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ABSTRACT

The distribution of the power inside a reactor core can be described by the time dependent
multigroup neutron diffusion equation. One of the approaches to integrate this time-
dependent equation is the modal method, that assumes that the solution can be described
by the sum of amplitude function multiplied by shape functions of modes. These shape
functions can be computed by solving a λ-modes problems. The modal method has a great
interest when the distribution of the power cannot be well approximated by only one shape
function, mainly, when local perturbations are applied during the transient. Usually, the
shape functions of the modal methods are updated for the time-dependent equations with
a constant time-step size to obtain accurate results. In this work, we propose a modal
methodology with an adaptive control time-step to update the eigenfunctions associated
with the modes. This algorithm improves efficiency because of time is not spent solving
the systems to a level of accuracy beyond relevance and reduces the step size if they detect
a numerical instability. Step size controllers require an error estimation. Different error
estimations are considered and analyzed in a benchmark problem with a out of phase local
perturbation.
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1. INTRODUCTION

The distribution of the neutrons inside a reactor core along time can be described by the time
dependent multigroup neutron diffusion equation. This equation depends on the position and the
time. A high order finite element method (FEM) is considered to make the spatial discretization of
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the neutron diffusion equation to get a system of semi-ordinary differential equations [1]

V −1
dΦ

dt
+ LΦ = (1− β)MΦ +

K∑
k=1

λdkXCk,

dCk
dt

= βkM1Φ− λdkCk, k = 1, . . . , K,

(1)

where Φ is the algebraic neutron flux, C is the algebraic concentration of precursors, V is the
matrix with the velocities in their diagonal, L is the discretized leakage operator, M the discretized
production operator. The matrix M1 corresponds to the discretization of the first row of the
differential production operator. Finally, if I is the identity matrix, the matrix X is equal to

X =

(
I
0

)
. (2)

The FEM has been implemented by using the open source library Deal.ii [2]. This system of
ODE is, in general, stiff. Several approaches have been studied to integrate this time-dependent
equation. For instance, one can use the backward differential method that is based on the implicit
Euler method. Other one is the quasi-static method, that decomposes the solution into an amplitude
function (which have a fast change over time) and a shape function (which change slowly over
time). Other strategy is the modal method, that assumes that the solution can be described by the
sum of several amplitude functions multiplied by shape functions computed by solving the λ-modes
problem

Lψm =
1

λm
Mψm, m = 1, . . . , q. (3)

Associated to this spatial problem, we can define the adjoint problem associated where the eigen-
values of both problems are equal. The adjoint functions obtained, ψ†l , l = 1, . . . , q satisfy the
biorthogonality condition 〈ψ†l ,Mψm〉 = 〈ψ†m,Mψm〉δl,m, l,m = 1, . . . , q.

The modal approach has a great interest when the distribution of the power cannot be well ap-
proximated by only one shape function, mainly, when local perturbations are applied during the
transient. Usually, the shape functions of the modal methods are updated for the time-dependent
equations with a constant time-step size to obtain accurate results [3]. Recent time schemes have
been developed to select automatically an appropriate step size from a given tolerance. These
algorithms have the advantage that they do no wast time for solving the systems to a level of
accuracy beyond relevance and reduce the step size if they detect a numerical instability. In addition,
they remove the necessity of selecting an adequate time step before the simulation has been run.
In this work, we propose an adaptive control time-step for the modal methodology to integrate the
time-dependent neutron diffusion equation.

2. THE UPDATED MODAL METHOD

The modal methodology supposes that Φ(~r, t) admits the following expansion

Φ(~r, t) =

q∑
m=1

nm(t)ψm(~r), (4)

EPJ Web of Conferences 247, 07010 (2021)
PHYSOR2020

https://doi.org/10.1051/epjconf/202124707010

2



where nm(t) are the amplitude coefficients and ψm(~r) the shape functions obtained of solving the
problem (3). It also expresses the matrices L and M of the problem (3) as

L = L0 + δL, M = M0 + δM, (5)

where L0 and M0 are the matrices at t = 0 and in critical state (M0 is divided by keff = λ1). First,
the expansion (4) and the assumption (5) is substituted into Equation (1) to get

V −1
q∑

m=1

dnm
dt

ψm +

q∑
m=1

(L0 + δL)nmψm = (1− β)

q∑
m=1

(M0 + δM)nmψm +
K∑
k=1

λdkXCk,

dCk
dt

=

q∑
m=1

βkM1nmψm − λdkCk, k = 1, . . . , K.

(6)

Now we use the definition of the λ-modes problem (3) and then, the resulting system is multiplied
(by the left) by the adjoint modes ψ†l , l = 1, . . . , q, to obtain the system of ODE’s

d
dt
N = TN, (7)

where
N =

(
n1 · · ·nq c11 · · · cq1 · · · c1K · · · cqK

)T
, (8)

T =


Λ−1((1− β)I − [λ]−1 − AL + (1− β)AM) Λ−1λd1 · · · Λ−1λdK

β1(I + AM) −λd1I · · · 0
...

