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The effect of the memory on the spread of a disease

through the environtment

C. Coll, D. Ginestar, A. Herrero ! and E. Sanchez

Instituto Universitario de Matematica Multidisciplinar,
Universitat Politecnica de Valencia
Cami de Vera s/n, Valencia, Spain.

1 Introduction

In recent years, several papers have studied how to apply the fractional order derivative to model
the spread of an infectious disease. Most of them apply Caputo’s definition of fractional derivative
in differential equations or systems of differential equations [1]. However, it is interesting to work
with discrete systems since statistical data on epidemics are collected at discrete times and it
is easier to compare them with the output of discrete-time systems. For the discrete case, the
fractional order differential operator is less used. In this line, some papers study discrete linear
systems of fractional order using the discrete approximation of the Griinwald-Letnikov fractional
derivative, see for instance [2].

In this paper, we propose a mathematical representation to study the behaviour of the solution of
an epidemic model in which the disease is transmitted through the environment. We focus on an
epidemic process that includes indirect transmission of the disease when the population comes into
contact with the underlying contamination in space. Then, in addition to susceptible and infected
individuals, we consider a new variable representing the amount of contaminant in the enclosure.
We propose a discrete-time model based on fractional calculus where the state depends on the
current state and previous ones. This model uses a discrete version of the Griinwald-Letnikov
fractional derivative operator with truncated memory. This follows from the properties of the
coefficients of our operator since we show that they can be negligible beyond a certain step. This
justifies taking a truncated operator as a good approximation of the proposed process.

We obtain the equilibrium points of the proposed model and perform a thorough analysis of
their stability. To determine whether the system is stable or not we define some parameters
depending on the fractional order and the memory steps considered. In the analysis we observe
that the population size plays an important role in ensuring the disappearance or permanence of
the disease.

Finally, we illustrate different properties of the proposed model by analyzing different examples
as a function of the fractional order and the number steps in which we truncate.

laherrero@mat.upv.es
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2 Methods

We consider an epidemic model that represents an outbreak of an indirect transmission infectious
disease. In this model, the state variables are: the susceptible population S(t) with p survival rate,
the infected population I(¢) with ¢ survival rate and the amount of contaminant C'(¢) remaining in
the environment, whose survival rate is s. We denote by 8 the amount of contaminant produced
by each infected individual and the incidence of the disease is given by the parameter o, which
represents the rate of indirect contact-based transmission. Note that 0 < p,q,s,0 < 1 and 8 > 0.
The mathematical representation of this infectious process is given by the following system

S(t+1) = pS(t) — aCH)S() + u(t)P
I(t+1) S(t) (1)
Ct+1) = sC@t)+8I

I
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~
=
+
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Note that this system is a discrete time nonlinear system relating the state at time ¢ with the
state at time ¢ + 1. Some results about this model can be found in [3-5].

In this work, we introduce a new model using a fractional order operator which consider the
states at previous times. Concretely, we use the discrete-time fractional order Griinwald-Letnikov
operator A% [2]. Moreover, we will truncate the operator in order to describe a short-term memory
process in a similar way as [6,7]. Then, the k-truncated discrete-time fractional order Griinwald-
Letnikov operator in k steps is given by:

k
Ra(t) = ) afa(t - j). (2)
5=0

where the fractional order « satisfies 0 < o < 1 and

with

1 =0
<j )Z a(a—l)...j(!oz—j—i-l) i>0. (4)

Using this k-truncated operator we introduce the new model as follows

AS(t+1) = (p—1)S(t) — oC(H)S(t) + u(t)P
ALI(t+1) )S(t) (5)
ASC(t+1) = (s—1)C(t) + BI()
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which is clearly reduced to the system (1) when o = 1. This is a model with k steps of memory
since the state at time ¢ + 1 depends on the states at time ¢, t —1,..., t —k + 1.

