

2. Stateless: RESTful APIs, are stateless, which means that API calls are independent of each

other. They contain all the information necessary for the server to carry out the work. Without

server storage, the API is more scalable, following the trend presented in point 1 of this list.

3. Cacheable: Data within a response should be indirectly or clearly categorized as cacheable or

non-cacheable. If a response is cacheable, the client cache is provided the right to recycle the

response data for similar requests in the future. As a stateless APIs usually handle a great amount

of inbound and outbound calls, a REST API should be able to store cacheable data.

4. Layered system: A REST API’s architecture includes several layers that operate together to

construct a hierarchy that helps generate a more scalable and flexible application. Each layer

has its own tasks and functionality and can only interact with the subsequent one. This

characteristic has the following advantages:

a) Individual components of the application can be specially protected based on their

frequency of use, criticality, or exposure to other services.

b) One part of the application can be modified without affecting the overall

functionality of the API, which adds longevity and flexibility to the application

c) Security is not based on an individual solution, but on multiple security

components on several layers which work together and cover each other in case of

failure. This helps to prevent attacks aimed at the server architecture.

5. Uniform interface: This characteristic allows client and server to communicate and understand

each other, regardless of the back-end language used to create them. This is usually achieved

through the usage of URI, CRUD (Create, Read, Update, Delete) and JSON resources.

6. Code on demand: This REST principle allows for coding scripts or applets to be communicated

through the API used within the application. Usually, a server returns static resource

representation in XML or JSON format, but when required, servers can also deliver executable

code to the client. This extends client functionality by downloading and implementing coding

which decreases the number of features to be pre-implemented.

20

Parameters in an API

Parameters are options you can pass with the endpoint, such as specifying the response format, or the

amount returned, to influence the response. There are several types of parameters in a HTTP request:

header parameters, path parameters, and query string parameters. Request bodies are closely like

parameters but are not technically a parameter.

HTTP requests have different “methods”. The most popular ones are GET, POST, PUT and DELETE.

• The POST method, in which the browser bundles up the form data, encodes it for transmission,

sends it to the server, and receives back a response.

• The GET method bundles the submitted data into a string and uses this to compose a URL. The

URL contains the address to which the data must be sent, as well as the data keys and values.

Any request that could be used to change the state of the system -for example, a request that makes

changes in the database- should use POST. GET should be used only for requests that do not affect the

state of the system.

GET would therefore be unsuitable for a password form because the password would appear in the URL,

and thus, also in browser history and server logs, all in plain text. Neither would it be suitable for large

quantities of data, or for binary data, such as an image. A Web application that uses GET requests for

admin forms is a security risk: it can be easy for an attacker to mimic a form’s request to gain access to

sensitive parts of the system. The POST method offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLs that represent

a GET request can easily be bookmarked, shared, or resubmitted.

A) Parameters as custom headers

The HTTP specification states that headers are like function parameters [10].

On the one hand, para meters that stay the same on all endpoints are better suited for headers. For

example, authentication tokens get sent on every request.

On the other hand, parameters that are highly dynamic, especially when they're only valid for a few

endpoints, should go in the query string. For example, filter parameters are different for every endpoint.

Furthermore, adding a query string to an URL is quickly done and more obvious than creating a customer

header.

B) Parameters in the query string

If we know that the parameters which we want to add don't belong to a default header field and aren't

sensitive data, the query string may be a good place for them.

21

Therefore, the main use-case of the query string is filtering, mostly two special cases of filtering:

searching and pagination. But as repurposing for web-forms shows, it can also be used for different types

of parameters. A RESTful API could use a POST or PUT request with a body to send data to the API.

However, the query string is part of the URL, which can be read by everyone between the client and the

API, so sensitive data like passwords shouldn’t be put into the query string.

JSON

The open JavaScript Object Notation file format, known by its acronym as JSON, is the most popular

and suitable option for this project. The syntax of a JSON file is like dictionaries in programming

languages, as it is made up of variable’s name-value pairs. Thus, it is ideal for conveying the name of a

variable or field and its content. The following code snippet shows an example used in our API.

The combination of a REST API and JSON file format makes it possible to reduce the bandwidth

required in transmission as much as possible, in line with the low consumption of the LoRaWAN network.

JSON files are extremely lightweight, in exchange for losing some of the security offered by other formats,

such as XML.

Finally, it should also be noted that it is very comfortable for humans to read and interpret JSON files,

which facilitates the field and value identification tasks carried out during the preparation of this thesis.

Code 1 - JSON format

22

Chapter 3

Methodology

For the development of this thesis, a LoRaWAN network will be used based on the open-source

components offered by the ChirpStack project. To develop the project, a LoRaWAN network will be used

based on the open-source components offered by the ChirpStack project.

To achieve the goal of automatically connecting a new end-device to an existing LoRaWAN ChirpStack

network, the following steps must be followed:

1. Understanding the network: At which point of the LoRaWAN network does the application

need to act? A deep understanding of the ChirpStack architecture is needed.

2. Understanding the task: How can the application perform the task assigned to it? A process of

reverse engineering the steps followed by the ChirpStack network in the OTAA process can be

used to understand how everything works.

3. API scripting: Once the process is clear, the API that facilitates it needs to be scripted. The

starting point for this API is knowing the individual data about the end-device and the network

server, being the goal to connect them via HTTP requests.

4. Application design: The API can’t be used in its raw form. An application must be designed to

host the API as a process that can be activated by a user. The network server to be accessed and

the end-device to be connected to it will be variables that the user will enter in the application.

In sections 3.1 to 3.4 the methodology followed to complete each step of the design process is explained.

23

3.1 Understanding the network

The network architecture used to develop the application follows ChirpStack’s network architecture. It

includes the ChirpStack Application Server, the ChirpStack Network Server, the gateways, and the end-

devices in a typical star-shaped architecture.

Figure 5 represents the network architecture that results from this discussion. It includes the ChirpStack

network and the application’s role in it represented by a mobile phone.

Figure 5 – LoRaWAN Network architecture used in this thesis

24

The application, as the schematic represents, will interact with the end-device and with the Network

Server to register and activate the first in the second’s network. Of course, the activation procedure of the

end-device must be Over-The-Air Activation, as stated in section 2.2 LoRaWAN.

This means that the application must know details about the end-device to start the OTAA process in its

name, which it needs to get from an external source. Since the goal of this project is to reduce manual

work in the activation of a new end-device, the introduction of the DevEUI and AppKey must occur

automatically in a “reading” process performed by the mobile phone. This reading can be done in one of

two ways. The end-device must be equipped either with a QR code or with an NFC card. For this project

the QR code mechanism is ideal since it requires very little investment, in any case lower than a NFC

system. QR codes can be added to existing devices, making any IoT end-device compatible with the

application. Furthermore, a QR code is the superior choice in a testing environment like this because of

its flexibility and the ability to redo it a virtually infinite number of times. However, due to the small size

of some IoT end-devices and their possible exposure to climate and the passing of time, the transmission

of the end-device’s characteristic data via NFC could be advantageous in some environments.

