MIDELLING FOR ENEINEERNG \& HUMAN BEHAVIIUR 2021

Edited by
Juan Ramón Torregrosa Juan Carlas Cortés Antonio Hervás Antoni Vidal Elena López-Navarro

Modelling for Engineering \& Human Behaviour 2021

València, July 14th-16th, 2021

This book includes the extended abstracts of papers presented at XXIII Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics Mathematical Modelling in Engineering ξ^{3} Human Behaviour.

November $30^{\text {th }}, 2021$
Report any problems with this document to imm@imm.upv.es.

Edited by: I.U. de Matemàtica Multidisciplinar, Universitat Politècnica de València. J.R. Torregrosa, J-C. Cortés, J. A. Hervás, A. Vidal-Ferràndiz and E. López-Navarro

Instituto Universitario de Matemática Multidisciplinar

Contents

Density-based uncertainty quantification in a generalized Logistic-type model 1
Combined and updated H-matrices 7
| Solving random fractional second-order linear equations via the mean square Laplace transform 13
|| Conformable fractional iterative methods for solving nonlinear problems 19
| Construction of totally nonpositive matrices associated with a triple negatively realizable24
Modeling excess weight in Spain by using deterministic and random differential equations31
|| A new family for solving nonlinear systems based on weight functions Kalitkin-Ermankov type 36
Solving random free boundary problems of Stefan type 42
Modeling one species population growth with delay 48
| On a Ermakov-Kalitkin scheme based family of fourth order 54
| A new mathematical structure with applications to computational linguistics and spe- cialized text translation 60
|| Accurate approximation of the Hyperbolic matrix cosine using Bernoulli matrix polyno- mials 67
| Full probabilistic analysis of random first-order linear differential equations with Dirac delta impulses appearing in control 74
| Some advances in Relativistic Positioning Systems 79
| A Graph-Based Algorithm for the Inference of Boolean Networks 84
| Stability comparison of self-accelerating parameter approximation on one-step iterative methods 90
| Mathematical modelling of kidney disease stages in patients diagnosed with diabetes mellitus II 96
The effect of the memory on the spread of a disease through the environtment 101
| Improved pairwise comparison transitivity using strategically selected reduced informa- tion 106
| Contingency plan selection under interdependent risks 111
| Some techniques for solving the random Burgers' equation 117
| Probabilistic analysis of a class of impulsive linear random differential equations via density functions 122
Probabilistic evolution of the bladder cancer growth considering transurethral resection 127with special emphasis in the semifocal case.132
Advances in the physical approach to personality dynamics 136
A Laplacian approach to the Greedy Rank-One Algorithm for a class of linear systems 14 143
| Using STRESS to compute the agreement between computed image quality measures and observer scores: advantanges and open issues 149
Probabilistic analysis of the random logistic differential equation with stochastic jumps15
| Introducing a new parametric family for solving nonlinear systems of equations 162
Optimization of the cognitive processes involved in the learning of university students in a virtual classroom 167
Parametric family of root-finding iterative methods 175
Subdirect sums of matrices. Definitions, methodology and known results. 180
On the dynamics of a predator-prey metapopulation on two patches. 186
| Prognostic Model of Cost / Effectiveness in the therapeutic Pharmacy Treatment of Lung Cancer in a University Hospital of Spain: Discriminant Analysis and Logit 192
Stability, bifurcations, and recovery from perturbations in a mean-field semiarid vegeta- tion model with delay 197
The random variable transformation method to solve some randomized first-order linear control difference equations 202
Acoustic modelling of large aftertreatment devices with multimodal incident sound fields 208
| Solving non homogeneous linear second order difference equations with random initial values: Theory and simulations 216
A realistic proposal to considerably improve the energy footprint and energy efficiency of a standard house of social interest in Chile 224
Multiobjective Optimization of Impulsive Orbital Trajectories 230
Mathematical Modeling about Emigration/Immigration in Spain: Causes, magnitude, consequences 236
New scheme with memory for solving nonlinear problems 241
SP_{N} Neutron Noise Calculations 246
Analysis of a reinterpretation of grey models applied to measuring laboratory equipment uncertainties 252
An Optimal Eighth Order Derivative-Free Scheme for Multiple Roots of Non-linear Equa- tions 257
A population-based study of COVID-19 patient's survival prediction and the potential biases in machine learning 262
A procedure for detection of border communities using convolution techniques. 267

Probabilistic evolution of the bladder cancer growth considering transurethral resection

C. Burgos ${ }^{b}$, J.C. Cortés ${ }^{b}$, E. López-Navarro ${ }^{\text {b1 }}$ and R.J. Villanueva ${ }^{\text {b }}$
(b) Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n, 46022, València.

