
Universitat Politècnica de València
Departamento de Informática de Sistemas y Computadores

High Performance and Power Efficient

On-Chip Network Designs

through Multiple Injection Ports

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Science)

Author

Jesús Camacho Villanueva

Advisor

José Flich Cardo

Valencia, September 2012



ii



Acknowledgements

I want to thank this work to the people who has been supporting me during

all these years. In particular:

To Jose Flich for his leadership, and specially, for the great flexibility he

has offered me throughout this thesis. I have no words!

To Jose Duato to be able to lead a large and competitive research group

in which I have had the pleasure to work. I hope you get well very soon!

To Hans Eberle to give me the opportunity to work in two large companies

such as Sun Microsystems and Oracle Inc. Thank you so much!

To the department’s administration for their great efficiency. Continue like

this!

To all the colleagues in the research group who have helped me during

the course of this thesis, and specially, to Jesus Friginal for the good times at

lunch. Good luck to all of you!

To my family for their unconditional support. I love you!

To my friends because they have always been there. I need you!

To Bubu for your contagious happiness. You are the best!

To Raquel to show me a new future where the dreams are able to come

true. You are all for me!

iii



iv Contents



Contents

Acknowledgements iii

Abstract xvii

Resumen xix

Resum xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Technical Background and Related Work 11

2.1 On-chip Interconnection Networks . . . . . . . . . . . . . . . . 11

2.1.1 Design Factors . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Interconnection Network Basics . . . . . . . . . . . . . . . . . . 13

2.2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Switch Device . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Data Units . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.6 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.7 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



vi Contents

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 NR-Mesh Topology 43

3.1 NR-Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Tile-Based Design . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Injection Algorithm . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Network Routing Algorithms . . . . . . . . . . . . . . . 50

3.1.4 Topology Properties . . . . . . . . . . . . . . . . . . . . 55

3.2 Power Management Algorithm . . . . . . . . . . . . . . . . . . 57

3.2.1 Algorithm for Switching Off an Input Port . . . . . . . 58

3.2.2 Algorithm for Routing Messages . . . . . . . . . . . . . 59

3.2.3 Algorithm for Switching On a Port . . . . . . . . . . . . 60

3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Evaluated parameters . . . . . . . . . . . . . . . . . . . 63

3.3.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Implementation Results . . . . . . . . . . . . . . . . . . 67

3.3.4 Analysis with Synthetic Traffic . . . . . . . . . . . . . . 68

3.3.5 Analysis with Applications . . . . . . . . . . . . . . . . 72

3.3.6 Additional Performance Comparisons and Analysis . . . 74

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 PC-Mesh Topology 85

4.1 PC-Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 Tile-Based Design . . . . . . . . . . . . . . . . . . . . . 87

4.1.2 Injection Algorithm . . . . . . . . . . . . . . . . . . . . 88

4.2 Power Management Algorithm . . . . . . . . . . . . . . . . . . 92

4.3 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Threshold Analysis . . . . . . . . . . . . . . . . . . . . . 95

4.4.2 Synthetic Traffic Results . . . . . . . . . . . . . . . . . . 98

4.4.3 Application Execution Time and Power Results . . . . . 99

4.4.4 Results with Overloaded Systems . . . . . . . . . . . . . 100

4.5 NR-Mesh versus PC-Mesh topology . . . . . . . . . . . . . . . . 103

4.5.1 Uniform Synthetic Traffic . . . . . . . . . . . . . . . . . 103

4.5.2 Real Applications . . . . . . . . . . . . . . . . . . . . . . 104



Contents vii

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 HPC-Mesh Topology 107

5.1 HPC-Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Tile-Based Design . . . . . . . . . . . . . . . . . . . . . 109

5.1.2 Injection Algorithm . . . . . . . . . . . . . . . . . . . . 110

5.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Faulty subnetworks . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Faulty switches . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Synthetic Traffic Results . . . . . . . . . . . . . . . . . . 115

5.3.2 Real Application Results . . . . . . . . . . . . . . . . . 116

5.3.3 Performance Under Faulty Networks . . . . . . . . . . . 118

5.4 Towards a 3D mesh structure . . . . . . . . . . . . . . . . . . . 120

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 HNPC-Mesh Topology 125

6.1 HNPC-Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Tile Based Design . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Injection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Real Applications . . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Real Applications with Background Traffic . . . . . . . 130

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusions 133

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Industry Internships and Related Publication . . . . . . . . . . 136

Bibliography 139



viii Contents



List of Figures

1.1 2D-Mesh and C-Mesh topologies. Circles are nodes and squares

are switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Comparison between topologies, routing algorithms, and power

management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Interrelation among contributions. . . . . . . . . . . . . . . . . 9

2.1 A general overview of an interconnection network. . . . . . . . 14

2.2 Routing, switching and flow control in a network. . . . . . . . . 15

2.3 Network architectures. . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 A crossbar network. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A 4× 4 2-dimensional mesh and torus. . . . . . . . . . . . . . . 18

2.6 A multistage network topology. . . . . . . . . . . . . . . . . . . 19

2.7 The processing element in a tile-based CMP. . . . . . . . . . . 20

2.8 Different link crossings in a 2-dimensional mesh. . . . . . . . . 21

2.9 Switch architecture. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Switch stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Message, packets, and flits. . . . . . . . . . . . . . . . . . . . . 24

2.12 Circuit switching. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 Store and forward Switching. . . . . . . . . . . . . . . . . . . . 27

2.14 Virtual cut-through switching. . . . . . . . . . . . . . . . . . . 28

2.15 Wormhole switching. . . . . . . . . . . . . . . . . . . . . . . . . 29

2.16 Virtual channels. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.17 Ack/nack flow control. . . . . . . . . . . . . . . . . . . . . . . . 30

2.18 Stop & go flow control. . . . . . . . . . . . . . . . . . . . . . . . 31

2.19 Credit-based flow control. . . . . . . . . . . . . . . . . . . . . . 31

ix



x List of Figures

2.20 Deadlock situation when using XY and YX routing at the same

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.21 Concentrated mesh. . . . . . . . . . . . . . . . . . . . . . . . . 36

2.22 Flattened butterfly. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.23 Diagonal Mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.24 End nodes connecting two switches. Circles are nodes and

squares are switches. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 NR-Mesh on-chip network topology. . . . . . . . . . . . . . . . 44

3.2 Tile design for the NR-Mesh topology. . . . . . . . . . . . . . . 46

3.3 Using alternative paths in the NR-Mesh topology depending on

traffic conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Injection algorithm for the NR-Mesh topology. . . . . . . . . . 48

3.5 Example of minimal and non-minimal injection ports for the

NR-Mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Average number of paths assuming DOR in NR-Mesh and 2D-

Mesh networks. The figure also includes the average number

of injection ports per node for the NR-Mesh topology. In the

2D-Mesh the number is one. . . . . . . . . . . . . . . . . . . . . 51

3.7 A non-minimal path in the NR-Mesh topology. . . . . . . . . . 51

3.8 Deterministic routing algorithm for the NR-Mesh topology. . . 52

3.9 Node and switch IDs assumed by routing algorithms and mes-

sages in the network. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 All possible paths in the NR-Mesh. . . . . . . . . . . . . . . . . 55

3.11 Adaptive routing algorithm for the NR-Mesh topology. . . . . . 56

3.12 Examples of additional properties of the NR-Mesh topology. . . 57

3.13 Powering on/off the next IP (input port) from the previous

switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.14 Algorithm for switching off an input port. . . . . . . . . . . . . 59

3.15 Routing algorithm assuming the status of the network. . . . . . 60

3.16 Switch stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.17 Pipeline of the switch stages. . . . . . . . . . . . . . . . . . . . 61

3.18 First stages of the pipeline when an input port is being powered

on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xi

3.19 The NR-Mesh and other topologies. . . . . . . . . . . . . . . . 64

3.20 Accepted traffic and power consumption for 16-node systems.

Synthetic traffic patterns. . . . . . . . . . . . . . . . . . . . . . 69

3.21 Accepted traffic and power consumption for 32-node systems.

Synthetic traffic patterns. . . . . . . . . . . . . . . . . . . . . . 70

3.22 Performance and power consumption for 16- and 32-node sys-

tems. Hot-spot scenario. . . . . . . . . . . . . . . . . . . . . . . 71

3.23 Normalized execution time for different applications under dif-

ferent topologies and routing algorithms. . . . . . . . . . . . . . 73

3.24 Normalized energy consumption for different applications under

different topologies and routing algorithms. . . . . . . . . . . . 75

3.25 Link injection variation in the NR-Mesh. . . . . . . . . . . . . . 76

3.26 Accepted traffic and power consumption for 16-node systems.

Injection variation in a hot-spot scenario. . . . . . . . . . . . . 77

3.27 Accepted traffic and power consumption for 32-node systems.

Injection variation in a hot-spot scenario. . . . . . . . . . . . . 78

3.28 16-node link injection variation in the NR-Mesh. . . . . . . . . 79

3.29 32-node link injection variation in the NR-Mesh. . . . . . . . . 80

3.30 Normalized execution time for Splash-2 applications and com-

mercial workloads using different topologies. . . . . . . . . . . . 81

4.1 Switch IDs and Node IDs in PC-Mesh network (left side), and

Fault-Tolerant PC-Mesh network (right side). . . . . . . . . . . 86

4.2 16-tile design assumed for the PC-Mesh topology (left side)

compared to the C-Mesh one (right side). . . . . . . . . . . . . 88

4.3 X-Y in every graph is followed from Sx to Dx represented with

the same color as the subnetwork, through switches of the same

color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Logic for the power management algorithm. The main differ-

ence with the PML in the previous chapter is that here we power

off the entire switch. . . . . . . . . . . . . . . . . . . . . . . . . 93



xii List of Figures

4.5 Faul tolerance comparison for the PC/FTPC-Mesh topologies.

X-Axis shows the number of faulty switches. Y-Axis shows the

fault tolerance percentage for each number of faulty switches in

each topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Threshold analysis. Synthetic traffic patterns (uniform distri-

bution of message destinations). Accepted traffic measured as

flits/cycle/tile and power consumption as W . . . . . . . . . . . 96

4.7 Different subnetwork thresholds cases. Results are normal-

ized for 16- and 32-node system to the C-Mesh topology where

Tswoff = 1. Then, Th is shown for C-Mesh case and (Tswoff

Th) are shown for PC-Mesh. . . . . . . . . . . . . . . . . . . . . 97

4.8 16-node synthetic traffic comparison. Accepted traffic measured

as flits/cycle/tile, power consumption as W and latency as

cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 32-node synthetic traffic comparison. Accepted traffic measured

as flits/cycle/tile, power consumption as W and latency as cycles.100

4.10 Application execution time and network energy consumption. . 101

4.11 Application execution time and network energy consumption

with a background of 12% (16-node) and 6% (32-node) of syn-

thetic traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.12 Accepted traffic and power consumption in hot-spot scenarios.

