
Universitat Politècnica de València

Departamento de Sistemas Informáticos y Computación

Máster Universitario en Ingenieŕıa y Tecnoloǵıa de Sistemas
Software

Master Thesis

CONFident: a tool for the analysis of
confluence of rewrite systems

Candidate:

Miguel Vı́tores

Supervisor:

Salvador Lucas, Raúl Gutiérrez

Academic Year 2021/2022

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera, s/n
46022 Valencia

España

Contents

1 Introduction 1

2 Preliminaries 5

3 Confluence 7

3.1 Term Rewriting Systems . 7

3.1.1 Confluence of TRSs . 8

3.1.2 Confluence criteria . 10

3.1.3 Modularity of confluence . 13

3.1.4 Use of feasibility . 16

3.2 Context-Sensitive Term Rewriting Systems 17

3.2.1 Confluence of CSR . 18

3.2.2 Joinability of extended µ-critical pairs 23

3.2.3 Use of feasibility . 24

3.3 Conditional Term Rewriting Systems 25

3.3.1 Confluence of conditional rewriting 29

3.3.2 Use of feasibility . 31

4 Mechanization 33

4.1 Divide and Conquer Framework . 33

4.1.1 Problems and Processors . 34

4.1.2 Confluence Proof Tree . 35

4.2 Pre-processing . 37

4.2.1 Removing redundant rules . 37

4.2.2 Removing infeasible rules . 37

4.2.3 Inlining conditional rules . 37

4.3 Solving Termination Problems . 37

4.4 Solving joinability problems . 37

ii Contents

4.4.1 Joinability processor . 37

4.4.2 Strong joinability processor 38

4.5 Solving confluence problems . 38

4.5.1 Modular decomposition . 38

4.5.2 Weak orthogonality processor 39

4.5.3 Extended Huet processor . 39

4.5.4 Extended Huet-Newman processor 39

4.5.5 Confluence as canonical µ-confluence 39

4.5.6 Confluence of CTRS as confluence of TRSs 40

5 Results 41

6 Conclusions and Future Work 43

Bibliography 45

Abstract

CONFident is a tool that proves confluence, one of the most important properties

in rewriting systems’ analysis. For this purpose it makes use of some tools such as

infChecker or mu-term. For instance, infChecker is crucial for proving joinability of

critical pairs and feasibility of conditions in CTRSs, among other tasks; mu-term

is the termination prover. Termination plays an important role in rewrite systems.

CONFident supports several types of systems, including TRSs, CS-TRSs and JOIN,

ORIENTED and SEMI-EQUATIONAL CTRSs. Specifically for CTRSs, CONFident

has obtained very good results.

CONFident es una herramienta que demuestra la confluencia, una de las propiedades

más importantes en el análisis de sistemas de reescritura. Para ello hace uso de

algunas herramientas como infChecker o mu-term. Por ejemplo, infChecker es cru-

cial para demostrar la joinability de pares cŕıticos y la feasibility de condiciones

en CTRSs, entre otras tareas; mu-term es la herramienta que demuestra la termi-

nación. La terminación tiene gran importancia en sistemas de reescritura. CONFi-

dent es compatible con diversos tipos de sistemas, como pueden ser los TRSs, CS-

TRSs y CTRSs de tipo JOIN, ORIENTED y SEMI-EQUATIONAL. Ha quedado

demostrado que los problemas más apropiados para CONFident son los de tipo CTRS

para los cuales ha obtenido unos resultados competitivos.

CONFident és una eina que demostra la confluència, una de les propietats més im-

portants en l’anàlisi de sistemes de reescriptura. Per a això fa ús d’algunes eines com

infChecker o mu-term. Per exemple, infChecker és crucial per a demostrar la join-

ability de parells cŕıtics i la feasibility de condicions en CTRSs, entre altres tasques;

mu-term és l’eina que demostra la terminació. La terminació té gran importància

en sistemes de reescriptura. CONFident és compatible amb diversos tipus de sis-

temes, com poden ser els TRSs, CS-TRSs i CTRSs de tipus JOIN, ORIENTED i

SEMI-EQUATIONAL. Ha quedat demostrat que els problemes més apropiats per a

CONFident són els de tipus CTRS, aconseguint uns resultats competitius.

iv Abstract

1
Introduction

Confluence is an abstract property of binary relations → (often called reduction

relations) which guarantees that whenever an abstract object s can be reduced in

zero or more steps to either t or t′ (written s→∗ t and s→∗ t′), both t and t′ can be

reduced to a common expression u (written t→∗ u and t′ →∗ u; then, we often say

that t and t′ are joinable). There also is a weaker property related to confluence,

which is called local confluence, where only a single reduction is allowed on s to

reduce it into t or t′ (i.e. s → t and s → t′) but the same joinability condition

on t and t′ is required. Confluence and local confluence are often defined by the

commutation of the following diagrams:

t

∗
��

s

??

��

u

t′

∗
??

t

∗
��

s

∗ ??

∗ ��

u

t′

∗
??

Local confluence confluence

If → is terminating, then local confluence and confluence coincide (this result is

often called Newman’s Lemma, see, e.g., [2, Lemma 2.7.2]).

Confluence is one of the most important properties of term rewriting systems [2]

and that is because (see [2]):

1. It ensures that a computation-of-normal-forms semantics can be adopted,

which means that, given a term s, at most a normal form t (i.e., a term

which cannot be further reduced) of s can be obtained.

2. It ensures that two divergent computations can always join in the future.

This makes the implementation of rewriting-based languages easier, or less

dependent on specific strategies to implement reductions.

2 1. Introduction

3. It is also essential for implementing decision procedures for equational theories

when dealing with equational reasoning.

Confluence has been investigated in several formalisms of rewriting such as first-order

rewriting [2], lambda-calculi [11], higher-order rewriting [31], constrained rewriting

[1], and conditional rewriting [26]. Confluence is undecidable, which means that, in

general, no algorithm is able to prove or disprove confluence of a reduction relation

associated to a (variant of a) rewrite system. In some special cases, though, this can

be done. Indeed, during the last years, a lot of research in confluence has focused

on the development of automatable techniques and tools for proving confluence.

Interesting consequences of this trend have been the development of the Confluence

Competition (CoCo [23]) and the platform CoCoWeb [12], where tools participating

in CoCo can be freely used and compared in a unified framework.

In this master thesis we describe CONFident, a new confluence tool which can

be used through the web application available here

http://zenon.dsic.upv.es/confident/

The tool implements the logical approach to prove confluence developed in [10, 21],

which transforms proofs of confluence problems into a collection of other problems

which are then treated by specialized tools which are able to deal with them. For

instance, the analysis of local confluence of conditional rewrite systems involves

the analysis of joinability of conditional critical pairs, which amounts at proving

whether two terms are joinable (see above), possibly requiring further checks on the

conditional part of the critical pair to prove or disprove its infeasibility [8].

Thus, for the purpose of checking confluence, besides implementing specific re-

sults guaranteeing confluence of different variants of rewriting (e.g., term rewriting,

conditional rewriting, and context-sensitive rewriting [17]), CONFident also imple-

ments the necessary interconnection of tools so that specialized tools like infChecker

[8], mu-term [9], Prover9 [22], and Fort [28] are used to solve auxiliary proof condi-

tions. For instance,

� The use of infChecker is crucial as it is able to prove infeasibility of conditional

rules (which are then discarded from the analysis) and critical pairs (which

can be used to prove local confluence) among other interesting tasks discussed

below.

http://project-coco.uibk.ac.at/
http://zenon.dsic.upv.es/confident/

3

� With mu-term, CONFident can use Newman’s Lemma to prove confluence if

local confluence has been previously proved and the result of the termination

problem is YES.

� Prover9 is used by infChecker in some cases, but CONFident also makes direct

calls to it for particular uses, for instance to obtain direct proofs of joinability

of conditional critical pairs.

� Fort is used by CONFident to check the weak-normalization property (ensuring

that all terms have a normal form), which is important to use some specific

results for proving confluence of conditional rewrite systems.

CONFident is the first tool which is able to deal with join and semi-equational

CTRSs. Furthermore, it was the winner of the CTRS category of the 2021 edi-

tion of the Confluence Competition (CoCo 2021).1 It is also the first tool which can

be used to prove confluence of CS-TRSs.

The structure of the thesis is as follows:

� Section 2 introduces the general main definitions and notations used along the

thesis.

� Section 3 summarizes the theoretical results about confluence of different vari-

ants of rewrite systems which are implemented in CONFident.

� Section 4 provides the details about the mechanization of confluence proofs

implemented in our tool.

� Section 5 provides an experimental evaluation of the tool.

� Section 6 concludes and discusses future work.

1http://project-coco.uibk.ac.at/2021/results.php

http://project-coco.uibk.ac.at/2021/results.php

4 1. Introduction

2
Preliminaries

Abstract reduction relations Given a binary relation R ⊆ A×A on a set A, we

often write aR b instead of (a, b) ∈ R. (and say a R-reduces to b or that b is a direct

R-successor of a) Given two relations R,R′ ⊆ A×A, their composition is defined by

R◦R′ = {(a, b) ∈ A×A | (∃c)aRc∧ cR′b}. Also, for all n ∈ N, the n-fold composition

Rn of R is defined by R0 = {(x, x) | x ∈ A} and Rn = R◦Rn−1 if n > 0. The transitive

closure of R is denoted by R+, and its reflexive and transitive closure by R∗. The

relation R is finitely branching if for all a ∈ A, the set {a R b | b ∈ A} of direct

successors of a is finite. An element a ∈ A is irreducible (or an R-normal form), if

there exists no b such that a R b. We say that b is an R-normal form of a (written

aR! b), if a R∗b and b is an R-normal form. We also say that a is R-normalizing, i.e., a

has an R-normal form. Also, R is weakly normalizing if every a ∈ A has an R-normal

form. Given a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · ,
then a is R-terminating (or well-founded ; 1); R is terminating if a is R-terminating

for all a ∈ A. We say that a, b ∈ A are R-joinable if there is c ∈ A such that a R∗c

and b R∗c. We say that R is (locally) confluent if, for every a, b, c ∈ A, whenever

a R∗b and a R∗c (resp. a Rb and a Rc), there exists d ∈ A such that b R∗d and c R∗d.

Theorem 1 (Newman´s Lemma) A terminating R is locally confluent if and

only if it is confluent. [2, Lemma 2.7.2]

Signatures, terms, positions We use the standard notations in term rewriting

(see, e.g., [26]). In this paper, X denotes a countable set of variables and F denotes

a signature, i.e., a set of function symbols {f, g, . . .} (disjoint from X), each with a

fixed arity given by a mapping ar : F → N. The set of terms built from F and

X is T (F ,X). The set of ground terms (i.e., terms without variable occurrences)

1See [26, Definition 2.1.1] and the paragraph below this definition for a clarifying discussion
about the use of ‘well-founded’ and ‘terminating’ in Mathematics and Computer Science.

