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Solving random fractional second-order linear
equations via the mean square Laplace transform

C. Burgos °,! J. C. Cortés’ L. Villafuerte ®* and R. J. Villanueva’

(b) Instituto Unversitario de Matematica Multidisciplinar.
Universitat Politecnica de Valencia,
Camino de Vera s/n. 46022 Valencia.
() Department of mathematics,
University of Texas, Austin, USA.

1 Introduction

In this contribution, the authors extend the Laplace transform in mean square (m.s.) sense to solve
random fractional differential equations. Concretely they solve the following random fractional
initial value problem (RFIVP).

‘DY X(t)+AX(t)+BX(t) = 0, t>0, l<a<2,

. (1)
X(0)=Cp, X(0) =0y,

where A, B, Cy and C; are second order random variables. Here, CD8‘+X (t) denotes the mean
square Caputo derivative of the stochastic process X (t), [1-3].

Firstly, some important results related with the Laplace transform in mean square sense are
presented in order to construct a solution stochastic process of the RFIVP (1). This solution is
described via a generalized power series. Mild conditions will be impossed into the random input
parameters to guarantee the convergence of the power series solution in the m.s. sense. Once
a convergent solution is obtained, we compute approximations for the main statistical moments:
the mean and the variance.

2 DMain properties of the Laplace transform in m.s. sense

This section is devoted to introduce Laplace transform in m.s. sense and its main properties.

Definition 1. The Laplace transform of a 2-stochastic process, {X(t) : t > 0}, is defined by
oo
L{X(1); s} = / cIX(Hdf, seSCR, 2)
0

provided the improper integral exists in L2((2).
Next, we compute the Laplace transform of a power function. This result will be useful to obtain
the solution of the RFIVP (1).

Lelabursi@upv.es
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Example 1. Let X(t) = Utk be a 2-SP, then
1
L{X(t);s} = UWF(k +1), s>0.

So far, the Laplace transform has been presented. Now we compute the Laplace transform for the
first, second and Caputo derivatives.
Proposition 1. Let {X(t) : t > 0} be a 2-stochastic process satisfying the following conditions:
i) X (t) is mean square differentiable (so, continuous),
i) X(t) is mean square piecewise continuous,
iti) X(t) is of exponential order so > 0.

Then,
L{X(t);s} = sL{X(t);s} — X(0), s> s0>0.

Remark 8. If the 2-stochastic process X (t) is twice mean square differentiable such that X (t)
and X(t) are both mean square continuous and of exponential order and X(t) is mean square
piecewise continuous, then applying twice Proposition 1, one obtains

L{X(t); s} = sL{X(t); s} — X(0) = s(sL{X (t); s} — X(0)) — X(0)
= $2L{X(t); s} — sX(0) — X(0). (3)

Proposition 2. Let X (t) be a 2-stochastic process satisfying the hypotheses of Remark 8. Let
CD8‘+X(t), 1 < a < 2, denote its mean square Caputo fractional derivative. If the pathwise
integral [ e | X (7)|dT exists and is finite, then

L{EDE X (1); 5} = " L{X (1) 8} — s 1 X(0) — 52X (0),
and L{Dg, X (t); s} belongs to L(12).

The following Theorem allow us to express the Laplace transform of the solution SP in a gener-
alized power series.

Theorem 9. Let A and B be bounded random wvariables, i.e. there exist M4 > 0 and Mp > 0
such that |A(w)| < My and |B(w)| < Mp, for allw € Q. If1 < a < 2 and s > K; =
1

max{Mj_l, (Mg + MB)ﬁ, 1}, then for all w € QQ,
i) [A(w)|st™* < 1.

w)s™!
i) | 22| < 1

i) A TBG] = nm>0 4”2%?(%)1)(_A(w))m(_B (w))rs~mletiratnet)

3 Obtaining the solution SP of the RFIVP (1)

This section is devoted to compute the solution SP of the RFIVP (1) using the Laplace transform
and the results described in the last section.
Let us consider the RFIPV (1) given by

“DS X (t) + AX(t) + BX(t). (4)