... . . . ...
βK(I + AM) 0 · · · −λdKI

 , (9)

Λlm = 〈ψ†l , V
−1ψm〉, ALlm = 〈ψ†l , δLψm〉,

AMlm = 〈ψ†l , δMψm〉, clk = 〈ψ†l , XCk〉,
(10)

The initial conditions values are

n1(0) = 1, nm(0) = 0, m = 2, . . . , q

c1k(0) =
βk
λdk
, cmk(0) = 0, m = 2, . . . , q, k = 1, . . . , K

(11)

that are obtained from the equations in the critical state. The ODE is solved with the open source
library SUNDIALS, in particular with the CVODE module [4]. The time-step to solve this system
is selected by an internal control step implemented in the library.

2.1. Updated modal methodology

In realistic transient computations, the flux can suffer extremely spatial variations. Sometimes,
obtaining good approximations implies a high number of modes that means high computational
cost [5]. As a solution it was proposed a modal methodology where the modes are updated in a
certain time interval as we described in the following. Therefore, the time domain is divided into
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intervals [ti, ti + ∆ti] = [ti, ti+1]. In each interval [ti, ti+1], the neutron diffusion equation can be
integrated by using the λ-modes associated with the problem

Liψim =
1

λim
M iψim, (12)

where Li and M i are the matrices associated with the nuclear reactor at time ti.

The differential equations that are needed to integrate at each time-step have the same structure than
the problem without updating (Equation (7)). However, the initial conditions for ni,λm at time ti must
be defined to guarantee the continuity of the solution in the limits of the intervals. In the interval
[ti, ti+1] one could approximate the value of ni,λm (ti) as

ni,λm (ti) ≈
〈ψ†,im ,M iΦ(ti)〉
〈ψ†,im ,M iψim〉

, (13)

and the value of Φ(ti) from the solution computed in the previous modal step. Likewise, to compute
ci,λl,k(ti) we use ci−1,λm,k (ti). The concentration of precursors at time ti can be computed as

ci,λl,k(ti) = 〈ψ†,il , Ck〉(ti) ≈
q∑

m=1

alm〈ψ†,i−1m , Ck〉(ti) =

q∑
m=1

almc
i−1,λ
m,k (ti), (14)

where

alm =
〈ψ†,il ,M i−1ψi−1m 〉
〈ψ†,i−1m ,M i−1ψi−1m 〉

. (15)

The modes are computed with the Block inverse-free preconditioned Arnoldi method (BIFPAM).
The BIFPAM is a block method based on the development of the Krylov subspaces associated with
the residual error (see more details in [6]). Moreover, the computation of these modes and the modal
methodology have been implemented using a matrix-free strategy, that avoids the assembly of the
matrices and saves a lot of computer memory for the storage.

3. ADAPTIVE TIME-STEP CONTROL

The modes can be updated with fix time-step. This implies the necessity to select a time-step
previously (that leads to obtain results with unpredictable errors). On the other hand, if we set small
time-steps to obtain accurate approximations, the computational cost also increases. For this reason,
we propose an adaptive control of the time-step. We need to define an error estimation and a suitable
constraint to select the time-step based on the error estimation.

Estimation error. The first estimation is based on the difference between eigenfunctions. One
can compute the modes in the next time-step to predict how the total flux will change. The (modal
difference error) is defined as

εmd = max
m
‖ψi−1m − ψim‖. (16)

The second approach is based on the residual error that appear when the actual modes are substituted
on the problem in other time step. The modal residual error is defined as

εmr = max
m
‖Liψi−1m − λi−1m M iψi−1m ‖. (17)
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Finally, we assume that the flux along the time will change depending on the variation in the
cross-sections. The cross-section perturbation error is defined as

εxs =
∑
c

‖Σi−1
f (c)− Σi

f (c)‖, (18)

where c is a cell of the spatial discretization.

