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Probabilistic evolution of the bladder cancer growth
considering transurethral resection

C. Burgos �, J.C. Cortés�, E. López-Navarro�1 and R.J. Villanueva�

(�) Instituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València,

Camino de Vera, s/n, 46022, València.

1 Introduction
Cancer is one of the most important public health problems worldwide. In Spain, it is one of
the leading cause of death. It represents a total of 240,000 new cases and 100,000 deaths per
year. The most frequently diagnosed tumors are colorectal, breast, prostate, lung and bladder
cancer, [1]. In this contribution we focus on the latter. Bladder cancer is one of the most common
malignant diseases in the urinary system and a highly aggressive neoplasm. The prognosis and
the evolution for particular patients is uncertain. About 80% of patients diagnosed with bladder
cancer have a non-invasive carcinoma that can be treated by transurethral resection (TUR). The
TUR is a surgical procedure that involves inserting a resectoscope through the urethra into the
bladder to remove the tumor. After the TUR, the typical treatment consists of instillations of
Bacillus Calmette-Guérin (BCG) into the bladder. The BCG stimulates the patient’s immune
response against the cancer and then, the cancer cells may be eliminated. After treatment for
this cancer it is important to have regular medical revisions, because it is characterized by
recursiveness for more than 50% of the patients, and several TUR’s may be applied to each patient.

Mathematically, this can be modeled by an exponential model where the growth of the tumor
is stopped by the TUR and the tumor size is reduced almost to zero. We use data from a real
patient to determine the model parameters that describe the known evolution, taking into account
data uncertainty (size of the tumor), obtained from visual assessment. After that, we use these
calibrated model parameters to predict the evolution of bladder cancer in future relapses. In the
particular case of this patient, she has had two relapses. Then, we can provide when the patient
should have her next medical revisions. To obtain a prediction, we calculate the probability
density function (p.d.f.) of the time until a given tumor size is reached, using Random Variable
Transformation method (RVT).

2 Data
To carry out our study, we have considered a patient from the database of the Urology Department
of the Hospital Universitari i Politècnic La Fe of València. The available data for this patient

1ellona1@upv.es
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are collected and summarised in Table 1 at different time instants. As mentioned above, the
measurement of tumor diameter is usually visual. For this reason, we will assume the following:

- If the size is given by an interval, we will take the mean as the visually estimed size of the
tumour.

- A measurement error of 25% of the observed value, σ2 = 0.25µ, where µ is the estimated
measured value of the tumor diameter.

To quantify the uncertainty of the data, we will consider the data as a normal random variable
with mean the data value, and variance the 25% error.

Day t Date Medical
procedure

Diameter of
the tumor

Measure
distribution

0 01 Mar 2012 Ultrasound 3-5mm N(µ = 4, σ2 = 1)
105 14 Jun 2012 TUR 25mm N(µ = 25, σ2 = 6.25)
1081 15 Feb 2015 Cytoscopy 1-2mm N(µ = 1.5, σ2 = 0.375)
1153 28 Apr 2015 TUR 5mm N(µ = 5, σ2 = 1.25)
1796 30 Jan 2017 Cytoscopy 20mm N(µ = 20, σ2 = 5)
1839 14 Mar 2017 TUR 30-35mm N(µ = 32.5, σ2 = 8.125)

Table 1: Data of the real patient and chosen measure distribution.

3 Model
To describe tumor growth, we have considered a first-order linear growth model. As we have
seen, the growth of the tumor is interrupted every time there is a TUR, at which point it starts
to grow again from a new initial situation. Therefore, although the growth model may be the
same, after each TUR the initial condition changes, which forces us to define the model in three
parts. We will take a time step t of one day, and let X(t) be the diameter of the tumor on day
t. The first part corresponds to time t ∈ [0, 105], second part to t ∈ [105, 1153] and third part to
t ∈ [1153, 1839]. We have to take into account that the initial conditions of the second and third
parts are unknown but some data are known in the middle. Therefore, tumour growth will follow
the equations
�

X �(t) = K1X(t)
X(0) = X0,1

,

(1)

�
X �(t) = K2X(t)
X(1081) = X0,2

,

(2)

�
X �(t) = K3X(t)
X(1796) = X0,3

,

(3)
where K1, K2 and K3 are the growth rates and X0,1, X0,2 and X0,3 are the initial conditions.
We consider Ki, i ∈ {1, 2, 3}, unknown random variables and X0,1, X0,2 and X0,3 random
variables that follows a normal distribution, as we have seen in Table 1, N(4, 1), N(1.5, 0.375)
and N(20, 5), respectively.