Once established how end-device and application will interact, the connection to the network server

remains. This will be done by performing HTTP requests to the Application Server. Thus, knowing the

IP address of the network server is a must. Furthermore, since ChirpStack has a security system,

authentication data is needed. This is represented by a username and its corresponding password.

Figure 5 also reveals a component of the ChirpStack network not described in the LoRaWAN

introduction, the ChirpStack Gateway Bride. It sits between the Packet Forwarder (software running on

the LoRa Gateway responsible for receiving and sending data) and the MQTT broker. It transforms the

Packet Forwarder format (like the Semtech UDP Packet Forwarder Protocol) into a data-format used by

the Chirp-Stack components, like JSON.

3.1.1 Test suit and development platform

The LoRaWAN network used as test and development suit is centered around a Raspberry Pi 3 flashed

with ChirpStack OS, a Linux-based OS to run the ChirpStack stack on a Raspberry Pi based LoRa

gateway. Furthermore, the network contains a LoRaWAN class B node built by PyCom and formed by

Pysense [(PyCom, 2017)] hardware and a FiPy [(Pycom, 2017)] board.

Furthermore, Bootstrap 5.0 has been used to help the author to efficiently design the web

application's frontend and allow him to focus on backend development.

25

A) Installing ChirpStack OS and accessing the network

The full version of ChirpStack OS (there is also a lighter one) provides a full ChirpStack Network Server

and ChirpStack Application Server environment running on the gateway, on top of the Concentratord and

Gateway Bridge usually installed in gateways. It also includes a CLI utility for gateway configuration,

which is used for this work.

ChirpStack OS was flashed into the 16 GB microSD card that Raspberry Pi equips using balenaEtcher

[11]. Next, the Raspberry Pi was booted up and connected to the internet via an ethernet cable. This option

is better than Wi-Fi for dynamic testing because the IP address will not change if the device is reconnected

to the same ethernet port again. The IP address assigned to the Raspberry Pi can be looked up accessing

the network’s router configuration through an internet browser such as Google Chrome.

Secondly, the user interface to change ChirpStack OS settings can be accessed from a computer in the

same network through a SSH connection. The process to successfully set up the network is the following:

1. Setup LoRa concentrator shield: Select for the available hardware, which is “Sandbox: LoRaGo

PORT”, the frequency band to be used in LoRa transmission.

2. Edit ChirpStack Concentratord configuration file: Put the reset_pin argument equal to 25 to enable

correct motherboard reboot in the Raspberry Pi 3 chosen for this project.

3. Edit ChirpStack Gateway Bridge configuration file: set the marshaler to json, the file format that

has been selected to prepare this thesis. The other option is protobuf encoding.

4. Restart ChirpStack Concentratord.

5. Restart ChirpStack Gateway Bridge. If a user needs to enable Wi-Fi connection, it must be done at

this point.

6. Set admin username and password.

7. Flash concentrador MCU.

8. Reload Gateway ID.

At this point, the ChirpStack Application Server can already be accessed from a computer in the same

network, using a web browser such as Google Chrome and typing in the search bar the Raspberry’s IP

followed by the port that wants to be accessed, in this case the 8080 (can be configured, this is default).

B) Configuration of the network

However, the network is not ready yet. If we access the application server, we don’t see any active

network server. We need to connect it. We need to enter its IP address accessing the configuration as

26

before through a SSH connection. As it is in the same address but a different port, a valid configuration

would be the following.

When entering the address in the Application Server to bind them, “0.0.0.0” needs to be replaced by

“localhost” for them to correctly bind.

The next step is to add the Gateway via a Gateway-profile configuration, using the recently bind

Network Server. Once this is done, a service-profile must be created, entering the recently bind Network

Server and two fields describing the maximum and minimum allowed data rate. As per ChirpStack

documentation, a zero must be entered in the “Minimum allowed data rate” and a four in the “Maximum

allowed data rate”.

After that, the network is ready to receive its firs end-device, which will need to be added to a device

profile and to an application previously created.

A device profile establishes a common configuration shared by every device that is going to be added

to the network using this device profile. The most important values to add to the device profile are:

• The LoRaWAN MAC version and the Regional Parameters that are supported by the end-

devices. In this thesis, LoRaWAN 1.0.2 B is used.

• The uplink interval. This establishes the frequency of the status report messages sent by the end-

devices to the gateway, which uses them to know if a device is active or not. Setting this value

as low as 30 seconds allows for better testing speed.

• Join procedure, OTAA or ABP. We are going to use OTAA exclusively.

• Class B and Class C supporting end-devices need to be notified at this point. As the end-device

used in this thesis is Class A, the device profile is configured appropriately.

An application in ChirpStack’s Application Server is a purpose given to a group of end-devices. It

doesn’t need any special configuration and doesn’t server any purpose apart from an organizational one.

C) Adding and activating a device

A device must be added inside an application to ensure its an organizational position in the network. To

create it, the user must manually enter the Device Identifier and the Application Key, which for our end-

device are:

Code 2 - API configuration, shell

27

Furthermore, a device profile to assign the end-device to is also mandatory.

Once activated, the Network Session Key and the Application Session Key are shown with the Device

Address.

A device address is created, formed by a 8-digit hexadecimal identifier. An uplink and downlink frame

counter monitors the number of LoRaWAN frames exchanged in each direction.

3.2 Understanding the task - Reverse engineering

Reverse engineering is a process in which a product is deconstructed to extract design information from

it. Often, reverse engineering involves deconstructing individual components of larger products. The

reverse engineering process enables you to determine how a part was designed so that you can recreate it.

This is exactly what needs to be done. The examination of the process followed by the Application Server

to register and activate the end node will allow its recreation and automation using an API.

The testing and analysis presented in this chapter have been obtained using virtual and physical nodes.

The first hypothesis is that the Application Server sends an HTTP request to the Network Server when

an action is performed on its user interface. Google Chrome’s developer tools can be used to monitor

every HTTP request sent and received by its user. Using this method, it has been proven that the

registration and activation of an end device is done through HTTP requests. In this case, the requests are

sent to an URL inside the same local network, which has been used during the entire project as the testing

and development site and hosts the Raspberry Pi.

The analysis of the request to register a new end-device throughs the results shown in Table 4. As an

example of local IP address that hosts the Raspberry Pi, “192.168.0.208” is used:

Code 3 - keys of the end-device used in this thesis

Figure 6 - Screenshot of the keys of an activated end-device in the Application Server.

28

Request URL http://<url>/api/devices

Request method POST

Request payload

Table 4 - Characteristics of the request to create a new end-device in the network.

After testing various scenarios, the Network Server can return the following responses:

• If the DevEUI is already registered or there already is a device with the same name:

• If the application ID or device profile used to create the device don’t exist:

• If the device is successfully registered, a response without payload is received.