16-node system. Accepted traffic measured as flits/cycle/tile

and power consumption as W . . . . . . . . . . . . . . . . . . . 103

4.13 Accepted traffic, power consumption and latency comparison

between NR- and PC-Mesh topologies using uniform synthetic

traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.14 Normalized application execution time and normalized network

energy consumption comparison between NR- and PC-Mesh

topologies using real applications. . . . . . . . . . . . . . . . . . 105

5.1 HPC-Mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 PC-Mesh topology. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 HPC-Mesh overview. Octagons are the end nodes and squares

the switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



List of Figures xiii

5.4 HPC-Mesh topology tile design. . . . . . . . . . . . . . . . . . . 111

5.5 Injection algorithm for the HPC-Mesh topology. . . . . . . . . . 112

5.6 Fault tolerance comparison for PC-Mesh and HPC-Mesh using

16 and 32 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 16-node synthetic traffic comparison (accepted traffic measured

as flits/cycle/tile). . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.8 32-node synthetic traffic comparison (accepted traffic measured

as flits/cycle/tile). . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 16-node execution time and network energy consumption com-

parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.10 32-node execution time and network energy consumption com-

parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 16-node fault tolerance support. HPC-Mesh versus PC-Mesh

(accepted traffic measured as flits/cycle/tile). . . . . . . . . . . 119

5.12 32-node fault tolerance support. HPC-Mesh versus PC-Mesh

(accepted traffic measured as flits/cycle/tile). . . . . . . . . . . 120

5.13 HPC-Mesh 3D structure. . . . . . . . . . . . . . . . . . . . . . . 122

5.14 HPC-Mesh versus HPC-3DMesh. . . . . . . . . . . . . . . . . . 123

6.1 PC-Mesh, HPC-Mesh and HNPC-Mesh tile based design. . . . 127

6.2 Injection algorithm for the HNPC-Mesh topology. . . . . . . . . 128

6.3 2D-Mesh topology with express channels. . . . . . . . . . . . . 129

6.4 Application execution time and network energy consumption

comparison. Results normalized to the 2D mesh case. . . . . . 130

6.5 Application execution time and network energy consumption

comparison with background traffic. . . . . . . . . . . . . . . . 131



xiv List of Figures



List of Tables

3.1 Diameter (hops) and bisection BW (flits/cycle) comparison be-

tween NR-Mesh and 2D-Mesh topologies. Links with 1 flit/cycle

bandwidth are assumed. . . . . . . . . . . . . . . . . . . . . . . 45

3.2 End node and cache coherency protocol parameters. . . . . . . 66

3.3 Network parameters. . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Power consumption of the different components for the NR-

Mesh topology. Target frequency set to one GHz. . . . . . . . . 67

3.5 Area and delay overheads for the different components. Target

frequency set to one GHz. . . . . . . . . . . . . . . . . . . . . . 68

3.6 16- and 32-node execution degradation when removing injection

links from the NR-Mesh in real applications. . . . . . . . . . . 81

4.1 Example for different switches which can reach the node 10. . . 89

5.1 Faulty Network Support. The used acronyms in the table are

FNS (Faulty Network Support) which shows the failed networks

separated by a dash. For instance, 1-2 means they are failed

components in subnetworks 1 and 2. N/A means Not Appli-

cable (never supported) and Y (supported failures) or N (sup-

ported failures). . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv



xvi List of Tables



Abstract

Networks on-chip are becoming a key element of multiprocessor systems. As

technology scales, more computing elements (processors) are included into the

same chip. These components are interconnected by a network within the chip

which should offer ultra low transmission latencies (tens of nanoseconds) and

high bandwidth. Therefore, the design of an efficient on-chip network plays a

central role.

In this thesis we analyze alternative on-chip network designs. In particular,

we use different injection and ejection ports from processors to the network

(several switches are reached from the same processor) to obtain several im-

provements.

First, network performance increases because the processors have differ-

ent alternatives to inject traffic. Second, the on-chip network fault-tolerance

degree increases in front of manufacturing defects (becoming more important

as technology advances). Third, this technique allows aggressive policies to

switch off components which allows to reduce power consumption significantly.

Different topologies, derived from the injection mechanism have been pro-

posed and evaluated in terms of performance, implementation cost and energy

(or power consumption) savings. Specific network on-chip simulators for dif-

ferent techniques have been developed, to analyze and to support the claimed

results.

In this thesis we follow an incremental approach, where each topology de-

signed is an improvement over the previous proposal, and, taking into account

the existing topologies in the state of the art. To summarize our work, our ef-

fort is focused in obtaining an excellent trade-off between performance, power

consumption and fault tolerance support in a network on-chip.

xvii



xviii Abstract

For the first proposal (Nearest neighboR Mesh Topology or NR-Mesh

topology), we achieve improvements in performance up to 7% and up to 75%

in power consumption, on average, when compared to the 2D-Mesh topology.

For the second proposal (Parallel Concentrated Mesh Topology or PC-Mesh

topology), the benefits compared to the NR-Mesh are 20% in performance and

60% in power consumption in a 32-Node sytem. In addition, when high traffic

arises the PC-Mesh topology outperforms the Concentrated Mesh Topology

(C-Mesh topology), otherwise, its behavior is similar to the concentrated mesh

topology. With the next proposal (Homogeneous Parallel Concentrated Mesh

Topology or HPC-Mesh topology) we fix a drawback in the PC-Mesh network,

that is, we provide full tolerance support without adding extra resources and

without decreasing performance in low traffic conditions. An hybrid design be-

tween PC-Mesh and HPC-Mesh (HNPC-Mesh) allows the last one to achieve

the PC-Mesh performance level when high traffic arises. Finally, we explore

the use of express links over 2D-Mesh network on-chip topology and compare

it against HNPC-Mesh. Although the execution time in real applications is

only slightly higher on average in the 2D-Mesh with express links, the power

consumption (due to the high degree of the switches) increases dramatically.



Resumen

Las redes dentro de un chip se están convirtiendo en el elemento principal de

los sistemas multiprocesador. A medida que aumenta la escala de integración,

más elementos de cómputo (procesadores) se incluyen en el mismo chip. Estos

componentes se interconectan con una red dentro del chip que debe ofrecer

latencias de transmisión ultra bajas (orden de nanosegundos) y anchos de

banda elevados. El diseño, pues, de una red eficiente dentro del chip juega un

papel fundamental.

En la presente tesis se analizan diferentes alternativas de diseño de las redes

en el chip. En particular, se hace uso de la posibilidad de utilizar diferentes

puertos de inyección desde los procesadores con el fin de obtener diferentes

mejoras.

En primer lugar, las prestaciones aumentan al tener procesadores con dis-

tintas alternativas de inyección de tráfico. En segundo lugar, además aumenta

la tolerancia a fallos frente a defectos de fabricación (mas importantes con-

forme avanza la tecnoloǵıa). Y en tercer lugar, permite una poĺıtica de apa-

gado de componentes más agresiva que nos permita un ahorro significativo de

enerǵıa.

Hemos evaluado diferentes topoloǵıas derivadas del mecanismo de inyección

en términos de prestaciones, coste de implementación, y ahorro de consumo.

Además, hemos desarrollado simuladores espećıficos para las distintas técnicas

utilizadas.

Cada topoloǵıa diseñada supone una mejora respecto a la anterior, y por

supuesto, teniendo en cuenta las topoloǵıas existentes. En resumen, nuestro

esfuerzo se centra en conseguir un excelente compromiso entre prestaciones,

consumo y tolerancia a fallos dentro de una red en chip.

xix



xx Resumen

Para la primera propuesta (topoloǵıa NR-Mesh), se alcanzan mejoras en

prestaciones de un 7% y hasta de un 75% en reducción de consumo de me-

dia, comparado con la malla 2D o malla de 2 dimensiones. Para la siguiente

propuesta, la malla concentrada paralela (PC-Mesh), el beneficio en presta-

ciones que se obtiene es de hasta un 20%, aśı cómo de un 60% en reducción

de consumo, para un sistema de 32 nodos. Además, cuando el tráfico en la

red aumenta, la malla concentrada paralela es capaz de superar a la malla

concentrada (C-Mesh). Sin embargo, cuando el tráfico es más bien reducido,

la PC-Mesh se comporta exactamente igual a la C-Mesh. Para la siguiente

red, llamada malla paralela concentrada homogéna (HPC-Mesh), se consigue

una tolerancia a fallos total sin necesidad de aumentar recursos en la red a

diferencia de la anterior propuesta. Para tráficos moderados, la HPC-Mesh se

comporta de forma adecuada, sin embargo, cuando el tráfico en la red aumenta

significativamente, se requiere la implementación de un diseño h́ıbrido entre

la PC-Mesh y la HPC-Mesh, la cuál es la última propuesta presentada en esta

tesis (llamada topoloǵıa HNPC-Mesh). Finalmente, se explora la malla 2D con

canales exprés comparándola con las propuestas anteriormente mencionadas.

Aunque el tiempo de la malla 2D con enlaces exprés pueda ser ligeramente

inferior a nuestras propuestas, el aumento de consumo es enorme debido al

alto grado de enlaces que contienen los conmutadores.



Resum

Les xarxes dins d’un xip s’estan convertint en l’element principal dels sis-

temes multiprocessador. A mesura que augmenta l’escala d’integració més

elements de còmput (processadors) s’inclouen en el mateix xip. Estos compo-

nents s’interconnecten amb una xarxa dins del xip que ha d’oferir latències de

transmissió ultra baixes (orde de nanosegons) i amples de banda elevats. El

disseny, doncs, d’una xarxa eficient dins del xip juga un paper fonamental.

En la present tesi s’analitzen diferents alternatives de disseny de les xarxes

en el xip. En particular, es fa ús de la possibilitat d’utilitzar diferents ports

d’injecció des dels processadors a fi d’obtindre diferents millores.

En primer lloc, les prestacions augmenten al tindre els processadors dis-

tintes alternatives d’injecció de tràfic. En segon lloc, augmenta la tolerància

a fallades enfront de defectes de fabricació (mes importants conforme avança

la tecnologia). I en tercer lloc, permet una poĺıtica d’apagat de components

més agressiva que ens permeta un estalvi significatiu d’energia.

Diferents topologies, derivades del mecanisme d’injecció són avaluades en

termes de prestacions, cost d’implementació, i estalvi de consum. Simuladors

espećıfics per a les diferents tècniques han sigut desenrotllats.

