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In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known

to decrease with increased structural tissue remodeling, referred to as fibrosis. In

addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable

target for catheter ablation. However, it remains an open challenge to find fibrotic

areas and to differentiate their density and transmurality. This study aims to identify

the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated

cardiac electrograms, combined with a generalized model of clinical noise, reproduce

clinically measured signals. Our hybrid dataset approach combines in silico and clinical

electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate.

This approach captures different in vivo dynamics of the electrical propagation reflected

on healthy electrogram morphology and synergistically combines it with synthetic fibrotic

electrograms from in silico experiments. The machine learning algorithm was tested

on five patients and compared against clinical voltage maps as a proof of concept,

distinguishing non-fibrotic from fibrotic tissue and characterizing the patient’s fibrotic

tissue in terms of density and transmurality. The proposed approach can be used to

overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation

targeting fibrotic areas.

Keywords: atrial fibrillation, fibrosis, machine learning, bidomain, transmurality, density, cardiac modeling

1. INTRODUCTION

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is characterized by an irregular
heart rhythm, which is upheld by structurally altered fibrotic tissue (Platonov, 2017). Fibrosis
modifies the cardiac substrate and creates a heterogeneous medium for electric propagation.
Specifically, the deposition of excessive collagen fibers in the extracellularmatrix affects intercellular
connections, increases conduction anisotropy, and leads to slowed conduction. As such, fibrosis
facilitates functional and structural conduction block, promotes reentry, and provides anchors for
reentrant activity. In this way, fibrotic remodeling of the cardiac substrate favors initiation and
maintenance of cardiac arrhythmia (Hinderer and Schenke-layland, 2019).
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Catheter ablation is a first line therapy for patients with
persistent AF (Hindricks et al., 2020). Substrate ablation
strategies guided by a voltage map derived from the amplitude
of intracardiac electrograms define areas based on a cut-off
value (frequently <0.5mV during sinus rhythm) as pathological
tissue and target them for ablation (Malcolme-Lawes et al.,
2013; Kawaji et al., 2019; Nairn et al., 2020). Several clinical
studies have shown a correlation of fibrosis identified through
late gadolinium enhancementmagnetic resonance imaging (LGE-
MRI) with reduced local signal amplitude (“voltage”) in atrial
electrograms (Jadidi et al., 2013; Caixal et al., 2020). Using
low voltage areas as targets for ablation has not yet shown
an optimal and consistent reduction in the rate of recurrent
atrial fibrillation (Verma et al., 2015; Jadidi et al., 2016; Schade
et al., 2020). In addition, the interpretation of the electrograms
measured at the endocardial surface of the tissue is still poorly
understood, and there is no consensus about the voltage cut-off
value to define arrhythmogenic substrate (Tzeis et al., 2019; Nairn
et al., 2020).

In recent years, computational modeling has provided
detailed insight into the mechanistic role of fibrotic
tissue characteristics in the initiation and maintenance of
arrhythmias (McDowell et al., 2013; Roney et al., 2016; Gokhale
et al., 2017). In silico experiments showed that the morphology
of the electrograms is related to tissue heterogeneities (Keller
et al., 2014; Gokhale et al., 2017) and help to improve ablation
strategies for treating AF (Lin et al., 2016; Jadidi et al., 2020).
Controlled simulation environments provide the ideal setup
to analyze how the fibrosis characteristics volume fraction and
transmurality affect intracardiac signals and can be leveraged to
pinpoint arrhythmogenic tissue.

With the increasing amount of data available, the use of
machine learning for the interpretation of cardiac signals is
steadily increasing. Machine learning has been extensively used
in electrocardiogram analysis due to its potential to analyze
big datasets and uncover mechanistic information about cardiac
electrical function (Cabrera-Lozoya et al., 2017; Hannun et al.,
2019; Lown et al., 2020; Luongo et al., 2020).While several studies
aimed at quantifying AF mechanisms and automatically localize
reentrant drivers using in silico or clinical electrograms (Schilling
et al., 2015; McGillivray et al., 2018; Lozoya et al., 2019), less
attention has been paid to the information that intracardiac
electrograms can provide about the cardiac substrate based on
the signal morphology due to the effect of fibrosis. Campos et al.
(2013) classified different types of fibrosis based on electrogram
features using in silico experiments. However, quantification
of fibrotic volume fraction and transmurality in the atrial
substrate has not been reported yet to the best of our knowledge.
Additionally, data-driven approaches can help to overcome the
use of a single voltage cut-off value to characterize the cardiac
substrate and distinguish between non-fibrotic and fibrotic tissue
based on a more comprehensive, holistic set of criteria.

We aim to quantify the volume fraction and transmurality
of fibrosis present in the cardiac tissue by machine learning
on features extracted from intracardiac electrograms. In the
current state, clinical electrograms do not provide information
to directly characterize the fibrotic substrate. Therefore, we

created highly-detailed multi-scale biophysical simulations that
capture the electrogram signature of fibrotic tissue. Additionally,
clinical electrograms from high voltage areas and low complexity
captured the variability of healthy tissue. Combined with the
simulated electrograms, they formed the basis of a hybrid dataset
to train a machine learning algorithm based on features extracted
from intracardiac signals to characterize the atrial substrate.