Similarly, an analysis of the device activation request shows the following results:

Request URL http://<url>/api/devices/<DevEUI>/keys

Request method POST

Code 4 - response after error

Code 5 - response after error code 5

29

Request payload

Table 5 - Analysis of the request to activate an end-device

The possible responses by the Network Server are the same ones as when registering the end-device.

That is error code “6” when the device has already been activated and error code “5” when the device

does not exist (when the application or the device profile did not exist in the registration).

This means that ChirpStack Application Server API is handling every action, and thus can be accessed

by our API to perform the actions that we need and build integration. This API is based on the gRPC

(https://grpc.io/) remote procedure call (RPC) framework but includes a RESTful JSON API interface

provided by an embedded 'Restful HTTP API to gRPC' proxy. The latter is more convenient and easier to

use for simple use-cases like our API. Thus, the Gateway Bridge has been configured to encode events

using 'JSON', changing the default 'protobuf' configuration.

Using the Application Sever, this are the steps and requirements to create and activate a device in a

working ChirpStack network:

1. Create an application, which in ChirpStack is used as a way of organizing end-devices.

2. Create a device profile, which is a set of end-device configuration parameters.

3. Create a device inside an available application, assigning it to a device profile.

4. Activate the device.

How each step is performed has been discovered also using reverse engineering. After a thorough testing

and analysis using Google Chrome developer tools and Postman, the requirements and formalities of the

process are known.

The first and more important parameter is the Grpc-Metadata-Authorization, which is needed for every

call to the Network Server’s API. The limit parameter is also necessary for every Get Request and is

therefore included in Table 6

Parameter Characteristics Error message

Grpc-Metadata-Authorization mandatory, string ‘Authorization failed'

Limit mandatory, integer Does not return any item of the requested

list.

Table 6 - Necessary parameters, Network Server API

30

The following code snippet shows the structure needed to perform Get and Post Requests to the Network

Server. One thing to notice is that the body of a post request to the Network Server needs to be in JSON

format. The response’s body is always JSON formatted as well, so it must be reformatted into a normal

python list.

To create an application, a post requests needs to be sent to ChirpStack’s API. Table 7 shows a list of

the parameters that this request can have.

Parameter Characteristics Value Error message

name mandatory, string Can’t be repeated ‘Invalid application name’

serviceprofileID mandatory, string A valid ID ‘uuid: incorrect UUID length:”

organizationID mandatory, integer A valid ID ‘Application and server profile must

be under the same organization’

description optional, string - -

Table 7 - Parameters in a post request to create an application

The creation of a device profile was more tedious to analyze, as it includes more parameters. Most of

them, as Table 8 shows, are optional. This list does not include the hidden parameters or parameters which

default value is blank or zero and are not important for this work.

Parameter Characteristics Value

Code 6 - request schema in ChirpStack

31

adrAlgorithmID mandatory, string Defaults to “default”. Can also be left blank, but this is

problematic sometimes.

macVersion optional, string LoRaWAN MAC version of the end-devices.

maxEIRP optional, int Defaults to “0”.

name mandatory, string Can be formed by numbers, letters, hyphens, and

spaces. Can be repeated but is not recommended.

networkServerID mandatory, string ID of the network Server to which the devices will be

added.

OrganizationID mandatory, string ID of the organization to which the devices will be

added.

regParamsRevision optional, string “B” in this thesis.

supportsClassB,

supportsClassC

optional, boolean Default to “false”. Depends on the end-device to be

added.

supports32BitFCnt mandatory, boolean Defaults to “true”.

spportsJoin optional, boolean Default is ‘false’, so it must be included as ‘True’.

uplinkInterval optional, string ‘<seconds>s’. Default value is ‘0s’, so it’s recommended

to include this value.

Table 8 - parameters in a post request to create a device profile

The creation of the end-device is the next step. This request can have the parameters listed in and

returns just ‘{}’ if the creation of the node was successful.

Parameter Characteristics Value Error message

applicationID mandatory, string An available ID “object does not exist”

devEUI mandatory, string 16 hex. digits “object already exists”

deviceprofileID mandatory, string An available ID "uuid: incorrect UUID

length: " if not present and

"object does not exist" if

wrong.

isDisabled optional, boolean defaults to “false” -

32

name mandatory, string cannot be repeated "object already exists",

another node was registered

with the same name.

referenceAltitude optional, string Not going to be used,

defaults to 0

-

skipFCntCheck optional, Boolean Used to disable frame

counter validation. Defaults

to “false”, it’s not

recommended to change it.

-

description optional, string Not going to be used -

Table 9 - parameters in a post request to create a new end-device

The last step is to activate the end-device.

Parameter Characteristics Value Error message

nwkSKey mandatory, string 32 hexadecimal digits "lorawan: exactly 16 bytes

are expected" if not present.

devEUI optional, string 16 hexadecimal digits -

Table 10 - parameters needed to activate an end-device

During testing with the physical node, it has been noted that an end-device can be activated before or

after its activation using NodesApp, which opens the door to performing mass activation tasks in office

and mass deployment afterwards. This, however, needs further testing. Also, if a device is deleted from

the Application Server, it can’t re-join it even if the activation process is started from scratch.

Once the end-device has been activated, the are several possibilities to observe how end-device and

Network Server communicate in the ChirpStack LoRaWAN network.

1. The first option is to remotely access the ChirpStack OS installed in the Raspberry Pi 3 via a

secure SSH connection. Once inside ChirpStack OS, log messages can be checked using the

following command (or opening the equivalent document):

However, log messages are difficult to read and most of them do not provide useful information

for us. A sequence of log messages has been captured to support this claim.

Code 7 - shell input to see log messages

33

2. The second option can be found when accessing an active end-device though the ChirpStack

Application Server. It offers the possibility to visualize uplink and downlink LoRaWAN frames

in which the end-device is the emissary or the recipient.

An 'unconfirmed data up' is sent by the device to tell the network server that the device is active.

The frequency of this status check can be adjusted in the creation of the device profile.

Code 8 - messages captured

34

3. Alternatively, the payload of the LoRaWAN messages can be accessed connecting to the MQTT

broker installed in the Raspberry Pi 3. This method requires MQTT knowledge to write a simple

script to build a MQTT client. Python can also be used for this purpose, and it offers the Paho

MQTT library [12] for faster and easier development.

Given that the API will also be written in Python, it's always a good idea to start the project by

creating a virtual environment, which can be described as an isolated python installation. This

isolation allows the user to localize the installation of a project's dependencies, without forcing

a system-wide installation and avoiding conflict in package versions with other projects. It also

facilitates the creation of a 'requierements.txt' file, which has been created for this project and

includes a list of the python libraries needed to run the project, along with their version number

used during testing.