6 2. Preliminaries

is denoted T (F). The symbol labeling the root of t is denoted as root(t). The

set of variables occurring in t is Var(t). By abuse of notation, we use Var also

with sequences of terms or other expressions to denote the set of variables occurring

in them. Terms are viewed as labeled trees in the usual way. Positions p, q, . . .

are represented by chains of positive natural numbers used to address subterms t|p
of t. The set of positions of a term t is Pos(t) with p ∈ Pos = {Λ} ∪ {i.q | i ∈
N>0∧q ∈ Pos} and Pos(t) = {Λ} if t ∈ X and Pos(t) = {Λ}∪

⋃
1≤i≤k i.Pos(ti) if t =

f(t1, . . . , tk). The length of a position p is |p|. The subterm of t at position p ∈ Pos(t)
is t|p: t|Λ = t and f(t1, . . . , tk)|i.p = ti|p. The depth of subterm s = t|p is the length

|p| of p. PosF (t) is the set of positions of nonvariable subterms in t: PosF (t) =

{p ∈ Pos(t) | root(t|p) ∈ F}. A subterm replacement t[s]p means that the term t

where t|p has been replaced by the term s: t[s]Λ = s and f(t1, . . . , ti, . . . , tk)[s]i.p =

f(t1, . . . , ti[s]p, . . . , tk)

Linearity A term t is linear if it has no repetition in variables, i.e., the term

t1 = f(x, y) with Var(t1) = {x, y} is linear, and the term t2 = g(x, h(x), y) with

Var(t2) = {x, y} is not linear.

Unification A substitution σ is a mapping from variables into terms which is

homomorphically extended to a mapping from terms to terms. A term l matches t

if there is a substitution σ such that t = σ(l). Two terms s and t unify if there is

a substitution σ such that σ(s) = σ(t). If σ(s) = σ(t) for a substitution σ, then σ

is called a unifier of s and t. A most general unifier (or just mgu) of s and t is a

unifier σ such that for every unifier τ there exists a substitution χ with χ◦σ = τ . If

two terms are unifiable, then they have a most general unifier that is unique except

for variable renaming.

3
Confluence

In this section a summary of the definitions and theorems used and implemented in

the tool is presented.

3.1 Term Rewriting Systems

A rewrite rule is an ordered pair, written ℓ→ r, where ℓ, r ∈ T (F ,X) are called the

left- and right-hand sides (lhs and rhs for short), respectively, such that ℓ /∈ X (the

left-hand-side is not a variable), and Var(r) ⊆ Var(ℓ) (there is no extra variable in

the right-hand rule).

A rewrite rule ℓ→ r is left-linear if ℓ is a linear term, right-linear if r is a linear

term, linear if both ℓ and r are linear terms, collapsing if r ∈ X (right-hand side is

a variable).

A Term Rewriting System (TRS) is a pair R = (F , R) such that F is a signature

and R is a set of rewrite rules over the signature F .

An instance σ(ℓ) of the left-hand side ℓ of a rule ℓ → r is called a redex or

reducible expression of the rule. Given a TRS R = (F , R) and t ∈ T (F ,X), the set

of redex positions PosR(t) of t w.r.t. R is PosR(t) = {p ∈ Pos(t) | ∃ℓ→ r ∈ R, σ ∈
Subst(T (F ,X)), t|p = σ(ℓ)}.

A TRS R = (F , R) is called left-linear, right-linear or linear if each rule ℓ → r

has the corresponding property. On the other hand, R is called collapsing if at least

one of the rules ℓ→ r ∈ R has the corresponding property.

Given a TRS R = (F , R) we define the one-step rewrite relation →R (or just

→ if R is clear from the context) as the set of all possible rewriting steps over

terms T (F ,X): A term s rewrites to t at position p (written s
p
↪−→ t and called a

rewriting step) if there is a position p such that s|p = σ(ℓ) for some rule ℓ→ r and

substitution σ, and t = s[σ(r)]p. The reflexive and transitive closure →∗
R (or just

8 3. Confluence

→∗) of→R is called the rewrite relation associated to R. Let R = (F , R) be a TRS

and t ∈ T (F ,X). We say that t is an R-normal form (or just a normal form if R
is clear from the context) if it is a →-normal form, i.e., no rewriting step is possible

on t (equivalently, if t contains no redex of R)

Symbols f ∈ D = {root(ℓ) | ℓ → r} are called defined symbols and symbols

c ∈ C = {F \ D} are called constructor symbols. Terms in T (C,X) are called

constructor terms; clearly, they are normal forms. Two terms are called joinable if

they are →R-joinable.

3.1.1 Confluence of TRSs

Confluence, as an undecidable property of TRSs, has some challenges. In this sub-

section, we will address some results concerning confluence, along with examples,

which will try to clarify the concepts using systems that CONFident is able to give

a response to, sometimes when other tools can not.

A TRS R is (locally) confluent if →R is (locally) confluent.

In the following, we assume that every variable in the involved rules, if any, was

transformed into a fresh variable before trying to calculate possible critical pairs. In

order to analyze (local-)confluence of TRSs an essential notion is the following.

Definition 2 (Critical pair) With the rules rl1 = ℓ1 → r1 and rl2 = ℓ2 → r2 of a

TRS R we define a critical pair

⟨σ(ℓ1)[σ(r2)]p, σ(r1)⟩

if there is a non-variable position p ∈ PosF (ℓ1) (called critical or overlapping

position) such that ℓ1|p and ℓ2 unify with mgu σ. A case is excluded and it is when

rl1 = rl2 and p = Λ.

A CP ⟨σ(l1)[σ(r2)]p, σ(r1)⟩ is an overlay if p = Λ

A CP ⟨s, t⟩ is trivial if s = t. [16]

It is also worth it to mention that a critical pair represents a divergence point in the

rewrite one-step relation of the TRS R in the sense that the same expression can be

rewritten in different and overlapping ways.

3.1. Term Rewriting Systems 9

Example 3

Consider the one-rule TRS R

f(f(x, a), a) → b (3.1)

Note that ℓ = f(f(x, a), a) unifies with ℓ′|1 = f(x′, a), with mgu σ = {x′ → f(x, a)}.
Then we have a critical pair ⟨f(b, a), b⟩. That is because ⟨σ(f(f(x, a)))[σ(b)]1, σ(b)⟩ =
⟨f(f(f(x, a), a))[b]1, b⟩ = ⟨f(b, a), b⟩.

Definition 4 (Convergence of critical pairs) A critical pair ⟨s, t⟩ of a TRS R
is convergent if s→∗

R u, t→∗
R u for some term u.

Example 5 (COPS 111.trs)

a → b (3.2)

a → c (3.3)

a → e (3.4)

b → d (3.5)

c → a (3.6)

d → a (3.7)

d → e (3.8)

g(x) → h(a) (3.9)

h(x) → e (3.10)

This example has 4 joinable critical pairs:

⟨c, e⟩ , c→3.6 a→3.4 e

⟨b, e⟩ , b→3.5 d→3.7 a→3.4 e

⟨b, c⟩ , c→3.6 a→3.2 b

⟨a, e⟩ , a→3.4 e

Definition 6 (Orthogonality of TRSs) A left-linear TRS R is orthogonal if it

has no critical pairs; almost orthogonal if all critical pairs are trivial overlays; and

weakly orthogonal if all critical pairs are trivial.

https://cops.uibk.ac.at/problems/111.trs

10 3. Confluence

3.1.2 Confluence criteria

Some well-known results of confluence for TRSs are now presented.

Theorem 7 (Huet & Lévy‘s Theorem) [14, 15] Weakly orthogonal TRSs are

confluent.

This means that if all the critical pairs of R are trivial (or there are no critical pairs,

which is part of the definition of orthogonality 6) and R is left-linear , then R is

confluent. It is a syntactical condition which does not depend on termination, so it

can be used to solve a lot of problems very fast.

Example 8 (First three rules of COPS 55.trs)

Ap(Ap(Ap(S, x), y), z) → Ap(Ap(x, z), Ap(y, z)) (3.11)

Ap(Ap(K,x), y) → x (3.12)

Ap(I, x) → x (3.13)

Example 8 has no critical pairs and is left-linear, then it is orthogonal, consequently,

weakly orthogonal, therefore we can say that it is confluent without a termination

proof needed by Huet & Lévy‘s Theorem.

Theorem 9 (Huet‘s Theorem) [13, Lemma 3.1] A TRS is locally confluent if

and only if all its critical pairs are convergent.

Huet‘s Theorem, together with Newman´s Lemma can be used to prove confluence of

a TRSR whenever the critical pairs of the TRS are all joinable andR is terminating.

Trivial CPs converge by definition.

Example 10 (Last rule of COPS 55.trs)

Dh(z, z) → z (3.14)

https://cops.uibk.ac.at/problems/55.trs
https://cops.uibk.ac.at/problems/55.trs

3.1. Term Rewriting Systems 11

The TRS R in example 10 has no critical pairs. However, it is not left-linear, thus it

is not weakly orthogonal. Huet & Lévy‘s result cannot be used to prove confluence

of R. However, by Theorem 9, it is locally confluent. We can prove R terminating

with mu-term. Thus, it is confluent by Newman´s Lemma.

Another interesting property is strong confluence, which implies confluence with-

out termination.

Definition 11 (Strong joinability) Two terms t1 and t2 are strongly joinable if,

for some terms u1 and u2, we have: t1 →= u1, t2 →∗ u1 and t2 →= u2, t1 →∗ u2

Definition 12 (Strong confluence) [13] A TRS R is strongly confluent if it is

linear and all critical pairs ⟨s, t⟩ are strongly joinable.

Theorem 13 (Use of strong confluence to demonstrate confluence) [13] Strongly

confluent TRSs are confluent.

Example 14 (COPS 163.trs)

+(+(x, y), z) → +(x,+(y, z)) (3.15)

+(x,+(y, z)) → +(+(x, y), z) (3.16)

This TRS is not orthogonal as it has 5 CPs:

⟨s1, t1⟩ = ⟨+(x,+(x,+(y, z))),+(+(x,+(x, y)), z)⟩ (3.17)

⟨s2, t2⟩ = ⟨+(x,+(+(x, y), z)),+(+(x, x),+(y, z)⟩ (3.18)

⟨s3, t3⟩ = ⟨+(x,+(y,+(y, z))),+(+(+(x, y), y), z)⟩ (3.19)

⟨s4, t4⟩ = ⟨+(+(x,+(y, z)), z),+(+(x, y),+(z, z))⟩ (3.20)

⟨s5, t5⟩ = ⟨+(+(+(x, y), z), z),+(x,+(+(y, z), z))⟩ (3.21)

It is not terminating:

+(+(x, y), z)→3.15 +(x,+(y, z))→3.16 +(+(x, y), z)→ . . .