Cada topologia dissenyada suposa una millora respecte a l’anterior pro-

posta, i per descomptat, tenint en compte les topologies existents. En resum,

el nostre esforç es centra a aconseguir un excellent compromı́s entre presta-

cions, consum i tolerància a fallades dins d’una xarxa dins del xip.

Per a la primera proposta (la topologia NR-Mesh), s’aconseguixen unes

millores en prestacions d’un 7% i fins a un 75% en reducció de consum com

a mitjana, comparat amb la malla 2D (o malla de 2 dimensions). Per a la

següent proposta, la malla concentrada paral.lela (PC-Mesh), els beneficis en

xxi



xxii Resum

prestacions són de fins a un 20%, aix́ı com d’un 60% en reducció de consum,

per a un sistema de 32 nodes. A més, quan el tràfic en la xarxa augmenta,

la malla concentrada paral.lela supera a la malla concentrada (C-Mesh), no

obstant això, quan el tráfic és redüıt, la PC-Mesh es comporta exactament

igual a la malla concentrada. En la segent proposta, que és la malla parallela

concentrada homogènia (HPC-Mesh), aconseguim una tolerància a fallades

completa sense necessitat d’augmentar recursos en la xarxa. Per a tràfics no

excessius, la HPC-Mesh hi és prou. No obstant això, quan el tràfic en la xarxa

augmenta significativament, es requerix d’un disseny h́ıbrid entre la PC-Mesh

i la HPC-Mesh, el quin és la nostra última proposta (anomenada HNPC-

Mesh). Finalment explorem la malla 2D amb canals exprés. Encara que el

temps d’execució és lleugerament inferior al de les nostres propostes, el consum

augmenta enormement a causa de l’alt grau d’enllaços dels encaminadors.



Chapter 1

Introduction

In this chapter, we first introduce the reasons that have motivated this disser-

tation (Section 1.1) together with a brief context description and the challenges

this thesis addresses. Then, we briefly define the specific objectives aimed by

the dissertation (Section 1.2). After that, we summarize the main contribu-

tions (Section 1.3). Finally, we outline the structure of the remaining chapters

in this document (Section 1.4).

1.1 Motivation

High-performance computing (HPC) is defined as the use of parallel processing

for running advanced application programs efficiently, reliably and quickly.

The term applies especially to systems that function above a teraflop and

occasionally used as a synonym for supercomputing, although technically a

supercomputer is a system that performs at or near the currently highest

operational rate for computers. Some supercomputers work at more than a

petaflop. See [53] for more details.

On the other hand, research in microarchitecture has always been shaped

by underlying technology trends, making it a rapidly changing and vigorous

field. As technology advances, previously discarded approaches are revisited

with dramatic commercial success (e.g., superscalar processing became pos-

sible with ten-million transistor integration). By the same token, technol-

ogy limitations cause a rethinking of the status quo (e.g., deeper pipelinining

1



2 Chapter 1. Introduction

seems unsustainable due to increasing power consumption). As we build in-

creasingly complex parallel systems, one of the greatest challenges is in pro-

viding the interconnection networks that permit the system components to

efficiently communicate. These must be high-performance (low-latency and

high-bandwidth), flexible, scalable, simple to design and power efficient.

As technology scales, the number of transistors that can be integrated on a

chip increases. This allows designers to add more functionality on current mi-

croprocessors. The current trend, however, is to replicate basic simple proces-

sor components (together with cache memories) and thus, increase the number

of processing elements on the same chip. These chips are known as Chip Mul-

tiProcessors (CMPs). This design style is preferred over a design of a big and

complex processor core. The reason is that power consumption is becoming

the limiting factor and simpler processors have a better performance-power

consumption trade-off.

Currently, there are chip prototypes and real products with tens of proces-

sors. Examples include the Intel Polaris chip [47] with 80 simple cores, and the

Single-chip Cloud Computer [50] with 48 x86 compatible processors, each able

to run an operating system. Also, Tilera provides its new 100-core chip [52].

With advances in technology, we can expect chips with hundreds of cores

in the near future. Thus, the way these cores are connected becomes an im-

portant and challenging issue. Although buses, rings, and crossbar topologies

were used in initial systems (e.g. Cell Broadband Engine processor [45]), these

structures do not scale well and therefore achieve low performance when the

number of cores is high. Beyond simple buses, the idea of an on-chip network

illuminates a vast design space for building scalable interconnects.

In fact, current CMP systems rely on a 2D-Mesh topology. In such a

topology, every switch is connected to its neighbors in the north, east, west,

and south directions. The 2D-Mesh is shown in Figure 1.1. The mesh net-

work is appealing since it matches the planar surface of the chip. Indeed, the

tile-based design (a tile is designed and the chip is built by replicating the

same tile design) promotes the use of a 2D structure. One negative aspect of

the 2D-Mesh topology, however, is its increase in the number of hops when

communicating with distant nodes. This becomes a problem as the system

size increases.



1.1. Motivation 3

Figure 1.1: 2D-Mesh and C-Mesh topologies. Circles are nodes and squares

are switches.

Anyway, once the topology is decided, the routing algorithm determines

which output port a message must take in order to reach its destination. In

a 2D-Mesh topology, the most efficient routing algorithm (in terms of im-

plementation complexity and power consumption) is dimension-order routing

(DOR). DOR is implemented on every switch and requires small logic blocks.

The message first moves in the X dimension, and once it reaches the destina-

tion column, then it moves through the Y dimension, always following minimal

paths. The low complexity of DOR makes it very appealing for network on-

chip (NoC) designers.

However, DOR routing is not flexible as it allows only one single path

for every source-destination pair. Therefore, DOR does not tolerate a single

failure since the failure will disconnect several pairs of end nodes. In addition,

DOR may lead to congestion in the network. As it does not support alternative

paths, messages are forced to follow a single path, and thus, there is no way

to avoid or escape from a congested spot in the network.

An alternative to DOR is the use of adaptive routing. In such a protocol,

switches are able to select different output ports for the same destination,

depending on the current status of those ports. Thus, local congestion can

be alleviated by the use of adaptive routing. Typically, minimal paths are

supported by adaptive routing, thus, the message gets closer to its destination

at every performed hop. To avoid deadlocks (messages holding resources and



4 Chapter 1. Introduction

ciclically requesting those resources, thus never advancing), an acyclic escape

path is implemented as a different virtual channel. If adaptive output ports

are not available, then the escape path is taken [10]. An evaluation of routing

algorithms is done in [26]. More details about deterministic and adaptive

routing can be found in [11].

On the other hand, a low network utilization may lead to a large waste

of power. Most of the time, network components (switches and links) will be

idle but powered on. As power consumption is becoming the limiting design

factor in current chips, it is a requirement to adjust the power consumption of

the network components to the real needs of applications. For example, if the

network could be switched off during the time the components are not used

(90% of the time, on average), then large savings would be achieved. In [35],

it is reported that 30% of total chip power consumption is due to the network

indicating that power savings in the network can have a significant overall

impact.

However, switching off network components must be done carefully. The

policy to turn a component on and off must be done in collaboration with

the routing algorithm and topology. For instance, DOR over a 2D-Mesh of-

fers only a single path for every source-destination pair, thus, switching off the

links and switches can disconnect frequent communication flows. More flexible

topologies (offering alternative paths) would be beneficial. Also, the routing

algorithm may affect the effectiveness of a power consumption management

technique. A proper routing algorithm must provide enough alternative paths

to messages to maximize the time network components are switched off. Obvi-

ously, the longer the time a component is off, the greater the savings in power

are. In this sense, adaptive routing can be of great help. Figure 1.2 shows the

dependencies between the topology, the routing algorithm and the flexibility

provided in terms of path and in terms of power savings.

In addition to this, power consumption can be high due to the excessive

number of network components. An alternative network on-chip topology (to

the 2D-Mesh case) is the concentrated mesh (C-Mesh) [2]. In this topology,

the hop count decreases by reducing the number of switches (75% reduction

when compared with the 2D-Mesh with the same number of end nodes) as

sets of four neighboring nodes are connected to the same switch. See Figure



1.1. Motivation 5

Figure 1.2: Comparison between topologies, routing algorithms, and power

management.

1.1. The C-Mesh network scales better than the 2D-Mesh topology because

of its lower hop count. In addition, despite the larger number of switch ports,

having a quarter of switches than in 2D-Mesh leads to large savings in power

consumption. Unfortunately, the reduced bisection bandwidth of the C-Mesh

topology leads latency to exponentially increase and, potentially, high energy

consumption due to congestion.

Therefore, the C-Mesh topology is a good candidate topology when traffic

requirements are low. With low injection loads, packets will experience low

latency values and the network power consumption will be low. However,

with high traffic requirements (bursty traffic, barrier synchronization, hot-

spots) the low bisection bandwidth of the network leads to congestion, thus

high packet latencies and large power consumption values.

There are different solutions that address the capacity problem of the C-

Mesh network for high traffic requirements. One possible solution is the use

of express links to directly connect non-neighboring switches. Other solutions

rely on higher dimensional topologies. However, most of these solutions require

higher radix switches, which have proven to severely impact the operating

frequency of switches and the power consumption [33].



6 Chapter 1. Introduction

From all these comments, we can deduce that the main drivers of power

consumption in on-chip networks are the number of resources, the way they

are connected (topology), the switch complexity (mainly its radix), and the

flexibility provided by the routing algorithm. A trade-off between performance

and power consumption exists, and these four design decisions impact on this

trade-off with different degrees. In this thesis we address this issue.

Besides the performance and power consumption dimensions, one third

additional dimension is fault tolerance. As systems become more complex, the

manufacturing challenge increases significantly (devices are each time smaller).

This inevitably leads to components that become hard to be manufactured

without failures and/or components that are largely insensible to the external

environment (heat, wear out, electrical noise). Thus, deriving fault tolerant

mechamisms becomes critical. As previously stated, XY routing does not offer

any back up solution for a broken link, thus, its use becomes compromised. In

this thesis we also take into account the fault tolerant dimension in perspective,

although to a lower extent.

1.2 Objectives

This section presents the objectives of this dissertation. The main goal we pur-

sue in this thesis is to improve the throughput, reduce the power consumption

and provide a good degree of fault tolerance for future network on-chip designs.

However we tackle this generic and well-known goal in a different manner. We

exploit the end node network interfaces and design them in accordance to the

switches and topology. Notice that network interfaces (NIs) are usually left

out when researching on networks. End nodes are usually assumed as ideal

injector and sink elements. NIs will provide the required flexibility to achieve

a good performance-power-fault tolerance trade-off. In order to achieve this,

we pursue the following specific goals:

• Achieve new topology designs where the end nodes have much larger

flexibility for routing packets throughout the network, thus giving more

chances to network components to switch off and thus save power.