This script creates a MQTT client that, given the IP address and device port of a MQTT broker

to connect to, subscribes to every topic and prints the received messages in an easy-to-

Code 9 - LoRaWAN frame captured

35

understand format. It can be found as an annex under the name “MQTT-client.py” with

comments to help its understanding.

After reading the captured messages we learn that the topic in which status messages are

published is "gateway/b827ebfffe160aa6/event/stats". An example of a message is the following

JSON (with our gateway bridge configuration):

3.3 Web application design

The functionality aimed by this work can be implemented in several ways. It could be developed

as a desktop application, a native mobile application or as a web tool. Considering mainly the

broader userbase accessed and the optimization of resources (time and knowledge), the web

application is the best option:

• A web application can be accessed using a computer and a mobile phone, allowing the

mobility that this thesis is aimed to achieve while supporting desktop usage of the tool.

Users can access a web application using a web browser such as Google Chrome, Mozilla

Firefox, or Safari.

Code 10 - MQTT message captured with the MQTT client

36

• A web application can be accessed regardless of the operating system of the mobile phone

or desktop app, making the tool as accessible as possible.

• Recently developed technologies like Google’s desktop accessible web apps can be used to

make a web application as read-to-use as a native app.

• Web applications typically have short development cycles and can be made with small

development teams.

A web app needs a web server, application server and a database to work. Web servers manage

the incoming requests from the users’ clients, the application server completes the requested tasks,

and the database can be used to store any needed information. Web apps can be divided in two

parts, client-side and server-side. Client-side programming builds the front-end of the application

and usually utilizes languages like JavaScript, HTML5, and Cascading Style Sheets (CSS). Server-side

programming is done to create the scripts a web app will use. That is, the API that will give the end-

device connecting functionality. Languages such as Python, Java, and Ruby are commonly used in

server-side programming.

The author has experience in the usage of the front-end technologies HTML5 and CSS and the

back-end programming language Python. The high-level Python web framework Django is a great

open-source option to achieve a rapid development of a secure and maintainable website. The main

advantage is that the Django framework can take care of most of the hassle of web development,

such as security, scalability, and portability, which are main ingredients of the application to be

developed, from now on called NodesApp.

In a traditional website, a web application waits for HTTP requests from the web browser (or

another client). When a request is received the application works out what is needed based on the

URL and possibly information in POST and GET data. The application will then perform the tasks

required to satisfy the request and return a response to the web browser, often dynamically

creating an HTML page for the browser to display by inserting the retrieved data into placeholders

in an HTML template.

The programming language used for the back end is Python 3.8.3, using version 3.2.4 of the high-

level framework Django specialized in web development. The requirements can be found as an

annex in a text file named Requirements.txt.

The code in NodesApp is grouped following this logical sequence and Django application’s typical

architecture (Figure 7).

37

Figure 7 - Organization of code in NodesAPP

Urls.py

This first task is to send the request to the right view. This task is performed by the ‘urls.py’ file,

which is used to redirect HTTP requests to the appropriate view based on the request URL. This

URL mapper can also match patterns of strings or digits that appear in a URL and pass these to a

view function as data, making use of the query string discussed in Chapter 2.

NodesApp has been developed in a modular way that allows the implementation of other features

under the same base URL. Thus, the main urls.py file redirects to another urls.py file only used for

the developed app, allowing the addition of a new part of the application that can be independent

while integrated in the same environment.

38

This file also includes the URLs to media files used in the application.

Views.py

Views are the core of the web application. They receive HTTP requests from web clients and return

HTTP responses using resources like the database and the template render.

Views receive an HTTP Request object as a parameter (request) and return an HTTP Response object.

In the NodesApp, views are kept tidy making use of a helper file, utils.py. Functions are scripted in utils.py

and called in views.py to not crowd this file.

Models.py

Django web applications manage and query data through Python objects referred to as models.

Models define structure of stored data, such as its type, default values, etc.

As explained in chapter 2, the developed application is going to be used to host a REST API. Thus,

it doesn’t need a database. However, an SQLite database has been included to allow the

implementation of more features in the future. NodesApp makes use of session data to store the

needed user information without accessing the database.

HTML templates

Templates allow the programmer to specify the structure of an output document, using placeholders for

data that will e filled in when a page is generated. Templates are used in NodesApp to create HTML but

could also create other types of documents.

The first thing in the development cycle of any application or API is to know the input and output

parameters that it’s going to have. The input parameters need to provide enough information about the

end-device and the network server and are presented in Table 11.

Context: Name Required/Optional Input type Values

Code 11 - urls.py of the project, which redirects to the urls.py of the application

39

End-device: DevEUI Required String 16 hexadecimal characters (usually

lowercase, uppercase accepted)

End-device: AppKey Required String 32 hexadecimal characters (usually

uppercase, lowercase accepted)

End-device: mac

version

Optional String LoRaWAN version format (e.g.

"1.0.2"). Defaults to blank if not

present.

End device: regional

Parameters

optional String LoRaWAN regional parameters

revision (e.g. "B"). Defaults to blank if

not present

Network Server: IP

Address and port

Required string IP address, port.

Application Server:

Authentication user

Required String ASCII, as per ChirpStack

Application Server:

Authentication

password

Required string ASCII, as per ChirpStack

Table 11 - Input needed by the API

As output parameters, the API only needs to reveal if the end-device has been correctly registered and

activated or not. In case it’s not, it should provide information to help the user fixing it. Therefore, output

parameters are the following:

Context: Name Output type Description

End-device: DevEUI String Information about the end-device.

End-device: AppKey String Information about the end-device

Application: d_app string Name of the application to which the end-device

has been assigned.

Application: id_app integer ID of the application to which the end-device

has been assigned.

Device profile: d_devprof String Name of de device profile used to register the

device

40

Status of creation:

info_creation

String It can be ‘successful’ or ‘unsuccessful’

Status of activation:

info_activation

string It can be ‘successful’ or ‘unsuccessful’

Table 12 - output parameters of NodesApp

The file structure clearly puts views.py in the center of the application’s operations. It contains the entire

process, from the receipt of the HTTP request to the emission of the HTTP response. Therefore, it is here

where the architecture of the application must be designed. Five main events can be identified in the

process of activating an end-device, where the gathering of information has been split into two events,

since the source of that information is completely different. This results in three phases, which will be

represented by three views:

Phase 1: Receiving information about the network and the user. The NodesApp must be available

for any user with an active ChirpStack Network. Therefore, the IP address of its application server will

always be a variable that can be populated by the user of NodesApp. Furthermore, ChirpStack’s

Application Server has a user authentication system, only allowing users created in the Application Server

to edit network information, such as creating a new device. Every change made in the network must come

from a user. Therefore, an authentication token must be included in every call to the Application Server’s

API, since it needs it to authenticate the respective call to the Network Server. A global admin user

account is needed to request the creation and activation of a new device. Alternatively, a global admin

user can give access to a regular user, who by default has zero permissions, to the creation and activation

of end-devices.

