

PROGRAMA DE DOCTORADO EN DISEÑO, FABRICACIÓN Y GESTIÓN DE PROYECTOS INDUSTRIALES

PROPUESTA DE INCLUSIÓN DE ESFUERZOS EN EL CONTROL DE UN BRAZO ROBOT PARA ASEGURAR EL CUMPLIMIENTO DE LA RUGOSIDAD SUPERFICIAL DURANTE OPERACIONES DE LIJADO EN DIFERENTES MATERIALES

TESIS DOCTORAL PRESENTADA POR Rodrigo Alonso Pérez Ubeda

> DIRECTORES Dr. Santiago C. Gutiérrez Rubert Dr. Ranko Zotovic Stanisic

> > Valencia, febrero de 2022

i

Índice

Resumen	ix
Abstract	xi
Resum	xiii
Índice de figuras	xxi
Índice de tablas	xxv
Capítulo 1: Introducción	1
1.1. Antecedentes	1
1.2. Hipótesis y Objetivo de la investigación	4
1.2.1. Hipótesis	4
1.2.2. Objetivo General	4
1.2.3. Objetivos Específicos	5
1.2.4. Preguntas de Investigación	5
1.3. Estructura de la Tesis	5

1.4. Resumen de las publicaciones	6
Capítulo 2: A study on robot arm machining: Advance and future challenges	9
Abstract	11
2.1. Introduction	12
2.2. Main challenge: Robotic machining model	14
2.3. Advances in robotic machining	17
2.3.1. Control of the machining process	18
2.3.2. Planning and programming trajectories in machining	20
2.3.3. Redundancy	21
2.3.4. Posture optimization in robots	22
2.3.5. Vibration/chatter analysis	24
2.3.6. Devices and methodologies	26
2.4. Future Works	27
2.5. Conclusions	28
2.6. References	29
Capítulo 3: Design and Manufacturing of an Ultra-Low-Cost Custom Torque	
Sensor for Robotics	35
Abstract	37
3.1. Introduction	38
3.2. Design Methodology	41
3.2.1. Selection of material for elastic element	42
3.2.2. Analysis of design requeriments	43
3.2.3. Selection and arrangement of strain gauges	44
3.2.4. Manufacturing requirements and functional verification	47

5.2.5. 7 mary fical model	
3.3. Results and discussion	51
3.3.1. Design optimization	51
3.3.2. Analysis of deviations in manufacturing	52
3.3.3. Dynamic properties of the sensor	54
3.3.4. Manufacturing process	55
3.3.5. Calibration procedure	57
3.3.6. Manufacturing costs	61
3.4. Conclusions	62
3.5. References	63
Capítulo 4: Study of the application of a collaborative robot for machi	ning tasks .
	67
Abstract	69
4.1. Introduction	69
4.1. Introduction4.2. Methodology	69 73
4.1. Introduction4.2. Methodology4.3. Results and discussion	69 73 76
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 	69 73 76 76
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 	69 73 76 76 78
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 4.4. Conclusions 	
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 4.4. Conclusions 4.5. References 	
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 4.4. Conclusions 4.5. References Capítulo 5: Force Control Improvement in Collaborative Robots throu 	69 73 76 76 78 80 80 gh Theory
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 4.4. Conclusions 4.5. References 4.5. References Capítulo 5: Force Control Improvement in Collaborative Robots throu Analysis and Experimental Endorsement 	
 4.1. Introduction 4.2. Methodology 4.3. Results and discussion 4.3.1. Machining with robots 4.3.2. Cutting forces 4.4. Conclusions 4.5. References 4.5. References Capítulo 5: Force Control Improvement in Collaborative Robots throu Analysis and Experimental Endorsement 	