• Implement new and power-aware routing algorithms for the proposed



1.3. Contributions 7

topologies in order to maximize power saving but without compromising

performance. The new power-aware routing algorithms will exploit the

new properties of the topologies.

• Design injection algorithms (depending on the topology) in combination

with the routing algorithms in order to achieve the power consumption

goals.

• Analyze the fault tolerance properties of the proposed topologies and

asses its suitability.

• Design power management mechanisms to power on and off unnused

components in the network to save power consumption. This will be

done in collaboration with the injection algorithm and with the power-

aware routing algorithm.

• Care about network latency, by providing topologies with lower aver-

age hop distances, together with topologies that allow high throughput

values.

1.3 Contributions

The previous objectives led to the following contributions briefly summarized

in this section.

Usually, it is assumed that every end node is connected to one switch.

When combined with DOR routing a single path exists for each pair of end

nodes. The contributions in this thesis provide several injection ports be-

tween an end node and more than one switch, improving the fault tolerance

support and avoiding congested situations, all of this increasing the bisection

bandwidth. Besides, this technique allows us the definition of a logic capable

of efficiently powering off unnused network components for longer periods of

time.

We take as a reference design the 2D-Mesh and C-Mesh topologies, and

address its capacity limitations with an alternative approach. Indeed, our chal-

lenge is to address these inconveniences by developing new network on-chip



8 Chapter 1. Introduction

topologies able to obtain savings in power consumption in low traffic condi-

tions, as in the C-Mesh topology, and to avoid congestion when high traffic

loads appear, but still exhibiting low end-to-end latency. The topologies are

introduced in a sequential manner. Each topology tries to solve the inefficien-

cies of the previous one, but always based on the concept of multiple injection

ports. This is the key common property of all the proposals.

In order to achieve large power saving values, every topology is enriched

by a simple (but small when implemented) injection algorithm at the network

interface of each node. The algorithm is in charge to manage the injection

ports in order to maximize power savings without compromising performance.

We provide a detailed implementation and evaluation (in terms of area, power,

and delay) of the injection algorithm.

As a first proposal we introduce the NR-Mesh topology. In this topol-

ogy, every end node is able to inject packets to up to four different switches

providing higher flexibility, reducing the hop count and improving the fault

tolerance. NR-Mesh is combined with a deterministic routing algorithm, and

a fully adaptive one. Also, an injection algorithm is conceived for NR-Mesh.

The second proposal, called PC-Mesh, improves the NR-Mesh by decou-

pling network components into four parallel concentrated networks. This leads

to obtaining larger power savings in low traffic conditions, and achieving a very

good trade-off between performance and power consumption when the network

load increases.

The HPC-Mesh is then introduced, which improves the previous proposal

in terms of fault tolerance, and provides a simple and flexible implementation

for a 3D-Mesh structure.

Finally, the HNPC-Mesh is a hybrid design between PC-Mesh and HPC-

Mesh topologies, taking the best of every topology with a minimal effort de-

sign. Besides, we compare both topologies with a 2D-Mesh with express links,

obtaining better results for our proposals.

All of these topologies have a Power Management Logic (PLM) able to

power off unnused network components to save power consumption when pos-

sible. In the NR-Mesh case we turn off unnused ports, while in the rest of

proposals we are able to switch off entire parallel subnetworks.

Figure 1.3 shows the contributions and how they interrelate among them.



1.4. Dissertation Outline 9

Figure 1.3: Interrelation among contributions.

1.4 Dissertation Outline

This dissertation starts with the introductory chapter (Chapter 1). After that,

it continues with Chapter 2 describing the basics of on-chip interconnection

networks and an analysis of the current state of the art that contributes to the

matter of this dissertation. Chapter 3 presents the NR-Mesh (Nearest neigh-

boR Mesh) on chip network topology. Chapters 4 and 5 present the PC-Mesh

(Parallel Concentrated Mesh) and HPC-Mesh (Homogeneous Parallel Concen-

trated Mesh) topologies, respectively. In Chapter 6 we mix the PC-Mesh and

HPC-Mesh topologies by building a hybrid design obtaining the best from

every topology, called HNPC-Mesh (Homogeneous/Non homogeneous Paral-

lel Concentrated Mesh). All the proposed topologies are compared with the

most common topologies currently used, and the most challenging proposals

for networks on chip topology nowadays. Finally, we end with Chapter 7,

summarizing the conclusions and displaying the contributions related to the

research field.



10 Chapter 1. Introduction



Chapter 2

Technical Background and

Related Work

In this chapter, the goal is to describe the basics and terminology of on-chip

interconnection networks (the technical background). For the sake of brevity

we cover the main concepts, but it is not the intention of this chapter to

provide an in-depth overview of the subject, since the on-chip network field is

as complex as the general interconnection network field, and there exist several

aspects that are beyond the scope of this dissertation. We refer the reader to

established books on this topic and related ones for further background and

introductory material [8, 11, 12,27].

First, in Section 2.1, we present a brief description of the design parameters

that involve networks on-chip. Then, in Section 2.2, we dive into a more

extensive description of the main aspects that surround this kind of networks,

paying special attention to the topologies and routing algorithms. Finally, this

chapter, in Section 2.3, shows the related work and existent contributions that

serve as a reference for this dissertation.

2.1 On-chip Interconnection Networks

In the field of interconnection networks, there is a growing interest and amount

of research in the on-chip domain. Since the appearance of the NoC concept,

many research groups and institutions have turned their attention into it and

11



12 Chapter 2. Technical Background and Related Work

they have contributed to a plethora of proposals in related conferences and

journals. The integrated circuit technology has evolved to accommodate a

multiprocessing device capable of high-performance computation. As a result

of the high integration scale in the deep sub-micron domain and the increasing

number of connecting elements, on-chip interconnection has become a need and

influences the performance of the final system. So, any gain in the efficiency of

the on-chip interconnection layer will be highly beneficial for the entire system.

Next, we describe the main design factors that should drive any research

devoted to NoCs.

2.1.1 Design Factors

As aforementioned, NoCs play a major role in the design of the modern high-

performance computers, nevertheless, they are not simple; there are many

factors that affect the choice of an appropriate interconnection layer at design

time. The main factors are:

• Performance. As commented, performance is a design factor point in in-

terconnection networks, not only from the point of view of raw through-

put, but also from the point of view of latency. Latency is a critical

design issue in several systems such as real-time systems. Moreover,

in on-chip networks, messages must reach destinations in terms of few

nanoseconds. The topology (how the elements are connected between

them) and the routing algorithm (the path that the messages should

take) influence both throughput and latency.

• Scalability. Scalability is the first design rule that an interconnect de-

signer should keep in mind. Scalability in interconnection networks im-

plies that the bandwidth of the network increases proportionally to the

number of elements of the system. Latency should also be kept to rea-

sonable limits when increasing the system size. Otherwise, the intercon-

nection network would become a bottleneck, limiting the efficiency of the

whole system. Scalability also implies that network cost and resources

are proportional to the network size.



2.2. Interconnection Network Basics 13

• Reliability. An interconnection network should be able to deliver infor-

mation in a reliable manner. Interconnection networks should be de-

signed for continuous operations in the presence of a limited number of

faults. More important, as technology scales, manufacturing defects will

increase, thus demanding an efficient treatment.

• Simplicity. Not only for the sake of cost, but making simpler designs

leads to architectures that work with higher operating frequencies, thus,

increasing the system performance, and occupying less area. In fact, the

silicon area usage is a critical aspect in on-chip networks. Reducing the

area translates into the opportunity for making room for more devices

inside the chip, that is, providing more functionality.

• Power consumption. One of the most important aspects in networks

on-chip, not so critical in other network environments, is the reduction

or minimization of power consumption. Indeed, effective power-aware

techniques are needed to bring better management of the total power

consumed by the processing cores.

All these previous factors must be specifically considered when designing

an on-chip network. In this thesis all the contributions take these factors,

directly or indirectly, as a reference. In the next section we present the basics

for interconnection networks.

2.2 Interconnection Network Basics

The network architecture design is the result of several design choices like

network topology, switching, flow control and routing strategies. The network

topology defines the physical interconnection between nodes and other ele-

ments. The switching and flow control techniques define how and when the

information is transmitted (advances) through the network resources. Finally,

the routing strategies manage the different path choices of communication

between the nodes.

There are some common elements that conform a network architecture.

The first elements are the nodes. Nodes are the elements that communicate



14 Chapter 2. Technical Background and Related Work

Figure 2.1: A general overview of an interconnection network.

through the network and perform basically two tasks: computation and/or

storage. Nodes connect to other nodes through a network interface associated

to a switch, depending on the topology of the network. A switch is the basic

component that connects different devices. Links are used to connect the

devices (network interfaces and switches) among them. Figure 2.1 shows an

overall overview of the interconnection network and its devices. Figure 2.2

shows a network with a 2D-Mesh topology highlighting where switching, flow

control and routing is performed. Next, we describe each network component.

2.2.1 Network Topology

Different network categories can be devised based on how all the elements of

a system are connected to the network (see examples in Figure 2.3):

• Shared-medium networks: In this type of network there is a transmis-

sion medium that is shared by all the nodes, and only one node is able

to communicate at a time while the rest of nodes read (and monitor)

from the shared medium. Every device has the circuitry to handle ad-

dressing of other nodes and data management. In these networks, the

routing device is the shared medium, called also bus. Buses have limited



2.2. Interconnection Network Basics 15

Figure 2.2: Routing, switching and flow control in a network.

bandwidth, so they suffer from scalability problems, as the number of

connected nodes increases.

• Direct networks: Each node has a routing device attached, called switch,

which is the component that establishes the connection to other nodes

through point-to-point links. The concept of network interface is weak

in this type of networks as the end node and the switch (also called

router) are tightly connected. Nodes are connected according to a certain

interconnection pattern (topology).

• Indirect networks: Instead of directly connecting the nodes through

point-to-point links, the communication between a pair of nodes can be

performed by intermediate stand-alone switches. Every node has a net-

work interface that connects to a switch (through a point-to-point link)

and switches are connected between them (also through point-to-point

links).

• Hybrid networks: This type of network is a mixture of the previous

approaches. In general, it combines mechanisms from shared-medium-

networks and direct or indirect networks.

Although there are very subtle differences between direct and indirect net-

works, the functionality is similar in many aspects. An indirect network in



16 Chapter 2. Technical Background and Related Work

(a) Shared-medium network (b) Direct network

(c) Indirect network (d) Hybrid network

Figure 2.3: Network architectures.

which every switch is connected to a single node is equivalent to a direct net-

work. Also, terms router and switch, although having different meanings, are

typically used with no distinction by the community, so both terms for the

routing devices are interchangeable. In the rest of the dissertation, unless

noted, the term switch or router (the last one mainly in figures and tables)

can be assumed.