Thus, neither Huet’s, nor Huet & Levy’s results apply. However, it is strongly

confluent, as we have:

https://cops.uibk.ac.at/problems/163.trs

12 3. Confluence

CP3.17

+(x,+(x,+(y, z)))→= +(x,+(x,+(y, z)))

+(+(x,+(x, y)), z)→3.15 +(x,+(+(x, y), z))→3.15 +(x,+(x,+(y, z)))

+(+(x,+(x, y)), z)→= +(+(x,+(x, y)), z)

+(x,+(x,+(y, z)))→3.16 +(x,+(+(x, y), z))→3.16 +(+(x,+(x, y)), z)

CP3.18

+(x,+(+(x, y), z))→= +(x,+(+(x, y), z))

+(+(x, x),+(y, z))→3.15 +(x,+(x,+(y, z)))→3.16 +(x,+(x,+(y, z)))

+(+(x, x),+(y, z))→= +(+(x, x),+(y, z))

+(x,+(+(x, y), z))→3.15 +(x,+(+(x, y), z))→3.16 +(+(x, x),+(y, z))

CP3.19

+(x,+(y,+(y, z)))→= +(x,+(y,+(y, z)))

+(+(+(x, y), y), z)→3.15 +(+(x, y),+(y, z))→3.15 +(x,+(y,+(y, z)))

+(+(+(x, y), y), z)→= +(+(+(x, y), y), z)

+(x,+(y,+(y, z)))→3.16 +(+(x, y),+(y, z))→3.16 +(+(+(x, y), y), z)

CP3.20

+(+(x,+(y, z)), z)→= +(+(x,+(y, z)), z)

+(+(x, y),+(z, z))→3.16 +(+(+(x, y), z), z)→3.15 +(+(x,+(y, z)), z)

+(+(x, y),+(z, z))→= +(+(x, y),+(z, z))

+(+(x,+(y, z)), z)→3.16 +(+(+(x, y), z), z)→3.15 +(+(x, y),+(z, z))

CP3.21

+(+(+(x, y), z), z)→= +(+(+(x, y), z), z)

+(x,+(+(y, z), z))→3.16 +(+(x,+(y, z)), z)→3.16 +(+(+(x, y), z), z)

+(x,+(+(y, z), z))→= +(x,+(+(y, z), z))

+(+(+(x, y), z), z)→3.15 +(+(x,+(y, z)), z)→3.15 +(x,+(+(y, z), z))

Since R is linear and it has strongly joinable critical pairs, by Definition 12 it is

strongly confluent. By Theorem 13, it is confluent.

3.1. Term Rewriting Systems 13

3.1.3 Modularity of confluence

By using modularity we want to know what conditions a combination of conflu-

ent systems needs to achieve in order to inherit confluence. Some definitions are

compulsory to understand modularity. Those are presented in the following.

Let (F ,R) be the union of (F1,R1) and (F2,R2), i.e., F = F1 ∪ F2 and R =

R1 ∪R2. It is easy to see that the set of defined symbols in (F ,R) is D = D1 ∪ D2

and the set of constructors is C = F \ D, where Di (Ci) denotes the set of defined

symbols (constructors) in (Fi,Ri), i ∈ {1, 2}:

Definition 15 (Disjoint combination) [26, Section 8.4] (F1,R1) and (F2,R2)

are disjoint if they do not share function symbols, i.e., F1 ∩F2 = Ø (or equivalently

C1 ∩ C2 = C1 ∩ D2 = D1 ∩ C2 = D1 ∩ D2 = Ø). The disjoint union (F ,R) =

(F1⊎F2,R1⊎R2) is sometimes also called the direct sum of (F1,R1) and (F2,R2).

Example 16 (COPS 55.trs)

The following TRS, in COPS (55.trs), is a disjoint combination of TRSs in Examples

8 and 10.

Ap(Ap(Ap(S, x), y), z) → Ap(Ap(x, z), Ap(y, z)) (3.22)

Ap(Ap(K,x), y) → x (3.23)

Ap(I, x) → x (3.24)

Dh(z, z) → z (3.25)

Indeed, R is a combination of two disjoint TRSs, because F1 = {Ap, S,K, I} and

F2 = {Dh} satisfy F1 ∩ F2 = Ø, as required by Definition 15.

Definition 17 (Constructor-sharing combination) [26, Section 8.5] (F1,R1)

and (F2,R2) are constructor-sharing if they share at most constructors, i.e., F1 ∩
F2 = C (or equivalently C1 ∩ D2 = D1 ∩ C2 = D1 ∩ D2 = Ø). [26]

Example 18

The following TRS, made up for this example, has a constructor-sharing combination

of TRSs.

f(x) → f(g(f(a), f(b))) (3.26)

f(g(a, x)) → f(g(f(x), g(a, b))) (3.27)

https://cops.uibk.ac.at/problems/55.trs

14 3. Confluence

h(x, x) → g(x, a) (3.28)

Indeed, R is a combination of two constructor-sharing TRSs:

f(x) → f(g(f(a), f(b))) (3.29)

f(g(a, x)) → f(g(f(x), g(a, b))) (3.30)

and

h(x, x) → g(x, a) (3.31)

That is because F1 = {f, g, a, b} and F2 = {h, g, a, b} satisfy F1∩F2 = C = {g, a, b},
as required by Definition 17.

Definition 19 (Constructor-lifting rule) [26, into Definition 8.5.7] A rule ℓ→ r

is constructor-lifting if root(r) is a shared constructor in the combination (F1,R1)

and (F2,R2).

Definition 20 (Layer-preserving TRS) [26, into Section 8.2.1] A disjoint com-

bination of TRSs R is layer-preserving if and only if is noncollapsing. A constructor-

sharing combination of TRSs R is layer-preserving if and only if it contains neither

collapsing nor constructor-lifting rules. [26]

Example 18 is not layer-preserving, as it is a constructor-sharing combination of

TRSs, noncollapsing, however, the rule 3.28 it is a constructor-lifting rule, because

root(r) = g and g is a shared constructor in the combination. Example 16 is not

layer-preserving either, as it is a disjoint combination of TRSs, but it is collapsing

because every rule, excluding the first one, is collapsing, i.e., their right-hand-sides

are variables.

Example 21

Adapting the Example 18, we have the following layer-preserving TRS:

f(x) → f(g(f(a), f(b))) (3.32)

f(g(a, x)) → f(g(f(x), g(a, b))) (3.33)

h(x, x) → h(g(x, x), a) (3.34)

Indeed, R is a layer-preserving TRS, because it is a constructor-sharing combination

of TRSs, noncollapsing and without any constructor-lifting rule: with the modifica-

tion in rule 3, now root(r) = h, which is not a shared constructor in the combination.

3.1. Term Rewriting Systems 15

Theorem 22 (Modularity in the confluence hierarchy) Some studies have com-

piled a list of properties which guarantee modularity of confluence:

� For disjoint TRSs, confluence is modular. [32]

� For constructor-sharing and left-linear TRSs, confluence is modular. [27]

� For constructor-sharing and layer-preserving TRSs, confluence is modular.

[25]

Example 23

The TRSR in Example 16 is a disjoint union ofR1 in Example 8 andR2 in Example

10. Since R1 is confluent by Huet & Lévy´s Theorem 7 and R2 is confluent due to

Huet´s Theorem 9 and Newman´s Lemma 1. By Theorem 22, R is confluent.

Example 24

The TRS R in Example 21 is a constructor-sharing and layer-preserving. We can

decomposed it into:

a TRS R1

f(x) → f(g(f(a), f(b))) (3.35)

f(g(a, x)) → f(g(f(x), g(a, b))) (3.36)

and a TRS R2

h(x, x) → h(g(x, x), a) (3.37)

The TRS R1 is strongly confluent (and hence confluent) because it is linear and

it has one strongly joinable critical pair ⟨f(g(f(x), g(a, b))), f(g(f(a), f(b)))⟩:

f(g(f(x), g(a, b)))→=
3.35 f(g(f(a), f(b)))

f(g(f(a), f(b)))→∗ f(g(f(a), f(b)))

f(g(f(a), f(b)))→= f(g(f(a), f(b)))

f(g(f(x), g(a, b)))→3.35 f(g(f(a), f(b)))

The TRS R2 is confluent due to Huet´s Theorem 9 and Newman´s Lemma 1.

By Theorem 22, R is confluent.

16 3. Confluence

3.1.4 Use of feasibility

Definition 25 (Feasibility) [21, Definition 39] A condition s ▷◁ t is (T, σ)-feasible
if Th▷◁ ⊢ σ(s) ▷◁ σ(t) holds; otherwise, it is (T, σ)-infeasible. We also say that s ▷◁ t

is T-feasible (or Th▷◁-feasible, or just feasible if no confusion arises) if it is (T, σ)-
feasible for some substitution σ; otherwise, we call it infeasible.

A sequence F is T-feasible (or just feasible) iff there is a substitution σ such that,

for all γ ∈ F, γ is (T, σ)-feasible. Note that () is trivially feasible.

As TRSs can be seen as specializations of CS-TRSs and CTRSs, the underlying

logic theory could be that one used in [17] or in [10].

For any term t, t↓ means that every x ∈ Var in the term is replaced by a constant

cx ∈ F , ar(cx) = 0.

In TRSs, feasibility is used in order to prove the joinability of each CP⟨s, t⟩ of the
system, as the feasibility of the sentence s↓ →∗ u, t↓ →∗ u, being u a fresh variable.

We use infChecker for this task. infChecker is a tool that can verify infeasibility

conditions of variants of TRSs. It is powered by the theorem prover Prover9, and

the model generators Mace4 and AGES, powered by the SMT solver Barcelogic.

Example 26 (COPS 669.trs)

Consider the TRS:

a → c (3.38)

f(a) → b (3.39)

b → b (3.40)

b → h(b, h(c, a)) (3.41)

We can remove the rule 3.40 because it is redundant for confluence analysis. The

system has only one critical pair ⟨s, t⟩ = ⟨f(c), b⟩ obtained from rules 3.39 and 3.38.

This critical pair consists of a term in normal form, f(c), and b which starts an

infinite rewriting sequence: b →3.41 h(b, h(c, a)) →3.41 h(h(b, h(c, a)), h(c, a)) →3.41

.... The non-joinability of f(c) and b could be difficult or impossible to prove for a

basic graph-based rewriting processor. However, we can easily see that term b could

never be rewritten into f(c). That is because it only creates terms which begin with

the function symbol h, which cannot be removed by any rewriting rule.

In contrast, infChecker can prove non-joinability of the critical pair if we try the

following infeasibility problem:

http://zenon.dsic.upv.es/infChecker/
https://www.cs.unm.edu/~mccune/prover9/
https://www.cs.unm.edu/~mccune/mace4/
http://zenon.dsic.upv.es/ages/
https://barcelogic.com/
http://cops.uibk.ac.at/problems/669.trs

3.2. Context-Sensitive Term Rewriting Systems 17

(PROBLEM INFEASIBILITY)

(RULES

a -> c

f(a) -> b

b -> h(b,h(c,a))

)

(VAR x)

(CONDITION f(c) ->* x, b ->* x)

which infChecker proves infeasible.

3.2 Context-Sensitive Term Rewriting Systems

Given a signature F a replacement map is a mapping µ satisfying that, for all

symbols f ∈ F , µ(f) ⊆ {1, ..., ar(f)} [17]. The set of replacement maps for the

signature F is MF (or MR for a TRS with signature F). Replacement maps are

compared as follows: µ ⊑ µ′ if for all f ∈ F , µ(f) ⊆ µ′(f); we often say that µ

is more restrictive than µ′. Extreme cases are µ⊥, which disallows replacements in

all arguments: µ⊥(f) = Ø for all f ∈ F ; and µ⊤, which restricts no replacement:

µ⊤(f) = {1, ..., k} for all k-ary symbols f ∈ F .