2. MATERIALS AND METHODS

We created unstructured meshes to represent a patch of cardiac
tissue surrounded by a bath (blood). On top of the tissue, we
placed realistic models of two commercially available intracardiac
mapping catheters, as depicted in Figure 1. Fibrosis was modeled
with different densities and transmurality within a circular area
in the center of the patch.

2.1. Tissue Setup
Tissue patch dimensions were 30 × 30 × 2mm with an
average element length of 200 µm, as shown in Figure 1A.
To address the variability that ionic models could introduce
in the calculation of electrograms, we used two different ionic
models to simulate the electrophysiology of the human atrial
tissue to generate the hybrid dataset. Human atrial cellular
electrophysiology was characterized by the mathematical models
proposed by Courtemanche et al. (1998) and Koivumaki et al.
(2009). To reproduce the electrical remodeling in cells due
to persistent atrial fibrillation, the Courtemanche et al. (1998)
model was modified as suggested (Loewe et al., 2014), whereas
the Koivumaki et al. (2009) model was modified according
to Skibsbye et al. (2016). Cardiac bidomain conductivity ratio
between the intracellular and the extracellular medium was
adjusted in a tissue strand in two scenarios to achieve plane
wave conduction velocities of 30 and 40 cm/s (McDowell et al.,
2013). To consider different directions of electrical propagation,
the tissue was stimulated from three sides: left border, bottom
border, and top right corner.

2.2. Fibrosis Modeling
Several studies have shown the importance of the texture of
the fibrotic tissue for excitation propagation in the cardiac
substrate (Jakes et al., 2019; Dokuchaev et al., 2020; Nezlobinsky
et al., 2020). Our proposed model aims at reproducing the
deposited collagen fibers observed in tissue samples with
interstitial fibrosis (Hansen et al., 2017). Fibrotic infiltrations
were grown from the endocardial side to the epicardium with
three different degrees of transmurality: 0.5, 1, and 2mm (i.e.,
fully transmural). Fibers of collagen were placed following
uniform distributions by labeling mesh elements as collagen.
Collagen was modeled as low conductive extracellular medium
with a conductivity of 1×10−6 S/m (Lima et al., 2006; Keller
et al., 2014) and an average length of 600 ± 200µm (Jacquemet
and Henriquez, 2009; Eduardo et al., 2016). Conductivity of
myocytes within the circular fibrotic region was reduced by
53% in the longitudinal direction and increased 2.5-fold in
the transverse direction to simulate the effect of gap junction
reduction observed during persistent AF (McDowell et al., 2013).
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FIGURE 1 | (A) Dimensions of the in silico setup. Tissue dimensions, catheter position, and fibrotic dimensions are shown in the left panel. In the top right corner, bath

dimensions are depicted. A cross-section cut showing the interstitial model is depicted in the lower right corner. (B) Isometric view of the two setups used for the

in silico experiments. The left panel shows the setup using the HD Grid catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul, MN) and the fibrotic tissue. The

right panel shows the setup using the Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) on top of the tissue. Reused from Sánchez et al. (2021).

Ten different random realizations were considered per density
and transmurality.

2.3. Electrogram Signals
To represent the effect of the catheter geometry on the
electrogram, we incorporated two realistic geometries of
commercially available catheters as depicted in Figure 1B. The
left panel in Figure 1B shows the geometry of an HD Grid
catheter (St. Jude Medical, EnSite HD Grid catheter, St. Paul,
MN), and the right panel shows the geometry of a Lasso
catheter (Biosense Webster, Diamond Bar, CA, USA) with an
interelectrode distance of 2mm between electrodes of one pair
and 6mm between pairs. Electrodes were modeled as a highly
conductive material (1×1012 S/m) while insulator materials were
modeled as low conductance (1×10−6 S/m).

Unipolar electrograms, sampled at 2 kHz, were extracted from
the bidomain simulations for every electrode of the catheter.
Additionally, a generalized model of noise extracted from clinical
signals from the four patients in the training set was created using
an autoregressive approach and added to the simulated unipolar

signals as depicted in Figure 2. First, ventricular far-fields were
blanked from the unipolar clinical signals as well as atrial activity,
thus keeping only the noise segments. The noise model was
created from thirteen extracted noise segments from unipolar
clinical signals. Each segment was fitted using an autoregressive
model:

Xt =

p∑

i=1

φiXt−i + ǫ∗t , (1)

where Xt is the time series and ǫ∗t is white noise. The model order
p was determined based on the Bayesian information criterion.
The smallest Akaike information criterion value determined
the global order, and the model coefficients φi were averaged
to obtain a global model representing the clinical noise of
intracardiac signals. The generalized model was added to the
simulated unipolar signals as depicted in Figure 2.