Phase 2: Receiving information about the end-device. As discussed before, this part needs to be as

dynamic as possible to accomplish the goal of creating a mobility tool. A QR code scanner needs to be

implemented. It must work using a mobile phone and a desktop computer. The QR code reading is started

by the users when they are ready to scan an end-device and this phase ends when a valid QR code has

been detected and successfully read. This part of the application needs to include the option of logging

out to allow users to change the Application Server that they are connecting to and the authentication

information that they are connecting with.

41

Phase 3: Creating and activating the end-device in the ChirpStack Network Server and showing

the results of the operation. After gathering the required information, the main task must be carried out.

This third phase covers everything needed to validate the information read from the QR code, identify the

status and the components of the network, and create and activate the end-device.

Furthermore, extra features are needed to handle errors, timeouts, or user decisions, such as logging out

or leaving the application without completing a task and then returning. A flowchart is presented in Figure

9 to illustrate representing the basic process of the app. The tasks that the end user must perform are

highlighted in red rectangles. They have been kept to the minimum, as was stated by the objectives of this

web tool.

Figure 9 - Flowchart NodesApp

Figure 8 - Schematic of the NodesApp features

42

3.3.1 The home view

The first view in our Django app is called home, as it is the first one seen by the user. Here, users can

authenticate themselves in the network’s application server with their network accounts, which must have

been created beforehand. For this purpose, a form must be submitted, where the user can also input the

URL to the network's Application Server. Then, the path segment leading to the API is always the same

and therefore known. Using the login information to perform a login call to the given URL the application

gets the authentication token needed for the API calls, called Grpc-Metadata-Authorization.

In this case our application is going to handle sensitive information. Therefore, the submit button should

do a POST request. GET requests consist of just a string of characters formatted as a URL. If used, that

data would appear as plain text in the URL, browser history and server logs. A web application that uses

GET requests for admin forms is a security risk: it can be easy for an attacker to mimic a form's request

to gain access to sensitive parts of the system, like the Application Server. POST offers more control over

access and more security, so we are going to use this request method.

Django offers the possibility of handling a form's data with their form classes. However, when using

this technology, the appearance of the website is much more difficult to customize. It would require third-

party user-maintained python packages, which would add inconvenient dependencies to our app.

Therefore, the form will be manually programmed using HTML5 and bootstrap [13] to make the user

interface attractive to the user's eyes. Once the form has been populated, the user can submit it pressing

an accordingly labelled button. This will generate a post request to the same 'home' view.

Now the 'home' view will behave differently upon detecting that it has been called by a POST request.

The first thing is to try to log in the user to verify the data received and obtain the session token necessary

to make changes in the user's ChirpStack network.

A. If a RequestException occurs while performing the request, users are redirected to the standard

'home' view again, since we can't handle the problem. It’s probably a connection problem or the

URL provided didn't respond, so the request timed out. Any unidentifiable error lands here.

B. The URL provided is valid:

• If the status code received in the response is '200', then the URL does point to a ChirpStack

Application Server and the login was successful. Username, URL, and session token (after

proper formatting to match ChirpStack’s bearer token) are saved as session variables in Django

4.1 User interface. The user is redirected to the 'scan' view to continue the process, which will

be explained in 3.3.2 The scan view.

43

• If the status code received in the response is '401', the URL points to a ChirpStack Application

Server but the login was not authorized. This means that either the username or password are

not valid. The form will be loaded again with an extra message explaining the issue.

• If the status code received in the response is '500' or '404', the application server was not

addressed correctly. This probably means that an internal server error occurred (500) or that the

server was not found at all (404). The reason for this is probably that the URL or the port number

have not been correctly entered, which will be explained when the form is loaded again.

• If any other request status code is returned, the form will be loaded again showing that an

unexpected error occurred.

The author assumes that the end user of NodesApp is trying to connect an end-device to a working

ChirpStack network. This means, that the Application Server is connected to, at least, one Network Server

and that a Service Profile was created. An organization (ChirpStack resource) is also needed. Therefore,

this is not checked at this point. The registration and activation of the end-device will fail in the last phase

of the application if this assumption is not met and NodesApp will how an error message.

Cross Site Forgery Protection

The 'csrfmiddlewaretoken' is used as Cross Site Request Forgery protection. This type of attack occurs

when a malicious website contains a link, a form button or some code intended to perform some action

on our website, using the credentials of a logged-in user who visits the malicious site in their browser. A

related type of attack, 'login CSRF', where an attacking site tricks a user's browser into logging into a site

with someone else's credentials, is also covered. The CSRF protection is based on the following things:

• A CSRF cookie that is based on a random secret value, which other sites will not have access to. To

protect against breach attacks, the token is not simply the secret; a random mask is prepended to the

secret and used to scramble it. For security reasons, the value of the secret is changed each time a

user logs in.

A hidden form field with the name ‘csrfmiddlewaretoken’ present in all outgoing POST forms. The value

of this field is, again, the value of the secret, with a mask which is both added to it and used to scramble

it. The mask is regenerated on every call so that the form field value is changed in every such response.

This part is done by the template tag {% csrf_token %}.

For all incoming requests that are not using HTTP GET, HEAD, OPTIONS or TRACE, a CSRF cookie

must be present, and the ‘csrfmiddlewaretoken’ field must be present and correct. If it isn’t, the user will

get a 403 error.

44

When validating the ‘csrfmiddlewaretoken’ field value, only the secret, not the full token, is compared

with the secret in the cookie value. This allows the use of ever-changing tokens. While each request may

use its own token, the secret remains common to all.

In addition, for HTTPS requests, strict referrer checking is done. This means that even if a subdomain can

set or modify cookies on your domain, it can’t force a user to post to your application since that request

won’t come from your own exact domain.

3.3.2 The scan view

With the login details provided, our app can get the required authorization token and is now able to

perform actions on the user's ChirpStack network. In the 'scan' view, the possibility to scan a QR code

from an end device is presented. A log-out option is also available for the users, in case they want to

change the Network Server, or the authentication data entered in the previous step.

This view can be seen as a transition between the home view and the connect view. It also serves as a

point of return for users after they have activated a new node.

Another important feature of this view is the introduction of session data management. After

authenticating themselves, users get a token which is valid in their ChirpStack network. This token is

saved in Django’s session data along with the username and the Network Server’s IP Address. NodesApp

checks after every request if the user is authenticated. That is, if the session data is still valid. ChirpStack’s

tokens are fungible, and so are the ones in NodesApp. Session data expires before the bearer token would

expire in the ChirpStack network to ensure that no connection is interrupted by token lapsing. This adds

up to the rest of NodesApp security features.

45

3.3.3 The connect view

This view is the most important part of the application, since it contains the API that has been developed

to connect the end devices to the network. Therefore, its architecture is represented in the following flow

chart.

