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An Optimal Eighth Order Derivative-Free Scheme
for Multiple Roots of Non-linear Equations

Fiza Zafar[,1 Alicia Cordero\, Syeda Dua E Zahra Rizvi[ and Juan R. Torregrosa\
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Multan 60800, Pakistan.
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1 Introduction

Many practical problems are nonlinear in nature, therefore, the problem of solving a nonlinear
equation is considered to be one of the significant domain. In addition, construction of higher order
optimal iterative methods for multiple roots having prior knowledge of multiplicity (m > 1) has
remained one of the most important and challenging tasks in computational mathematics. Due
to advancement in computer technology, various higher order as well as optimal schemes have
been proposed for computing the multiple roots of the nonlinear equations. Most of these require
derivative evaluation of the involved function [1,2,8–10] while very few are derivative-free [4,5,7]
and only one is of optimal eighth order [6] so far.
Motivated by the exploration going on in this area and with a requirement to achieve more
optimal derivative-free schemes, we present an eighth-order optimal derivative-free method to
find repeated zeros of the nonlinear equation when m ≥ 1. This proposed family of the method
has four functional evaluations and is based on the first-order divided differences and weight
functions. There are two weight function involved in this family of methods, one is univariate and
the other is multivariate. We compare our methods with two of the recent derivative free methods
of seventh [5] and eighth order [6] using standard test problems and modelling applications.

2 Construction of Optimal Eighth Order Method

We propose a family of methods of eight-order for finding repeated roots with multiplicity m > 1.

sk = tk + γf (tk) , where γ ∈ R−{0} ,

yk = tk −m
f(tk)
f [tk, sk]

,

1fizazafar@bzu.edu.pk
This research was partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain PGC2018-
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zk = yk −mukH(uk)
f(tk)
f [tk, sk]

,

tk+1 = zk −mvkP (uk, vk, wk)
f(tk)
f [tk, sk]

, (1)

where uk = (f(yk)
f(tk) ) 1

m , vk = (f(zk)
f(tk) ) 1

m and wk = ( f(zk)
f(yk)) 1

m . Let H : C → C and P : C3 → C
be analytic in the neighborhood of 0 and (0, 0, 0) . The investigation on the convergence analysis
of the proposed family (1) and the conditions on weight functions H(uk) and P (uk, vk, wk) are
apparent from the following result.

Theorem 26. Let t = α be a repeated root with multiplicity m ≥ 1 of the function f(t). In
addition, we suppose that f : C → C be analytic in a region enclosing repeated zero of f(t) with
known multiplicity m. Suppose that the initial guess t0 be sufficiently close to the multiple zero
α. Then, the proposed method defined by equation (1) has eighth-order of convergence when the
conditions given below are satisfied:

H(0) = 1, H
′(0) = 2, H

′′(0) = −2 and H ′′′(0) = 36,
P000 = 1, P100 = 2, P001 = 1, P101 = 4− P010,

|P110| <∞, |P002| <∞

where, Pijl = ∂i+j+l

∂ui∂vj∂wl
P (u, v, w) |(0,0,0). (2)

Then, the proposed scheme has the following error equation:

ek+1 = − 1
24m7 (b1((11 +m)b21 − 2mb2)(−24(1 +m)2b31+

(3P002(11 +m)2 + 2(−665− 84m+ 5m2 + 6P110(11 +m)))b41
− 12m(P002(11 +m) + 2(−10 + P110 + 4m))b21b2 + 12(−2 + P002)m2b22

+ 120m2b1b3))e8
k +O

(
e9
k

)
, (3)

bj = m!
(m+ j)!

f (m+j) (α)
fm (α) , j ∈ N

From Theorem 1, we can obtain several new multiple root finding two-point methods by using
different cases for H(uk) and P (uk, vk, wk) in the proposed scheme (1). Some particular cases of
the proposed scheme are given as follows:

FZ1: We take H(uk) = 1 + 2uk − u2
k + 6u3

k and P (uk, vk, wk) = 1 + 2uk + 4vk + wk in (1).

FZ2: Also as another special case let H (uk) = 1−9u2
k

1−2uk−4u2
k

and P (uk, vk, wk) = 1+2uk+wk+4ukwk
in (1).

It is noteworthy that the selection of specific values of parameter γ can be made under the point of
view of an improvement of the stability and a widening of the set of converging initial estimations.
We are also analyzing these aspects.

3 Numerical Results

We investigate the performance and convergence behavior of our proposed eighth order methods
namely denoted by FZ1 and FZ2, respectively, by carrying out some test functions involving
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standard nonlinear functions and some applied examples. We compare the methods with the
recent derivative free methods of seventh order (see [5], Case I(a), Case I(b), Case II(c)) denoted
by SH1, SH2 and eighth order (see [6], M-1, M-4) denoted as SH3, SH4. We take the value of
γ = 0.001.
For numerical tests, all computations have been performed in computer algebra software Maple 16
using 300 significant digits of precision. Tables show per step numerical errors of approximating
real root |tk − tk−1| of first three iterations and the absolute residual error of the test function at
the third iteration and the computational order of convergence (see [3]). The numerical errors are
shown with 5 sf.

COC ≈ ln |f(tk+2)/f (tk+1) |
ln |f (tk+1) /f (tk) |

, k = 1, 2, ...

We have taken into consideration the following test problems.

Example 1. Consider the nonlinear function given by:

f1 (t) =
(

cos πt2 + t2 − π
)5
.

This function has multiple zero at α = 2.034724896 with multiplicity m = 5 and we take initial
guess t0 = 2.35. The numerical results are presented in the Table 1.