The set Posµ(t) of µ-replacing (or active) positions of t is Posµ(t) = {Λ}, if
t ∈ X and Posµ(t) = {Λ} ∪

⋃
i∈µ(f) i.Pos

µ(ti), if t = f(t1, ..., tk). The set of non-µ-

replacing (or frozen) positions of t is Posµ(t) = Pos(t)−Posµ(t). Given terms s, t,

we let Posµs (t) = Posµ(t) ∩Poss(t), i.e., Posµs (t) denotes the set of frozen positions

of subterm s in t. Given a term t, Varµ(t) (resp. Var�µ(t)) is the set of variables

occurring at active (resp. frozen) positions in t: Varµ(t) = {x ∈ Var(t) | ∃p ∈
Posµ(t), x = t|p} and Var�µ(t) = {x ∈ Var(t) | ∃p ∈ Posµ(t), x = t|p}. Variables in

Varµ(t) could also be in Var�µ(t) and vice versa.

A pair (R, µ) where R is a TRS and µ ∈MR is often called a CS-TRS. Context-

sensitive rewriting (CSR) is the restriction of rewriting obtained when a replacement

map µ is used to specify the redex positions that can be contracted. A term s µ-

rewrites to t written s
p
↪−→R,µ t (or s ↪→R,µ t, s ↪→µ t, or even s ↪→ t), if s→p

R t and

p is active in s, i.e., p ∈ Posµ(s).

If ↪→R,µ is (locally) confluent (resp. terminating), we say that R is (locally) µ-

confluent (resp. µ-terminating). The ↪→R,µ-normal forms are called µ-normal forms

(of R). Two terms s and t are µ-joinable (written s ↓µ t) if they are ↪→R-joinable.

18 3. Confluence

3.2.1 Confluence of CSR

In order to prove local confluence of CSR, the concept of µ-critical pair is the stan-

dard definition, only active critical positions pi ∈ PosµF (ℓj) are considered to find

overlaps.

Definition 27 (µ-critical pair [21]) Let R be a TRS and µ ∈ MR. A critical

pair, with the usual definition ⟨σ(l1)[σ(r2)]p, σ(r1)⟩ ∈ CP(R) is a µ-critical pair of

R if p ∈ PosµF (l). The set of µ-critical pairs is CP(R, µ). A µ-critical pair ⟨s, t⟩ is
µ-joinable if s ↓µ t.

Example 28

The following TRS

f(x, y, z) → g(g(c, y), x) (3.42)

f(a, y, z) → a (3.43)

g(g(x, z), y) → y (3.44)

g(c, g(c, z)) → f(z, g(a, b), c) (3.45)

has four critical pairs:

⟨a, g(g(c, y), a)⟩ (3.46)

with 3.42 and 3.43 with critical position p = Λ

⟨g(c, f(z, g(a, b), c)), f(g(c, z), g(a, b), c)⟩ (3.47)

with 3.45 and 3.45 with critical position p = 2

⟨g(z, y), y⟩ (3.48)

with 3.44 and 3.44 with critical position p = 1

⟨g(f(z, g(a, b), c), y), y⟩ (3.49)

with 3.44 and 3.45 with critical position p = 1

However, with µ(f) = {1} and µ(g) = {2}, only 2 µ-critical pairs remain: 3.46

and 3.47. This is because 3.48 and 3.49 needs p = 1 to be active in g. In fact, R

3.2. Context-Sensitive Term Rewriting Systems 19

as a TRS is not confluent because the critical pair 3.48 is not convergent, but as a

CS-TRS (R, µ) is confluent, as we will in Example 33.

With CS-TRSs we cannot use Huet´s Theorem: having no µ-critical-pair, by its

own, does not mean that R is confluent.

Example 29 (Example 9 [21])

Consider the left linear TRS R

g(x, a) → c(x) (3.50)

a → b (3.51)

with µ(c) = 0 and µ(g) = 1. Although the left-hand side a of rule 3.51 overlaps

the left-hand side g(x, a) of rule 3.50 at position 2, this position is frozen in g(x, a).

Hence, R has no µ-critical pair.

However, the following peak

g(b, a)←↩ g(a, a) ↪→ c(a) (3.52)

is not µ-joinable, as c(a) is a µ-normal form and the only µ-reduction step on g(b, a)

is g(b, a) ↪→µ c(b), leading to a different µ-normal form.

Thus, the definition of left-homogeneous µ-replacing variables is needed.

Definition 30 (LHRV-condition [21]) Let µ be a replacement map. A rule α :

l→ r has left-homogeneous µ-replacing variables (written LHRV(ℓ→ r, µ)), if active

variables in the left-hand side l have no frozen occurrence neither in l nor in r, i.e.,

Varµ(ℓ) ∩ Var�µ(α) = Ø. A CSR R has left-homogeneous µ-replacing variables,

written LHRV(R, µ), if LHRV(ℓ→ r, µ) holds for all rules ℓ→ r ∈ R.

We often say that a rule is a LHµ-negative rule if the LHRV-condition does not

hold for it.

Example 31

For R and µ in example 28, the LHRV condition holds:

� LHRV(α 3.42, µ) holds because Varµ(ℓ 3.42) = {x} and Var�µ(α 3.42) = {y, z}.

� LHRV(α 3.43, µ) holds because Varµ(ℓ 3.43) = Ø and Var�µ(α 3.43) = {y, z}.

20 3. Confluence

� LHRV(α 3.44), µ) holds because Varµ(ℓ 3.44) = {y} and Var�µ(α 3.44) = {x}.

� LHRV(α 3.45, µ) holds because Varµ(ℓ 3.45) = {z} and Var�µ(α 3.45) = Ø.

Theorem 32 (Confluence of CSR [17]) Let R be a TRS and µ ∈MR.

� If R contains a non-µ-joinable µ-critical pair, then R is not (locally) µ-

confluent.

� If R is left-linear, LHRV(R, µ) holds and R has no µ-critical pairs, then R is

µ-confluent.

� If R is µ-terminating, LHRV(R, µ) holds, and all µ-critical pairs are µ-joinable,

then R is µ-confluent.

Example 33

The TRS R in Example 28 is terminating (thus µ-terminating) and, with µ(f) =

{1}, µ(g) = {2}, the LHRV condition holds and all µ-critical pairs (3.46, 3.47) are

µ-joinable. Therefore, R is µ-confluent by Theorem 32.

A new concept which appears in [21] is the LHµ-critical pairs. They are powerful

to prove non-µ-confluence when LHRV(l→ r, µ) does not hold.

Definition 34 (LHµ-critical pair) [21, Definition 20] Let R be a TRS and µ ∈
MR. Let ℓ→ r ∈ R be a LHµ-negative rule and p ∈ Posµx(ℓ) for some variable x of

ℓ such that x ∈ Var�µ(ℓ) ∪ Var�µ(r). Let y be a fresh variable, not occurring in ℓ or

r. Then π : ⟨ℓ[y]p, r⟩ ⇐ x ↪→ y is called and LHµ-critical pair. Borrowing from the

usual terminology of (ordinary) critical pairs, position p is called the critical position

of π. LHCP(R, µ) contains all LHµ-critical pairs of R.

With this definition we obtain a set of extended µ-critical pairs which is used to

provide a characterization of local confluence of CSR [21, Definition 29]:

ECP(R, µ) = CP(R, µ) ∪ LHCP(R, µ)

Theorem 35 (Local Confluence of CSR [21]) Let R be a TRS and µ ∈ MR.

Then, R is locally µ-confluent if and only if all pairs in ECP(R, µ) are µ-joinable.

3.2. Context-Sensitive Term Rewriting Systems 21

Example 36

Consider the TRS with µ(h) = {1}

a → h(a, h(a, a)) (3.53)

h(h(x, a), h(a, z)) → h(b, b) (3.54)

h(y, b) → h(h(b, y), h(y, a)) (3.55)

The TRS in Example 36 has no µ-critical pairs and. However, mu-term proves

it non-µ-terminating. Therefore, we cannot say anything about µ-confluence. How-

ever, helped by this new concept of LHCPs 34, we can prove the non-µ-confluence

of the CS-TRS:

Example 37

Consider the TRS R of example 36. An LHµ-critical pair is obtained:

⟨h(y1, b), h(h(b, y), h(y, a))⟩ ⇐ y ↪→ y1 (3.56)

We obtain 3.56 from the LHµ-negative rule α 3.55. There, the variable y is frozen

in the right-hand side h(h(b, y), h(y, a)) and active in the left-hand side h(y, b) at

position 1. Therefore, we have here an LHµ-critical pair π : ⟨ℓ[y1]1, r⟩ ⇐ y ↪→ y1,

where y1 is a fresh new variable.

And 3.56 is non-convergent, which can be proved with infChecker. Thus R is

non-confluent.

Definition 38 (Canonical replacement map) [17, into Section 5] The canoni-

cal replacement map µcan
R of R is the most restrictive replacement map ensuring that

the non-variable subterms of the left-hand sides of the rules of R are active.

The set of replacement maps which are less restrictive than µcan
R is denoted

CMR = {µ ∈MR | µcan
R ⊑ µ}.

Gramlich and Lucas found some connections between µ-confluence of canonical

CSR and confluence properties of unrestricted rewriting. First one is that confluence

does not imply canonical µ-confluence, e.g. [17, Example 8.2]. Also, the following

generalization of Newman’s Lemma was proved by Gramlich and Lucas in [6]:

22 3. Confluence

Theorem 39 (Gramlich and Lucas) [6, Theorem 2] Let R be a left-linear TRS

and µ ∈ CMR (38). If all µ-critical pairs are µ-joinable, and R is µ-terminating

and level-decreasing (w.r.t. µ), then R is confluent.

Here, a TRS R is said to be level-decreasing if for all rules ℓ→ r in R, the level

of each variable in r does not exceed its level in ℓ; the level lvµ(t, x) of a variable x

in a term t is obtained by adding the number of frozen arguments that are traversed

from the root to the variable. [17, into Section 8.5]

Related to this theorem is the following corollary, because in those non-µ-terminating

systems, weakly normalizing TRSs are enough.

Corollary 40 (Lucas) [17, Corollary 8.23] Let R be a left-linear, normalizing TRS

and µ ∈ CMR (38). If R is µ-confluent, then R is confluent.

A good example of this is the 111.trs from COPS [12] that was used before as

example of joinability of critical pairs (Example 5).

Example 41 (COPS 111.trs)

Consider the non-terminating TRS R in Example 5. Note that R is left-linear and

its critical pairs are convergent. However, they are not strongly-joinable.