After adding noise, both unipolar and bipolar signals were
filtered using a Butterworth second order band-pass filter
implemented in Matlab. Unipolar synthetic signals were filtered
using a band-pass between 0.05 and 900Hz. Afterward, bipolar
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FIGURE 2 | Workflow to generate the noise model and the addition to the simulated signals. In the top left corner, the different segments of the activity from a clinical

unipolar electrogram are depicted. Autoregression was applied to the noise segments. The noise model was used to estimate the simulated unipolar electrogram with

noise. Afterward, the unipolar electrograms (red and blue trace) were filtered, and the bipolar electrogram was calculated by subtracting the unipolar electrograms.

Reused from Sánchez et al. (2021).

electrograms were calculated by subtracting the signals from the
corresponding pairs of electrodes and filtered by a clinically used
band-pass filter between 30 and 300Hz (Deno et al., 2017; Unger
et al., 2019).

2.4. Numerical Simulations
Biophysical simulations were run with openCARP (Vigmond
et al., 2003; Sánchez et al., 2020) using a full bidomain model
described in Equations (1) to (6), which provides the most
physiologically-realistic representation of cardiac bioelectric
activity. The bidomain model accounts for bath-loading effects
by representing a surrounding extracellular bath and the physical
properties of the electrode as an equipotential material.

∇ · (σi∇φi)) = βIm (2)

∇ · (σe∇φe)) = −βIm − Ie,s (3)

Im = Cm
∂Vm

∂t
+ Iion(Vm, ν)− Itrans (4)

Vm = φi − φe (5)

φ represents the electrical potential, the indices i and e refer
to the intracellular and extracellular spaces, respectively. σ is
the conductivity tensor, β is the surface to volume ratio of the
myocytes, and Iion the total transmembrane ionic current density
from the cellular model. The latter is dependent on Vm and
a vector ν of further state variables. Itrans, a transmembrane
current density stimulus, and Ie,s, an extracellular current density,
describe external stimuli. If a bath surrounds a tissue, the bath is
treated as an extension of the extracellular space.

Adding (2) and (3) and incorporating it into (5) yields:

∇ · (σi + σe)∇φe = −∇ · (σi∇Vm)− Ie,s (6)

∇ · (σi∇Vm) = −∇ · (σi∇φe)+ βIm (7)

The in silico model was verified and validated by applying the
criteria suggested in the ASME VV-40-2018 standard of the
American Standard Association of Mechanical Engineers (ASME
V&V 40, 2018). The risk-informed matrix assesses the model
influence in characterizing the atrial substrate using intracardiac
signals. The software solution was verified as described by
Niederer et al. (2011). The simulated signals were compared
with clinical signals. Additionally, we considered uncertainty
by simulating different propagation scenarios, including
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FIGURE 3 | Electrogram activity detection in the Hilbert space. (A) Electrogram signal (C) in the Hilbert Space with centroid (orange trace), green arrow depicts the

distance measured from the centroid to the signal. (B) Frequency distribution of centroid to signal distance, red line represents mean value plus one standard

deviation. (C) Bipolar electrogram (blue trace) and activity segments (orange trace).

realistic geometries of two commercially available catheters, and
implementing 10 different realizations per fibrosis density and
transmurality for random, uniformly distributed collagen. Single
cells were stimulated at a basic cycle length of 600 ms for 100
cycles. The state of the cell model at the last time step was used
as the initial state for the cells in tissue level simulations. Tissue
simulations were stimulated with five pulses at a basic cycle
length of 600 ms. Electrograms were evaluated for the last cycle.
We performed a total of 1,444 full-bidomain simulations to build
the dataset of synthetic signals with a length of 2.5 s. The meshes
used in this study had an average of 2 million elements and
345,000 points. The total number of electrograms included in
the hybrid dataset was 2,338, of which 1,198 were clinical signals
and 1,140 were simulated signals.

2.5. Classification Algorithm
We implemented decision tree classifiers trained to predict binary
or multiclass responses for tissue characteristics in three settings:
(i) fibrotic vs. non-fibrotic tissue, (ii) several degrees of fibrosis
density (10, 20, 40, and 60%), and (iii) subendocardial, partially
transmural, and fully transmural fibrosis.

As input features for the decision tree, we complemented
the peak-to-peak amplitude of the electrogram signal by a
set of complexity measures derived from the electrograms
as a signature of the fibrotic substrate and its microstructure
(Figure 1A). Complexity features were extracted from the activity
segments detected in the intracardiac signal to train the classifier.
For each signal, segments of atrial activity were calculated
by tracking closed loops in Hilbert space. The distribution of
the radius of every single loop was calculated and the mean
value plus one standard deviation was chosen to distinguish
between cardiac activity and noise (Figure 3). The peak-to-
peak amplitude was calculated for each active segment. Signal
complexity was quantified for each segment of atrial activity
using different entropy measures: sample entropy (Richman
and Moorman, 2000), Shannon entropy (Shannon, 1948),
spectral entropy (Vanluchene et al., 2004), and Kolmogorov
complexity (Kolmogorov, 1968). Additionally, the fractal
dimension coefficient was calculated for the whole 2.5 s signal
segment (Muller et al., 1992).

