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Solving non homogeneous linear second order
difference equations with random initial values:
Theory and simulations

J.-C. Cortés’,! A. Navarro-Quiles? and S.-M. Sferle’

(b) Instituto Universitario de Matematica Multidisciplinar,
Universitat Politecnica de Valencia
Cami de Vera s/n, Valencia, Spain.
(i) Departamento de Estadistica e Investigacién Operativa,
Universitat de Valencia
Dr.Moliner, 50, Burjassot, Spain.

1 Introduction

Difference equations and differential equations are powerful equations for modeling the dynamics
of real world phenomena. The former are suitable for modeling the evolution of species whose
generations do not overlap and grow at regular intervals over fixed periods of time (e.g., annual)
or for modeling the dynamics of economic quantities that are evaluated in discrete periods by
connecting the present value with previous capitalized values (in a general sense). For its part,
differential equations have been successfully applied to describe the dynamics of quantities from
their instantaneous change. When both types of equations are applied to real problems, it is
often necessary to take into account the inherent uncertainty of the phenomena under study or
the sampled data errors required to determine the data specifying these models.

This simple approach leads to the need to examine this type of equations, both from a theoretical
and applied point of view, taking into consideration the randommness in their formulation. There
are different types of strategies to introduce randomness in the study of these problems, but in
the present work we will consider noises defined through random variables or stochastic processes
with regular sampling behavior.

This document is organized as follows. In Section 2, we will determine the first probability density
function (1-p.d.f.). of the solution of the initial value problem (i.v.p.) bearing in mind the nature
of the roots of the associated characteristic equation. In Section 3, we will illustrate the theoretical
results developed through examples. The last section draws conclusions.

jccortes@mat.upv.es
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2 Computing the 1-p.d.f.
Let us consider the following initial value problem

Zn+2+AlZn+1+A2Zn:Ba n:07172)"'5
Zy =T, (1)
Z1 =T1.

In this problem, we will treat the parameters A1, As and B as constant coefficients, and, without
loss of generality, we will treat the initial conditions I'g = T'g(w) and T'y = I';(w) as dependent
continuous random variables (r.v.s) defined on a common probability space (£2,§,P), which have
an arbitrary joint probability density function, fr,r,(70,71). In the following, the domains of the
input parameters I'g, '1 will be denoted as follows

Dr,={vw=Tow),w € Q:v1 <7 < Y.z}
Dr, ={m =T1(w),weQ:71 <7 <Mzt

where the endpoints of each interval can take any real value. For notation reasons, the sample
dependence for r.v.’s denoted by the w-notation will be omitted.

Thus, since the problem is a non homogeneous linear second order difference equation with random
initial conditions, its solution will be a stochastic process, say {Z, : n > 0}. Therefore, our
objective now is to determine the solution of the i.v.p. and, in addition, to calculate the first
probability density function since from it we can determine statistical characteristics such as the
mean E[Z,], the variance V[Z,,] or any other statistical moment

Bl(Z) = [ 45,0z, nk=0,12,...

—00
Notice that this makes a considerable difference from the deterministic scenario.
In order to figure out the 1-p.d.f. of the solution of the i.v.p. we will use the Random Variable
Transformation (R.V.T.) technique. Among the numerous versions of this technique, the one we
are going to implement throughout this work is found in [2].

Theorem 1. Let V = (Vi,..., Vi) be a random vector of dimension m with joint p.d.f. fyv(v). Let
7r: R™ — R™ be a one-to-one deterministic map which is assumed to be continuous with respect to
each one of its arguments, and with continuous partial derivatives. Then, the joint p.d.f. fw(w)
of the random vector W = r(V') is given by

fw(w) = fv(s(w)) [Jml, (2)

where s(w) is the inverse transformation of r(v) : v = r~(w) = s(w) and J,, is the Jacobian of
the transformation, i.e

8;%91 (w) 6sén(w)
w1 w1
Owm, Owm,

which is assumed to be different from zero.

Based on the deterministic theory, it is known that the general solution Z,, of (1) is equal to the
sum of the general solution of the associated homogeneous equation and a particular solution of
the non-homogeneous equation

Z¢ = Zh + 7P,
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and depends on the character of the roots of the associated characteristic equation
T2+A1T+A2 =0,
that is, on the values

—A; + /A2 — 44, —Ay — /A2 — 44, )

r = 2 ’ ro = 2

The nature of the roots, which can be real or complex, depends on the discriminant

A= A2 —4A,.
So,
1. if the discriminant is positive, A > 0, then there are two distinct real roots, i.e.

ri, 7o € R and 11 # 7o.

2. if the discriminant is zero, A = 0, then there is a real root of double multiplicity, i.e.

rn=ry=r€cR.

3. if the discriminant is negative, A < 0, then there are two distinct complex roots, i.e.

rn=a+1ib, o =a—1b e C and ry =7.