The second component e of the critical pair ⟨c, e⟩ is a normal from. However,

c cannot be rewritten into e in at most one step. This can be proved by using

infChecker:

(PROBLEM INFEASIBILITY)

(VAR x)

(RULES

a -> b

a -> c

a -> e

b -> d

c -> a

d -> a

d -> e

g(x) -> h(a)

h(x) -> e

)

https://cops.uibk.ac.at/
https://cops.uibk.ac.at/problems/111.trs

3.2. Context-Sensitive Term Rewriting Systems 23

(VAR z_1 z_2)

(CONDITION c ->= z_1, e ->* z1, e ->= z_2, c ->* z_2)

Thus, no result in Section 3.1 can be ued to prove confluence of R. So we

try another approach: compute its canonical replacement map, which is µ(g) =

µ(h) = Ø. However, mu-term can prove that with this replacement map, R is

still not µ-terminating (infinite loop between rules 3.3 and 3.6) and Gramlich and

Lucas’ [6] Theorem 2 is not an option. With Fort [28] we can prove that R is

WN (weakly-normalizing), so we achieved the conditions to apply Corollary 40 to

conclude confluence of R.

3.2.2 Joinability of extended µ-critical pairs

Proposition 42 () [21, Proposition 52] Let R be a TRS, µ ∈MR, and π : ⟨ℓ[y]p, r⟩ ⇐
x ↪→ y ∈ LHCP(R, µ) be an LHµ-critical pair. Being Rµ the first-order theory as-

sociated to (R, µ). If Rµ ⊢ (∀x)(∀y)(∃z)x→ y ⇒ ℓ
↓{x} [y]p →∗ z ∧ r

↓{x} →∗ z holds,

then π is µ-joinable. Here we can ground every variable v in π unless v ∈ {x, y}.

Example 43

Consider the TRS R ”Maude 06/MYNAT nosorts-noand-peanoSimple.xml” from

TermCOMP 2021 TRS Context Sensitive 1 :

U11(tt,m, n) → U12(tt,m, n) (3.57)

U12(tt,m, n) → s(plus(n,m)) (3.58)

plus(n, 0) → n (3.59)

plus(n, s(m)) → U11(tt,m, n) (3.60)

where m and n are variables and µ(U11) = {1}, µ(U12) = {1}. Its ECPs are:

⟨plus(n, s(y)), U11(tt,m, n)⟩ ⇐ m ↪→ y (3.61)

⟨plus(y, s(m)), U11(tt,m, n)⟩ ⇐ n ↪→ y (3.62)

We can prove with Prover9 that these LHµ-critical pairs are µ-joinable by using

Proposition 42. The goals to prove here are:

Rµ ⊢ (∀M)(∀y)(∃z)M → y ⇒ plus(cn, s(y)) ↪→∗ z ∧ U11(tt, n, cn) ↪→∗ z

Rµ ⊢ (∀N)(∀y)(∃z)N → y ⇒ plus(y, s(cn)) ↪→∗ z ∧ U11(tt, cm, n) ↪→∗ z

1see https://termcomp.github.io/Y2021/job_47882.html

https://termcomp.github.io/Y2021/job_47882.html

24 3. Confluence

Prover9 obtains a proof of them. Thus by Proposition 42, 3.61 and 3.62 are µ-

joinable. Since R is µ-terminating , by Theorem 32, R is µ-confluent.

3.2.3 Use of feasibility

The underlying logic theory is that one used in [17].

The use of infChecker in CS-TRS problems is the same as in TRSs, but slightly

different due to the replacement map µ. However, infChecker handles it and the

joinability of each µ-critical pair ⟨s, t⟩ is proved as the feasibility of the sentence

s↓ ↪→∗ u, t↓ ↪→∗ u, being u a fresh variable.

Example 44

Consider the TRS R:

c → e (3.63)

b → c (3.64)

e → h1(b, c, e, f(b, c)) (3.65)

f(b, h(b, x1, c, x1)) → h(b, c, c, e) (3.66)

f(e, y1) → h(e, c, y1, e) (3.67)

h(y1, y1, y, x1) → b (3.68)

h1(f(c, x), x, e, y) → h1(b, e, y, y) (3.69)

h1(f(b, e), y, f(e, b), x) → b (3.70)

h1(y, x, y1, b) → h(e, c, y1, c) (3.71)

h1(x, c, c, y) → c (3.72)

The confluence of R not be proved or disproved by any of the current CR for TRS

solvers of CoCoWeb 2 .

With µ(f) = µ(h1) = Ø and µ(h) = {2, 3, 4}, mu-term can prove the µ-

termination of R. Besides, R satisfies the LHRV condition. Finally, we check the

µ-joinability of its critical pairs, which are the following:

� ⟨c, h(e, c, c, c)⟩, which is µ-joinable because h(e, c, c, c) ↪→3.68 b ↪→3.64 c.

� ⟨h1(b, e, b, b), h(e, c, e, c)⟩, which is µ-joinable because h1(b, e, b, b) ↪→3.71 h(e, c, b, c) ↪→3.68

and h(e, c, e, c) ↪→3.68 b.

2see http://cocoweb.uibk.ac.at/

http://zenon.dsic.upv.es/infChecker/
http://cocoweb.uibk.ac.at/

3.3. Conditional Term Rewriting Systems 25

� ⟨b, h(e, c, f(e, b), c)⟩, whose µ-joinability can be proved as the feasibility of the

condition b ↪→∗ z, h(e, c, f(e, b), c) ↪→∗ z with infChecker.

Therefore R is µ-confluent.

3.3 Conditional Term Rewriting Systems

A conditional rule (with label α) is written α : ℓ → r ⇐ c, where c is a sequence

s1 ≈ t1, · · · , sn ≈ tn with ℓ, r, s1, t1, . . . , sn, tn ∈ T (F ,X) and ℓ /∈ X . As usual, ℓ and
r are called the left- and right-hand sides of the rule, and C is the conditional part

of the rule. A Conditional Term Rerwiting System (CTRS) R is a set of conditional

rules; if all rules in R have an empty conditional part, then R is just a TRS.

Example 45

Consider the CTRS R, Example 7.2.10 from [26]

a → d⇐ b ≈ c (3.73)

a → c (3.74)

If we remove the condition of rule 3.73, then we have a TRS.

A CTRS R is called deterministic if for each rule ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in

R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(ℓ) ∪
⋃i−1

j=1 Var(tj). Conditions s ≈ t

in conditional rules admit several semantics, i.e., forms to evaluate them see, e.g.,

[26, Definition 7.1.3]: Oriented CTRSs are those whose conditions s ≈ t are handled

as reachability tests σ(s) →∗ σ(t) for an appropriate substitution σ. Join CTRSs

use joinability tests σ(s) ↓ σ(t) instead. Semiequational CTRSs use convertibility

tests σ(s)↔∗ σ(t).

Definition 46 (Quasi-decreasing CTRS) [26, Definition 7.2.39] A determinis-

tic 3-CTRS (F ,R) is said to be quasi-decreasing if there is a well-founded partial

ordering ≻ on T (F ,V), satisfying:

1. →R ⊆ ≻,

2. ≻ has the subterm property (hence ≻=≻st), and

26 3. Confluence

3. for every rule ℓ → r ⇐ s1 ≈ t1, . . . sk ≈ tk ∈ R, every substitution σ and

0 ≤ i < k: if σ(sj)→∗
R σ(tj) for every 1 ≤ j ≤ i, then σ(ℓ) ≻ σ(si+1).

Example 47

Consider the CTRS R from 45.

The partial ordering ≻ defined by a ≻ b shows that R is quasi-decreasing (→R2=

Ø and b can not be rewritten into c).

Termination of a CTRS can be proved in some ways. In CONFident we call

mu-term with different flags in order to prove termination or operational termina-

tion (which implies quasi-decreasing), however, we can also prove the termination

of the underlying TRS Ru.

Definition 48 (Underlying TRS Ru) Let R be a CTRS, we call its underlying

TRS Ru that one with the same rules ℓ→ r, but erasing the conditional part c, i.e.,

Ru = {ℓ→ r ⇐ c ∈ R}.

For all terms s, t, we write (i) s →R t (resp. s →∗
R t) if and only if there is a

(well-formed)3 proof tree for s → t (resp. s →∗ t) using I(R). Equivalently, we

have (ii) s →R t (resp. s →∗
R t) if and only if the first-order theory associated

to R, R ⊢ s → t (resp. R ⊢ s →∗ t) holds. The first presentation (i) is well-

suited for the analysis of the termination behavior of CTRSs: we say that R is

operationally terminating if there is no (well-formed) infinite proof trees for goals

s → t and s →∗ t in I(R) [18]. However, the proof theoretic presentation (ii) is

more important in the analysis of (in)feasibility of rewriting goals. It also suffices

to define termination of CTRSs: a CTRS R is terminating if →R is terminating.

Termination and operational termination of CTRSs differ, see [19, Section 3] for a

deeper discussion about differences and connections between both notions.

We use termination and operational termination in some confluence results for

CTRSs. The tool mu-term [9] can be used for automatically proving and disproving

termination and operational termination of (oriented) CTRSs.4

3By a well-formed proof tree we mean a proof tree where proof conditions introduced by inference
rules are developed from left to right, see [18].

4Although the version of mu-term described in [9] did not allow proofs of termination of CTRSs,
for the purpose of serving as a backbone for CONFident, we recently modified mu-term as to provide
explicit use of the techniques described in [20], which can be used to prove and disprove termination
of CTRSs. Thus, mu-term users can prove and disprove termination of CTRSs by following the
instructions in http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs.

http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs

3.3. Conditional Term Rewriting Systems 27

The U and Uopt transformations are used to prove confluence. They are based

on the transformation proposed on [26] and the optimization of [3]:

Definition 49 (U and Uopt transformations) Let R be a deterministic 3-CTRS.

For each conditional rule as ℓ → r ⇐ s1 ≈ t1, ..., sn ≈ tn we introduce n + 1

unconditional rules

ℓ → U1(s1,
−→x 1) (3.75)

Ui−1(ti−1,
−→x i−1) → Ui(si,

−→x i) (3.76)

Un(tn,
−→x n) → r (3.77)

where the Ui are fresh new symbols added to F and the −→x i are vectors of variables

occurring in Var(ℓ) ∪ Var(t1) ∪ · · · ∪ Var(ti−1) for all 1 ≤ i ≤ n. Let U(R) be the

set of unconditional rules obtained in this way.

The optimized version Uopt(R) is obtained if the −→x i above are defined as follows,

for all 1 ≤ i ≤ n:

−→x i = (Var(ℓ) ∪ Var(t1) ∪ ... ∪ Var(ti−1)) ∩ (Var(ti) ∪ Var(si+1) ∪ Var(ti+1) ∪ ... ∪
Var(sn) ∪ Var(tn) ∪ Var(r))

Example 50

Consider the CTRS R (793.trs from COPS [12]):

a → a⇐ f(a) ≈ a (3.78)

f(x) → a⇐ x ≈ b (3.79)

We could transform R into the Uopt(R) as follows:

a → U1(f(a)) (3.80)

U1(a) → a (3.81)

f(x) → U2(x, x) (3.82)

U2(b, x) → a (3.83)

Example 51

Consider the CTRS R (553.trs from COPS [12]):

a → b (3.84)

https://cops.uibk.ac.at/
https://cops.uibk.ac.at/

28 3. Confluence

c → k(f(a)) (3.85)

c → k(g(b)) (3.86)

f(x) → g(x)⇐ h(f(x)) ≈ k(g(b)) (3.87)

h(f(a)) → c (3.88)

h(x) → k(x) (3.89)

R is a 1-CTRS and its underlying TRS Ru is terminating. CONFident transforms

R into U(R) by deleting the conditional rule 3.87 and adding the fresh new symbol

U1 and two unconditional rules:

f(x) → U1(h(f(x)), x) (3.90)

U1(k(g(b)), x) → g(x) (3.91)

And then CONFident tries TRS methods for confluence, and it ends proving conflu-

ence with Theorem 39. The replacement map used is µ(f) = µ(g) = µ(h) = µ(k) =

µ(U1) = {1}. Its critical pairs

⟨k(f(a)), k(g(b))⟩ (3.92)

⟨h(U1(h(f(a)), a)), c⟩ (3.93)

⟨h(f(b)), c⟩ (3.94)

⟨c, k(f(a))⟩ (3.95)

are µ-joinable.