There are also some common aspects to all these types of networks. Al-

though links are usually formed by two communication channels, one in each

direction, one of the basic aspects of a network is how communication chan-

nels are arranged. Network performance significantly differs if links are bidirec-

tional or unidirectional. This choice impacts directly on the routing techniques

and algorithms and associated issues, like deadlock avoidance. We assume the

use of bidirectional channels on every link, though.

Each type of network can also be categorized with different properties:

• Switch degree: This property refers to the number of channels that con-



2.2. Interconnection Network Basics 17

nect a switch to its neighbours.

• Diameter: Is defined as the maximum distance between a pair of end

nodes in the network.

• Regularity: A network is defined as regular when all the switches have

the same degree.

• Bisection Bandwidth: Bisection of the network is the minimum set of

links that split the network in two equal halves. Bisection bandwidth is

the resulting bandwidth at the bisection.

• Homogeneity: A network is homogeneous if every node and its connec-

tivity is equal in all aspects to the rest of nodes providing a homogenous

floorplan.

There are three common basic topologies used in interconnection networks.

The first one is the crossbar. A crossbar (see Figure 2.4) allows the connec-

tion from any node to any other node simultaneously at the same time other

connections are established (as long as the requested input and output are

free). Crossbar networks, typically, are used for high-performance computing

multiprocessor solutions and in the design for switches in direct networks. The

drawback with crossbar topologies is that they do not scale as system grows

due to the quadratic requirement of connections.

Strictly orthogonal topologies are the second common type. In this kind of

networks we can find the n-dimensional meshes and tori (see Figure 2.5). A

n-dimensional mesh or torus has k nodes placed along each dimension. A mesh

differs from a torus because it does not have the wraparound channels that

connect the nodes in the borders of the topology. Note that the torus topol-

ogy duplicates the bisection bandwidth of the mesh topology and reduces its

diameter. These topologies are the typical examples used for direct networks.

Multistage interconnection networks (MINs) are topologies driven by the

concept of indirect networks as seen in Figure 2.6. Between input and output

devices there are several switch stages. The arrangement of stages and the

connection patterns determine the routing in these networks. MINs have been

widely used to interconnect parallel computers with large number of processors



18 Chapter 2. Technical Background and Related Work

Figure 2.4: A crossbar network.

(a) Mesh (b) Torus

Figure 2.5: A 4× 4 2-dimensional mesh and torus.

in commercial and high-performance solutions. However, for on-chip networks

mapping of such topology patterns in the 2-dimensional surface of the chip is

a big challenge.



2.2. Interconnection Network Basics 19

Figure 2.6: A multistage network topology.

Networks-on-chip Topologies

Earlier on-chip communication architectures relied on the share-medium net-

work paradigm, that included buses as the communication subsystem. But the

trend nowadays is to include a reasonably large number of processing cores

inside the chip, and shared-medium network designs have poor scalability and

bandwidth impacting heavily on the network performance.

NoCs emerged, thus, as a response to effective on-chip communication.

NoCs are based on a paradigm that is a mixture of the concept of direct and

indirect networks. Current multicore architecture designs made of elemental

brick nodes work together to achieve the high-performance computing goal

(the chip is formed by several processing devices). These devices are called

usually tiles. A tile, fundamentally, apart from the processing elements, has

also a switch attached that handles the communication between tiles. See a

simplified schematic of a tile in Figure 2.7.

As the chip can be seen as a collection of tiles, there is a major taxon-

omy where chips can be differentiated between homogeneous (inducing regular

topologies) and heterogeneous designs (more suited with irregular topologies).

Every tile is connected to a subset of other tiles through an on-chip network.

An example of homogeneous configurations are the tiled chip multiprocessors

(CMPs) where all the tiles are equal, i.e, tiles are replicated along the chip (see

Figure 2.7). Instead, high-end multiprocessor systems-on-chip (MPSoCs) are

examples of heterogeneous designs where nodes are different in many aspects:



20 Chapter 2. Technical Background and Related Work

Figure 2.7: The processing element in a tile-based CMP.

size, functionality, performance, throughput, etc. In this thesis, we focus on

CMP systems with regular structures.

A popular choice in NoC designs is the use of orthogonal topologies as

most of the direct network architectures are implemented with this property

in mind. Orthogonal topologies, which are associated with regular patterns,

allocate the nodes in a n-dimensional space, with k nodes along each dimen-

sion. Every switch has at least one link crossing one dimension. Every switch

is labelled with an identifier depending on its coordinates, and all the links

that communicate to other switches are bidirectional (formed by two channels,

one in each direction). As the distance between a pair of switches is the sum

of the offsets in all dimensions, the routing strategy is usually implemented

as a function of selecting the links that decrement the absolute value of the

coordinate offsets between a source node and a destination node, a very sim-

ple mechanism. The most popular design in NoCs is the n-dimensional mesh,

used in most of the commercial and non-commercial (prototype) NoC designs.

The most suitable topology is the 2-dimensional mesh (Figure 2.5(a)). This

topology is vastly used (or at least assumed) as it fits the chip layout.

As every switch is located within the network by its coordinates on a n-

dimensional space, a switch in a 2-dimensional graph will be numbered by a

group of two coordinates, (x, y), one for each dimension. Crossing a link means

decrementing or adding an unitary value to the offset of the dimension between

the two nodes that share the associated link. See an example in Figure 2.8.

Moving from node 1, with coordinates (1, 0), in Y+ direction results in node



2.2. Interconnection Network Basics 21

Figure 2.8: Different link crossings in a 2-dimensional mesh.

5, coordinates (1, 1). Typically, nodes are numbered by a single id, computed

as a function of the coordinates and the number of nodes per dimension. In

the case of the example for the 2-dimensional mesh, the value follows this

equation: IDNode = Xcoordinate + k× Ycoordinate, being k the number of nodes

per dimension. So, in the example in Figure 2.8, node (3, 1) has an ID of 7

(k=4).

There are other topologies proposed in the literature to overcome the lim-

itation of 2D meshes. They are later reviewed in this chapter.

2.2.2 Switch Device

As aforementioned, each tile is composed of several elements. The switch is in

charge of the communication between the associated node and the rest of the

nodes through the network layer. Typically, a switch is made by the following

general parts (Figure 2.9):

• Buffers: Buffers are a key component of the switch and its design and

their position inside the switch affect other aspects of the switch design.

The task of a buffer is to store temporarily units of information (typically

called flits, messages and/or packets). Buffers are tipically associated to



22 Chapter 2. Technical Background and Related Work

Figure 2.9: Switch architecture.

the channels that are connected to the switch. Channels are accessed

through ports, and they are divided in input ports, streams that receive

data and are subject to the routing decisions, and output ports, streams

the send data to other switches or nodes. Note that, to save area and

power, buffers at the output ports are usually not implemented in NoCs.

• Crossbar: The crossbar is the switching element and is tipically non-

blocking. Crossbars allow the connection between all inputs of the switch

to all outputs. Crossbars are classified by their radix, i.e. the maximum

numbers of connections they can make. As has been already identi-

fied, crossbars do not scale, thus switches with many ports do not scale

neither, especially in NoCs.

• Routing unit: This unit is the responsible for decoding the unit of in-

formation provided by the incoming message, and based on the routing

function and destination of the message, computes the most suitable

output ports for transmitting the message.

• Arbiter unit: This unit reads from the routing unit and configures the



2.2. Interconnection Network Basics 23

Figure 2.10: Switch stages.

crossbar accordingly to the requests from the input ports to the output

ports, taking into account switching and flow control issues (both will

be explained later).

• Link control: This component adapts the incoming traffic from the link

to the switch. In NoCs, this component is typically omitted (data does

not need to be translated).

Pipelining is a typical design method for high-performance switches. The

different stages work in parallel with different data streams, thus providing

parallelism and, thus, high throughput. A typical pipeline design of a switch

can be seen in Figure 2.10 where four stages are shown (IB, RT, VA/SA, and

ST). In this thesis we assume this pipeline design.



24 Chapter 2. Technical Background and Related Work

Figure 2.11: Message, packets, and flits.

2.2.3 Data Units

In an interconnection network, the general unit of information between nodes

is the message (see Figure 2.11). A message is a collection of bits that the

sender wishes to transmit to a destination (or a set of destination nodes), i.e.

it contains the data that must be transmitted. This information unit, however,

due to resource restrictions affected by design choices, may need to be divided

into smaller units, called packets, through a packetization process (usually

performed at the network interface). A packetization process of a message

implies some reassembly and order handling at the destination. A packet (or

the message) is comprised of a header, which contains the information for

routing and control, to be used by the switches, a body which contains the

data, and optionally a tail, for flow control. Often, packet and message terms

are interchangeable by the community, when both are equal in size. The term

packet is usually employed even when the message has not been packetized.

A message is divided further into flits (flow control digits), which are the

smallest unit of information that is flow-controlled. As the width of the link

can be lower than the size of a flit, the flit is further divided at the physical

level, into phits (physical digits). It is left to the designer and the parameters

involved, the size of every unit. However, in NoCs, due to the large amount

of bandwidth available, the phit size usually equals the flit size.

2.2.4 Switching

Switching techniques are the responsible for the allocation of network resources

to messages/packets inside the switches. Their basic function is to perform



2.2. Interconnection Network Basics 25

the setting of the connections between the buffers of the input and the output

ports. The choice imposes several design constraints in the switch that impact

the performance, manufacturing cost and power consumption of the elements

in the network. Next, we describe the main switching techniques suitable for

NoCs.

Circuit Switching

In circuit switching (Figure 2.12), the network establishes a reserved path

between source and destination nodes prior to the transmission of the message.

This is performed by injecting in the network a flit header, which contains the

destination end node ID. This header acts as some kind of routing probe that

progresses towards the destination node reserving the channels that it gets.

When the probe reaches its destination, a complete path between source node

and destination node has been set up due to the acknowledgement sent back

to the source node. As the path has been reserved for this flow, messages cross

the network avoiding buffer needs and collisions with other flows. The circuit

is torn down when transmission finishes. An example of a circuit switching-

based on-chip network is described in [39].

Circuit switching can be very advantageous when messages are very fre-

quent and long. Nevertheless, this switching technique has several important

drawbacks. If circuit set up time is long compared to transmission time of

the data, it will strongly penalize the performance of the network since links

will be poorly used. Additionally, as channels are reserved for a given flow,

no other flows can use them even if the connection is idle, thus channels may

become even more under utilized.

Store and Forward

Instead of reserving all the path for a certain flow, there are some techniques

that operate at packet granularity. These techniques are referred to as packet

switching. The most basic technique related to packet switching is store and

forward (SAF). When a packet arrives to a switch, the switch waits to store

the whole packet in its input port buffer before the packet is forwarded. So,

input port buffers must be large enough to store a packet (see Figure 2.13).