The hybrid dataset was created by combining simulated
electrograms and clinical electrograms and used to train the
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classifier. Specifically, the class of non-fibrotic synthetic signals
was extended by clinical signals annotated as high voltage (peak-
to-peak amplitude >0.5mV) by a medical expert extracted from
four patients. Moreover, the other five patients were used to test
the classifier as a proof of concept. In silico, non-fibrotic tissue
was simulated using two different conduction velocities (30 and
40 cm/s) to capture the effect of conduction velocity variability on
peak-to-peak amplitude and active segment duration. We split
the dataset into training, validation, and test sets as a 70/15/15%
random split. All classes were guaranteed to be in all subsets.
The validation set was used by the greedy technique to optimally
tune the classifier. Furthermore, validation set accuracy was used
to check that the algorithm is not overfitting when comparing
against the test set accuracy. One hundred different realizations
were run using hold-out cross-validation to obtain the mean
accuracy of each one of the three decision tree classifiers.

The feature set considered for each classifier was selected
using a greedy forward selection method (Edmonds, 1971).
This iterative method starts with an empty feature set and
adds the feature, which leads to the highest accuracy increase
of the classifier in each iteration. The algorithm stops when
performance based on the validation set cannot be further
improved. Candidate features with a correlation coefficient
>0.6 with any of the features already included in the set
were removed. The correlation threshold was chosen as
a compromise between avoiding redundant information
and covering all physiologically relevant phenomena. The
performance of the classification algorithm was evaluated
using confusion matrices and accuracy. The classifiers
were implemented in Matlab (The Mathworks, Natick,
MA, USA).

2.6. Statistical Analysis
Data are expressed as mean ± standard error. Differences
between group means were examined using two-tailed, paired
Student’s t-test and were considered significant when p < 0.05.
The Sørensen-Dice index was used to measure the similarity
between clinical low/high voltage map and the non-fibrotic vs.
fibrotic map.

2.7. Clinical Data
This study includes nine patients recruited at Städtisches
Klinikum Karlsruhe with the diagnosis of persistent AF.
Patients were split into two groups; four patients were
used to extract the clinical noise from the unipolar signals
and train the machine learning algorithm. The other
five patients were used as a proof of concept to test our
approach to characterize the atrial tissue from clinical
electrograms. Electroanatomical maps were acquired
during sinus rhythm using the CARTO3 mapping system
(Biosense Webster, Diamond Bar, CA, USA) with the Lasso
catheter (Biosense Webster). The study was approved by
the Institutional Review Board of Freiburg University in
accordance with the Helsinki declaration. All patients gave
written informed consent.

3. RESULTS

3.1. Electrogram Features
Following the ASME V&V 40 standard (ASME V&V 40, 2018),
we created highly-detailed in silico experiments to study the
impact of structural remodeling due to AF on electrogram
morphology. Bidomain simulations combined with a generalized
intracardiac clinical noise model faithfully reproduced clinical
recordings, which, combined with in vivo electrograms, were
used to create the hybrid dataset.

Modeling interstitial fibrotic texture allowed to study
electrogram characteristics resulting from fibrotic tissue
alterations. Fibrosis texture had a considerable impact on
the electrical propagation in the tissue and on electrogram
morphology (Figures 4E,F). Duration of atrial activity, which
corresponds to the total activation time of the tissue underneath
the electrode, calculated in Hilbert space, was increased (23.72
± 0.05ms) for low fibrosis density (10 and 20%) with respect
to the activity duration of electrograms from non-fibrotic tissue
(17.5 ± 0.04ms). For mid-density fibrosis (40%), duration was
further increased (43.80 ± 0.01ms) and high-density fibrosis
(60%) had the longest activity duration (55.31 ± 0.02ms).
Low-density fibrosis (10 and 20%) had less impact on the signal
amplitude (1.08 ± 0.01mV) compared to mid-density fibrosis
(40%) which decreased the amplitude (0.83 ± 0.01mV). High-
density fibrosis (60%) had a small amplitude (0.59 ± 0.004mV;
Figure 4E). Figure 4F shows the effect of fibrosis transmurality
for high density of fibrosis (60%). Subendocardial and partially
transmural fibrosis (0.5 and 1 mm, respectively) had a small
effect on the electrogram morphology while total transmurality
(2mm) decreased signal amplitude and prolonged its duration.
The model of interstitial fibrosis yielded reduced conduction
velocity reflected by an increased duration of active segments
depending on the density and transmurality of fibrosis.

In total, seven features to measure complexity and
morphological characteristics of the signals were calculated
from the bipolar electrograms (Figure 5). Features were
extracted from the simulated signals with and without noise.
Sample entropy and spectral entropy were robust to the addition
of noise. Sample entropy value, for electrograms of non-fibrotic
tissue, did not significantly change (0.18± 0.01 vs. 0.21± 0.01, p
> 0.05). Kolmogorov complexity was less affected by noise than
Shannon entropy. Shannon entropy and fractal dimensions did
not perform well after the addition of noise. Shannon entropy
was 0.57± 0.01 without noise and 3.33± 0.01 after adding noise
to the signal (p < 0.05). The same behavior was observed for the
fractal dimensions where the value changed from 1.15 ± 0.01
without noise to 10.2 ± 0.05 with noise (p > 0.05). Additionally,
the duration and amplitude of the signal were considerably
altered by noise.

