MODELLING FOR ENGINEERING
& HUMAN BEHAVIOUR
2021

Edited by

Juan Raman Torregrosa  Juan Carlos Cortés — Antonio Hervas  Antoni Vidal  Elena Lapez-Navarro

.

IVERSITAT Zm

LITECNICA
DE VALENCIA







Modelling for Engineering
& Human Behaviour 2021

Valencia, July 14th-16th, 2021

This book includes the extended abstracts of papers presented at XXIII Edition of the Mathemat-
ical Modelling Conference Series at the Institute for Multidisciplinary Mathematics Mathematical
Modelling in Engineering & Human Behaviour.



[.S.B.N.: 978-84-09-36287-5

November 30", 2021
Report any problems with this document to imm@imm.upv.es.

Edited by: 1.U. de Matematica Multidisciplinar, Universitat Politécnica de Valencia.
J.R. Torregrosa, J-C. Cortés, J. A. Hervéas, A. Vidal-Ferrandiz and E. Lépez-Navarro

 aal
Instituto Universitario
de Matematica Multidisciplinar



Contents

I Density-based uncertainty quantification in a generalized Logistic-type model ........... 1
I Combined and updated H—matriCes. ..... ...t e 7
I Solving random fractional second-order linear equations via the mean square Laplace

173 011 (0 00 P 13
I Conformable fractional iterative methods for solving nonlinear problems ............... 19

I Construction of totally nonpositive matrices associated with a triple negatively realizable24
I Modeling excess weight in Spain by using deterministic and random differential equations31

I A new family for solving nonlinear systems based on weight functions Kalitkin-Ermankov

Y D . ot 36
I Solving random free boundary problems of Stefan type............ .. ... .. ... .. ... 42
I Modeling one species population growth with delay ........... ... ... ... .. 48
I On a Ermakov-Kalitkin scheme based family of fourth order.................. ... ... 54

A new mathematical structure with applications to computational linguistics and spe-
cialized text translation .......... ... i 60

I Accurate approximation of the Hyperbolic matrix cosine using Bernoulli matrix polyno-
00 B2 Y £ 67

I Full probabilistic analysis of random first-order linear differential equations with Dirac

delta impulses appearing in control........... ..ot 74
I Some advances in Relativistic Positioning Systems ......... .. ... ... ... L. 79
I A Graph—Based Algorithm for the Inference of Boolean Networks ...................... 84
I Stability comparison of self-accelerating parameter approximation on one-step iterative

I OIS .« . 90
I Mathematical modelling of kidney disease stages in patients diagnosed with diabetes

MElltus Tl oo 96
I The effect of the memory on the spread of a disease through the environtment ........ 101

I Improved pairwise comparison transitivity using strategically selected reduced informa-

172 (0 106
I Contingency plan selection under interdependent risks ........... ... ... ..o L. 111
I Some techniques for solving the random Burgers’ equation ............................ 117

I Probabilistic analysis of a class of impulsive linear random differential equations via
density fUNCtIONS . ... .o 122



Modelling for Engineering & Human Behaviour 2021

I Probabilistic evolution of the bladder cancer growth considering transurethral resection127

I Study of a symmetric family of anomalies to approach the elliptical two body problem
with special emphasis in the semifocal case............ ... 132

I Advances in the physical approach to personality dynamics ........................... 136
I A Laplacian approach to the Greedy Rank-One Algorithm for a class of linear systems 143

I Using STRESS to compute the agreement between computed image quality measures and
observer scores: advantanges and OPen ISSUES . ... vvv ittt et i i 149

I Probabilistic analysis of the random logistic differential equation with stochastic jumps156

I Introducing a new parametric family for solving nonlinear systems of equations ....... 162
I Optimization of the cognitive processes involved in the learning of university students in

a virtual ClassroOm . .. ... 167
I Parametric family of root-finding iterative methods .......... ... ... .. .. ... ... ..., 175
I Subdirect sums of matrices. Definitions, methodology and known results. ............. 180
I On the dynamics of a predator-prey metapopulation on two patches................... 186