26 Chapter 2. Technical Background and Related Work

(a) Request for circuit establishment

(b) Acknowledgment and circuit establishment

Figure 2.12: Circuit switching.

As can be deduced SAF has larger buffer needs than circuit switching. In

addition, latency of packets is multiplicative with hop count along the path

(as the forward operation waits for the completion of the store operation).

Virtual Cut-Through switching

SAF switching is based on completely receiving a packet before any routing

decision is made. But, this is not a very practical decision, since the packet

header contains all the required information to perform the routing, and it is

physically located at the beginning of the packet (typically in the first flit). So,

the routing process can be started as soon as the packet header arrives to the

input buffer, without waiting for the rest of the packet. Thus, the packet can

be forwarded provided the selected output port chosen by the routing strategy

is free. This is what is done in virtual cut-through (VCT) switching (Figure

2.14).

In this case, as packets can advance through the switches of the network

once the packet header has arrived to each buffer (and has been decoded),

the base latency for this switching technique is mostly additive to the distance



2.2. Interconnection Network Basics 27

(a) Store phase

(b) Forward phase

Figure 2.13: Store and forward Switching.

between the nodes (hop count). Despite this, buffer requirements are the same

for VCT and SAF. VCT requires there is enough free buffer space to store the

entire packet. In fact, VCT behaves like SAF when the output port is busy.

The switch needs to completely allocate the entire packet. This is the switching

technique commonly used in off-chip high-performance interconnects [8,11] as

buffer size is not as critical as in NoCs.

Wormhole Switching

VCT switching is an improvement over SAF, but in some network architec-

tures, the choice of a buffer size to hold an entire packet could be critical. The

requirement to completely store a packet in the buffer of a switch may pre-

vent to design a small, compact, and fast switch [11]. In wormhole switching

(WH) buffers at the ports of a switch only have to provide enough space to



28 Chapter 2. Technical Background and Related Work

(a) Packet stored in the source node

(b) Portions of packet being forwarded

Figure 2.14: Virtual cut-through switching.

store few flits, depending on the round-trip time delay (RTT) 1, instead of

the whole message. In WH switching (Figure 2.15), the message is forwarded

immediately before the rest of the message is entirely received, but as opposed

to VCT, there is no need to have enough space for the rest of the message

in case the message blocks. In that case, the entire message remains stored

through the buffers at several switches. The major advantage of WH switch-

ing is the low storage requirements at switches. However, the most important

drawback is that WH switching could lead to high contention levels in the

network, because a message may block several resources when traversing the

network, causing low utilization of links and buffers.

1Round-trip time can be defined as the elapsed time between the time a unit of infor-

mation is sent and the time the acknowledgement of that transmission is received.



2.2. Interconnection Network Basics 29

Figure 2.15: Wormhole switching.

Figure 2.16: Virtual channels.

Virtual Channels

To overcome the contention problem induced by wormhole switching, virtual

channels [9] were proposed. Buffers basically are operated as FIFO (First-in,

First-out) queues. Therefore, if a message reserves the channel but due to the

saturation of the network it remains blocked at the current switch, no other

message behind this message can use the physical channel even if its requested

output port is available. This problem is known as head-of-line blocking.

When using virtual channels the buffer at the input port is divided into

different virtual buffers and the channel is shared by all the virtual buffers (see

Figure 2.16). Of course this virtual multiplexing method requires some local

arbitration and must be taken into account by flow control and switching tech-

niques. Virtual channels can be used to improve message latency and network

throughput as well. Their major drawback is that the available link bandwidth

is distributed over all the virtual channels sharing a physical link, resulting in

lower speeds. Again, in the on-chip network domain, the designer must eval-



30 Chapter 2. Technical Background and Related Work

Figure 2.17: Ack/nack flow control.

uate the trade-off and the impact overhead on the network. Virtual channels

are not restricted to wormhole switching, the concept can be extrapolated to

other design choices, depending on the need of their functionality (examples

are deadlock-free routing algorithms and quality-of-service protocols).

2.2.5 Flow Control

Transmission of a flit between the input and output ports in a switch is a task

performed by the switching technique. Flow control, however, is in charge of

administering the advance of information through links. Buffers are a resource

where to temporarily store flits, but they are finite. Flow control protocols

are in charge of determining when the flits can be forwarded evaluating the

capacity of the buffers and the link bandwidth. The main goal of flow control

mechanisms is to avoid flits being dropped due to the lack of buffer resources

to store them.

There are mainly three flow control mechanisms that are commonly used:

ack/nack, stop & go and credit-based. The ack/nack flow control mechanism

(see Figure 2.17) is based on data acknowledgements. When a flit arrives to

a buffer, if the buffer has space available, then the flit is accepted and an ac-

knowledgement signal (ack) is sent back. Instead, if there is no space available,

the flit is dropped and a negative acknowledgement (nack) is sent. The flit

must be retained at its origin until it receives a positive acknowledgement.

Stop & go emerged as an alternative to reduce the signalling (control traf-

fic) between the sender and the receiver. Stop & go flow control (see Figure

2.18) is based on every buffer having two thresholds corresponding to certain

sizes computed from the round-trip time. When the space occupied in the



2.2. Interconnection Network Basics 31

Figure 2.18: Stop & go flow control.

Figure 2.19: Credit-based flow control.

buffer reaches the stop threshold, a signal is sent back to the sender precisely

to stop the transmission, taking into the account that enough buffer space still

remains for the flits that are still being transmitted on the fly by the sender.

When the buffer occupancy diminishes under or equal to the second threshold,

go, then another signal is sent to reactivate the transmission of flits.

With credit-based flow control (see Figure 2.19), each sender, at its end

of the link, maintains a count of credits, which is equal to the number of flits

that can still be stored at the buffer on the receiver side. Whenever a flit

is forwarded to the receiver buffer, as it occupies a slot, then the counter is

decremented. If the counter reaches zero, it means that there is no available

buffer space at the other end, and no flit can be forwarded. On the other

hand, whenever a flit is forwarded and frees the associated buffer space, a

credit is sent back to increment the counter. The drawback of this flow control

mechanism is the significant amount of credit signalling sent backwards, which

could impact on network performance.



32 Chapter 2. Technical Background and Related Work

2.2.6 Arbitration

A switch is composed of multiple input and output ports with their associated

buffers and channels. Multiple inputs, according to routing decisions, may

request the same output port. In this scenario, an arbitration operation is

required to decide which one of the requests is allowed to connect to the output

port. The arbitration mechanism must ensure to assign the output to only

one of the inputs that have requested it, and the others must wait until they

are allowed. As the arbitration operation introduces a latency to determine

the assignment of the different output ports, it is critical for a network on-

chip environment that these operations are performed fast enough to keep low

latencies.

The main goal of an arbitration mechanism is to provide fairness between

all the ports while achieving maximal matchings between requests and re-

sources. Although there are many proposals for arbitration algorithms and

implementations, we can distinguish two general arbitration techniques that

differentiate on how they assign priorities between the requestors and the re-

sources.

The first one is fixed priority. An arbiter with fixed priorities grants the

requests in an established order to the different input ports. This order is

determined by the priority assigned to each input port. In this mechanism,

the arbitration is simple, but introduces unfairness and potentially, starvation.

If one of the input buffers with higher priority keeps requesting the associated

output, the inputs with lower priority get blocked, even, inducing the chance

that the inputs with low priority never get their requests satisfied.

The second one is called round-robin. An arbiter that implements round-

robin arbitration cycles priorities between all the input ports by assigning the

lowest priority to the input port which request was last served. This arbitra-

tion technique introduces fairness between the requestors, but is more complex

to implement. In this thesis we assume round-robin arbitration policies. For

further arbitration mechanisms and policies, please refer to chapters 2 and 3

of [12].



2.2. Interconnection Network Basics 33

2.2.7 Routing

As we have described before, topology defines the physical organization of

the network composed by the nodes. In fact, a given topology defines the

available paths between all the nodes. The routing algorithm is the responsible

of deciding which path has the message to follow to be effectively routed from

its source to its destination. The choice of the routing algorithm becomes

of outmost importance in the network performance. Indeed, in the on-chip

network domain not all solutions from the off-chip network domain are suitable

due to environmental restrictions. The designer must find a trade-off between

efficiency, flexibility and implementation cost of routing.

Implementation Types

Although any implementation is specific to the nuts and bolts of the technol-

ogy, there are three main trends to implement the routing strategy.

The first one is logic-based routing. This kind of routing is the result to

translate a logical or arithmetical function of a routing algorithm into the

equivalent in circuitry inside the switch. So, when the message header is

decoded at the input buffers, the output port is computed based on the hard-

ware that represents the routing function. Logic-based routing is a good design

choice in terms of delay, area, and power consumption. The main drawback

is its lack of flexibility as these implementations could become non-functional

if the topology changes due to manufacturing defects, just to name a reason.

Alternatively, routing tables are basically composed of row-like structures

that match destinations with table entries. So, given the destination for a cer-

tain message, there is some circuitry associated that decodes this information,

and accesses the routing table to find the routing decision associated to that

destination. The most conventional way to implement these tables is to use

memory structures. The advantage of table-based routing is flexibility, as the

information of routing decisions stored on routing tables could be the answer

of more complex routing algorithms, that are not only based on logical or

arithmetical assumptions. On the other hand, routing tables implementation

suffers from scalability, area, power consumption, and latency problems. For

example, there is a penalty time (that increases with table size) associated to



34 Chapter 2. Technical Background and Related Work

accessing memory structures.

Also, source routing [51] is a method that allows moving a packet through

a network in which the entire path is predetermined by the source. The path

information is placed in the message header. When the message arrives at

a switching device, no forwarding decision is necessary. The device looks at

the path information in the packet header to determine the port to forward

the packet. Source routing assumes that the source knows about the topology

of the network, and can therefore specify a path. However, it is not always

possible to expect the system’s logic to learn a network’s topology. Source-

based routing requires larger headers in size wasting bandwidth, thus becoming

a non-scalable solution.

Deadlock

A deadlock occurs when a message cannot advance toward its destination

because the buffer requested by the message is full, being blocked by another

message that is also waiting, all of them cyclically waiting. A cyclic set of

such events could make the messages to be blocked permanently because each

message involved in the situation requests a resource held by another one. As

no one message will advance before getting its requested buffer granted we

get a deadlock situation. That is the case in Figure 2.20 where four messages

allocated in different input buffers request the buffer at the next hop cyclically.

As those buffers are full, no one can get credits for the buffer and messages

are blocked forever.

Schemes Classification

Regardless on how they are implemented, there are different taxonomies to

classify routing algorithms. In the following paragraphs we provide a discus-

sion for the most well-known types of routing algorithms which we use in this

dissertation, mainly deterministic and adaptive routing algorithms.