Figure 10 - Flow Chart of the connect view

46

First, the camera activates and checks every frame to detect any QR or bar code in them. If the user puts

the QR code inside the camera’s field of vision it gets detected and its content is analyzed. If its data

matches the expected format, NodesApp saves the content and closes the camera. After this, the activation

process begins. After everything has been completed, the view loads the HTML showing the results of

the operation, which are basically divided in three:

• NodesApp has been able to activate the end-device successfully.

• An error has occurred. It was not possible to add the end-device.

• The end-device was already created or even activated.

How NodesApp performs the necessary tasks is thoroughly explained in the following two sections.

QR code scanner

The following QR code has been generated. It contains a string (plain text) consisting of the DevEUI in

first place and the AppKey in second, separated by just a comma. The official QR design recommendation

stated by the LoRa Alliance in its Technical Recommendation 005 [1] is different, but for testing purposes,

the previously mentioned format has been chosen. The dictionary option has been discarded because

variable names could be different between end device developers. This would cause problems when

recognizing each variable. This way, the order is what determines their meaning. Here is an example of a

QR, which if scanned, returns the following string:

Only the device EUI and application key are going to be stored inside the QR code. Optionally,

LoRaWAN version and region parameter can also be included. These will default to ‘1.0.2’ and ‘B’ if not

present.

NodesApp program opens the camera and keep analyzing each frame until it detects a QR code. Once

detected, it should decode its contents and save it in a string. After that, the camera should be released.

Figure 11 - QR code. This one contains the device keys ‘70b3d549912693f3,11B0282A189B75B0B4D2D8C7FA38548B’

47

Python is often used to aid in computer vision programs. Therefore, very good libraries can be easily

found in this field.

First, a simpler script only opening the camera, recognizing the barcode in a frame and drawing a

rectangle on it. The edited frame will be saved to be checked. Here, two external libraries are used:

'cv2' imports the OpenCV library. The Open-Source Computer Vision Library is an open-source computer

vision and machine learning software library, as its name implies. It was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine perception in the

commercial products. It has C++, Python, Java and MATLAB interfaces and supports Windows, Linux,

Android and Mac OS.

'pyzbar' imports the pyzbar library, a pure Python library that reads one-dimensional barcodes and QR

codes using the zbar library, an open-source software suite for reading bar codes from various sources,

such as video streams, image files and raw intensity sensors. zbar supports many popular types of bar

codes, including EAN-13/UPC-A, UPC-E, EAN-8, Code 128, Code 39, Interleaved 2 of 5 and QR Code.

Therefore, an end-device manufacturer has more flexibility and can generate his preferred barcode

symbology.

Here is a brief explanation of the code:

1. cv2.imread(image) decodes a saved image to analyze its contents.

2. cv2.rectangle(img, start_point, end_point, color, thickness) draws a rectangle given an image to

draw on and the desired rectangle´s coordinates, color and thickness.

3. pyzbar.decode(image) detects the barcodes in the image. It returns a list of barcode objects if it

has detected any.

Code 12 - script to detect a QR and draw a rectangle around it

48

a. Barcode class attributes:

i. rect: contains the bounding box of the rectangle to which the barcode

corresponds, as the top-left corrdinates (x, y), the height (h) and width (w).

ii. type: Type of barcode detected, as explained before.

iii. data: decoded barcode content, as a string.

Passing the saved QR code as argument (img), the function returns a saved "image.png", which is shown

below:

Upon encountering this image correctly saved, we know that the QR code gets correctly identified. The

next step is to change the saved image for a captured video frame. This is done by the following code:

Figure 12 - Proof of successful QR code detection

49

Here is a brief explanation of the code:

• capture = cv2.VideoCapture() captures video. Its argument can be either the device index (0 for

default camera) or a video file. It captures frame-by-frame (returned capture object) and at the end,

the capture should be released.

a. The is.Opened() attribute returns a boolean that can be used to check if the camera has been

correctly identified and accessed. An error handling if state has been introduced using this

attribute.

b. The read() object is the main VideoCapture use case. It returns a boolean (ret) to know if

the frame has been correctly decoded and the decoded frame itself. Another error handling

if state has been coded to exit the loop if the frames are not being capture correctly, since it

would be pointless to continue.

• The detect_read_barcode(frame) function will be coded next, after checking if this python definition

is working correctly. It should return the barcode's content, which will be . Of course, the possibility

Code 13 - QR code detecting feature

50

that no barcode has been detected is handled, putting the operations on the barcode info behind an

if state which checks if there is any barcode info to analyze. If there is, it will be matched against

the expected syntax. This way, we prevent that non-matching QR codes disturb our application. If

the syntax matches, the loop will stop and the barcode info saved (by now, printed to check if it

works).

The last step is to write the code that will decode the information inside the QR code. As before, the

pyzbar library has been used to accomplish our goals. This definition can also return the type of the

barcode detected, which could be interesting feedback to the user. For now, we leave if unused.

Handling errors in the QR reading process: This process is highly dependent on the users' hardware

and its accessibility, as well as the users' actions. Therefore, a lot of problems can occur while our

application is trying to read the keys of a new end device.

1. The camera may not be accessible at all.

2. The captured frames have decoded. If that process fails, the rest of the code won't work.

3. Users may not be able to put the QR code inside the camera's view range or may decide to do

something else instead. A timeout is implemented to release the video capture if the code

detection takes more than a minute.

Every one of the errors listed above has its error code. If anything happens, users are redirected to the

'scan' view again, where appropriate feedback will be given.

Code 14 - helper function, extract the information found in the QR code

51

Activation process

As discovered during the reverse engineering phase of this project [3.2 Understanding the task - Reverse

engineering], the process of activating a new end-device in a ChirpStack network has multiple layers and

requires some considerations. At this point, NodesApp has already proved that the user’s authentication

details are correct and, thus, it’s able to access the network. A valid service profile and network server ID

are also a requirement, since these cannot be created via an HTTP request to the API.

This section starts with the following information:

• About the node: DevEUI, AppKey, MAC version, and regional parameters revision.

• About the network and the user: valid bearer token, Application Server’s IP address.

The first thing that NodesApp needs is valid IDs from a service profile and a network server. The

application server can give us information about this. NodesApp will take the ID of the first item in both

returned lists and use them for the following steps.

The default application that NodesApp uses to register end-devices is called RHAapplication. If this

application is already present, the ID of the already available application is retrieved for later use. If

NodesApp doesn’t see an app called RHAapplication, it creates one with such name, saving its ID which

is a field returned by the API after successfully creating the application.

A similar process is followed with the device profiles. In this case, there isn’t a default device profile

name. As stated during the testing phase, multiple service profiles can share the same name. However,

this would be chaotic for the users. Also, devices will have different hardware components and

characteristics. Therefore, a new device profile is created each time an end-device joins the network. The

name is composed by RHA DevProf and the last four digits of the Device EUI. If the device had been

previously registered, its device profile will be used. The ID of the device profile gets saved by NodesApp.