1 Introduction

Cancer is one of the most important public health problems worldwide. In Spain, it is one of the leading cause of death. It represents a total of 240,000 new cases and 100,000 deaths per year. The most frequently diagnosed tumors are colorectal, breast, prostate, lung and bladder cancer, [1]. In this contribution we focus on the latter. Bladder cancer is one of the most common malignant diseases in the urinary system and a highly aggressive neoplasm. The prognosis and the evolution for particular patients is uncertain. About 80% of patients diagnosed with bladder cancer have a non-invasive carcinoma that can be treated by transurethral resection (TUR). The TUR is a surgical procedure that involves inserting a resectoscope through the urethra into the bladder to remove the tumor. After the TUR, the typical treatment consists of instillations of Bacillus Calmette-Guérin (BCG) into the bladder. The BCG stimulates the patient's immune response against the cancer and then, the cancer cells may be eliminated. After treatment for this cancer it is important to have regular medical revisions, because it is characterized by recursiveness for more than 50% of the patients, and several TUR's may be applied to each patient.

Mathematically, this can be modeled by an exponential model where the growth of the tumor is stopped by the TUR and the tumor size is reduced almost to zero. We use data from a real patient to determine the model parameters that describe the known evolution, taking into account data uncertainty (size of the tumor), obtained from visual assessment. After that, we use these calibrated model parameters to predict the evolution of bladder cancer in future relapses. In the particular case of this patient, she has had two relapses. Then, we can provide when the patient should have her next medical revisions. To obtain a prediction, we calculate the probability density function (p.d.f.) of the time until a given tumor size is reached, using Random Variable Transformation method (RVT).

2 Data

To carry out our study, we have considered a patient from the database of the Urology Department of the Hospital Universitari i Politècnic La Fe of València. The available data for this patient

[^0]are collected and summarised in Table 1 at different time instants. As mentioned above, the measurement of tumor diameter is usually visual. For this reason, we will assume the following:

- If the size is given by an interval, we will take the mean as the visually estimed size of the tumour.
- A measurement error of 25% of the observed value, $\sigma^{2}=0.25 \mu$, where μ is the estimated measured value of the tumor diameter.

To quantify the uncertainty of the data, we will consider the data as a normal random variable with mean the data value, and variance the 25% error.

Day t	Date	Medical procedure	Diameter of the tumor	Measure distribution
0	01 Mar 2012	Ultrasound	$3-5 \mathrm{~mm}$	$N\left(\mu=4, \sigma^{2}=1\right)$
105	14 Jun 2012	TUR	25 mm	$N\left(\mu=25, \sigma^{2}=6.25\right)$
1081	15 Feb 2015	Cytoscopy	$1-2 \mathrm{~mm}$	$N\left(\mu=1.5, \sigma^{2}=0.375\right)$
1153	28 Apr 2015	TUR	5 mm	$N\left(\mu=5, \sigma^{2}=1.25\right)$
1796	30 Jan 2017	Cytoscopy	20 mm	$N\left(\mu=20, \sigma^{2}=5\right)$
1839	14 Mar 2017	TUR	$30-35 \mathrm{~mm}$	$N\left(\mu=32.5, \sigma^{2}=8.125\right)$

Table 1: Data of the real patient and chosen measure distribution.

3 Model

To describe tumor growth, we have considered a first-order linear growth model. As we have seen, the growth of the tumor is interrupted every time there is a TUR, at which point it starts to grow again from a new initial situation. Therefore, although the growth model may be the same, after each TUR the initial condition changes, which forces us to define the model in three parts. We will take a time step t of one day, and let $X(t)$ be the diameter of the tumor on day t. The first part corresponds to time $t \in[0,105]$, second part to $t \in[105,1153]$ and third part to $t \in[1153,1839]$. We have to take into account that the initial conditions of the second and third parts are unknown but some data are known in the middle. Therefore, tumour growth will follow the equations

$$
\left\{\begin{array}{l}
X^{\prime}(t)=K_{1} X(t) \tag{1}\\
X(0)=X_{0,1}
\end{array}, \quad\left\{\begin{array}{ll}
X^{\prime}(t) & =K_{2} X(t) \\
X(1081) & =X_{0,2}
\end{array}, \quad \begin{cases}X^{\prime}(t) & =K_{3} X(t) \\
X(1796) & =X_{0,3}\end{cases}\right.\right.
$$