Control Algorithm. We have studied two strategies based on the errors in the previous step. The
first one, the Banded Error Control, changes the time-step in a fixed way

∆ti =

 ∆ti−1 ∗ 2, ε < minle
∆ti−1, minle < ε < maxle
∆ti−1 / 2, maxle < ε

The valuesminle andmaxle are dependent on the transient studied. The second option, the Adaptive
Error Control, is based on the control algorithms defined for differential methods [7]. In particular,
we obtain the step ∆ti as

∆ti = ∆ti−1 min{2.0,max{0.5,
√

3.0/ε}}. (19)

4. NUMERICAL RESULTS

The performance of the adaptive updated modal method is tested in a transient defined from the
Langenbuch reactor [8]. A top view of this reactor is represented in Figure 1. The transient is
defined from an out of phase perturbation in the fission cross-sections of material 1 with striped
pattern. The perturbation applied to the initial cross-section is, in P1 and P2 cells, respectively

δΣP1
f,g(t) = 10−3 sin(2πt), δΣP2

f,g(t) = 10−3 sin(2πt+ π) g = 1, 2. (20)

The diffusion equation for all cases has been discretized by using polynomials of degree 3 in the
FEM. The methodology proposed is compared with the backward differential method (BKM) [1].
The CPU time to obtain the solution with the BKM has been 232 min. This transient cannot be
solved by using only one mode in the modal expansion and high number of modes are needed to used
to obtain accurate approximations without updating [5]. The evolution of the global power computed
with the BKM and with the updated modal method with some fix time-step is represented in Figure
2. It is observed that large errors are produced when the perturbations reach their maximums.

We analyze the local error (difference between the power obtained with the BKM and the modal
method) for some settings of the updated modal method computed with the matrix-free method.
Without updating the number of modes required to obtain accurate results and the CPU Time are very
large [5]. Table 1 shows that small time-steps in the updating gives more accurate approximations.
In contrast, the CPU times are also higher. On the other hand, if the number of modes is compared,
one can observe that better approximations are obtained when the number of modes is higher. In this
case, a selection of 4 modes and time-step equal to 0.1 s is the most effective option. However, these
parameters can change for other reactor computations. Figure 3 represents the local error along
the time. It shows large errors near to the extremes of the power (maximums and minimums) and
before to the modal updating. More distributed errors are obtained when the time-step is smaller.
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To test the adaptive modal method, Table 2 shows the local errors and CPU times obtained by
setting the different error estimations and control errors with 4 eigenvalues. One can deduced that
the modal difference error (md) is not very efficient because it needs to compute the modes to
estimate the error that is very expensive. Regarding the other error estimations, there are not big
differences between them. If the type of control error is compared, the adaptive control gives similar
approximations than the fixed control. Figure 4 shows the evolution of the ∆t computed with the
adaptive error control.

Finally, Table 3 studies the performance of the matrix-free implementation to solve the Langenbuch
transient with the modal method. Matrix Alloc. indicates if the matrices are allocated in memory
(CSR) or if they are used only by means of matrix-vector multiplications (Matrix-Free). The results,
in terms of memory and computational time, shows the great efficiency of the matrix-free strategy
to use the modal method.
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Figure 1: Geometry of the Langenbuch transient.
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Figure 2: Relative power for the Langenbuch transient.

Table 1: Performance of the Updated modal method with fixed time-step.

N. eigs. (q) Updated Local error CPU Time

4 0.05s 3.2e-03 29min
4 0.1s 9.3e-03 15min
4 0.2s 2.8e-02 8min
8 0.1s 8.1e-03 30min
8 0.2s 2.6e-02 17min
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Figure 3: Evolution of local error in the Langenbuch transient with fixed time-step.

Table 2: Errors and CPU time obtained with the adaptive time-step modal method.

Banded Error Control Adaptive Error Control
Error time-step Error CPU Time Error CPU Time

εmd 1e-02 46min 5e-03 72min
εmr 7e-03 14min 9e-03 12 min
εxs 9e-03 15min 1e-02 13min
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Figure 4: Evolution of the ∆t along the time with the adaptive error control.

5. CONCLUSIONS

In this work, we have studied an adaptive modal method to integrate the time-dependent neutron
diffusion equation obtained from applying an out-of-phase perturbation. The numerical results
have shown that the modal expansion has to be updated with a small time-step and a considerable
number of modes to obtain accurate results. The implementation of the adaptive control time-step
allows not to set the time-step previously and it is adapted depending on an error estimation in
the modal expansion. The results prove that the adaptive control decreases the errors in similar

EPJ Web of Conferences 247, 07010 (2021)
PHYSOR2020

https://doi.org/10.1051/epjconf/202124707010

7



Table 3: Matrix-free strategy vs Allocation matrix (CSR) implementation performance.

Matrix Alloc. q Updating (0.1s) Max. memory CPU Time

CSR 4 No 933Mb 63.8min
Matrix-free 4 No 359Mb 1min
CSR 4 Yes 1405Mb 423min
Matrix-free 4 Yes 498Mb 15min
CSR 8 No 1194Mb 176min
Matrix-free 8 No 372Mb 4min
CSR 8 Yes 1698Mb 581min
Matrix-free 8 Yes 557Mb 31min

CPU times. Moreover, it has been observed that the modal method is an efficient way to integrate
the time dependent equation because can be implemented with a matrix-free strategy saving up
memory resources and computational times. In future works, this methodology will studied for
other approximations of the neutron transport theory where the computational cost is very high.
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