Regarding the particular solution, which will be the same for the three cases, let us assume
that it is a constant discrete function Z, = k, with a constant k£ to be determined. Given this
circumstance, the particular solution obtained is

B
p_—__ -
Zn 14+ A+ Ay’ (4)

where 1 + A + Ay # 0.

We will now examine each of the three cases.
2.1 Real and distinct roots

The solution of the (1) is

1—r

Z¢ =

n

r1(r2)" — Tz(Tl)”FO n (ry)™ — (Tz)”F B ( ry —1

n
T —T9 1 —T9 ! 14+ A1 + Ay (r)" +

r —7r2 r =72

(7,,2)77, + 1) ’
where r; and ry are given by (3).

Now, we are going to calculate the 1-p.d.f. of the r.v. Z = Z,,. To do so, we set n and we apply
the Theorem 1 using the following identification: m = 2 and

V = ([y,Ty), (V) = fror (Yo, m),
W = (Wl,Wg) == I'(Fo,rl).
The inverse mapping is given by
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W, = TI(FO,FI) _ rl(v"z)n_rz(m)nro 4 (rl)n_(rz)nrl X 1+A?+A2 (rQ—l (rl)n + 1—rg (T2)n + 1)

r1—r2 r1—r2 r1—r2 ri—r2

= T = s1(Wy, Wa) = (Wl _(r)"—=(r2)™ Wy — 1+A?+A2 (7"2—1 (r)" + ﬂ(rz)n + 1)) r1—ro

r1—T1 T1—T2 r1—T2 ri(ra)n—ra(ry)™’

Wy :Tg(Fo,Fl) =14 = I3 :SQ(Wl,Wg) = Ws.
The corresponding Jacobian is

L —T2
T1 (7"2)” — 7“2(’/“1)"

Thus, we obtain the joint p.d.f. of the random vector W = (W7, W3) by applying (2)

Jo =

(T‘l)n— (’I“Q)n B <7‘2—1 n 1—7“1 n )>
wy — r)" + ro)" +1) -

T — T2 2T A + A 7“1—7‘2(1) 7“1—7”2(2)
< 2.

, wil Swp <wig, 1<

fw(w) = fror, (<w1 -

" —T2

M —T9 >
. w2 .
71 (7"2)” — 7"2(7"1)”7

Lastly, taking into account that Z = Wy, we obtain the 1-p.d.f. of the solution as follows

fr () = /:1,2 . <(z ~(r)" = (7"2)"71 B ( Ty — 1 (1) + 1—r (ro)" + 1>) :

11 rL— T2 1+ Ar+ Az \r1 — 1o r1— T2
ry— T2

T1 (7”2)” — T2 (7“1)"

(& (T’Q)n — T2 (7"1)”

d’)/l.

rL— T2 )
. ;1) -
?"1(7“2)” — ?”2(’!”1)" i

(5)

To avoid cumbersome notation in this general context, we prefer to leave the explicit definition of
the domains in the examples section.

2.2 Real and equal roots
The solution of the (1) is

Z¢ = (1 —n)r"To+ (nr" DIy + (m’" — el 1) ,

1+ A1+ Ay

where r = r; = 9.
Now, we are going to calculate the 1-p.d.f. of the r.v. Z = Z,,. To do so, we set n and we apply
the Theorem 1 using the following identification: m = 2 and

V= (F()arl)a fV(V) = fFOIl (70771)7
W = (W, Ws) = (T, T').

The inverse mapping is given by

Wy =r1(To,T1) = (1 —n)r"To + (nr" Iy + 71+A]13+A2 (nr™ —nr=t — 1)

=Ty =s51(W1, W) = (Wl — (nr" YW — 71+A?+A2 (nr™ —nrt — g 4 1)) 7(1_2)7"”,
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Wo =ro(lo, 1) =T1 = T'1=s2(W1,Wa)=Ws.
The corresponding Jacobian is

1
SRRSO

Thus, we obtain the joint p.d.f. of the random vector W = (W1, W3) by applying (2)

B

fw(w) = fror, ((wl = (" wy — 1+ 4, + A,

(m“" — Tt " 4 1)) :

,oowip Swp Swig, 1<0<2

Lastly, taking into account that Z = W7, we obtain the 1-p.d.f. of the solution as follows

B

71,2
_ ’ _ n—1 .z
"CZ"(Z)_/7 fr“’“(<z o = T A T A

1,1

(nr” — et g 1)) :

d’yl .

1
(1- n)r"’%> ' ’(1 —n)rn
To avoid cumbersome notation in this general context, we prefer to leave the explicit definition of
the domains in the examples section.
2.3 Complex roots
The solution of the (1) is
_ R"sin(0(1 —n))

7¢ — T
n sin(0) ot

R !sin(On) n B R'sin(f(n —1)) R !sin(On) 41
sin(0) 1+ Ay + Ay sin(6) sin(0) ’

where R = [r1| = |ro| = Via® + b2 and 6 = arctan(2).
Now, we are going to calculate the 1-p.d.f. of the r.v. Z = Z,,. To do so, we set n and we apply
the Theorem 1 using the following identification: m = 2 and

V = (Fo,rl), fV(V) = fF07F1 (701’71)7
W = (W, Wa) =r(Ty,I'1).