I Prognostic Model of Cost / Effectiveness in the therapeutic Pharmacy Treatment of Lung
Cancer in a University Hospital of Spain: Discriminant Analysis and Logit............... 192

I Stability, bifurcations, and recovery from perturbations in a mean-field semiarid vegeta-
tion model with delay . ... 197

I The random variable transformation method to solve some randomized first-order linear
control difference equations. ... ... ... o 202

I Acoustic modelling of large aftertreatment devices with multimodal incident sound fields
208

I Solving non homogeneous linear second order difference equations with random initial
values: Theory and simulations........... .. e e 216

I A realistic proposal to considerably improve the energy footprint and energy efficiency of

a standard house of social interest in Chile ......... .. ... .. i 224
I Multiobjective Optimization of Impulsive Orbital Trajectories......................... 230
I Mathematical Modeling about Emigration/Immigration in Spain: Causes, magnitude,

COMSCUUEIICES .« vttt ettt ittt et et et et ettt et et et e ettt it i 236
I New scheme with memory for solving nonlinear problems ................ ... .. .. .. 241
I SPx Neutron Noise Calculations .. .......... ettt 246

I Analysis of a reinterpretation of grey models applied to measuring laboratory equipment
UNCETHAIIEIES « . .\ttt et e e e e et e e e e e e e e e 252

I An Optimal Eighth Order Derivative-Free Scheme for Multiple Roots of Non-linear Equa-

1510 0 = P 257
I A population-based study of COVID-19 patient’s survival prediction and the potential

biases in machine learning . ....... ... i e 262
I A procedure for detection of border communities using convolution techniques......... 267

vi



Solving random free boundary problems of Stefan
type

M.-C. Casaban >, R. Company” and L. Jédar’

(°) Instituto Universitario de Matemética Multidisciplinar,
Universitat Politécnica de Valéncia,
Camino de Vera s/n, 46022 Valéncia, Spain,

1 Introduction

Free boundary problems describe several phenomena in nature, engineering and society, among
others melting and freezing problems [1]. In these problems apart from determining the unknown
function of the diffusion partial differential equation, we have an additional challenge concerning
the calculus of evolution for the unknown moving boundary. In order to fit more realistically these
type of problems, in this work we extend them into a random scenario using the mean square
(m.s.) random calculus. We introduce known uncertainty, via considering random variables
and stochastic processes following a certain probability distribution and depending on a finite
degree of randomness [2, p.37]. In this work we study the following semi-infinite single-phase
random melting problem for which the corresponding deterministic problem has an available
exact solution [3, Chpts. 1 & 3

oT (x,t,w)
ot

0T (z,t,w)

D(w)=—"""—, 0<z=2z(tw) <s(tw), wef,

with the following random boundary and initial conditions

T00,t,w) =Tw(w), t>0, weQ (wall temperature), (2)
T(s(t,w),t,w) =Tn(w), t>0, weQ (melting front temperature), (3)
T(x,0,w) =Tn(w), =>0,we (initial temperature), (4)
s(0,w) =0, we (initial position of the interface), (5)

and the velocity of the 2-stochastic process (2-s.p.) interface s(t,w) is stated by a random Stefan’s
condition:

IT (s(t,w),t,w) (
Ox x—s(t,w)~ ’ L(w) p(w)