Our in silico electrograms were validated against clinical
electrograms recorded from areas of the atria with peak-to-
peak amplitudes higher than 0.5 mV. Cross-correlation was
used to align the clinical signals and simulated electrograms
in time for maximal similarity. Simulated bipolar signals for
non-fibrotic tissue had a mean correlation of 91.13 ± 0.05%
with the clinical signals. Clinical high voltage (peak-to-peak
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FIGURE 4 | Importance of using a realistic electrode geometry and adding noise for simulated intracardiac signals. (A) Bipolar electrogram signal recorded with a

cubic electrode (blue trace) and the corresponding filtered signal (red trace). (B) Signal recorded with a cylindrical electrode (blue trace) and the resulting signal after

filtering (red trace). (C) Simulated signals recorded with a cylindrical electrode with and without noise and the resulting signals after filtering. (D) Comparison of a

simulated signal with a clinical signal. (E) Electrograms recorded on the surface of the fibrotic tissue with different densities. (F) Effect of fibrosis growth from the

endocardial surface to the epicardium (0.5, 1, 2mm) on the electrogram (60% fibrosis density). Reused from Sánchez et al. (2021).

>0.5mV) and simulated control electrograms (no fibrosis) had
a mean peak-to-peak voltage of 1.67 ± 0.05 and 2.25 ± 0.01mV,
respectively. Clinical and simulated control electrograms had a
mean duration of 18.30 ± 0.56 and 17.5 ± 0.04ms, respectively.
Using realistic geometries to represent the electrodes changes
the simulated electrogram morphology. Figure 4A shows a
simulated bipolar electrogram simulated with cubic electrodes
where the impact of filtering on the positive slope becomes
visible. Figure 4B shows a simulation with a cylindrical electrode
geometry mimicking the commercial catheters used in this study.
The resulting electrogram is not symmetric and filtering has no
marked effect on the positive slope, which is steeper than in the
electrogram simulated with the cubic electrodes. Adding noise to
the simulated signals decreases their amplitude and fractionates
the morphology (Figure 4C). Simulated bipolar electrograms
without noise have a higher amplitude of R and S peaks, which
decrease with the addition of noise. Figure 4D compares a
simulated signal with a clinical signal. Simulated electrogram
negative and positive slopes are close to the values of the clinical
signal, 0.1 and 0.25mV/ms, respectively.

3.2. Classification of Tissue Characteristics
Extracted features from the bipolar electrograms are depicted
in Figure 5. The main diagonal shows the distribution of the
calculated features for the different groups of signals (different
fibrotic densities in Figure 5A, different degrees of fibrosis

transmurality in Figure 5B). Peak-to-peak amplitude is not a
good feature to determine the degree of fibrosis due to the wide
range of amplitudes that overlap for fibrotic vs. non-fibrotic
cases. While sample entropy can distinguish between fibrotic
and non-fibrotic tissue, the distribution of the values overlaps
for different densities. The distinction between different fibrosis
transmuralities is not possible by using only one feature since
the value for all features overlap for all density or transmurality
values (Figure 5B, main diagonal). Scatter plots in Figure 5 show
how a combination of two features might help to characterize
the fibrotic substrate. For fibrosis density, scatter plots show how
combining complexity measures and commonly used features
like peak-to-peak amplitude or duration of the active segment
can help to differentiate non-fibrotic from fibrotic tissue.

A decision tree classification algorithmwas trained to separate
different fibrosis densities and degrees of transmurality. The
combination of signal complexity features was determined by
a greedy forward algorithm. The dataset was randomly divided
into 70% train, 15% test, and 15% validation. The mean accuracy
of the three classifiers was calculated by doing 100 different
realizations. Figure 6A shows the confusion matrix of the
classifier for distinguishing between non-fibrotic and fibrotic
tissue. The mean accuracy for this classifier is 97.95 ± 0.03%
with 98.81 ± 0.01% sensitivity and 97.16 ± 0.01% specificity.
The classifier slightly overestimated the fibrotic areas. Figure 6B
shows the classifier performance to identify fibrosis density
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FIGURE 5 | Feature distribution for all in vivo and in silico electrograms (including noise). Single feature distribution can be observed in the diagonal and the

combination of two features is reflected in the scatter plots. (A) Features split by different densities of fibrosis. (B) Features split by different degrees of transmurality.

Duration, duration of the active segment (ms); SmpEn, sample entropy; ShEn, shannon entropy; SpEn, spectral entropy; p2p, peak-to-peak amplitude (mV);

Kolmogorov, Kolmogorov complexity; Fractal, fractal dimension. Reused from Sánchez et al. (2021).
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FIGURE 6 | (A) Confusion matrix of the decision tree classifier for identifying non-fibrotic vs. fibrotic substrate. (B) Confusion matrix showing the performance for

identifying different fibrosis densities. (C) Confusion matrix showing the performance for identifying transmurality of fibrosis. (D) Effect of increasing the electrode

surface to tissue surface distance on the accuracy of the classifiers to distinguish fibrotic tissue, density, and transmurality. Reused from Sánchez et al. (2021).