The inverse mapping is given by

R"sin(6(1—n R 1lsin(6n B R"sin(f(n—1 R Lsin(6n
Wi =ri(To, ') = 75151(5)) Aty + sin(e)( Ty + s ( 5151(5)) D sm(e)( L4 1)

o o R™1sin(6n B R"sin(0(n—1)) R™1sin(On sin(6
= Ty = s1(W1, W) = (Wl - 45&1(9)( b, — THA, T 43 ( si1(1(¢(9) A sin(G)( L+ 1)) R sin(O((l)fn)V

Wy = TQ(Fo,Fl) = = I;= 32(W17W2) = Was.

The corresponding Jacobian is
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_ ‘sin(Q) £0.
R"sin(6(1 —n))
Thus, we obtain the joint p.d.f. of the random vector W = (W71, W3) by applying (2)

Jo

B R !sin(On) B R'sin(f(n — 1)) R" lsin(én)
Jwlw) = Jron ((“’1 T sin(0) 2T 11 A+ A, < sin(0) T e 1)) '
sin(6) sin(6) ,
Rrsm(0(1 — n))’“’2> ' ‘R” SOl —my|) WS WS Wiz Isis2

Lastly, taking into account that Z = Wy, we obtain the 1-p.d.f. of the solution as follows

M2 R !sin(6n) B R"sin(f(n — 1)) R" lsin(én)
J2,(2) = /m Jro.rs ((Z TSm0 Y14 A+ A ( sin(0) O 1)) '

SIH(Q) SIH(Q)
"Rrsin(0(1 —n))’ 71) | Rrsin(0(1 — n)) ‘ -

To avoid cumbersome notation in this general context, we prefer to leave the explicit definition of
the domains in the examples section.

3 Examples

In this section, we are going to illustrate the theoretical results through numerical examples. The
aim is to plot the 1-p.d.f. of the solution of the i.v.p. (1) obtained in the three cases for some
values of n.

In the first case we assume that the constant coefficients take the following values

Ay =—-4, A, =-2 B=10.
Furthermore, we consider that the random inputs follow a joint Gaussian distribution, i.e.

6 0.05
I'g,I'1) ~ 3 = (1,1 Y= .
( 0, 1) N(:U’v )7 1% ( ’ 0)7 <005 6 )

Figure (1) shows the 1-p.d.f. at n =0,1,2,3. It seems to diverge monotonically as n increases.
In the second case we assume that the constant coefficients take the following values

A =-1, Ay=1/4 B=1.

We also consider a joint Gaussian distribution, but now with the following mean and covariance
matrix

0.1 0.05
p=(1,1.5), 2:( )

0.05 0.1

Figure (2) shows the 1-p.d.f. at n = 0,1,2,3,4,5. It seems to converge monotonically as n
increases.
Finally, the values that we assume in the last case are

0.2 0.01
Al =1, Ay=1/2 B=3, u=(051), 2:( )

0.01 0.3

Figure (3) shows the 1-p.d.f. at n =0,1,2,3,4. It seems to converge oscillating as n increases.
Note that in all cases the z-domain of fz, (z) is —o0 < z < 0.
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Case |
fz,(2)
0.15
— h=
0.10/! — n=1
— he
0.05 n=3
JM/\ | | | y
100 200 300 400

Figure 1: Plot of the 1-p.d.f., fz, (2), of the solution, Z,, in case I at different values of n = 0,1, 2, 3.

Case ll
fz,(2)
= n=0
4 - n=1
- n=2
3
n=3
n=
2
n=5
1
1 2 3 4 Z

Figure 2: Plot of the 1-p.d.f., fz, (2), of the solution, Z,, in case II at different values of n =
0,1,2,3,4,5.
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Case lll

fz,(2)

3.5

3.0 —

2.5 — n=1

2.0 - n=2

1.5 n=3
n=4

1.0

-2 -1 1 2 = 3 4 z

Figure 3: Plot of the 1-p.d.f., fz (z), of the solution, Z,, in case III at different values of n =
0,1,2,3,4.

4 Conclusions

In this work we have provided a general explicit formula for the 1-p.d.f. of the solution of a non-
homogeneous linear second order difference equation with random initial values, which depending
on the character of the roots of the associated characteristic equation has one form or another,
and where the random inputs involved are statistically dependent. The study has been based
on the Random Variable Transformation technique. Moreover, we have shown with examples
the theoretical development obtained, in which it can be observed that it is the deterministic
counterpart.
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