Definition 52 (Types of CTRS) As in [26] and [24] before, rewrite rules are

presented as ℓ → r ⇐ c and classified according to the distribution of variables

among ℓ, r and c.

An n-CTRS consists of rule of type n (or n-rules) only.

Type Requirement

1 Var(r) ∪ Var(c) ⊆ Var(ℓ)
2 Var(r) ⊆ Var(ℓ)
3 Var(r) ⊆ Var(ℓ) ∪ Var(c)
4 No restrictions

In a 1-CTRS has no extra variables (all variables in the rule only occur in the

left-hand side), a 2-CTRS has no extra variables on the right-hand sides of the

3.3. Conditional Term Rewriting Systems 29

rules, and 3-CTRS may contain extra-variables on the right-hand sides of the rules

provided that these also occur in the conditions. More restrictive types are subsets

of less restrictive ones, i.e., 1-CTRS are 2,3 and 4-CTRS too.

Definition 53 (Inlining of conditions) [29, Definition 4] Given a conditional rule

ℓ → r ⇐ s1 ≈ t1, · · · , sn ≈ tn and an index 1 ≤ i ≤ n such that ti = x for some

variable x, let the inlining of the ith condition of the rule be ℓ → σ(r) ⇐ σ(s1) ≈
t1, · · · , σ(si−1) ≈ ti−1, σ(si+1) ≈ ti+1, · · · , sn ≈ tn with σ = {x→ si}.

Example 54

Consider the CTRS R (351.trs from COPS [12]):

ssp(nil, 0) → nil (3.96)

ssp(cons(y, ys′), v) → xs⇐ ssp(ys′, v) ≈ xs (3.97)

ssp(cons(y, ys′), v) → cons(y, xs′)⇐ sub(v, y) ≈ w, ssp(ys′, w) ≈ xs′(3.98)

sub(z, 0) → z (3.99)

sub(s(v), s(w)) → z ⇐ sub(v, w) ≈ z (3.100)

Here we can apply inlining of conditions for every conditional rule, e.g., rule 3.98,

beginning from the last condition, ssp(ys′, w) ≈ xs′, we have a variable xs′ in its

right-hand side, so we can do σ = {xs′ → ssp(ys′, w)} and the inlining of the second

condition of the rule is ℓ → σ(r) ⇐ σ(s1) ≈ t1 or α3.98 : ssp(cons(y, ys′), v) →
cons(y, ssp(ys′, w)) ⇐ sub(v, y) ≈ w. The same happens in the last condition with

variable w, now σ = {w → sub(v, y)} and the result rule is α3.98 : ssp(cons(y, ys
′), v)→

cons(y, ssp(ys′, sub(v, y))).

Resulting R after inlining of conditions is:

ssp(nil, 0) → nil (3.101)

ssp(cons(y, ys′), v) → ssp(ys′, v) (3.102)

ssp(cons(y, ys′), v) → cons(y, ssp(ys′, sub(v, y))) (3.103)

sub(z, 0) → z (3.104)

sub(s(v), s(w)) → sub(v, w) (3.105)

3.3.1 Confluence of conditional rewriting

A CTRS R is confluent if →R is confluent.

https://cops.uibk.ac.at/

30 3. Confluence

Definition 55 (Conditional Critical Pair) [26] Let ℓ1 → r1 ⇐ c1 and ℓ2 →
r2 ⇐ c2 be renamed versions of rewrite rules of R such that they have no variables

in common. Suppose ℓ1 = C[t] with t /∈ V such that σ(t) = σ(ℓ2) for a most general

unifier σ.

We call

⟨σ(C[r2]), σ(r1)⟩ ⇐ σ(c1), σ(c2)

a conditional critical pair CCP of R. It the two rules are renamed versions of the

same rule, we do not consider the case where p = Λ. A conditional critical pair

⟨t, t⟩ ⇐ c is called trivial.

Definition 56 (Feasible CCP) A conditional critical pair ⟨s, t⟩ ⇐ s1 ≈ t1, ..., sn ≈
tn is feasible if there is a substitution σ such that σ(si) ≈ σ(ti) holds for all 1 ≤ i ≤ n.

Otherwise it is called infeasible.

Note that infeasible conditional critical pairs are trivially joinable. Thus, in order

to prove local-confluence, we can remove infeasible CCPs. That is why a powerful

tool for checking the feasibility of the conditions is almost compulsory in confluence

tools for CTRS.

Theorem 57 Every quasi-decreasing strongly-deterministic 3-CTRS with joinable

critical pairs is confluent. [26]

Definition 58 (Strongly deterministic CTRS) [26] Let R be a deterministic 3-

CTRS, R is called strongly deterministic if, for every rule ℓ→ r ⇐ s1 ≈ t1, ..., sn ≈
tn in R, every term ti is strongly irreducible. A term t is called strongly irreducible

w.r.t. R if σ(t) is a normal form for every normalized substitution σ. R is called

syntactically deterministic if, for every rule ℓ→ r ⇐ s1 ≈ t1, ..., sn ≈ tn in R, every
term ti, is a constructor term or a ground Ru normal form.

It is undecidable whether a term t is strongly irreducible w.r.t. R. However,

there is an important syntactic criterion: every syntactically deterministic CTRS is

strongly deterministic.

CONFident also works for join type CTRS, not only oriented, so the following

result is also interesting, and related to Theorem 57.

Corollary 59 [26] A decreasing join 1-CTRS is confluent if and only if all its con-

ditional critical pairs are joinable.

3.3. Conditional Term Rewriting Systems 31

Definition 60 (Right-stable CTRS) [26] A CTRS is called right stable if every

rewrite rule ℓ → r ⇐ s1 ≈ t1, ..., sn ≈ tn in R satisfies the following conditions for

all i ∈ {1, ..., k}:

(Var(l) ∪
⋃i−1

j=1 Var(sj = tj) ∪ Var(si)) ∩ Var(ti) = Ø

and ti is either a linear constructor term or a ground Ru normal form. Every

variable y ∈
⋃k

i=1 Var(ti) is an extra variable ,i.e., y does not occur in ℓ.

Definition 61 (Normal CTRS) [26] A normal CTRS (F ,R) is an oriented CTRS

in which the rewrite rules ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn are subject to the additional

constraint that for all 1 ≤ i ≤ n, ti is a ground normal form with respect to Ru.

Definition 62 (Almost normal CTRS) [26] A CTRS is called almost normal if

it is normal or right-stable and oriented.

Definition 63 (Properly oriented CTRS) [30] An arbitrary 3-CTRS is called

properly oriented if every rule ℓ → r ⇐ s1 ≈ t1, ..., sn ≈ tn in R satisfies: If

Var(r) ⊈ Var(ℓ), then Var(si) ⊆ Var(ℓ)∪
⋃i−1

j=1 Var(tj) holds for all 1 ≤ i ≤ k when

the right-hand side r of a rule does not contain extra variables. Every deterministic

3-CTRS is properly oriented, but not vice versa.

Definition 64 (Level-confluence) [26] A CTRS R is called level-confluent if, for

every n ∈ N, the TRS Rn, meaning that every rule, independently and without

conditions, is confluent.

Level-confluence implies confluence. However, not vice versa.

Corollary 65 [26] Every almost orthogonal almost normal 2-CTRS is level-confluent.

Theorem 66 [30] Every orthogonal properly oriented right-stable 3-CTRS is level-

confluent.

3.3.2 Use of feasibility

The underlying logic theory is that one used in [10].

In CTRS problems, CONFident uses feasibility calling to infChecker in this cases:

� To prove if a conditional rule ℓ→ r ⇐ c has a feasible conditional part c.

32 3. Confluence

� To prove if a CCP is feasible (see Definition 56).

� To prove the convergence of a CCP (see [10, Section 6])

� To check (ground) normal forms in order to prove normality or right-stability

of the CTRS. A term t is a normal form if and only if t↓ → x, where x is a

variable, is infeasible.

4
Mechanization

CONFident is written in Haskell and it has more than 80 Haskell files with more than

9000 lines of pure code (blanks and comments not included). Besides, several shell

scripts are used for the analysis of the results, some PHP code has been developed

for the automation of benchmarks, and also a Python script for generating random

examples.

4.1 Divide and Conquer Framework

Because proving confluence is, in general, undecidable, existing techniques for prov-

ing and disproving confluence are successful on some kind of systems and fail on

others. However, the combination of different techniques in a certain order or the

use of auxiliar properties can help to achieve a positive or negative answer about

the confluence property.

We describe a framework that follows a divide and conquer strategy, where the

input system is described as a problem in our framework and the different confluence

techniques and the auxiliar property checkings are encapsulated as processors and

also as other (possibly different) problems. The application order of the different

processors is defined as an application strategy. Choosing the right strategy to an

input problem is not a trivial task. A thoughtful experimental analysis has been

done to obtain a general strategy.

This type of frameworks is commonly used when dealing with undecidable prop-

erties. Originally developed for proving termination of TRSs [4], several adaptations

and extensions have been recently made, for instance for proving infeasibility [7]. In

such frameworks, there is a single definition of “problem” and the defined processors

return a hopefully simpler set of problems of the same kind. In this thesis, though,

1. There is a main class of problems (namely, the confluence problems) but we

34 4. Mechanization

also consider and use other subsidiary (termination, operational termination,

infeasibility,. . .) problems, which are introduced depending on the considered

phase of the confluence proof.

2. Our processors take a problem and return a hopefully simpler set of new prob-

lems (possibly of different types). They can also return “no”.

There are processors that call to other frameworks internally, e.g., by issuing ex-

ternal calls to tools like mu-term and infChecker, which implement specific proof

frameworks for particular problems.

4.1.1 Problems and Processors

Some new problems are introduced and considered in CONFident: confluence and

joinability problems. Those problems naturally appear when proving confluence.

Definition 67 (Confluence Problem) A confluence (resp. µ-confluence) prob-

lem is denoted CR(R) (resp. CR(R, µ)) where R is a CTRS and µ is a replacement-

map. A confluence (resp. µ-confluence) problem τ is positive if R is confluent (resp.

µ-confluent); otherwise it is negative.

In the following definition, we use conditional pairs ⟨s, t⟩ ⇐ c where c is a

sequence of atoms si ≈ ti and/or s1 → ti for 1 ≤ i ≤ n. If c is empty we just write

⟨s, t⟩. A conditional pair is joinable in R for all substitutions σ, whenever σ(c) holds

in the considered theory for R, then there is a term u such that both σ(s) →∗
R u

and σ(t)→∗
R u hold.