In a 2D-Mesh topology, the most efficient routing algorithm (in terms of im-

plementation complexity and power consumption) is dimension-order routing

(DOR). The deterministic algorithm, DOR, is implemented on every switch

and requires small logic blocks. The message first moves in the X dimension,



2.2. Interconnection Network Basics 35

Figure 2.20: Deadlock situation when using XY and YX routing at the same

time.

and once it reaches the destination column, then it moves through the Y di-

mension, always following minimal paths. The low complexity of DOR makes

it very appealing for network on-chip (NoC) designers.

As commented in the previous chapter, DOR is not flexible, not allowing

more than one path for every source-destination pair. Also, DOR does not

tolerate a single failure without disconnecting several pairs of end nodes. Be-

sides, DOR may lead to congestion in the network and it does not support

alternative paths to alleviate congestion.

An alternative to DOR is the use of adaptive routing. In such a protocol,

switches are able to select different output ports for the same destination,

depending on the current status of those ports. Thus, local congestion can

be alleviated by the use of adaptive routing. Typically, minimal paths are

supported by adaptive routing, thus, the message gets closer to its destination

for every hop. To avoid deadlocks, an acyclic escape path is implemented as a

different virtual channel. If adaptive output ports are not available, then the

escape path is taken [10].



36 Chapter 2. Technical Background and Related Work

Figure 2.21: Concentrated mesh.

2.3 Related Work

In this section we deal with the related work for topologies and power saving

strategies. These are two fields this thesis is focused on, and where this thesis

tries to contribute. The related work for power gating strategies will be focused

on techniques that try to switch off unnused components.

During the last years, different topologies for CMPs have been proposed

in the literature. Initially, designs and proposals relied on rings [30] and 2D-

Meshes [38], [35], [36]. From that moment, efforts focused on reducing hop

count, thus reducing latency. This is the case of the C-Mesh [2] (Figure 2.21)

and the flattened butterfly network [18] (Figure 2.22).

A concentrated mesh has a smaller diameter and area footprint than 2D-

Mesh that results from improved resource sharing. While concentration is a

key element in the design of scalable networks, it is not sufficient by itself

when high traffic or congested situations arise.

The flattened butterfly is an update of an architecture known as a butterfly,

which has been around since the 1960s. The name comes from the pattern of

inverted triangles created by the interconnections, which looks like butterfly

wings. Dally flattens the butterfly by combining columns of routers and linking

each router to more processors. The new configuration halves the number of



2.3. Related Work 37

(a) 1-Dimensional view

(b) 2-Dimensional view

Figure 2.22: Flattened butterfly.

router-to-router connections. Data traveling between the processors can now

get to any other processor in fewer hops, even though the physical route may

be longer, and that eliminates considerable latency.

The flattened butterfly can reduce the maximum number of hops. Un-

fortunately, the flattened butterfly is not truly scalable, as the channel count

highly grows with the number of end nodes. In addition, the use of a large

number of dedicated point-to-point links and the resulting high degree of wire

partitioning leads to low channel utilization, even at high injection rates.

Other works [13] reduce hop count by relying on the concept of express

channels where a switch is connected to several switches along each direction

in the 2D-Mesh [7]. A complete analysis and comparison of several topolo-

gies mentioned in this section can be found in [13]. Besides, they propose a



38 Chapter 2. Technical Background and Related Work

Figure 2.23: Diagonal Mesh.

new topology, called Multidrop Express Channels (MECS), that uses a one-

to-many communication model enabling a high degree of connectivity in a

bandwidth-efficient manner. In a 64-terminal network, MECS enjoys a 9%

latency advantage over other topologies at low network loads, which extends

to over 20% in a 256-terminal network.

One special case is the Diagonal Mesh (DMesh) topology proposed in [15].

See Figure 2.23. In such topology diagonal links are added between switches.

However, all these topologies (including DMesh) rely on the fact that every

end node is connected only to one switch. In this thesis, we take a different

approach and connect nodes to multiples switches, thus providing much more

flexibility.

Other works try to improve the performance by improving the switch ar-

chitecture. Examples are [28] and [4]. In the first work, authors propose

multiplane virtual-channel router which has multiple crossbar switches and

a modified switch allocator is proposed to enhance the latency and through-

put performance. The second work proposes and justifies the replacement

of virtual channels by replicated channels, based on the abundance of wires

expected in current and future deep sub-micron technologies.

In [2] authors also hint the use of two concentrated meshes for perfor-

mance issues. Therefore, that contribution could resemble one of ours pro-



2.3. Related Work 39

Figure 2.24: End nodes connecting two switches. Circles are nodes and squares

are switches.

posals. However, there are major differences. The first one relies on the fact

that in [2] no details are given to the network interface connected to different

switches. This is of major importance as it may lead to excessive performance

bottlenecks and power consumption issues. Secondly, in [2] only two concen-

trated meshes are used, instead of four in the PC-Mesh topology. Besides,

the connection pattern between nodes and networks is not clear at all in this

approximation.

In [43] (see Figure 2.24) an end node is connected to two switches in a

2D mesh configuration. The main goal of such approach is only for fault-

tolerance purposes. In our case, our goal is to reduce power consumption

without degrading performance and having a higher degree of fault tolerance.

Besides, in our proposals in this thesis every end node is connected to four

neighboring switches each belonging to a different independent sub-network.

Every end node is connected to a varying number of parallel networks. We

solve the heterogeneity problem by attaching every end node to exactly 4

networks.

Power gating (gated-Vdd) is a well-known technique to reduce static power

consumption. In [31] a circuit technique was proposed to disconnect (by using

a gating transistor) the power supply. Power gating can be applied at different



40 Chapter 2. Technical Background and Related Work

levels, from complete execution units [16] down to single SRAM cells [6]. For

NoCs different works applied the power gating technique. In [6] buffers are

power gated and different policies are proposed. In [24, 25] power gating is

applied to virtual channels. In [34] powering down links is proposed. In [14]

static power consumption is reduced by using the concept of on/off links [34]

with power-aware buffers [6, 24, 25]. The proposed power management algo-

rithm also uses the concept of on/off links, where the voltage is dynamically

adjusted in response to the network utilization. The different proposals for

power gating usually rely on a standard 2D-Mesh topology, and potentially

can be applied to every studied topology.

In this thesis, the HPC-Mesh contribution (which improve all the previ-

ous proposals) uses concentrated meshes dynamically. All the end nodes are

connected to all the concentrated meshes. As a major difference to the previ-

ous works in the current state of the art, we evaluate a power-aware selection

algorithm together with an on/off switch mechanism both working coopera-

tively, as the target is power consumption savings without end-to-end latency

penalty, using a negligible and intelligent selection function in every end node.

As one of the proposals will be targeted for the 3D stacking concept in the

HPC-Mesh topology, here we briefly introduce the state-of-the art regarding

3D NoCs. In [37] a trade-off in 3D systems on-chip between cost and perfor-

mance is studied. Authors demonstrate in [29] how a 3D NoC overcomes a

2D NoC topology. In [21] authors propose vertical links through silicon vias

(TSVs) and a flow design for 3D simulations while in [5] authors propose sev-

eral techniques for traffic and thermal management aware in a 3D NoC. In [42]

different policies for run-time thermal management are proposed. In [20] the

authors share TSVs among neighboring switches to decrease the number of

vertical links and in [32] a serialization of TSVs contributes to reduce also the

number of vertical links and therefore, the manufacturing cost and the peak

temperature.

2.4 Conclusions

In this section we have introduced the basic concepts of on-chip interconnection

networks, starting from design factors, followed by the kind and examples of



2.4. Conclusions 41

current topologies, tile-based designs, and the most important components in

the networks as switches and links.

Also, we have referred the main related work existing for topologies and

power gating mechanishms. In the next chapter, we begin with the first con-

tribution called NR-Mesh (Nearest neighboR Mesh).



42 Chapter 2. Technical Background and Related Work



Chapter 3

NR-Mesh Topology

In this chapter we introduce the concept of using different injection and ejec-

tion ports for the end nodes. This is the main philosophy of this dissertation

and, different proposals will emerge.

We first propose in this chapter a flexible network on-chip topology, re-

ferred to as NR-Mesh (Nearest neighboR Mesh). The topology allows for

several alternative paths for most source-destination pairs. Thus, a message

can be injected through different switches and can be received from different

ones. This capability leads to higher flexibility when routing messages, not

only at switches but also at network interfaces. The resulting topology has

a lower diameter than the 2D-Mesh topology and provides efficient support

for collective communication. Fault-tolerance is also increased with the new

topology.

In parallel with the definition of alternative topologies, we tackle the power

consumption issue in current on-chip networks. Complementary to the new

topology, we propose a routing algorithm that is aware of network components

that are switched off, thus saving static power consumption. The algorithm

will maximize the time network components are switched off, thus maximizing

power savings. The algorithm is based on the adaptive routing algorithm, with

proper modifications to the selection function for the output ports.

In the first section we describe the NR-Mesh topology, focusing on its

injection algorithm, routing algorithm, and implementation details. Then, we

describe the complementary power management algorithm codesigned with

43



44 Chapter 3. NR-Mesh Topology

Figure 3.1: NR-Mesh on-chip network topology.

the routing algorithm. Then, we analize the topology and how it performs

when coupled with the power management strategy.

3.1 NR-Mesh

Figure 3.1 shows the connection pattern of the topology between end nodes

and switches. The network uses four links to connect every end node to four

switches. Nodes at the boundary of the topology are connected, however, to

fewer switches. In particular, the node at the top left-most corner is connected

to a single switch and the remaining boundary nodes are connected to two

switches.

Note that when compared with the 2D-Mesh topology, this topology offers

a higher connectivity. It provides alternative paths as messages may be in-

jected through up to four different switches and be received at final end nodes

from up to four different switches. It is very important to emphasize that

in-transit messages, however, cannot cross in-transit end nodes (end nodes are

not used as switches).

A key property of the topology is the reduced diameter it provides. For

example, NR-Mesh with 16 end nodes has the maximum distance (between the



3.1. NR-Mesh 45

Size NR-Mesh D. NR-Mesh B. BW 2D-Mesh D. 2D-Mesh B. BW

4x4 5 hops 8 flits/cycle 7 hops 8 flits/cycle

8x8 13 hops 16 flits/cycle 15 hops 16 flits/cycle

16x16 29 hops 32 flits/cycle 31 hops 32 flits/cycle

Table 3.1: Diameter (hops) and bisection BW (flits/cycle) comparison between

NR-Mesh and 2D-Mesh topologies. Links with 1 flit/cycle bandwidth are

assumed.

two most distant corners) of five switch hops while the 2D-Mesh has a distance

of seven switch hops. This will reduce the average latency of messages, the

execution time of applications, and the power consumption in the network.