	5.2. Description of Dynamic model for a robot with elastic joints	88
	5.3. Inner/outer control loops	89
	5.4. Analysis of inner motion loops	92
	5.4.1. The stiffness matrix	94
	5.4.2. Absolute cartesian position inner loop	100
	5.4.3. Incremental cartesian position inner loop	103
	5.4.4. Cartesian Velocity inner loop	104
	5.5. Methodology	106
	5.5.1. Experimental setup	106
	5.5.2. Method	108
	5.5.3. Task planning	109
	5.5.4. Stiffness parameters identification	110
	5.6. Results and discussions	111
	5.6.1. The inner loop	111
	5.6.2. The outer loops	113
	5.6.3. Polishing application	117
	5.7. Conclusions	119
	5.8. References	121
Ca	apítulo 6: Behavioural study of the force control loop used in a collaborativ	/e
ro	bot for sanding materials	125
	Abstract	127
	6.1. Introduction	128
	6.2. Materials and Methods	131
	6.2.1. Experimental setup	131

6.2.2. Design of experiments	133
6.2.3. Analysis of variance	135
6.3. Results and discussions	136
6.3.1. Effect of the parameters	136
6.3.2. Graphs of force response and surface aspects	143
6.3.3. Effect of feed rate	148
6.3.4. Comparison with a standard industrial robot	150
6.4. Conclusions	151
6.5. References	154
Capítulo 7: Discusión general de los resultados	157
Capítulo 8: Conclusiones	165
8.1. Cumplimiento de los objetivos	165
8.2. Aportaciones realizadas	166
8.3. Líneas de investigación futuras	167
Capítulo 9: Referencias bibliográficas	169

Índice de figuras

Figure 2.1. (a) Principle of real time deformation compensation. (F_m^s : sensing force,
$\boldsymbol{q_r}$, joint position) [6], [9]
Figure 2.2. Stability as function of the redundancy of 1-dof [29] 22
Figure 2.3. The placement of workspace with respect to robot [32]24
 Figure 2.4. Comparison between Pan et al. and Cen et al. chatter avoidance methods: (a) Old method, (b) New method [33]. F: force, K: stiffness, β: angle between X-axis and force, γ: angle between force and maximum stiffness
Figure 3.1. Use of sensors in a robotic arm, (a) single force and torque sensor located in the manipulator, (b) torque sensors arranged in each joint of the robot arm
Figure 3.2. Types of force/torque sensor structures: (a) Crossbeam, (b) Crossbeam modified, (c) Body E-type membrane (EE) (d) Sliding structure, (e) Four- bar linkage shape, (f) Square cube
Figure 3.3. Types of torque sensor structures with gauges: (a) Solid Cylinder, (b) Hollow Cylinder, (c) Hub-Sprocket (d) Hollow Cruciform, (e) Hollow Hexaform, (f) Spoke Topology. [2]
VIII

Figure 3.4. Hub-Sprocket Geometry: (a) Beam deformation; (b) Attachment of gauges
Figure 3.5. Complete Wheatstone bridge
Figure 3.6. Example of different geometries, (a–d) with the results of CAE analysis.
Figure 3.7. Mechanical model of an elastic body under Mz49
Figure 3.8. Behaviour strain of the elastic bodies with geometries A and D
Figure 3.9. Finite element analysis: (a) Stress analysis; (b) Strain analysis
Figure 3.10. Strain variation in accordance with tolerance: (a) Location, (b) Size and (c) Flatness
Figure 3.11. Harmonic response of the diagrams under the measuring of torque Mz.
Figure 3.12. Time response of the sensor a step input de 20 Nm
Figure 3.13. Improvements in manufacturing (a) Manual control bench; (b) CNC milling machine; (c) Sensor 1 Nm; (d) Sensor 20 Nm
Figure 3.14. Calibration Bench
Figure 3.15. Calibration circuit
Figure 3.16. Graph bridge output voltage vs. applied torque: (a) 1 Nm Sensor, (b) 20 Nm60
Figure 4.1. (a) Block scheme of force control with inner position loop; (b) Block scheme of force control with inner velocity loop
Figure 4.2. (a) Machining cell with Mitsubishi robot; (b) Machining cell with UR3 robot74
Figure 4.3. (a) Machined aluminum part; (b) Machined resin part face a; (c) Machined resin part face b; (d) Machined resin part with experiments76
Figure 4.4. (a) Vertical deviation in aluminum; (b) Vertical deviation in resin; (c) Horizontal deviation in resin77