(non-fibrotic, 10, 20, 40, and 60%) with a mean accuracy of 97.01
± 0.02% and 96.33 ± 0.03% and 99.05 ± 0.01%, for sensitivity
and mean specificity, respectively. The most relevant features
for classification of fibrosis density, determined by the greedy
forward algorithm, were sample entropy and spectral entropy
(Figure 5).

To identify transmurality of fibrosis in the tissue, the
classifier yielded a mean accuracy of 94.62 ± 0.01, 92.99
± 0.02% sensitivity, and 97.86 ± 0.01% specificity. For
fibrosis transmurality, misclassification occurred for some cases.

Nevertheless, it is able to distinguish all four classes (non-fibrotic,
0.5, 1, and 2mm). The most relevant features for classification of
transmurality were sample entropy and peak-to-peak amplitude.

Furthermore, we investigated the effect of increasing the
distance between the catheter and atrial endocardial surface and
the classifiers’ accuracy. The classifier’s accuracy dropped with
increased distance, as shown in Figure 6. The accuracy of the
classifier dropped to 0% for electrode-to-tissue distances bigger
than 4.1mm, to distinguish non-fibrotic from fibrotic tissue. For
identifying different densities, the accuracy dropped to 59.17%
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FIGURE 7 | Anterior and posterior view of patient maps for clinical low/high voltage (A) and classification results for non-fibrotic vs. fibrotic (B), fibrosis density (C),

and fibrosis transmurality (D). The green dot represents a signal at the base of the pulmonary vein which was marked as high voltage and classified as subendocardial

(0.5mm) low density (10%) fibrotic tissue. The white dot refers to a signal recorded in the pulmonary vein classified as low voltage and high density (60%), transmural

(2mm) fibrotic tissue. The yellow dot represents a high voltage area identified as non-fibrotic and the light blue dot indicates a signal collected in the pulmonary vein

annotated as high voltage and classified as low density (20%), partially transmural (1mm) fibrotic tissue. Reused from Sánchez et al. (2021).

at 1.1mm distance to tissue. Additionally, transmural accuracy
drops to 33.30% with a distance to tissue of 1.1mm.

We applied the trained classifier to intracardiac signals
measured in five patients of the test set of our cohort, which
were not used to train the classifier, to create maps of atrial
substrate characteristics. Figure 7 presents representative results
for patient 1. The yellow dot (Figure 7A, posterior view) shows
a signal annotated as high voltage and identified as non-fibrotic
tissue by the classifier. Low voltage and high voltage areas
determined by the clinical system using a cut-off value of 0.5mV
are shown in Figure 7A. The low voltage areas showed a mean
dice similarity coefficient of 69.84 ± 0.03% with the predicted
fibrotic areas for the five patients. Patients 1, 3, and 4 showed
fibrotic areas mostly within the low voltage areas. Maps for the
all the five patients are shown in Supplementary Figures 1–5.
Figure 7B shows the classified fibrotic areas based on the signal
features by the machine learning approach, where electrogram
signals were fractionated and exhibited a longer activity duration
independent from their peak-to-peak amplitude (Figure 7A,
anterior view, green and white dot). Regions annotated as high
voltage areas partly exhibited fractionated electrograms with a
peak-to-peak voltage (1.4mV) above the cut-off value of 0.5mV
(Figure 7A, posterior view, light blue dot) where these areas
were classified as low density (20%) and partially transmural
(1mm) fibrosis. Fibrotic volume fraction was estimated using
patient electrograms as input for the classifier (Figure 7C).
In general for this patient cohort, high density was located
at the core of fibrotic areas. Furthermore, Figure 7D shows
the classification of different transmuralities. Fully transmural
fibrosis was predominantly found in areas of high fibrotic density.

Thus, not all high-density fibrotic areas are entirely transmural.
In contrast to patient 3, patient 5 had a low similarity (58.76%) of
low voltage and fibrotic areas due to a generally low peak-to-peak
voltage in the electrograms (Supplementary Figure 5).

4. DISCUSSION

We investigated the effect of fibrosis on intracardiac electrogram
signals using computational models and trained machine
learning algorithms using a combined in vivo and in silico
dataset to classify the tissue according to fibrosis density and
transmurality. We found that (i) detailed bidomain models in
combination with models of clinical noise can reproduce clinical
electrograms with high fidelity; (ii) complexity measurements
help characterize fibrotic tissue from electrograms. Sample
entropy and spectral entropy were the most distinguishing
features to characterize fibrosis density, while fibrosis
transmurality was identified by sample entropy and peak-to-peak
amplitude; (iii) machine learning classifiers can characterize and
distinguish tissue properties and quantify the amount of fibrosis
density and transmurality from intracardiac signals with high
accuracy and overcome the use of a single voltage cut-off value
to localize arrhythmogenic substrate.