14
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Applying the Laplace transform, using its linearity and applying Propositions 1 and 2, one gets
L{°Dg X (t) + AX(t) + BX (t); s}
— £{ODg. X (t); s} + AL{X (1); 5} + BL{X(1); 5} (5)
= sL{X(t); s} — s 71X (0) — s*72X(0) + AsL{X(t); s} — AX(0) + BL{X(t);s}.
Isolating £{X (t); s} and taking into account that X (0) = C and X (0) = C}, one gets

Saflco + Sa72cl + AC)y

LX) s} = s+ As+ B

Applying Theorem (9) iii), we can express (6) as a power series. Let us define

L(m+n+1)
(m+1)I'(n+1)

¢n,m(A, B) = (—B)"(_A)m _ (—1)n+mBnAmM

(7)

min!
SO

LEX(1);sy = Y Gnm(A, B)Cos~ (@ Dmtnat)

n,m>0

+ Z ¢n,m(A,B)Cls_(m(a—1)+na+2)

n,m>0

+ Z ¢n,m(A,B)ACOSi(m(C“*l)JF(nJrl)a). (8)

n,m>0

Taking into account Example 1 and applying the inverse of the Laplace transform we can obtain
the solution SP which is given by

tml/—i—na

X(t): Z ¢n,m(AaB)COF

n,m>0

+ Y dnm(AB)C

n,m>0

+ Z (an,m(Aa B)ACOF

n,m>0

(mv+na+1)
tmu+na+1

I'(mv + na + 2)

tml/—i—na-l—a—l

(mv +na+a)

This solution is m.s. convergent for all ¢ > K if the following hypothesis fulfil.

e A and B are bounded random variables, that is, there are positive numbers M4 and Mp
such that |A(w)| < My and |B(w)| < Mg, for all w € Q. So, 4, B € L%(Q).

« Cp and C; are second order random variables, i.e. Cp,C; € L2(Q).

e (o, C1, A and B are independent random variables.

« Ky :=max {(2Mp), (2M)7, K, }, where K is defined in Theorem 9

4 Approximations for the two first statistical moments of the
solution SP

So far, a m.s. convergent solution of the RFIVP 1 has been obtained. This section is devoted
to obtain approximations for the mean and for the second order moment taking into account the
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solution SP obtained in (9). As (9) is m.s. convergent, the mean and the variance of the truncated
solution converge to the mean and the variance of the limit. Let us consider a trunctation of (9)

N M tmu—l—na
X nm (A, B)C
N (f) 7;)7”20(? ) 0F(mu+na+1)
tmzl-l—na—f—l
+ nm(A, B)C 10
%mzo(b (ml/—l-na—i-Q) (10)
tmu+na+a—1
+ nm (A, B)AC )
%mzo(ﬁ ) o L(mv + na + «a)

Applying the mean operator one gets.

1)y E[BEAT(m £ 0 + 1)
Fm+1)T'(n+1)
gmvtno gmrtnatl }

E[X N (t) Z Z

n=0m=0

E[CO]F(mu+om+ 1) +E[01]F(my+an+2) (11)
n ZO ZO 1) B ELA™ E(C)

F(m+n+ 1) tmu—i—om—i—a—l
I'm+1D)I'(n+1)T(mrv+an+a)

The second order moment is given by the following expression.

tml/—i—an 2
E[4%"] { B[C]) <F(my — 1)>

N M
E[(Xnar(t)?) = 3 (Z (ot e

n=0 \m=0

9 tmu+o¢n+1 2
E
+EIC] F(mv +an +2)

gmv+an prwv+an+tl
+ 2E[Co]E[C1] (F(m,j Tont 1)> (p(mu +an+ 2)) }

mvtanta—1 > 2

L(mv+an+«

+ oE[CRE[azm ) S
0 Fimv+an+1) ) \I'(mv+an+ «)

2m+1 gmyvtantl tmvtanta=l
+ 2E[Co]E[C1]E[A*™ ] Timv +an+2) ) \T(mv +an + a)

+E[A*"IE[CF] <

M mp—1
r 1 r +1
I S MR (/LS M RS/ ES)