With the application ID and the device profile ID the end-device can be registered. The application

directly sends the request for this. The possible answers are shown in 3.2 Understanding the task - Reverse

engineering. NodesApp analyses receives the confirmation or an error code and saves the respective result.

A comprehensive explanation is also created to give feedback to the user.

In the activation process the app follows a similar sequence. In this case, the URL to make the request

to needs to be populated by the devEUI, which entails a relative security risk. However, this is how

ChirpStack handles device activation and can’t be avoided. NodesApp saves the result of this operatio to

give feedback to the user. While trying to activate the device, a successful activation or an error stating

that the device is already active in the network are common. A third option covers the case of a non-

52

registered device. NodesApp users will never encounter this issue since non-registered devices that are

scanned change their status in the previous step. However, if an error has occurred while trying to register

the device, this third option gives double feedback to the user.

At the end of this process, the information gathered in each step is presented to the user rendering an

HTML template.

53

Chapter 4

Results

The result of this work is the working prototype called NodesApp. How can the creation of a web

application be presented and assessed? This app aims to improve time efficiency in LoRaWAN

deployments in a mobility environment, so the time saved by using NodesApp needs to be analyzed.

Furthermore, the result of this application are its user interface and its user experience. Last but not least,

a final testing phase has been performed to ensure that the features that this prototype includes are fully

functional. These are the three main topics discussed in this section.

4.1 User interface

The application has been designed to fit both smartphone and PC screens. The HTML components used

are flexible and adapt to every screen. The three pages are static, which means that they do not contain

JavaScript methods to allow interaction with the user on the same page, apart from basic aesthetic

components.

There is one page for each view. The web page design stays consistent across them, which is a very

important design feature in every kind of application. Consistency can be looked at from two different

points of view.

On the one hand, the application is themed to make the design coherent on every page and between

pages. The theme has been selected according to ITI's main web page and colors. Thus, orange dominates

in every page. Furthermore, Bootstrap technology and its CSS classes allow us to build a modern front-

end to enhance the user's experience. Font sizes, page headers and buttons are styled the same. A focus

on simplicity and functionality is followed throughout the entire web page. NodesApp is an industrial

application, and it should look and feel that way. It has only one purpose, to connect an end device to a

54

LoRaWAN network. No extra features are needed; thus, they are not included. This optimizes

development time and cost.

On the other hand, the application can be accessed using a computer as well as a mobile phone and

responds the same way on both. The design stays consistent even when changing the platform. NodesApp

can be used for mass activation using a computer or single activations in a mobility environment, which

gives this app the desired flexibility of use.

The home view

This is the first page that the user sees when connecting to NodesApp. Because this application uses

Django’s session data management and not cookies, no warning is required, which makes this first contact

smoother. Figure 13 is a screenshot of the PC version of this page.

Starting from the top, the header consists of the ITI logo and the purpose of the application, which is

assisting in the connection of end-devices. Then the app welcomes the users and explains the first step

that they need to take, which is to populate the from below. This form has placeholders to help users

identifying the correct information to input. It is also divided into two segments; authentication details

and the IP address of the network’s application server to be used.

The ‘log in’ button is placed on the bottom. After clicking it, NodesApp sends a request to the introduced

IP address. The possible results have been analyzed in 3.3.1 The home view. The user interface shows the

result of that analysis in the HTML template. If the authentication fails, a red message appears over the

field that has been deemed as the cause of the error. If the source of the error is unknown, this is also

stated when the home view is reloaded.

Figure 13 - Screenshot of the PC version of the home view user interface

55

The scan view

The HTML template of the scan view inherits the header of the page. This time, it also includes a log

out button to return to the home view, clearing all session data. This page is the one which is loaded when

a user opens NodesApp, and session data is still valid. Therefore, the log out button includes the username

to remind the user of the authentication details used when initiating the session. For the same reason,

information about the Application Server is also included at the bottom of the page, specifically at the

bottom of a Bootstrap card. This item has been included to highlight the QR scanning section as a special

module. At the top it includes the title ‘QR code scanner’, then a brief indication to the users, and a QR

code to exemplify what needs to be scanned. Under the QR code, users can find the ‘Begin scanning’

button that allows them to proceed with the activation. Lastly, the aforementioned information about the

Application Server is presented below the button.

Figure 14 - Screenshot of the mobile version. Scan view HTML template without error messages.

56

The connect view

This template also inherits the same header, keeping the design consistent in conjunction with the three

phases of an individual process. It also includes the log out button introduces in the scan view to allow

the user to directly log out, without returning to the scan view.

The title of this page reveals the result of the operation since it’s the most important thing that the user

wants to see. The activation can either be successful or unsuccessful. The body of the page reveals

information about the device and its creation and activation.

• The keys read from the QR are shown to provide transparency and usefulness to NodesApp.

The user may want to personally check this keys, or copy-paste them in another place.

• The name and ID of the application and device profile assigned to the new end-device are

presented in this page. This is useful information for the user.

Finally, a button gives users the ability to return to the scan page and activate another end-device.

Figure 15 - Screenshots of the mobile version. Connect view HTML template successful activation

57

4.2 Time saving with NodesApp

The Django Framework used is often used for developing much bigger applications. Our website's calls

per minute and required computing power can be handled easily by Django and basic server hardware.

Often, the bottleneck will be how fast the user's deployed ChirpStack Application Server handles the

requests that our application sends to it. As NodesApp has no control over that, the speed of activation

will not be measured until the physical connection is established, but until the ChirpStack Application

Server has the necessary keys to achieve it.

Features of the application that consume time:

• Authentication.

• Entering the IP address.

• Rigid structure. Special cases would require some previous personalization of the app.

The first two tasks could be done only once a day, for the first activation, leaving the rest of the

activations just one click away. The third could be problematic. It is going to be included in this analysis,

but it’s a direct consequence of NodesApp being a prototype of a future application.

The current state of the app allows the elimination of following tasks:

• Creation of an application, including its configuration

• Creation of a device profile, including its configuration

• Creation of a device, including the selection of an application, a device profile, and a few extra

parameters.

• Activation of a device, including the input of device keys.

The first two points could be done just one time, leaving only the creation and activation as repetitive

and unavoidable tasks.

The analysis of time consuming while deploying a new end-device is not equal among all users. More

experienced and prepared users will be able to effortlessly navigate through the Application Server, while

unexperienced users will find NodesApp much easier to understand. This means that the time difference

between the direct use of the Application Server and NodesApp will be much higher in the first end-

device deployment that a user performs. However, the time comparison does not make sense in that

situation, as the main advantage of NodesApp at that point is the simplification of the task in terms of

technology understanding, not in speed.

58

Therefore, the following analysis includes only participants who have done at least 5 end-device

activations before entering this study, where they do 5 more. However, both apps were returned to the

‘initial’ state after the 5 activations prior to the experiment. That means a new application and a new

device profile need to be created.