Here the unknown 2-s.p. T(z,t,w), w € Q, 0 < & < s(t,w), t > 0, represents the temperature of
the material in the liquid phase, D(w) > 0 in (1) represents the diffusivity random variable (r.v.)
involving the thermal conductivity r.v. k(w) > 0, the specific heat r.v. ¢,(w) > 0 and the density
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r.v. of the material p(w) > 0. The r.v. Q(w) > 0 appearing in the Stefan condition (6) involves
the latent heat of fusion r.v. of the phase change material L(w) > 0 and the r.vs k(w) > 0 and
p(w) > 0. Since our purpose is numerical we assume a realistic random framework. In our models
the involved 2-s.p.s T'(z,t,w), C(x,t,w) and s(t,w) are defined in a complete probability space
(Q, F,P) and have p degrees of randomness [2, p.37], i.e., they only depend on a finite number p
of random variables (r.v.’s)

g(z,t,w) =g (x,t, Bi(w), Bo(w),...,Bp(w)) , (7)

where

(8)

Bi(w), 1 <i¢<p, aremutually independent r.v’s,
g is a differential real function of the variables z, t.

For the treatment of the random moving boundary s(t,w) we propose a boundary immobilization
formulation or random front-fixing method based on a transformation of the original random
problem
_a(t,w)
~s(t,w)

, wen, t>0, (9)

where z becomes the deterministic spatial variable of the immobilized random boundary problem.
The new dependent variable

u(z,t,w) =T(z(t,w),t,w), wefl, (10)

is the solution s.p. of the random transformed problem

1 Q%u(zt,w)  §(tw) du(z,t,w)  Ou(zt,w)

= 1 11
D(w)sg(t’w) 5t o) 0 o0 0<2<L >0, weq, (11)
u(0,t,w) = Ty(w), t>0, wel, (12)
u(l,t,w) =Tp(w), t>0, wel, (13)
s(0,w) =0, we Q, (14)

Qw) Odu(z,t,w)

! = — Q 1

s'(t,w) S(t.w) 9 . t>0, we, (15)
ds(t,w)

where §'(t,w) denotes the first mean square derivative , w € . The mean square operational

calculus developed in (11) and (15) is legitimated when

dt

0?u(z,t,-)  Ou(zt,-) S(t,) 1 1
92 a: 0 st st M eny (16)

lie in L4(Q2), see [4, Sec. 3].

With the immobilised boundary we can use a random finite difference method [5] constructing
random difference schemes for both unknowns the temperature s.p. and the melting interface.
Both difference schemes will be executed simultaneously because the melting interface is used to
compute the temperature. Let us consider the uniform partition of the spatial domain [0, 1] taking
a step size h in order to obtain equally spaced points z; = th, 0 < i < M, such that Mh = 1. For
a fixed time 7 and a small initial time t° > 0, we take a step size k and N + 1 intermediate time
levels are generated t" = nk + to, 0<n<N,withT=NEk+ t9.
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The random difference scheme for determining the approximation ] (w) = u"(z;,t",w) to the

unknown s.p. temperature u(z,t,w), w € €, is given by
uf T w) = af (W) ull (W) + 5" (W) uf (W) + (W) ufyy, weQ,
1<i<M-1,0<n<N-1,

ul(w) = Ty (W), uly(w)=Tnw), 0<n<N, (17)

ug(w):%erﬂﬂzl)—i—T (w), 0<i<M.

with the random coeflicients

k(0 Q)Aw)

) = e (P T )

b”(w)zl—m l<i<M-1, 0<n<N-1, (i8)
. 3 Q) Aw)

G (OJ) hz(sn( ))2 (D( ) 4 2)

being A" (w) = 3uf;(w) — 4ul;_;(w) + u'};_5(w). The random difference scheme for determining
the approximation s"(w) = s(t ,w) to the melting interface s.p. s(t,w), w € Q takes the form

k Qw) A™(w)

s"H(w) = s”(w)—W, 0<n<N-1,
Sw) = 2Bw)V/DW)t', t°>0,we, (19)
Bw) @ erf(B(w)) = LMDl dnl)),
For small enough values of the step-size h together with the hypothesis
% <2282, (20)

where fpin = min{f(w) : w € Q}, one guarantees the positivity and stability of the solution
s.p.’s of the random difference schemes (17)—(18) and the time increasing behaviour of the melting
interface s.p. obtained from (19).
In order to compute the mean and the standard deviation of the approximated solutions from (17)-
(19) firstly we need to overcome the trouble of solving the random non-linear equation appearing