=1 ma=0 I(n+1)L(my +1) L(n+1)I(m2 + 1)
tmﬂ/—&-om tmgl/—i—an
E[A™+™m2] {E[C
F(mv+an+1)) \I'(maer + an+1)
tm11/+an tmgquoerl
F(miv+an+1) ) \T(mov + an + 2)
tmlquchrl tm21/+cm
T'(miv + an + 2) [(mov + an + 1)
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) tm1u+om+1 tmgu—l—an-‘,—l
E[C
+EIC] F(miv+an+2) | \ I'(mav + an + 2)

tm1l/+om tmgu+an+a+1
+E[A™M RG]

F(miv+an+1) ) \T'(maov + an + «)

$m v+an+1 tmgu+an+o¢71
C(miv+an+2) ) \I'(

5 N +1 tm1u+an+a71 tmgquom
E[CSIE[AT M2
+ElGoJEl ] (I‘(m11/+om+oz)> (F(m2y+an+1)>

CORIC IR Am+ma+1y (U fmavtan+l
E[Cy|E[Cy|E[A™1+Mz
+ E[Co]E[C1]E] ] T(mw +an +a) ) \T(mav + an + 2)

tm v+an+a—1 tmgy+an+a—1
+E[CF]E[A’]
F(miv+an+a) ) \T'(mev +an+ «)
N ni—-1 M

+ 2 Z Z Z f: (_1)n1+m1+n2+m2E[Bn1+n2] F(ml + ng + 1)
C(mi+ 1)T(ng + 1)
F(mQ + ng + 1)

E Aml—l—mz E CQ tmll/Jroml tm2y+an2
' L(ma+ DI'(na + 1) [ I ElCol LC(miv 4+ ang + 1) T(mov 4+ ang + 1)

tmlu—i-aml tm2u+an2+1
+ E[Co]E[C1]

+ E[Co]E[C1]E[A™Fm2 4] ( mov + an + )

n1=1n2=0m1=0mo=0

P(miv + ang + 1) I'(mov + ang + 2)

E[CyE[C tmavtang +1 tmavtans
+ E[Co]E[C1] T(myv + ang +2) ) \ D(mav + ang + 1)

tmlu+o¢n1+1 tmgu+o¢n2+1
+ E[C?]
C(myv + ang +2) | \ T'(mav + ang + 2)

$m v+ani $ma v+ang+a—1
+ E[A™ 4] (E[CF)

C(miv 4+ ang +1) ) \ T'(mav + ang + «)

tmly—l—anl—l-l tmgu+an2+a—1
E[Cy]E[C
+ E[ColE[Ch] I(miv + ang + 2) I'(mov + ang + «)

5 tm11/+an1+a—1 tmzu+an2
E[C
+ElCol L(miv 4+ ani +a) | \T'(maer + ang + 1)

tm11/+o¢n1+a—1 tmzu—l—anz—‘rl
+ E[Co|E[C]

L(miv + ang +«) ) \T'(mov + ang + 2)

tmly—l—anl—l—a—l tm21/+an2+a—1
+ E[A™ TR 2R 2] . (12)

L(miv + any + «) [(mav + ang + «)

5 Numerical example

The aim of this Section is to illustrate the previous theoretical findings with a numerical example.
Let us consider that the order of the derivative o = 1.5. Cy and C; are 2-RVs with mean 0.5
and second order moment 0.5. A and B are beta random variables, i.e. A ~ Be(10,20) and

B ~ Be(20,30).

To calculate the approximations of the mean and the variance of X (), we will apply expressions
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Figure 1: Approximations of the mean (left panel) and for the variance (right panel) of the solution
stochastic process of the RIVP (1) considering different order of truncation (M, N).

(11) and (12) taking into account the following expressions for the moments of A and B [4]

k-1 k—1
10 20
E[Ak]zni7 E[Bk]:]i[ip =1,2,.... (13)
T:010+20+r T2020+30+r

Figure 1 shows the approximations for the mean and for the variance of the truncated solution
(10), Xn,m(t), considering different values of M and N in the time interval [0,3]. To easily
visualize the convergence, we zoom-up the results on the right-piece of the interval where it is
supposed the accuracy of approximations becomes worse. However, the plots show very good
results even taking small order of truncation M = N = 12.
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