The graphical analysis presented in Figure 16 shows that participants achieved the first activation 49,8

seconds faster using NodesApp than using ChirpStack’s Application Server. This means, that users would

invest around 46% less time in the first deployment with the developed tool. This is explained by the lack

of configuration in NodesApp and the ability to scan the keys instead of typing them.

Figure 16 - time performance comparison in 5 consecutive end-device activations between ChirpStack Application Server and

NodesApp, 5 subjects of different technical expertise.

The second deployment is where the difference in performance between both methods is at its greatest.

Users in ChirpStack still need to type the keys, while NodesApp lets them hit two buttons and scan another

device right away. Participant three, as Figure 17 shows, is above the mean in every one of the five

deployments. This participant experiments a much greater decrease in time performance between the first

and the second deployment when using NodesApp than with ChirpStack’s Application Server. This shows

that NodesApp also accomplishes its second goal, to lower the technological barrier in the deployment of

a LoRaWAN network.

Lastly, the time spent per deployment in NodesApp stabilizes after this second deployment, while

ChirpStack’s Application Server decreases until the fourth deployment and then rises again. This increase

could be caused by non-representative data which could is still significant because of the few participants.

0

20

40

60

80

100

120

1 2 3 4 5

se
co

n
d

s

Number of activations

Time performance comparison

ChirpStack AS

NodesApp

59

Another reason could be fatigue after copying several key pairs for the previous four devices. In this last

case, NodesApp could prove even more valuable.

Figure 17 - Time performance comparison in 5 consecutive end-device activations between ChirpStack Application Server and

NodesApp, subject with low technical expertise.

4.3 Testing NodesApp

NodesApp will encounter a lot of different scenarios while trying to activate an end-device. The state of

the network can vary, and the creation of an application and service profile could be troublesome. Error

handling techniques keep the user informed about situations that the application can’t handle, but the

implemented features should work in any situation.

The activation of an end-device has been tested several times in every one of the following scenarios,

always being able to successfully activate a valid end-device:

Regarding the presence of service profiles and Network Servers:

• Only one service profile is found.

• Multiple service profiles are found.

• Only one Network Server is found.

• Multiple Network Servers are found.

• Any combination of the above.

Regarding the presence of applications in the Application Server:

0

20

40

60

80

100

120

140

160

1 2 3 4 5

se
co

n
d

s

Number of activations

Time performance comparison, subject 3

ChirpStack AS

NodesApp

60

• No application is found. Here the critical part is to accept a blank list as a response.

• Only one application is found, the default one in NodesApp called ‘RHAapplication’

• One or more applications are found, but none of them is named ‘RHAapplication’.

• Several applications are found, one of them called ‘RHAapplication’.

Regarding the device profile:

• No device profile is found. Here the critical part is to accept a blank list as a response.

• Only one device profile is found.

• One or more applications are found.

• If the device was already scanned and a device profile with the same name is already present.

61

Chapter 6

Conclusions and future work

The following conclusions can be extracted from the work carried out in this thesis:

• ChirpStack’s LoRaWAN open-source technology has been selected as the best choice to

bring LPWAN networks closer to the industrial sector, based on the required investment

and the technological knowledge needed to deploy it.

• A fully functional web application has been developed to help deploying LoRaWAN

nodes in a mobility environment.

• This application has achieved further abstraction of the inherent technology to allow

unexperienced users to comfortably deploy LoRaWAN end-devices.

• The deployment of LoRaWAN nodes in a mobility environment has been facilitated by

this thesis. Now, any mobile phone with internet connection can do it thanks to an easy-

to-use mobile friendly web application.

• A very significant reduction in time while deploying LPWAN nodes has been achieved.

• The technical barriers that people with low technical expertise face while deploying

LPWAN networks has been decreased.

 These results show that this application has the potential to become an industrial tool which can

help experience and unexperienced people to deploy an industrial LPWAN network. The following

ideas should be considered when planning future development lines:

• Use the already implemented database to store user, or business data. For example, the IP

addresses of Application Servers could be saved and selected afterwards.

• Implement an NFC scanner to support another popular choice for of end-device key

equipment.

62

• Add a feature which enables the user to select the desire application where the node should

be registered after getting the full list available in the selected Application Server.

• Further testing needs to be done, primarily to check if NodesApp can escalate.

63

Bibliography

[1] Anbar Mohammed, R. Abdullah, S. Al-Sarai, and A. B. al Hawari, “Internet of Things Market Analysis

Forecast 2020-2030,” 2020.

[2] N. B. Jones and C. M. Graham, “Can the IoT Help Small Businesses?,” Bulletin of Science, Technology and

Society, vol. 38, no. 1–2, pp. 3–12, Feb. 2018, doi: 10.1177/0270467620902365.

[3] Orne Brocaar, “ChirpStack, opne-source LoRaWAN® Network Server stack,” 2021.

https://www.chirpstack.io/project/ (accessed Aug. 26, 2021).

[4] D. Ismail, M. Rahman, and A. Saifullah, “Low-Power Wide-Area Networks: Opportunities, challenges, and

directions,” Jan. 2018. doi: 10.1145/3170521.3170529.

[5] D. Soni and A. Makwana, “A SURVEY ON MQTT: A PROTOCOL OF INTERNET OF THINGS(IOT),”

Aug. 2017.

[6] Semtech Corporation, “LoRa and LoRaWAN: A Technical Overview,” 2020.

[7] LoRa Alliance Technical Committee, “LoRaWAN Device Identification QR Codes for Automated

Onboarding Technical Recommendation (TR005),” 2020.

[8] W. Ayoub, A. Samhat, F. Nouvel, M. Mroue, and J. Prévotet, “Internet of Mobile Things: Overview of

LoRaWAN, DASH7, and NB-IoT in LPWANs standards and Supported Mobility,” 2018, doi:

10.1109/COMST.2018.2877382ï.

[9] Semtech Corporation, “An In-depth Look at LoRaWAN® Class B Devices,” 2019. Accessed: Mar. 10, 2022.

[Online]. Available: https://lora-developers.semtech.com/library/tech-papers-and-guides/lorawan-class-b-

devices/

[10] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content,” 2014.

[Online]. Available: http://www.rfc-editor.org/info/rfc7231.

[11] “balenaEtcher.” https://www.balena.io (accessed Mar. 10, 2022).

[12] “The Eclipse Foundation.” https://www.eclipse.org/org/foundation/ (accessed Mar. 10, 2022).

[13] “Bootstrap.” https://getbootstrap.com/ (accessed Mar. 10, 2022).

64

Annexes

The following code files:

• MQTT-client.py

• urls.py

• utils.py

• views.py

Helper files to launch the app in a virtual environment:

• README

• Requirements

Information about the experiment:

• Excel file with detailed data about the experiment.