The model (1)-(3) has a known stochastic process solution, given by

X(t) = X0,ie
Ki(t−t0,i), i ∈ {1, 2, 3}, (4)

where t0,1 = 0, t0,2 = 1081 and t0,3 = 1796. Our main goal is to find the statistical distribution of
the unknown random variables Ki, i ∈ {1, 2, 3}. We will use the Principle of Maximum Entropy.
This method allows us to obtain a closed form expression of the p.d.f. taking into account the
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known information of the random variable and maximizing its lack of knowledge [3]. Using Laplace
transform we obtain that the p.d.f. of Ki is given by

fK(k) = e−1−λ0,i−λ1,ik−λ2,ik
2
, k ∈ [k1,i, k2,i] (5)

where k1,i = 0 and λ0,i, λ1,i, λ2,i and k2,i, i ∈ {1, 2, 3} are values to be determined. It is important
to remark that as fK(k) has to be a p.d.f., its integral over its domain has to be one. So, we can
isolate λ0,i value in terms of the other variables. Consequently, we have to determine λ1,i, λ2,i and
k2,i, i ∈ {1, 2, 3}. To estimate this parameters, we use Particle Swarm Optimization algorithm.
In order to do this, we need a fitness function. This function has been obtained minimizing the
functional error between the p.d.f. of the stochastic solution 2, given by

fX(t)(x) = EK

�
fX0,i

�
xeKi(t0,i−t)

�
eKi(t0,i−t)

�
, i ∈ {1, 2, 3}, (6)

obtained via RVT method [2] and the p.d.f. of the data, that follow a normal distribution. In
Fig. 1 we can observe graphically the fitting obtained for t = 105, t = 1153 and t = 1839, that
correspond to the TURs.

(a) 1st part (b) 2nd part

(c) 3rd part

Figure 1: Fitting of the p.d.f. of the model (blue line) and the p.d.f. of the data (red line) for
t = 105, 1153, 1839.

Once we have computed the p.d.f. of Ki, i ∈ {1, 2, 3}, we can obtain the mean and the variance
of the growth rate in each part. In Table 2 we can observe the decreasing tendency of the mean
of K.
In Figure 2 we have plot the mean and the confidence interval for the three different stages
considering the growth rates obtained in the optimization procedure. The orange dots are the
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Part 1 Part 2 Part 3
Mean 0.01740707 0.0167186 0.01130548
Variance 0.000001109 0.000000831 0.00000137

Table 2: Mean and variance of Ki, i ∈ {1, 2, 3}.

real patient data. We have to take into account that the initial conditions of the second and third
parts are unknown. But, with the p.d.f. we can go backwards to estimate these initial conditions,
which will tell us how good the resection has been. We have obtained that at t = 105, the mean
of the initial condition in the second part is µ = 1.25043110e−07 and at t = 1153, µ = 0.0127380.
As we can observe, the surgery done in the second part has cleared most of the tumor. But, it
does not seem the same happened in the surgery done in the third part.

Figure 2: Mean and confidence interval for the three different stages.

4 Prediction
This section is devoted to study how to predict the evolution of bladder cancer in future relapses.
Also, we can predict when the patient should have her next medical revisions. We deal with the
following model �

X �(t) = KX(t)
X(1839) = X0,

(7)

with known stochastic solution
X(t) = X0eK(t−1839), (8)

where X0 is the initial condition and K the growth rate. Both are random variables. X0 follows
a normal distribution, but in two different scenarios. This two scenarios correspond to the clean
capacity of the TURs. Scenario 1 corresponds to a better cancer cleaning (µ = 1.25043110e −
07, σ = 0.25µ) and scenario 2 to a worse cleaning (µ = 0.0127380, σ = 0.25µ). To obtain the
statistical distribution of K will be use the Principle of Maximum Entropy. To use this, we
need the mean and second order moment of K. We use the information we have obtained in the
previous three parts. We use linear regression for the mean and for the variance the mean of the
variances.
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To obtain a prediction, we calculate the p.d.f. of the time until a given tumor size is reached,
using RVT method. It is given by

fT (x)(t) = EX0


fK




log
�

x
x0

�

t − 1839




������
−

log
�

x
x0

�

(t − 1839)2

������


 . (9)

From expression (9) we can obtain the mean and the standard deviation of the time for a specific
tumor size. In Table 3 we can observe that the results obtained are very different in the two
scenarios. There is more than a thousand days of difference between scenario 1 and 2. To our
knowledge, the patient has had 3 revisions and none of them have shown any trace of cancer. It
seems that we are in a favorable scenario. That is, we are in scenario 1, where there has been a
better cleaning of the tumor.

Diameter of the tumor
(mm)

Scenario 1
(Mean Days, standard deviation)

Scenario 2
(Mean Days and standard deviation)

0.5 µ = 3405.8, σ = 516.5 µ = 2225.7, σ = 139.9
1 µ = 3473.2, σ = 539.4 µ = 2297.7, σ = 163.1
5 µ = 3657.5, σ = 593.6 µ = 2464.1, σ = 216.7
20 µ = 3806.4, σ = 646.2 µ = 2606.1, σ = 262.8
25 µ = 3829.2, σ = 652.9 µ = 2628.8, σ = 270.3

Table 3: Prediction of the time until a given tumor size is reached in two different scenarios.

5 Conclusions
In this contribution, we propose a mathematical model of bladder cancer growth, taking into
account the reduction of the tumor by the surgical intervention known as transurethral resection
(TUR). TURs generate jumps in the continuity of cancer growth, for this reason we consider the
model divided into 3 parts, corresponding to the periods between TURs. We use real data from a
patient to determine the model parameter values that describe the known evolution, taking into
account data uncertainty. After that, we use these calibrated model parameters to predict the
evolution of bladder cancer in future relapses.
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