Bidomain simulations can reproduce the biophysical
phenomenon of cardiac depolarization and the effect of mapping
catheters on the electrograms. Bishop et al. demonstrated that
including an extracellular medium induces the bath-loading
effect, which impacts conduction velocity and translates to
changes of electrogram morphology (Bishop and Plank, 2011).
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Our results show the effect of cylindrical metal electrodes on
simulated signals. The high electrode conductivity markedly
influences the electrogram slope as it acts as a current sink
for the tissue underneath. Additionally, by using realistic
geometries of catheters, spatial resolution is taken into account
by preserving a realistic spacing of catheter electrodes. Moreover,
the impact of the directionality of the propagating wave on
bipolar electrograms was taken into account by stimulation
from three different sites as previously discussed by Hwang et al.
(2019).

Several studies investigated the influence of noise on
simulated electrograms (Sameni et al., 2007; Frisch et al., 2020).
Our simulated signals were able to reproduce the recorded
clinical signals more realistically compared to simulations that
do not consider the effect of the catheter and clinical noise.
Simulated signals, even with noise, had a higher (Figure 4C)
amplitude than clinically measured signals in line with previous
reports by Keller et al. (2014). These higher amplitudes are likely
due to two factors: Firstly, the catheter was placed directly on the
surface of the tissue with perfect contact. Secondly, intracellular
conductivity, which is related to the tissue’s conduction velocity,
can considerably increase the amplitude of the simulated signal.
For this reason, our study included two different conduction
velocities in the range of previously reported values for patients
with persistent AF (McDowell et al., 2013).

Complexity measurements obtained from simulated
intracardiac signals help understand the electrophysiology
and the fibrotic tissue structural characteristics. Other studies
showed that Shannon entropy and fractal dimensions help
to localize the core of rotational activity (Cirugeda-Roldán
et al., 2015; Rottmann et al., 2015). Cirugeda-Roldán et al.
(2015) showed that sample entropy is a robust feature to
classify complex fractionated electrograms. Our findings show
that sample entropy, as well as spectral entropy, are robust
morphological features to characterize fibrotic substrate and are
less influenced by noise compared to the other entropy measures
calculated in this study.

Our results show how in silico experiments can be used to
generate realistic data for measurements that are difficult to
obtain in vivo. Computational cardiac modeling can considerably
accelerate the process of designing and evaluating medical
devices, includingmapping systems and software to treat patients
with cardiac arrhythmia. The American Society of Mechanical
Engineers (ASME) Verification and Validation Subcommittee
standard V&V40 (Verification and Validation in Computational
Modeling of Medical Devices) outlines credibility requirements
of a computational model based on risk. We started by defining
two questions of interest (“Can synthetic data be used to train a
classifier to locate fibrotic tissue and quantify its characteristics?”
and “Can a hybrid dataset approach predict the electrical
characteristics to support ablation therapy?”). These guiding
questions helped define the required model level of detail for
the in silico experiment. In the next step, we established the
risk-informed credibility of using a full bidomain model to
simulate electrograms and using them to generate a hybrid

dataset that combines clinical and synthetic signals. Risk-
informed assessment defined the level of uncertainty and the
model’s complexity based on the context of use (CoU) of the
in silico experiments.

In this pilot study, the CoU of themodel is to generate a hybrid
dataset to train a classifier to locate and quantify fibrotic tissue
in clinical data. Different fibrosis modeling strategies change the
dynamics of the electrical propagation as described by Roney
et al. (2018), which influences the electrogram morphology.
Fibrosis modeling uncertainty was reduced by considering
several realizations of random uniformly distributed collagen
fibers with different volume fraction and transmurality. We
overcome the limitation of catheter geometry and wavefront
direction by including two models of commercially available
catheters and pacing from three different locations (Hwang
et al., 2019). Two different human atrial cardiomyocyte models
were considered to minimize the uncertainty of the action
potential morphology influence on the electrogram. Moreover,
an autoregression model of clinically measured noise artifacts
was created. The modeled clinical noise in combination with
the simulated electrograms reduced the uncertainty of simulated
with respect to measured electrograms. Considering all the above
mentioned points, the risk-informed assessment of using in silico
experiments to characterize the fibrotic substrate was defined
as medium.

Driven by the risk-informed assessment, we established the
credibility of our modeling methodology. Model credibility
refers to the trust in the predictive capability of a model for
a specific CoU. openCARP source code and calculations are
verified as described by Niederer et al. (2011). The model was
validated using the clinical electrograms for high voltage areas.
In combination with the noise model, the bidomain model
reproduced the clinical signals with a mean correlation of 91.13
± 0.05%. The strong correlation between in silico electrograms
and in vivomeasurements increased the confidence in the model.

