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J.R. Torregrosa, J-C. Cortés, J. A. Hervás, A. Vidal-Ferràndiz and E. López-Navarro
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Subdirect sums of matrices. Definitions,
methodology and known results.

F. Pedroche\1

(\) Institut Universitari de Matemàtica Multidisciplinària, Universitat Politècnica de València
Camı́ de Vera s/n, 46022, València, España

Abstract

In this communication, we review the concept of subdirect sum of matrices that was introduced
in 1999 as an extension of the usual sum of matrices (or as a variation of the direct sum of
matrices by allowing overlapping of square blocks). This matrix operation appears naturally
when studying matrix completion problems, numerical methods with overlapping blocks to solve
linear systems of equations, applications of the finite element method to solve partial differential
equations, etc. In this communication, we show the usual technique to analyse the properties of
this matrix operation when it is applied to a particular class of matrices (e.g., M-matrices, Doubly
Diagonally Dominant matrices, etc.) and the two common types of theoretical results that are
being published until present times. Finally, we also comment on some new lines of research.

1 Introduction

It is known that iterative methods to solve linear systems of equations can be solved by using
the classical methods of Gauss-Seidel and Jacobi. These methods (and others) can be also im-
plemented by using block matrices and in some circumstances these blocks can show overlapping
among them. In these cases (see, e.g., [3]) it is needed to handle sums of matrices that are not of
the same size but overlap in an square block. For example, the block matrices

A =
[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
, (1)

with A22 and B11 of size k × k, can be summed in the form

C =


A11 A12 O

A21 A22 +B11 B12

O B21 B22

 (2)

and this sum is called the k-subdirect sum (or simply the subdirect sum) of A and B, and it is
denoted as C = A⊕k B.
Another application where these sums can appear is in the solution of the Poisson equation by
using Finite Elements, in the context of stiffness matrices (see, e.g., [4]). The concept of k-subdirect

1pedroche@imm.upv.es
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sum was introduced in 1999 by Fallat and Johnson in [10], although some results (not using the
term subdirect sum) where known previously (see [9]).

2 Methodology

For some matrix classes one needs to put additional conditions on the entries of the matrices in
order to establish a result about the subdirect sum of these classes. Sometimes these conditions
only affect the overlapping blocks A22 and B11. To manage these situations it is a standar
procedure to use the following notation. Assuming that A and B are square matrices of sizes n1
and n2, respectively, it is useful to define the sets

S1 = {1, 2, . . . , n1 − k}
S2 = {n1 − k + 1, n1 − k + 2, . . . , n1}
S3 = {n1 + 1, n1 + 2, . . . , n}

(3)

and denoting C = (cij) the elements of C = ⊕kB, and t = n1 − k, one can write

cij =



aij i ∈ S1, j ∈ S1 ∪ S2

0 i ∈ S1, j ∈ S3

aij i ∈ S2, j ∈ S1

aij + bi−t,j−t i ∈ S2, j ∈ S2

bi−t,j−t i ∈ S2, j ∈ S3

0 i ∈ S3, j ∈ S1

bi−t,j−t i ∈ S3, j ∈ S2 ∪ S3

(4)

or, more graphically

Figure 1: Sets for the subdirect sum C = A⊕k B, with t = n1 − k and p = t+ 1.

Given a particular matrix class, the questions that are usually addressed are the following.

1. If A and B belong to a class, does A⊕1 B belong to the same class?

2. A matrix of the form

C =


C11 C12 O

C21 C22 C23

O C32 C33


that belongs to a class, can be written as A⊕1 B with A and B in the same class as C?
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3. Question 1 with k > 1.

4. Question 2 with k > 1.

Clearly, when k = 1 things are simpler. For example, it is easy to prove that [10]

det(A⊕1 B) = detA11 detB + detAdetB33

Sometimes it is needed to put additional conditions on the diagonal terms of the overlapping. See,
for example, [5], [6], [2].

3 Results

The most important results about subdirect sum are summarized below, in chronological order,
by the year of publication. In each case we detail the class matrix that has been analysed (to see
the particular results for each class we refer the reader to the original paper).

• Some positivity classes of matrices and M-matrices are studied in [10]. In particular it is
shown that for k > 1 the subdirect sum of M-matrices is not in the class. We recall that A
is a M-matrix when all the principal minors are positive and aij ≤ 0 for i 6= j. They also
study: positive definite matrices (xTAx > 0) for all x 6= 0); semi positive definite matrices
(changing the strict inequality in the previous class for ≥ 0; P-matrices (all principal minors
are positive); P0-matrices (all principal minors are nonnegative);totally nonnegative matrices
(all minors are nonnegative); completely positive matrices (of the form BBT with B ≥ 0);
doubly nonnegative matrices (positive semidefinite and with all the terms nonnegative) and
inverse of M-matrices.

• In [5] some conditions are shown such that the subdirect sum of inverse of M-matrices are
in the class, jointly with related questions.

• In [6] the authors study the class of S-Strictly Diagonally Dominant matrices (A verifies
|aii| >

∑
i 6=j |aij | for all i, when j ∈ S and another (intricate) condition when j /∈ S)

• In [24] it is studied the class of doubly diagonally dominant matrices (the definition is a
little bit intricate, see the paper for details) and related problems.

• In [12] the authors consider P-matrices that are also strictly diagonally dominant and they
also answer question 4 for P0 matrices

• In [25] the authors show conditions such that the subdirect sum of H-matrices is in the class,
and related results.