n (19). Then we use a Monte Carlo technique taking a number K of realizations and solve
the corresponding sampling deterministic non-linear equations associated. Each sampled solution
B(wg) will be taken in the difference scheme (19) as well as a number K of realizations of the
random data involved in (17)-(19) according to their probability distributions. Finally, the K
sampling deterministic difference schemes associated to (17)—(19) will be solved and the mean
and the standard deviation of the K results can be computed. Now in order to undo the variable
change for computing the mean and the standard deviation of the solution s.p. T'(x,t,w) of (1)
we use the transformation (9) which allows us to compute the mean of the r.v. z(¢,-) at a fixed
time ¢,

plr(t,w)] =z pls(t,w)], 0<z<1. (21)

Then the mean of the temperature s.p. above computed pfu(z,t,w)] is assigned to the mean of
the space variable p[z(t,w)] given by (21).

44



Modelling for Engineering & Human Behaviour 2021

In order to illustrate and validate the random solid-liquid phase change simulation results obtained
in our study, we are going to consider a block of ice of negligible thickness. The data taken have
been considered mutually independent and truncated r.v.’s., see Table 1.

Tw 10°C

T 0°C

Thermal Conductivity (k(w)) #(w) ~ Njg5,0.7(0.60,0.10) W/m°C

Density of the liquid (p) 1 kg/1

Specific heat (cp) 4.1868 J/g°C

D(w) = ﬁc(wp) D(w) = 14.3308 k(w) mm?/min
P

Latent heat of fusion (L(w))  L(w) ~ Njg.31,0.35(0.33,0.02) KJ/g
K(w) K(w 9 )

Qw) = Q(w) =6 ——= mm*/°Cmin

Table 1: Thermophysical properties of water and other data of the example.

The study of the numerical convergence of these approximations has been treated by means of
the analysis of their absolute errors in two stages at a fixed time 7. Firstly, we have fixed the
step-sizes (h, k) verifying the sufficient stability condition (20) and we have varied the number K
of Monte Carlo realizations comparing their absolute differences, AbsDiff, between two successive
realizations { Ky, K41} using the following expressions

AbsDiff [p (use,k,0y (26, 7;w))] = |AbsErr [p (uk,,, (25, 7,w))] — AbsErr [p (uk, (2, 7, w))] |,
AbsDiff [0 (u,k,,, (26, T;w))] = |AbsErr [0 (uk,,, (2, 7,w))] — AbsErr [0 (uk, (2, 7, w))] |, o)
AbsDiff [i (sk i,y (1" w))] = |AbsErr [u (sk,., (t",w))] — AbsErr [ (s, (", w))]| ,

ASDIE o (sic, 10,0 (17,))] = [AbsErr [o (s, (%)) = AbsErr [o (s, (7, )]

where AbsErr represents the absolute error of the mean and the standard deviation between

the exact values, u(z;, 7,w) and s(t",w), and the approximated ones denoted by ug(z;, T,w) and
sk (t",w). Figure 1 shows how the successive absolute differences (22) decrease as the number
of Monte Carlo realizations K, € {10, 20,40, 80,160} increases for the fixed step-sizes (h,k) =
(0.05,8¢ — 04). In the second stage about the study of the convergence of the approximations
to the both statistical moments, we have taken a fixed number of Monte Carlo realizations K,
K = 1280, and we have refined the step-sizes (h, k) according to the stability condition (20). The
approximations getting better due to the decreasing of the absolute errors as step-sizes decreasing
up to the values (h, k) = (0.025,2e — 04). Table 2 collects the maximum value for these absolute
erTors.