With the increasing number of data available, data-driven
approaches can help to improve patient’s diagnosis and therapies.
Several studies used data-driven approaches with clinical data
to characterize electrocardiogram signals measured on the body
surface (Yaghouby et al., 2010; Rodrigues et al., 2017; Zhang et al.,
2018; Petmezas et al., 2021). Sahli Costabal et al. (2018) used
a hybrid dataset approach to interpret activation times during
AF and Lozoya et al. (2019) showed how model-based feature
augmentation can help to plan the targets for ablation therapy.
We developed a detailed in silico setup as a perfectly controlled
testing environment to understand intracardiac signals recorded
with two different commercial catheters. Furthermore, we trained
a decision tree classifier using clinical and simulated data
to characterize signals based on complexity measurements.
Decision trees offer a comprehensible structure to follow the
decisions taken for the classification. All three classifiers had
high accuracy, despite overlapping features for different degrees
of transmurality (Figure 5B), the combined features used to
train all decision tree classifiers distinguished non-fibrotic tissue,
fibrosis volume fraction, and all three different transmuralities
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of fibrosis from electrogram signals. Our results suggest that
combining clinical and simulated data helps to characterize
electrical tissue properties more accurately than using synthetic
data alone. In future work, the classifier could be extended to
include more training signals recorded directly at the surface of
the tissue and at certain distances above the tissue to increase the
performance when there is non-contact of the catheter with the
tissue surface.

Different ablation strategies target fibrotic areas by ablating
or isolating them (Hinderer and Schenke-layland, 2019). Both
techniques rely on a voltage cut-off value for the identification
of possible fibrotic areas. While ablating fibrotic areas try to
homogenize the fibrotic substrate, isolation encloses the fibrotic
regions and connects them to the pulmonary vein isolation lines
to prevent a potential proarrhythmic effect. This suggests that
identifying fibrotic tissue through electroanatomic mapping is
essential, and the choice of a single voltage cut-off value may
not be sufficient to decrease the recurrence of arrhythmia (Jadidi
et al., 2016). Gutbrod et al. (2015) showed the importance of
fibrosis transmurality for electric propagation during AF. Using
a hybrid dataset approach, our findings can help to standardize
the identification of non-fibrotic vs. fibrotic areas and provide
valuable information on the fibrotic tissue characteristics such
as fibrosis density and transmurality. Several studies have shown
that low-density fibrosis can modify the propagation and initiate
or maintain arrhythmia (Kazbanov et al., 2016; Jadidi et al.,
2020). High-density fibrotic areas are prone to be a point of
anchor for rotational activity (Alonso and Bär, 2013; Krul et al.,
2015; Deng et al., 2017; Roy et al., 2018) while low-density
fibrosis micro-structure can alter the propagation pattern and
maintain reentry (Balaban et al., 2018; Campos et al., 2019).
The trained classifier was used on five patients from the test
set of our patient cohort to distinguish and characterize fibrotic
tissue. For clinical data, not all low voltage areas were marked
as fibrosis when using a single cut-off value. Areas with low-
density (10%) subendocardial fibrosis (0.5mm) were annotated
as high voltage areas when using a single peak-to-peak cut-
off value of 0.5mV. Therefore, the use of hybrid datasets and
data-driven approaches could help to estimate the fibrotic tissue
characteristics to support the planning of ablation therapy. The
medium-range dice coefficient (0.7) indicates that low voltage
areas are one of the main indicators for fibrotic tissue but
synergistic combination of multiple features in e.g., a decision
tree classifier, can give a more comprehensive view beyond purely
voltage-based tissue characterization.

Our results show that current clinical standards for substrate
mapping using bipolar voltage alone are not sufficient to
characterize the atrial fibrillation substrate comprehensively.
Machine learning algorithms trained using hybrid datasets and
multi-features obtained from intracardiac signals may overcome
these limitations providing fibrosis density and transmurality
maps. This may lead to optimized therapeutic approaches.

Our modeling approach does not capture the influence
of the atrial anatomy and the tissue thickness heterogeneity.
Nevertheless, our hybrid dataset approach tries to minimize
this effect by including clinical signals from different patient.
Furthermore, increasing the catheter to tissue distance decreases

the accuracy of the classifier. The effect of the distance can likely
be minimized if the dataset is extended to also include signals
that were acquired at a certain distance to the cardiac tissue.
Additionally, we only consider a homogeneous distribution of
fibers from the endocardium to the epicardium, which may not
represent the heterogeneous tissue architecture observed in some
regions of the atria. The fibrotic regions were homogeneous and
all electrodes were located inside the fibrotic area. We did not
consider the effect of electrodes located at the border, which
could result in more complex bipolar signals. We did not include
any effect of inflammation-induced paracrine remodeling or
myofibroblast interaction (Sánchez et al., 2019a). While our
approach shows promising results and highlights the essential
features of intracardiac signals to characterize atrial substrate,
validation through independent experimental and clinical data is
desirable. Future studies could include LGE-MRI data to validate
the proposed approach and explore the arrangement of the
fibrotic tissue effect on the electrogram morphology (Sánchez
et al., 2019b).

Our modeling approach successfully answered the question of
interest: A classifier can be trained using clinical and simulated
data to characterize the cardiac substrate to support ablation
therapy by providing fibrosis density and transmurality maps.
Moreover, the credibility assessment showed that detailed cardiac
modeling could be a valuable framework. In the future, classifiers
to predict cardiac tissue characteristics could be integrated into
clinical electroanatomic mapping systems. Finally, our study
emphasizes the potential of in silico experimentation and data-
driven approaches for characterizing the patient’s substrate and
demonstrates the potential of software tools to support medical
decisions during the procedure.
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