Definition 68 (Joinability Problem) A joinability (resp. µ-joinability) problem

is denoted JO(R, π) (resp. JO(R, µ, π)) where R is a possibly conditional rewrite

system, µ a replacement-map and π is a conditional pair. We say that τ is positive

if π is joinable (resp. µ-joinable) in R; otherwise it is negative.

Besides these new problems, T (R), T (R, µ) and OT (R) are used to describe ter-

mination, µ-termination, and operational termination problems, respectively. In

order to keep our presentation consistent, T (R), T (R, µ) (resp. OT (R)) are said

positive if R is (µ-)terminating (resp. operationally terminating); and negative oth-

erwise. In order to prove these problems positive or negative, we just translate them

into the corresponding problems of the aforementioned existing frameworks to prove

4.1. Divide and Conquer Framework 35

termination, termination of CSR, termination of CTRSs, or operational termination

of CTRSs. In such frameworks, positiveness is actually proved as finiteness (the

standard notion which they use, which is equivalent to our notion of positiveness).

For feasibility problems FE (R, µ, F), where R is a CTRS, µ is a replacement

map, and F is a feasibility sequence [8], we proceed similarly.

Remark 69 (Formal use of infeasiblity problems) In order to keep our pre-

sentation consistent, we also consider infeasiblity problems IN (R, µ, F) as a formal

class of problems, although IN (R, µ, F) is positive if and only if FE (R, µ, F) is neg-

ative. This is formally important to have a single definition of positive or negative

proof from a proof tree when both feasibility and infeasibility problems are used.

Internally, we just use feasibility problems FE (R, µ, F) and realize the appropriate

translations of the outcomes.

The following definition intentionally uses a generic, not formalized notion of prob-

lem. In practice, we mean any of the problems considered above.

Definition 70 (Generalized processor) A generalized processor P is a partial

function from problems into sets of problems; alternatively it can return “no”. The

domain of P (i.e., the set of problems for which P returns some answer) is denoted

Dom(P).

A generalized processor P is

� sound if for all τ ∈ Dom(P), τ is positive whenever P(τ) ̸= “no” and all

τ ′ ∈ P(τ) are positive.

� complete if for all τ ∈ Dom(P), τ is negative whenever P(τ) = “no” or τ ′ is

negative for some τ ′ ∈ P(τ).

4.1.2 Confluence Proof Tree

Confluence problems can be proved or disproved by using a proof tree as follows.

The following definition is given for CTRSs R. For CS-TRSs it is similar.

Definition 71 (Confluence Proof Tree) Let τ be an confluence problem CR(R)
for some CTRS R. A confluence proof tree T for τ is a tree whose inner nodes are

labeled with problems and the leaves are labeled either with problems, “yes” or “no”.

The root of T is labeled with τ and for every inner node n labeled with τ ′, there is

a processor P such that τ ′ ∈ Dom(P) and:

36 4. Mechanization

1. if P(τ ′) = “no” then n has just one child, labeled with“no”.

2. if P(τ ′) = ∅ then n has just one child, labeled with “yes”.

3. if P(τ ′) = {τ1, . . . , τk} with k > 0, then n has k children labeled with the

problems τ1, . . . , τk.

In this way, a confluence proof tree is obtain by the combination of different conflu-

ence processors.

Theorem 72 (Confluence Framework) Let R be a CTRS and T be a confluence

proof tree for CR(R). Then:

1. if all leaves in T are labeled with “yes” and all involved processors are sound

for the problems they are applied to, then τ is confluent.

2. if T has a leaf labeled with “no” and all processors in the path from τ to the

leaf are complete for the problems they are applied to, then τ is non-confluent.

Proof. We analyze the two cases:

1. Since all leaves in T are labeled with “yes”, by definition of confluence proof

tree the nodes n that immediately precede the leaves are labeled with problems

τ that are positive (because P(τ) = ∅ for some sound confluence processor P).

By definition of soundness of the processors involved in the construction of T ,
the root of T is labeled with a positive confluence problem. Therefore, τ is

confluent.

2. If T contains a leaf L labeled with “no”, then there is a complete processor P

such that, for the node n (with label τf) that immediately precedes L, we have

P(τf) = “no”. Hence, τf is negative. Since all processors used on the path

from the root to L are also complete, the confluence problem τ in the root of

T is negative. Thus, R is not confluent.

After some description of preprocessing operations in Section 4.2, Sections 4.3–4.5

provide a summary of processors implemented in CONFident for use in Theorem 72.

4.2. Pre-processing 37

4.2 Pre-processing

Before attempting a proof of confluence, some preprocessing is made on the input

system to simplify it by removing or simplifying some rules.

4.2.1 Removing redundant rules

It is in charge of erasing rules t→ t.

4.2.2 Removing infeasible rules

Analogous to CleanTRSProcessor, but for CTRS: it removes rules t → t ⇐ c. It

also removes rules with infeasible conditions c using infChecker.

4.2.3 Inlining conditional rules

As explained in [29], we can often reduce the number of conditions of a rule, by

using inlining, see Definition 53.

4.3 Solving Termination Problems

When invoking processor PT on a termination problem T (R) for a CTRS R, i.e.,
PT(T (R)) we just calls mu-term to check whether the input CTRSR is terminating

or not. Termination of CTRSs R is often checked by means of a preprocessing as

termination of the underlying TRS Ru.

Similarly, using POT to check an operational termination problem OT (R) for a
CTRS R, i.e., POT(OT (R)) calls mu-term to check whether the R is operationally

terminating or not.

4.4 Solving joinability problems

4.4.1 Joinability processor

Checks joinability of a critical pair. PJO(JO(R, π)) returns

� Ø, if π is joinable

� no, if π is not joinable

� {JO(R, π)}, otherwise

38 4. Mechanization

CONFident can prove (non-)joinability of a CP with two different approaches.

First one is a graph-based-rewriting, which will create a directed graph with the

possible rewritings of a term, linking nodes and permitting loops. Every time a

non-explored node is analised, the depth of the algorithm is increased, in order to

keep an eye on the number of operations, i.e., when we achieve several rewritings

of a single node, only those which creates new nodes increase its depth value. The

power of this approach is that is very fast and loops are ignored.

The second procedure is using logic-based-rewriting with the aid of infChecker,

see Sections 3.1.4, 3.2.3 and 3.3.2. This has the downgrade of performance, because

it usually takes some time. However, there are problems which can only be solved

this way.

4.4.2 Strong joinability processor

It tries to check strong joinability of a CP ⟨s, t⟩ (Definition 12). PSJO(JO(R, π))
returns

� Ø, if π is strongly-joinable

� no, if π is not strongly-joinable

� {JO(R, π)}, otherwise

Proofs of strong joinability of specific pairs π are achieved following the ideas

expressed in Section 4.4.1 (graph-based rewriting and (in)feasibility proofs with

infChecker).

4.5 Solving confluence problems

4.5.1 Modular decomposition

If the system is a TRS, then this processor tries to find a two-partition of rules,

dividing the original problem in two separated and confluence-modular problems

R1 and R2, only if these modularity conditions for confluence are achieved (see

Theorem 22). Either way, the original problem is returned: PMC (CR(R)) returns

� {CR(R1),CR(R2)}, if R is a TRS and can be decomposed into R1 and R2.

� {CR(R)}, otherwise.

4.5. Solving confluence problems 39

4.5.2 Weak orthogonality processor

This processor calculates the critical pairs and tries to prove confluence with Huet-

Levy’s Theorem 7 (weakly orthogonal TRSs are confluent). PHL(CR(R, π)) : returns

� Ø if R is a left-linear TRS and all critical pairs are trivial

� {CR(R, π)} otherwise

4.5.3 Extended Huet processor

It checks joinability of (conditional) (µ-)critical pairs. PHuet(CR(R, µ)) returns

{JO(R, µ, π1), . . . , JO(R, µ, πn)}

if π1, . . . , πn are the (possibly conditional, or extended µ-)critical pairs of a TRS,

CS-TRS, or CTRS R. This processor is not sound, although it is complete. The

next variant of PHuet provides an appropriate complement.

4.5.4 Extended Huet-Newman processor

It tries to apply joinability checkings of (possibly conditional, or extended µ-)critical

pairs plus Newman’s lemma to TRSs (Theorem 9), CS-TRSs (Theorem 35) and

CTRSs (Section 3.3.1). PHN (CR(R, µ)) returns

{JO(R, µ, π1), . . . , JO(R, µ, πn),OT (R, µ)}

if π1, . . . , πn are the (possibly conditional, or extended µ-)critical pairs of a TRS,

CS-TRS or CTRS R. This processor is sound (provided that the conditions of the

corresponding aforementioned results hold), although it is not complete. Note that,

since operational termination and termination of of TRSs and CS-TRSs coincide, the

problems OT (R, µ) are treated as termination problems T (R, µ) in these particular

cases.

4.5.5 Confluence as canonical µ-confluence

The processor converts a TRS into a CS-TRS with the most restrictive µcan
R if the

conditions in Theorem 39 are achieved. PGL(CR(R)) returns

� {CR(R, µcan
R)}, if the conditions in Theorem 39 are achieved.

� {CR(R)}, otherwise

40 4. Mechanization

4.5.6 Confluence of CTRS as confluence of TRSs

The next processor transforms a confluence problem for a CTRS R into a confluence

problem for a TRS U(R) see Definition 49:

PU (CR(R)) = {CR(U(R))}

This processor is sound but not complete. Similarly, our last processor uses Uopt(R):

PUopt
(CR(R)) = {CR(Uopt(R))}

This processor is sound but not complete.

5
Results

CONFident participated in CoCo 2021 in the categories of TRS and CTRS, achieving

a first place in the confluence of CTRSs subcategory. The results are summarized

in Tables 5.1–5.3:

status ACP CONFident CSI CSI 2020 CoLL-Saigawa FORT-h+FORTify

YES 45 14 49 49 36 4
NO 24 14 26 26 19 13
MAYBE 31 72 25 25 45 83
total 100 100 100 100 100 100

Table 5.1: TRS results

status ACP CONFident CSI CSI 2020 CoLL-Saigawa

YES 24 7 28 27 13
NO 16 15 29 30 12
MAYBE 60 78 43 43 75
total 100 100 100 100 100

Table 5.2: SRS results

status ACP CO3 CONFident ConCon 2020

YES 29 28 37 40
NO 15 19 24 28
MAYBE 56 53 39 31
ERRONEOUS 0 0 0 1
total 100 100 100 100

Table 5.3: CTRS results

The timeout in every subcategory was 60 seconds, with a battery of 100 problems

from COPS of the corresponding category type.

http://project-coco.uibk.ac.at/2021/

42 5. Results

As Tables 5.1, 5.2, and 5.3 show, CONFident should improve its performance in

the categories of TRS and SRS. However, in the CTRS category, it was the winner

of the competition.

6
Conclusions and Future Work

The main goal of this work was to develop a tool for proving confluence of TRSs, CS-

TRSs, and (join, oriented, and semi-equational) CTRSs. By means of a logic-based

modeling of reduction with such systems, we are able to treat them homogeneously.