2 Conclusions and Future work

In this work a random free boundary problem has been addressed from the m.s. calculus point of
view for the first time to our knowledge. The methodology used combines a random front-fixing
method, random finite difference schemes and Monte Carlo technique. The random scheme com-
bined with the Monte Carlo method solves the computational problem associated with random
iterative methods as it avoids collapsing in the calculation of symbolic expressions to few tempo-
rary steps. In this way, it is possible the computation of the mean and the standard deviation of
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opt® : : : ! ! | : : aspi0? . . . .
o AbsDiff [p(ur, (2,5.1,w))] o AbsDiff [0 (ur, ., (2,5.1,w))]
- ——{K¢, i1} = {10,20} o Y e (K K} = {10,20}
sk —o—{ Ky, Keii} = {20,40} —o—{ Ky, Krn} = {20,40}
—o— {Ky, Ky} = {40,80} sk —o— {K;, Kpa1} = {40,80} |
—v—{Kr, Kri1} = {80,160} ’ —v—{K:, K¢} = {80,160}
4k - 31 4
251 4
O s / | S /
o i
/ \
2r 1 151 4
// /
/ iy |
i+ i
// |
0.1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 0.8 0.9 0‘1 0‘2 0‘3 0‘4 0‘5 D‘G 0‘7 D‘@ 0‘9
z
(a) AbsDiff(Mean of temperature s.p.) (b) AbsDiff(S.Deviation of temperature s.p.)
0.4 T T T T T T T T T T 0.18 T T T T T T T T T T
AbsDiff (1 (s k., (£, w))] AbsDift [0 (s k.., (t",w))]
0.16

s { Ky, K1 } = {10,20}

—{Ki. Kra} = {20,40}
0141 — — (K, Kri } = {40,80}
== {K, Kiy1} = {80,160}

[ (K K1} = {10,20}
—{Ky, Kiaa} = {20,40}

03| — — {Kn Kea} = {40,80}

—={Ki, K1} = {80,160}

(c) AbsDiff(Mean of melting interface s.p.) (d) AbsDiff(S.Deviation of melting interface s.p.)

Figure 1: Absolute differences over the 7 = 5.1 minutes for both statistical moments of the approximations
s.p. between two successive realizations {Ky, Kp+1}, K, € {10,20,40,80,160}. The step-sizes (h,k) =
(0.05,8e — 04) are fixed and t" =t + nk, 0 <n < N = 6250 in [t = 0.1,7 = 5.1].

46



Modelling for Engineering & Human Behaviour 2021

(h, k) (M,N)  [[AbsErr [ (uk (2, 7, w))llog  [[ADsErT [0 (uk (25, 7, ))]l|
°C °C
(0.1,3.125e — 03) (10, 1600) 1.9464e — 02 1.1350e — 03
(0.05,8.0e — 04) (20, 6250) 5.7560e — 03 5.4689 — 04
(0.025,2.0e — 04)  (40,25000) 2.2727e — 03 4.0980e — 04
(h, k) (M,N) [AbsErr [p (s (", w))lllog ~ [[AbsErr [0 (sk (¢",w))]llo
mim mim
(0.1,3.125¢ — 03) (10, 1600) 1.3208¢ — 01 1.9869 — 02
(0.05,8¢ — 04)  (20,6250) 2.0884e — 02 1.4453¢ — 02
(0.025,2e — 04)  (40,25000) 7.4025¢ — 03 1.3079 — 02

Table 2: Maximum values of the absolute errors for both statistical moments of the approximate temper-
ature s.p. and the approximate melting interfaces s.p. from tY = 0.1 up to 7 = 5.1 minutes. The step-sizes
(h, k) are refined while the number of the Monte Carlo realizations is the fixed value K = 1280. The values
M and N are the spatial and temporal levels, respectively.

the approximate temperature s.p. and the approximate melting interface s.p. The numerical com-
parisons with the statistical moments of the exact solutions for the temperature and the melting
interface allow to check the reability of the approximations computed. This method is suitable to
be used to solve other types of Stefan problems.
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