Figure 4.5. Machining forces (a) Experiment 1; (b) Experiment 4; (c) Experiment 6; (d) Experiment 9
Figure 5.1. Force control with inner motion loops (a) with inner absolute position loop, (b) with inner incremental position loop, and (c) with inner velocity loop
Figure 5.2. Block schemes of operational space control (a) with Jacobian inverse and (b) with Jacobian transpose
Figure 5.3. The joint module of the Light WeigthRobot III, adapted from Institute of Robotics and Mechatronics of German Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt-DLR) [38]
Figure 5.4. Experimental setup 107
Figure 5.5. Scheme of experiments
Figure 5.6. Force control with inner position loop
Figure 5.7. Stiffness analysis in the inner position loop
Figure 5.8. Force control with inner velocity loop
Figure 5.9. Proportional derivative (PD) vs. proportional with velocity feedback (PV) comparison
Figure 5.10. Integral action (PI) vs. feedforward action (P + FF) comparison 115
Figure 5.11. Polishing with force control with reference force 5 N
Figure 5.12. Polishing with Force control with reference force 10 N
Figure 6.1. Experimental setup
Figure 6.2. Marginal means. (a) Surface roughness, (b) Standard deviation, (c) Maximum deviation, (d) Minimum deviation, (e) Number of upper peaks, (f) Number of lower peaks, (g) Mean of contact force
Figure 6.3. The surface appearance of sanding discs
Figure 6.4. Experiment E6, sanding steel with P+FF control and reference force of 5 N. (a) Force response, (b) sandpaper aspect and (c) visual surface finish.

x

Figure 6.5. Experiment E2, sanding aluminium with P+FF control and reference force
of 5 N. (a) Force response, (b) sandpaper aspect and (c) visual surface
finish145
Figure 6.6. Experiment E12, sanding brass with PIV control and reference force of 5
N. (a) Force response, (b) sandpaper aspect and (c) visual surface finish.
Figure 6.7. Experiment E20, sanding PVC with PIV control and reference force of 5
N. (a) Force response, (b) sandpaper aspect and (c) visual surface finish.
Figure 6.8. Experiment E14, sanding wood with P+FF control and reference force of
5 N. (a) Force response, (b) sandpaper aspect and (c) visual surface
finish147
Figure 6.9. Results for cut feed variation on brass
Figure 6.10. Force response for UR3 sanding wood with a sandpaper grain size of
400151

Índice de tablas

Table 2.1. Comparison of CNC machines and robots for machining [4].	. 13
Table 2.2. Summary of related works for the Cartesian stiffness matrix [12]	. 15
Table 3.1. Mechanical Properties: Aluminum 7075-T6	. 42
Table 3.2. Strain gauge specifications.	. 45
Table 3.3. Strain of the sensors.	. 52
Table 3.4. Voltage variation in accordance with manufacturing deviation.	. 53
Table 3.5. Resonance Frequencies	. 54
Table 3.6. Calibration results	. 60
Table 3.7. Sensitivity and torsional rigidity for sensor type Hub-Sprocket	. 61
Table 3.8. Manufacturing costs per machine type	. 61
Table 4.1. Robot specifications.	. 74
Table 4.2. Experiments parameters.	. 75
Table 4.3. Roughness results.	. 78
Table 5.1. Typical control action for outer force loops	. 91

Table 5.2. Response force of the control force with absolute position inner loop
Table 5.3. Response force of the control force with incremental position inner loop.
Table 5.4. Response force of the control force with inner velocity loop105
Table 5.5. Stiffness joint parameters
Table 5.6. Comparison of outer loops116
Table 5.6. Comparison of outer loops117
Table 5.8. Results for polishing task
Table 6.1. Design of the experiments
Table 6.2. Experimental results. 137
Table 6.3. ANOVA results (part one)
Table 6.4. ANOVA results (part two). 139
Table 6.5. Test results for the cut feed variations