We assume that the size of the population always remains constant, that is P = S(t) + I(¢),
Vt > 0, with the replacement of dead individuals by new susceptible individuals given by u(t)P.
This condition of constant population P at any time ¢ > 0 implies that the addition of the two
first equations of system (5) gives

pt)P=(q—p)St +PL—-q+2%), t=0,
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with 3¢ = Z?:o af, k>0,0<a<1. So,applying this condition to our model (5), it can be
rewritten as

M=

S(t+1) = (g—1+a)S{t) =S a¥S(t+1—j)—aSEHCE) + P(1 — g+ )

2

I(t+1) = (g—1+a)I(t) =S aSI(t+1—j)+aS{t)C(t) (6)

M

||
N

J

M=

Clt+1) = (s=14+a)C(t) — ) _afC(t+1—74)+BI),

2

.
[

We have to assure that, under the conditions of no infection and no recruitment of population,
then both, individuals and contaminant, disappear. So, in order to get consistency with this
particular case, the conditions 0 <1 —a < ¢, and 0 <1 — a < s have to be hold.

In the Results section we compute the equilibrium points to study the behavior of this discrete
time fractional order system. To analyze the evolution of the disease, we will obtain a linear
approximation of the model around the disease-free equilibrium point. We will define and obtain
the basic reproduction number and study how it relates with the order of the fractional derivative
a and the memory steps k.

3 Results

First, we study the biological sense of the truncated discrete time fractional order system (6). It is
important to assure that our model is a good representation of the epidemiological process. Taking
into account that only nonnegative solutions have biological sense, in the following proposition we
establish an upper threshold on the size of the population P in order to assure the nonnegativity
condition on the solution.

(—14+a)(1—-s+X%)

op
fractional order system (6) is nonnegative.

Proposition 5. If P < then the solution of the truncated discrete time

Next, we study the stability of the system (6) around the disease-free equilibrium point. An easy
calculation leads to that this point is given by

Si=Pp, ;=0 C;=0,

for any value o € A, s and k > 1. Note, that this agrees with the case o = 1 when the first order
difference is considered.

Let us consider the linearization of system (6) around the disease-free equilibrium point (P 0 0)7
taking S(¢)C(t) ~ P C(t). Then, we focus our attention on the equations for the infected indi-
viduals and the contaminant of this linearized system

I(t+1) = (q—1+a)I(t) = alI(t+1—j), (7)

-
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M=

Clt+1) = (s—1+a)C(t) =) afC(t+1—j4)+pIt).
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Note that this system can be interpreted as a system with delays and its stability can be studied
using a stacked form. That is, the system (7) is a k—delayed linear system equivalent to the
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k—stacked linear system Z(t + 1) = £2(t), with &(t) = (I(t) C(¢t) I(t—1) Ct—1) ... I(t+1—
k) C(t+1—k))T and & given by

E —CLQI —a3[ s —ak_lf —akl
Ir O o - @ @

=10 I o - ) O , (8)
O O o - I O

qg— 1+« oP

15} s—1+a
The system is asymptotically stable if p(£) < 1. So, to determine the spectral radius of £ we need
to make an exhaustive study of its eigenvalues. This is given in the following result.

where E =

Theorem 11. The system 6 is asymptotically stable around the disease-free equilibrium point if
and only if P < M(«, k), where

M(a’k)_(l—q—kEg;(ﬁl—s—FEg)’ (9)

otherwise it is not.

Therefore, we have found a bound for the population as a function of the fractional order «
and the selected memory k, given by M (a, k). It is interesting to analyze how this limit varies
according to the choice of these parameters to optimize the size of the population according to
the available data. From this study we obtain that when considering a greater number of memory
steps, stability is maintained with a larger population. On the other hand, in the case of the order
of the fractional derivative, if this order is higher, stability is maintained with a larger population
size.

Proposition 6. The population bound given in (9) satisfies that
M(o, k) < M(a,k—1) and M(ag, k) < M(aq, k)

with0<a<1l,k>1and0 < a; <as <1.

4 Conclusions

The spread of a disease transmitted by indirect contact has been mathematically represented by
a discrete fractional order model with k& memory steps.

In order to assure the nonnegativity of the solution of the system, a threshold for the population
size has been obtained.

The stability of the disease free equilibrium point of the model has been analyzed. Using a
k—stacked form, another bound for the population size has been found, which depends on the
fractional order @ and the step memory k. This bound increases both, when « decreases for a
constant k and when k decreases for a constant «.
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