Table 1: Comparison of multiple root finding methods for f1 (t)
Methods |t1 − t0| |t2 − t1| |t3 − t2| |f1 (t) | COC

SH1 0.31518 9.0774× 10−5 1.3313× 10−28 3.4471× 10−971 6.99
SH2 0.31518 9.2540× 10−5 1.5655× 10−28 1.1472× 10−968 6.99
SH3 0.31512 1.4983× 10−4 3.5252× 10−30 4.9603× 10−1170 7.99
SH4 0.31504 2.3131× 10−4 2.4969× 10−28 2.5964× 10−1094 7.99
FZ1 0.31522 5.1854× 10−5 2.6901× 10−34 6.9572× 10−1337 7.99
FZ2 0.31522 6.3806× 10−5 1.5845× 10−33 7.8605× 10−1306 7.99

Example 2. Consider the nonlinear function with multiple root α = 1.365230013 having multi-
plicity m = 6 as follows:

f2 (t) =
(
t3 + 4t2 − 10

)6
.

We choose the initial guess t0 = 1.33. The numerical results are shown in Table 2.

Table 2: Comparison of multiple root finding methods for f2 (t)
Methods |t1 − t0| |t2 − t1| |t3 − t2| |f2 (t) | COC

SH1 0.048173 0.012943 6.3782× 10−14 7.9072× 10−547 6.98
SH2 0.048173 0.012943 6.5758× 10−14 3.3895× 10−546 6.98
SH3 0.041758 6.5287× 10−3 2.4152× 10−17 4.1759× 10−786 8.00
SH4 0.039425 4.1955× 10−3 1.3974× 10−18 1.9635× 10−843 7.99
FZ1 0.041775 6.5451× 10−3 9.7966× 10−18 1.4011× 10−807 8.00
FZ2 0.041775 6.5451× 10−3 1.0799× 10−17 3.1622× 10−805 8.00
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Example 3. Let us take another nonlinear function given by:

f3 (t) =
(
t

1
2 − 1

t
− 1

)7
.

The above function has one multiple root α = 2.147899036 with multiplicity m = 7. We choose
the initial guess t0 = 1.30 then, the numerical results are shown in Table 3.

Table 3: Comparison of multiple root finding methods for f3 (t)
Methods |t1−t0| |t2 − t1| |t3 − t2| |f3 (t) | COC

SH1 0.84388 4.0157× 10−3 2.2190× 10−19 1.0710× 10−929 6.99
SH2 0.84384 4.0566× 10−3 2.4840× 10−19 3.6146× 10−927 6.99
SH3 0.84274 5.1515× 10−3 1.8224× 10−20 6.1847× 10−1118 7.99
SH4 0.83965 8.2398× 10−3 1.8360× 10−18 3.8481× 10−1003 7.99
FZ1 0.84580 2.0942× 10−3 4.1687× 10−24 2.0506× 10−1325 7.99
FZ2 0.84522 2.6780× 10−3 3.5857× 10−23 1.6149× 10−1272 7.99

Example 4. Beam Positioning Problem:

Consder an r meter long beam is leaning against the edge of the cubical box with the sides of a
meter length each such that one of its end touches the wall and the other touches the floor. Let
y be the distance in meters along the beam from the floor to the edge of the box and let x be the
distance in meter from the bottom of the box to the bottom of the beam. To find x for the given
value of r = 4 and considering this case four times, we get

f4(t) = (t4 + 2t3 − 14t2 + 2t+ 1)4

The multiple root is α = 0.3622 with multiplicity m = 4. Taking the initial guess t0 = 0.5 gives
the numerical results that are shown in Table 4.

Table 4: Comparison of multiple root finding methods for f4 (t)
Methods |t1 − t0| |t2 − t1| |t3 − t2| |f7 (t) | COC

SH1 0.13772 7.7986× 10−5 2.7338× 10−26 2.6596× 10−700 6.99
SH2 0.13772 7.8767× 10−5 3.0090× 10−26 4.3340× 10−699 6.99
SH3 0.13771 8.3337× 10−5 5.5524× 10−29 5.7643× 10−884 7.99
SH4 0.13766 1.3381× 10−4 5.3097× 10−27 3.0490× 10−819 7.99
FZ1 0.13776 3.8085× 10−5 4.0232× 10−32 4.0156× 10−986 7.99
FZ2 0.13775 4.4573× 10−5 1.5751× 10−31 5.7141× 10−967 7.99
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Table 5: Comparison of multiple root finding methods for f5 (t)
Methods |t1 − t0| |t2 − t1| |t3 − t2| |f8 (t) | COC

SH1 0.04987 6.2000× 10−4 7.8458× 10−14 3.7028× 10−665 6.98
SH2 0.04937 6.2058× 10−4 8.0778× 10−14 2.3076× 10−664 6.98
SH3 0.04934 6.5713× 10−4 1.1775× 10−14 5.3589× 10−805 7.98
SH4 0.04914 8.5965× 10−4 1.9487× 10−13 2.4682× 10−724 7.97
FZ1 0.04953 4.6574× 10−4 3.2414× 10−16 4.0100× 10−908 7.99
FZ2 0.04952 4.7560× 10−4 4.2256× 10−16 2.0788× 10−900 7.99

Example 5. Vander der Waals Equation of State:

Consider the function given below,

f5(t) = (t3 − 5.22t2 + 9.0825t− 5.2675)4

Taking this case two times, where x represents the fractional conversion of a specie in a chemical
reactor, yields the multiple roots α = 1.75 and α = 1.72 with multiplicity m = 8. Taking the
initial guess t0 = 1.8 gives the numerical results in the Table 5.
It is apparent from the construction and numerical results that our proposed family is optimal
and efficient in terms of small residual errors.
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