(3)
where K_{1}, K_{2} and K_{3} are the growth rates and $X_{0,1}, X_{0,2}$ and $X_{0,3}$ are the initial conditions. We consider $K_{i}, i \in\{1,2,3\}$, unknown random variables and $X_{0,1}, X_{0,2}$ and $X_{0,3}$ random variables that follows a normal distribution, as we have seen in Table $1, N(4,1), N(1.5,0.375)$ and $N(20,5)$, respectively.

The model (1)-(3) has a known stochastic process solution, given by

$$
\begin{equation*}
X(t)=X_{0, i} e^{K_{i}\left(t-t_{0, i}\right)}, \quad i \in\{1,2,3\} \tag{4}
\end{equation*}
$$

where $t_{0,1}=0, t_{0,2}=1081$ and $t_{0,3}=1796$. Our main goal is to find the statistical distribution of the unknown random variables $K_{i}, i \in\{1,2,3\}$. We will use the Principle of Maximum Entropy. This method allows us to obtain a closed form expression of the p.d.f. taking into account the
known information of the random variable and maximizing its lack of knowledge [3]. Using Laplace transform we obtain that the p.d.f. of K_{i} is given by

$$
\begin{equation*}
f_{K}(k)=e^{-1-\lambda_{0, i}-\lambda_{1, i} k-\lambda_{2, i} k^{2}}, \quad k \in\left[k_{1, i}, k_{2, i}\right] \tag{5}
\end{equation*}
$$

where $k_{1, i}=0$ and $\lambda_{0, i}, \lambda_{1, i}, \lambda_{2, i}$ and $k_{2, i}, i \in\{1,2,3\}$ are values to be determined. It is important to remark that as $f_{K}(k)$ has to be a p.d.f., its integral over its domain has to be one. So, we can isolate $\lambda_{0, i}$ value in terms of the other variables. Consequently, we have to determine $\lambda_{1, i}, \lambda_{2, i}$ and $k_{2, i}, i \in\{1,2,3\}$. To estimate this parameters, we use Particle Swarm Optimization algorithm. In order to do this, we need a fitness function. This function has been obtained minimizing the functional error between the p.d.f. of the stochastic solution 2 , given by

$$
\begin{equation*}
f_{X(t)}(x)=\mathbb{E}_{K}\left[f_{X_{0, i}}\left(x e^{K_{i}\left(t_{0, i}-t\right)}\right) e^{K_{i}\left(t_{0, i}-t\right)}\right], \quad i \in\{1,2,3\} \tag{6}
\end{equation*}
$$

obtained via RVT method [2] and the p.d.f. of the data, that follow a normal distribution. In Fig. 1 we can observe graphically the fitting obtained for $t=105, t=1153$ and $t=1839$, that correspond to the TURs.

(c) 3rd part

Figure 1: Fitting of the p.d.f. of the model (blue line) and the p.d.f. of the data (red line) for $t=105,1153,1839$.

Once we have computed the p.d.f. of $K_{i}, i \in\{1,2,3\}$, we can obtain the mean and the variance of the growth rate in each part. In Table 2 we can observe the decreasing tendency of the mean of K.
In Figure 2 we have plot the mean and the confidence interval for the three different stages considering the growth rates obtained in the optimization procedure. The orange dots are the

	Part 1	Part 2	Part 3
Mean	0.01740707	0.0167186	0.01130548
Variance	0.000001109	0.000000831	0.00000137

Table 2: Mean and variance of $K_{i}, i \in\{1,2,3\}$.
real patient data. We have to take into account that the initial conditions of the second and third parts are unknown. But, with the p.d.f. we can go backwards to estimate these initial conditions, which will tell us how good the resection has been. We have obtained that at $t=105$, the mean of the initial condition in the second part is $\mu=1.25043110 e-07$ and at $t=1153, \mu=0.0127380$. As we can observe, the surgery done in the second part has cleared most of the tumor. But, it does not seem the same happened in the surgery done in the third part.