We translate (non-)joinability problems into (in)feasibility problems and solve them

with the aid of infChecker. Although there are several tools which are able to prove

confluence of TRSs and oriented CTRSs, to the best of our knowledge, CONFident

is the first tool which is able to deal with join and semi-equational CTRSs. It is also

the first tool which can be used to prove confluence of CS-TRSs.

We have obtained good results in the CTRS subcategory of the last International

Confluence Competition (CoCo 2021) and, as a (conditional) CS-TRS subcategory is

planned to be host by CoCo this year, we will whether the good results obtained on a

collection of problems from the International Termination Competition, termCOMP

[5, Section 3.1], see [21, Section 7.1] can be reproduced on the CoCo 2022 collection

of problems (still to be defined).

CONFident achievements regarding CTRSs and CS-TRSs are good, although a

lot of work is still pending on TRS/SRS to improve the functionalities of the tool.

CONFident is also in progress regarding CTRSs and CS-TRSs. For semiequational

CTRSs we plan to implement new results in the future. Also, modularity of CS-

TRSs, which is underexplored at the moment, is a good subject of study.

44 6. Conclusions and Future Work

Bibliography

[1] Nirina Andrianarivelo and Pierre Réty. Confluence of prefix-constrained rewrite

systems. In Hélène Kirchner, editor, 3rd International Conference on Formal

Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Ox-

ford, UK, volume 108 of LIPIcs, pages 6:1–6:15. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSCD.2018.6.

[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge

University Press, 1998.

[3] Francisco Durán, Steven Eker, Santiago Escobar, Narciso Mart́ı-Oliet, José

Meseguer, Rubén Rubio, and Carolyn L. Talcott. Programming and symbolic

computation in Maude. J. Log. Algebr. Meth. Program., 110, 2020. doi:10.

1016/j.jlamp.2019.100497.

[4] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and

Improving Dependency Pairs. Journal of Automatic Reasoning, 37(3):155–203,

2006. doi:https://doi.org/10.1007/s10817-006-9057-7.

[5] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and

Akihisa Yamada. The termination and complexity competition. In Dirk Beyer,

Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors, Tools and

Algorithms for the Construction and Analysis of Systems - 25 Years of TACAS:

TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-

11, 2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer

Science, pages 156–166. Springer, 2019. doi:10.1007/978-3-030-17502-3_

10.

[6] Bernhard Gramlich and Salvador Lucas. Generalizing newman’s lemma for

left-linear rewrite systems. In Frank Pfenning, editor, Term Rewriting and

Applications, 17th International Conference, RTA 2006, Seattle, WA, USA,

August 12-14, 2006, Proceedings, volume 4098 of Lecture Notes in Computer

Science, pages 66–80. Springer, 2006. doi:10.1007/11805618_6.

https://doi.org/10.4230/LIPIcs.FSCD.2018.6
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/11805618_6

46 6. Bibliography

[7] R. Gutiérrez and S. Lucas. Automatically Proving and Disproving Feasibility

Conditions. In N. Peltier and V. Sofronie-Stokkermans, editors, Automated

Reasoning, pages 416–435. Springer International Publishing, 2020. doi:https:

//doi.org/10.1007/978-3-030-51054-1_27.

[8] Raúl Gutiérrez and Salvador Lucas. Automatically proving and disproving

feasibility conditions. In Nicolas Peltier and Viorica Sofronie-Stokkermans,

editors, Automated Reasoning - 10th International Joint Conference, IJCAR

2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of

Lecture Notes in Computer Science, pages 416–435. Springer, 2020. doi:

10.1007/978-3-030-51054-1_27.

[9] Raúl Gutiérrez and Salvador Lucas. mu-term: Verify termination properties

automatically (system description). In Nicolas Peltier and Viorica Sofronie-

Stokkermans, editors, Automated Reasoning - 10th International Joint Confer-

ence, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume

12167 of Lecture Notes in Computer Science, pages 436–447. Springer, 2020.

doi:10.1007/978-3-030-51054-1_28.

[10] Raúl Gutiérrez, Salvador Lucas, and Miguel Vı́torres. Confluence Of Condi-

tional Rewriting In Logic Form. In Chandra Chekuri and Mikolaj Bojanczyk,

editors, 41th IARCS Annual Conference on Foundations of Software Technol-

ogy and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021,

Virtual conference, LIPIcs, page submitted, 2021.

[11] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and

Lambda-Calculus. Cambridge University Press, 1986.

[12] Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb:

Infrastructure for Confluence Tools. In Didier Galmiche, Stephan Schulz, and

Roberto Sebastiani, editors, Automated Reasoning - 9th International Joint

Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC

2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture

Notes in Computer Science, pages 346–353. Springer, 2018. doi:10.1007/

978-3-319-94205-6_23.

[13] Gérard P. Huet. Confluent reductions: Abstract properties and applications to

term rewriting systems: Abstract properties and applications to term rewriting

systems. J. ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.

https://doi.org/https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1145/322217.322230

6.0. Bibliography 47

[14] Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting

systems, I. In Jean-Louis Lassez and Gordon D. Plotkin, editors, Computational

Logic - Essays in Honor of Alan Robinson, pages 395–414. The MIT Press, 1991.

[15] Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting

systems, II. In Jean-Louis Lassez and Gordon D. Plotkin, editors, Computa-

tional Logic - Essays in Honor of Alan Robinson, pages 415–443. The MIT

Press, 1991.

[16] Donald E. Knuth and Peter E. Bendix. Simple word problems in universal

algebra. In J. Leech, editor, Computational Problems in Abstract Algebra, pages

263–297. Pergamon Press, 1970.

[17] Salvador Lucas. Context-sensitive rewriting. ACM Comput. Surv., 53(4):78:1–

78:36, 2020. doi:10.1145/3397677.

[18] Salvador Lucas, Claude Marché, and José Meseguer. Operational termination

of conditional term rewriting systems. Inf. Process. Lett., 95(4):446–453, 2005.

[19] Salvador Lucas and José Meseguer. Dependency pairs for proving termina-

tion properties of conditional term rewriting systems. J. Log. Algebr. Meth.

Program., 86(1):236–268, 2017. doi:10.1016/j.jlamp.2016.03.003.

[20] Salvador Lucas, José Meseguer, and Raúl Gutiérrez. The 2D Dependency Pair

Framework for conditional rewrite systems. Part I: Definition and basic proces-

sors. J. Comput. Syst. Sci., 96:74–106, 2018. doi:10.1016/j.jcss.2018.04.

002.

[21] Salvador Lucas, Miguel Vı́tores, and Raúl Gutiérrez. Proving and disproving

confluence of context-sensitive rewriting. Journal of Logical and Algebraic Meth-

ods in Programming, 126:100749, 2022. doi:10.1016/j.jlamp.2022.100749.

[22] William McCune. Prover9 & Mace4. Technical report, 2005–2010. URL: http:

//www.cs.unm.edu/~mccune/prover9/.

[23] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. In

D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors, Proc. of Tools and

Algorithms for the Construction and Analysis of Systems, TACAS’19, pages

25–40. Springer, 2019. doi:10.1007/978-3-030-17502-3_2.

https://doi.org/10.1145/3397677
https://doi.org/10.1016/j.jlamp.2016.03.003
https://doi.org/10.1016/j.jcss.2018.04.002
https://doi.org/10.1016/j.jcss.2018.04.002
https://doi.org/10.1016/j.jlamp.2022.100749
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/978-3-030-17502-3_2

48 6. Bibliography

[24] Aart Middeldorp and Erik Hamoen. Completeness results for basic narrow-

ing. Appl. Algebra Eng. Commun. Comput., 5:213–253, 1994. doi:10.1007/

BF01190830.

[25] Enno Ohlebusch. On the modularity of confluence of constructor-sharing term

rewriting systems. In Sophie Tison, editor, Trees in Algebra and Programming

- CAAP’94, 19th International Colloquium, Edinburgh, UK, April 11-13, 1994,

Proceedings, volume 787 of Lecture Notes in Computer Science, pages 261–275.

Springer, 1994. doi:10.1007/BFb0017487.

[26] Enno Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

[27] Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equivalence

between recursive programs. J. ACM, 27(4):772–796, 1980. doi:10.1145/

322217.322229.

[28] Franziska Rapp and Aart Middeldorp. FORT 2.0. In Didier Galmiche, Stephan

Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th Interna-

tional Joint Conference, IJCAR 2018, Held as Part of the Federated Logic

Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume

10900 of Lecture Notes in Computer Science, pages 81–88. Springer, 2018.

doi:10.1007/978-3-319-94205-6_6.

[29] Christian Sternagel and Thomas Sternagel. Certifying confluence of quasi-

decreasing strongly deterministic conditional term rewrite systems. In Leonardo

de Moura, editor, Automated Deduction - CADE 26 - 26th International Con-

ference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Pro-

ceedings, volume 10395 of Lecture Notes in Computer Science, pages 413–431.

Springer, 2017. doi:10.1007/978-3-319-63046-5_26.

[30] Taro Suzuki, Aart Middeldorp, and Tetsuo Ida. Level-confluence of conditional

rewrite systems with extra variables in right-hand sides. In Jieh Hsiang, editor,

Rewriting Techniques and Applications, 6th International Conference, RTA-95,

Kaiserslautern, Germany, April 5-7, 1995, Proceedings, volume 914 of Lecture

Notes in Computer Science, pages 179–193. Springer, 1995. doi:10.1007/

3-540-59200-8_56.

[31] Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical

computer science. Cambridge University Press, 2003.

https://doi.org/10.1007/BF01190830
https://doi.org/10.1007/BF01190830
https://doi.org/10.1007/BFb0017487
https://doi.org/10.1145/322217.322229
https://doi.org/10.1145/322217.322229
https://doi.org/10.1007/978-3-319-94205-6_6
https://doi.org/10.1007/978-3-319-63046-5_26
https://doi.org/10.1007/3-540-59200-8_56
https://doi.org/10.1007/3-540-59200-8_56

6.0. Bibliography 49

[32] Yoshihito Toyama. On the church-rosser property for the direct sum of term

rewriting systems. J. ACM, 34(1):128–143, 1987. doi:10.1145/7531.7534.

https://doi.org/10.1145/7531.7534

	Introduction
	Preliminaries
	Confluence
	Term Rewriting Systems
	Confluence of TRSs
	Confluence criteria
	Modularity of confluence
	Use of feasibility

	Context-Sensitive Term Rewriting Systems
	Confluence of CSR
	Joinability of extended -critical pairs
	Use of feasibility

	Conditional Term Rewriting Systems
	Confluence of conditional rewriting
	Use of feasibility

	Mechanization
	Divide and Conquer Framework
	Problems and Processors
	Confluence Proof Tree

	Pre-processing
	Removing redundant rules
	Removing infeasible rules
	Inlining conditional rules

	Solving Termination Problems
	Solving joinability problems
	Joinability processor
	Strong joinability processor

	Solving confluence problems
	Modular decomposition
	Weak orthogonality processor
	Extended Huet processor
	Extended Huet-Newman processor
	Confluence as canonical -confluence
	Confluence of CTRS as confluence of TRSs

	Results
	Conclusions and Future Work
	Bibliography