• In [2] it is shown conditions such that the subdirect sum of Σ-strictly diagonally dominant
matrices is in the class. The class of Σ-SDD matrices is a generalization of S-SDD matrices,
and it is also a subclass of H-matrices.

• The subdirect sums of accretive, dissipative and Benzi-Golub matrices are treated in [13].
These matrix classes are based upon the decomposition of a complex matrix as a sum of a real
matrix and an imaginary matrix combined with the definition of positive (semi)definiteness.

• In [1] the authors give conditions such that the questions 3 and 4 have positive answer for
inverse-positive matrices. A matrix is inverse-positive when all the elements of its inverse
are nonnegative.
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• In [14] the authors give conditions such that such that the questions 3 and 4 have positive
answer for inverse-positive matrices, generalizing the results of [1].

• In [21] it is shown some results about B-matrices and doubly B-matrices (that are subclasses
of P-matrices).

• In [15] the authors we generalize the definition of subdirect sum to the set of all bounded
linear operators on Hilbert spaces. They also deal with the class of all bounded linear
operators with non-negative Moore–Penrose inverse. They obtain previous known results as
corollaries of their results.

• In [17] the authors give conditions such that the subdirect sum of Nekrasov matrices is in
the class. Nekrasov matrices are a generalization of SDD matrices.

• In [18] the authors give sufficient conditions such that the subdirect sum of two weakly
chained diagonally dominant matrices is in the class. WCDD matrices are a subset of
diagonally dominant matrices.

• In [8] it is shown some conditions such that the subdirect sums of SDD1 matrices lays in
the class. SDD1 matrices are a generalization of SDD matrices.

• In [11] the authors show some sufficient conditions for the subdirect sum of QN-matrices
to lay in the class. QN-matrices are a generalization of Nekrasov matrices. As a particular
case they give results on Nekrasov matrices.

• In [20] the authors show some conditions such that the subdirect sums of p-norm strictly
diagonally dominant matrices is in the class. The class of p-norm SDD was introduced
in [16].

• In [19] the authors give several results about the subdirect sum of Doubly strictly diagonally
dominant matrices and related results (e.g., the sum of an SDD matrix and a DSDD matrix,
with some conditions).

4 Conclusions and future works

We have presented a literature review of the concept of subdirect sum of matrices that was
introduced in [10] in 1999. We have shown that a broad range of matrix classes have been studied
in the literature. A close look at the references show that up to 9 different groups of researches
from 7 countries (China, India, Portugal, Russia, Serbia, Spain and USA) have been involved in
these studies about subdirect sums.
It is important to remark that some of the matrix classes that have been studied (e.g., S-SDD,
Σ-SDD, B-matrices, etc.) are related to the problem of localization of eigenvalues, see, e.g., [22].
Also, while most studies are centered on the question whether the subdirect sum of two matrices
is in the class (or the reciprocal problem) there is one paper (see [15]) that extends the concept
of subdirect sum to Hilbert spaces, opening new topics of research. Another new lines of research
on this topic come related to its use in the discipline of complex networks. For example, the role
of subdirect sums in problems of overlapping graphs in multilayer networks, its connection with
the concept of simplicial complexes [7], network motifs [23], etc.
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7726-8. Leganés, Espanya. 2005.

[5] Bru, R., Pedroche, F., Szyld, D. B., Subdirect sums of nonsingular M -matrices and of their inverses,
Electron. J. Linear Algebra, 13:162–174, 2005.

[6] Bru, R., Pedroche, F., Szyld, D. B., Subdirect sums of S-Strictly Diagonally Dominant matrices,
Electron. J. Linear Algebra, 15: 201–209, 2006.

[7] Courtney, O. T., Bianconi, G., Generalized network structures: The configuration model and the
canonical ensemble of simplicial complexes. PHYSICAL REVIEW E 93, 062311, 2016.

[8] Chen,X., Wang, Y., Subdirect sums of SDD1 matrices Journal of Mathematics, vol. 2020, Article ID
3810423, 20 pages. 2020.

[9] Drew J.H., Johnson C.R., The No Long Odd Cycle Theorem for Completely Positive Matrices. In:
Aldous D., Pemantle R. (eds) Random Discrete Structures. The IMA Volumes in Mathematics and
its Applications, vol 76. Springer, New York, NY. 1996.

[10] Fallat, S. M., Johnson, C. R., Sub-direct sums and positivity classes of matrices. Linear Algebra and
its Applications, 288:149–173, 1999.

[11] Gao, L., Huang, H., Li, C., Subdirect sums of QN-matrices, Linear and Multilinear Algebra, 68(8),
1605–1623. 2020

[12] Huang, T. Z., Mou, G. F., Tian, G. X., Li, Z., Wang, D., Subdirect sums of P (P0)-matrices and
totally nonnegative matrices, Linear Algebra and Its Applications 429, 1730—1743, 2008

[13] Ikramov, K.D., Sub-direct sums and differences for certain matrix classes, Computational Mathematics
and Mathematical Physics, 50(1), 7–11, 2010.

[14] Jose, S., Sivakumar, K.C., On inverse-positivity of sub-direct sums of matrices, Linear Algebra and
its Applications, 439(6), 1670–1677, 2013.

[15] Jose, S.; Sivakumar, K.C., Sub-direct sum of operators on Hilbert spaces and nonnegative
Moore–Penrose inverses, Acta Scientiarum Mathematicarum 81(1-2), 215–240. 2015.
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