Figure 2: Mean and confidence interval for the three different stages.

4 Prediction

This section is devoted to study how to predict the evolution of bladder cancer in future relapses. Also, we can predict when the patient should have her next medical revisions. We deal with the following model

$$
\begin{cases}X^{\prime}(t) & =K X(t) \tag{7}\\ X(1839) & =X_{0}\end{cases}
$$

with known stochastic solution

$$
\begin{equation*}
X(t)=X_{0} e^{K(t-1839)} \tag{8}
\end{equation*}
$$

where X_{0} is the initial condition and K the growth rate. Both are random variables. X_{0} follows a normal distribution, but in two different scenarios. This two scenarios correspond to the clean capacity of the TURs. Scenario 1 corresponds to a better cancer cleaning ($\mu=1.25043110 e-$ $07, \sigma=0.25 \mu$) and scenario 2 to a worse cleaning ($\mu=0.0127380, \sigma=0.25 \mu$). To obtain the statistical distribution of K will be use the Principle of Maximum Entropy. To use this, we need the mean and second order moment of K. We use the information we have obtained in the previous three parts. We use linear regression for the mean and for the variance the mean of the variances.

To obtain a prediction, we calculate the p.d.f. of the time until a given tumor size is reached, using RVT method. It is given by

$$
\begin{equation*}
f_{T(x)}(t)=\mathbb{E}_{X_{0}}\left[f_{K}\left(\frac{\log \left(\frac{x}{x_{0}}\right)}{t-1839}\right)\left|-\frac{\log \left(\frac{x}{x_{0}}\right)}{(t-1839)^{2}}\right|\right] \tag{9}
\end{equation*}
$$

From expression (9) we can obtain the mean and the standard deviation of the time for a specific tumor size. In Table 3 we can observe that the results obtained are very different in the two scenarios. There is more than a thousand days of difference between scenario 1 and 2 . To our knowledge, the patient has had 3 revisions and none of them have shown any trace of cancer. It seems that we are in a favorable scenario. That is, we are in scenario 1 , where there has been a better cleaning of the tumor.

| Diameter of the tumor
 (mm) | Scenario 1
 (Mean Days, standard deviation) | Scenario 2
 (Mean Days and standard deviation) |
| :--- | :--- | :--- | :--- |
| 0.5 | $\mu=3405.8, \quad \sigma=516.5$ | $\mu=2225.7, \quad \sigma=139.9$ |
| 1 | $\mu=3473.2, \quad \sigma=539.4$ | $\mu=2297.7, \quad \sigma=163.1$ |
| 5 | $\mu=3657.5, \quad \sigma=593.6$ | $\mu=2464.1, \quad \sigma=216.7$ |
| 20 | $\mu=3806.4, \quad \sigma=646.2$ | $\mu=2606.1, \quad \sigma=262.8$ |
| 25 | $\mu=3829.2, \quad \sigma=652.9$ | $\mu=2628.8, \quad \sigma=270.3$ |

Table 3: Prediction of the time until a given tumor size is reached in two different scenarios.

5 Conclusions

In this contribution, we propose a mathematical model of bladder cancer growth, taking into account the reduction of the tumor by the surgical intervention known as transurethral resection (TUR). TURs generate jumps in the continuity of cancer growth, for this reason we consider the model divided into 3 parts, corresponding to the periods between TURs. We use real data from a patient to determine the model parameter values that describe the known evolution, taking into account data uncertainty. After that, we use these calibrated model parameters to predict the evolution of bladder cancer in future relapses.

Acknowledgements

This research has been supported by the Generalitat Valenciana project AICO/2020/114.

References

[1] Official Site for Spanish Medic Oncology Society. https://seom.org/info-sobre-el-cancer/ vejiga. Accessed: 12/05/2021.
[2] Soong, T., Random Differential Equations in Science and Engineering. Academic Press, New York, 1973.
[3] Burgos, C., Cortés, J.C., Martínez-Rodríguez, D., Villanueva, R.J. Modeling breast tumor growth by a randomized logistic model: A computational approach to treat uncertainties via probability densities, Europ. Phy. J. Plus, 135, 2020.

[^0]: ${ }^{1}$ ellona1@upv.es