Table 3.1 compares the diameter and bisection BW for the NR- and 2D-

Mesh topologies for different sizes. Notice that bisection bandwidth is the

same. However, in NR-Mesh there are certain number of nodes that are con-

nected to both sides of the bisection, thus alleviating its traffic.

3.1.1 Tile-Based Design

The NR-Mesh can be adapted to a tile-based design. Figures 3.2 shows a possi-

ble example of a tiled organization where the NR-Mesh topology is supported.

As can be seen in the figure, the switch is located at the bottom right-most

part of the tile. The switch is connected to four different end nodes, three of

them in a different neighboring tile.

Each end node includes the processor, the L1 data and instruction cache, a

slice of the L2 cache, and a memory controller (potentially reaching a memory

module if 3D stacking is used). Since the end node is connected to four

switches, additional logic is required at the network interface of the switch

to decide which output port to use. We have implemented and measured

the required logic (Section 3.1.2) and we have obtained negligible overheads,

except for the longer internal link required in the NR-Mesh which we have into

account. The associated control logic is included at the end node (see Figure

3.2). Later, we will describe the algorithm used to control the selection input

port function or Select path in Figure 3.2.



46 Chapter 3. NR-Mesh Topology

Figure 3.2: Tile design for the NR-Mesh topology.

Figure 3.2 shows the links connecting end nodes to switches. For links con-

necting end nodes, the figure shows how such links cross the tile boundary in

order to reach other switches located at neighboring tiles. For links connecting

switches among them, the usual 2D-Mesh link layout is used (not shown in

the figure).

Notice that a tile-based design has the same number of end nodes and

switches. This results in higher connectivity since only one end node is con-

nected to a single switch. For the 16-tile design, nine end nodes are connected

to four switches, six end nodes connected to two switches, and one end node

connected to one switch. Indeed, the last row and column of switches could

be removed without affecting connectivity. However, these switches provide

flexibility when routing messages and will be in off mode most of the time (in

low traffic conditions). We can see several examples showing the flexibility of

the NR-Mesh in a non-congested and congested situation. In Figure 3.3.(a)

we can see how a message can be sent through a minimal path from the end

node S to the end node D. This is the desired case as minimal a path is en-

forced. However, in case of congestion we can use non-minimal paths, even

at the injection, as Figure 3.3.(b) shows. In addition, different minimal paths

can exist, as shown in Figures 3.3.(c) and 3.3.(d). In this case, the source and

destination nodes are at the same row and have two alternative paths, both

minimal. This flexibility is not available in the original 2D-Mesh network.



3.1. NR-Mesh 47

(a) Minimal path. (b) Non-minimal path.

(c) Minimal path in the same row. (d) Minimal path using the last row.

Figure 3.3: Using alternative paths in the NR-Mesh topology depending on

traffic conditions.

3.1.2 Injection Algorithm

The injection algorithm is a key component of the topology. A message can

be injected into the network through different ports. Notice, however, that

depending on the final end node destination, some of the injection ports will



48 Chapter 3. NR-Mesh Topology

function injection-algorithm(dest) : port

var p: port

var mp: port list

var nmp: port list

begin

mp = min av ports(dest)

nmp = non min av ports(dest)

p = random(mp)

if (p == nil)

p = random(nmp)

end

return p

end function

Figure 3.4: Injection algorithm for the NR-Mesh topology.

lead to minimal paths and others will lead to non-minimal (longer) paths. In

order to provide full flexibility, the injection algorithm considers all the possi-

bilities, although prioritizing ports that provide minimal paths. The proposed

injection algorithm is shown in Figure 3.4.

The algorithm first creates a set of output ports that lead to minimal paths

(mp; min av ports function) and a set that leads to non-minimal paths (nmp;

non min av ports function). These functions filter the ports that are not avail-

able. A port is not available if a message is already being injected through

that port, or if no buffer (flow control) is available for the new message. Ac-

cording to this, these functions may return an empty list (none of the minimal

or non-minimal ports are available).

Figure 3.5 shows two examples. At S1, for messages addressed to D1, two

ports are included in the mp set, and two ports in the nmp set. For messages

being injected at S2 and addressed to D2, only one port is included in the mp

set and the remaining three ports in the nmp set. Notice that if none of the

ports are available then, they are not included in any of the sets.

Once the set of ports is computed, the algorithm randomly selects an



3.1. NR-Mesh 49

Figure 3.5: Example of minimal and non-minimal injection ports for the NR-

Mesh topology.

output port. The function random chooses one output port among all the

available ports. If there are no available ports leading to minimal paths, then

a non-minimal path is randomly selected, always prioritizing shorter paths.

Notice that the injection algorithm may return an empty result (p being nil).

In that case, in the next cycle, the injection algorithm is checked again.

There are different methods to compute which set an injection port belongs

to (either minimal path or non minimal path set). Each injection port of the

end node must be labeled with its direction (North East NE; South East

SE; South West SW, and North West NW). By comparing the coordinates of

the destination node and the source node (not the switch coordinates), the

direction of the destination node (with respect to the source node) can be

obtained, being one of the following ones: NE, E, SE, S, SW, W, NW, N.

Now, matching the direction of each output port and the direction where the

destination is located provides an easy way of classifying each output port into

minimal and non-minimal ports. For instance, an output port in NE direction

is minimal whenever the destination end node is located either at N, E, or NE

direction. On the contrary, the injection port must be labeled as non-minimal

one. As deduced, this algorithm is straightforward and simple to implement.



50 Chapter 3. NR-Mesh Topology

3.1.3 Network Routing Algorithms

The previous section described the injection algorithm. In this section, we

deal with the routing algorithm inside the network. Note that different routing

algorithms are suitable for the new topology. If we remove the links connecting

end nodes to switches, then we are left with a 2D-Mesh topology. Thus,

deterministic routing, like DOR, can be used. Notice that the DOR algorithm

is deadlock-free, as its channel dependency graph (CDG) is acyclic. Since Y

→ X transitions are forbidden, no cycles can be formed. Deadlock-freedom

is guaranteed even if messages are injected to or extracted from the network

through different locations. A source end node injects messages through four

different switches, which is equivalent to four different end nodes injecting

messages in an original 2D-Mesh network. The same applies to delivering a

message to an end node from up four different switches.

However, the deterministic routing algorithm can be extended by deciding

where to eject a message. Although DOR only provides one path per pair

of end nodes, when applied to NR-Mesh, several alternative paths are now

available. Specifically, there are up to 16 alternative paths given by four

injection points and four ejection points. Figure 3.6 shows the average number

of alternative paths per each communicating flow when assuming DOR routing

in both 2D-Mesh and NR-Mesh topologies. As can be seen, as the topology

gets larger, the number of possible paths approaches asymptotically 16, as

the relative number of nodes with four injection/ejection ports increases in

percentage. The figure also shows the average number of injection/ejection

ports per end node. Although in a 4× 4 NR-Mesh the number of alternative

paths is small (around 4), we will see in the evaluation section that it is enough

to reduce power consumption in the network without affecting performance.

As previously said, messages at switches can choose among different output

ports based on the current port’s status. Figure 3.7 shows the case of a message

being routed from end node S to end node D. The message encounters a port

at switch X (the north port) that is congested (busy). As the destination end

node is connected to two switch columns, the message can be forwarded to the

east switch and then move north. Next, the message reaches switch Y that

is considered a destination switch (a switch where the destination end node

is connected to). The message can leave the network through that switch or,



3.1. NR-Mesh 51

Figure 3.6: Average number of paths assuming DOR in NR-Mesh and 2D-

Mesh networks. The figure also includes the average number of injection ports

per node for the NR-Mesh topology. In the 2D-Mesh the number is one.

Figure 3.7: A non-minimal path in the NR-Mesh topology.

alternatively, if the output port is busy, it may visit the next switch (located

to the north) and reach the end node through that switch. Notice that both

alternative hops lead to non-minimal paths. Thus, such actions are performed

only if the minimal paths are busy/congested. Note, however, that no Y-X

turns are taken, therefore, deadlock-freedom is preserved.



52 Chapter 3. NR-Mesh Topology

function deterministic routing(iport, cur, dest) : port

var p: port

var nmp: set of ports

begin

p = minimal xy port(cur, dest)

if (free[p]) return p

if (iport == west and y(dest) < y(cur) and x(dest) == x(cur)+1) nmp =

nmp + east + north

if (iport == west and y(dest) > y(cur) and x(dest) == x(cur)+1) nmp =

nmp + east + south

if (iport == east and y(dest) < y(cur) and x(dest) == x(cur)-1) nmp =

nmp + west + north

if (iport == east and y(dest) > y(cur) and x(dest) == x(cur)-1) nmp =

nmp + west + south

if (iport == south and dest at north) nmp = nmp + north

if (iport == north and dest at south) nmp = nmp + south

return priority select(nmp)

end function

Figure 3.8: Deterministic routing algorithm for the NR-Mesh topology.

The deterministic routing algorithm with support for non-minimal paths

is described in Figure 3.8. The function is run on every switch and for every

incoming message. The algorithm takes into account the input port that

received the message (iport), the current location of the switch (cur), and the

destination node (dest) of the message.

Figure 3.9 shows the node IDs and the switch IDs assumed by the routing

algorithms. This is an important issue for the routing algorithms as the end

nodes can be reached from different switches. The messages include in their

headers the destination end node ID, which is used together with the switch

IDs.

The first step of the algorithm is to find the output port using the DOR

routing algorithm (function minimal xy port). Based on the current coor-



3.1. NR-Mesh 53

Figure 3.9: Node and switch IDs assumed by routing algorithms and messages

in the network.

dinates and destination coordinates, the calculated port will be north, east,

west, south, or internal. Notice that only one minimal port exists for every

message at every switch, regardless of the destination of the message. How-

ever, in order to obtain the correct destination switch ID from the destination

node ID, some slight modifications are needed. For instance, from Figure

3.9 we can deduce that a message sent from node 9 through switch 9 and ad-

dressed to node 11 should reach switch 10 instead of switch 11. Thus, from the

destination node identifier, the switch needs to obtain the destination switch

ID to proper compute the XY output port. The following precomputation is

performed in the current switch:

dest sw = dest node

if x(cur)<x(dest sw) x(dest sw)=x(dest sw)-1

if y(cur)<y(dest sw) y(dest sw)=y(dest sw)-1

Notice that dest sw is the ID of the destination switch where the destina-

tion node is connected to. To benefit from the extra connectivity of the end

node to the network, at each direction one hop is potentially saved (e.g. if

going east then the destination switch is one hop closer).

After finding the output port, the algorithm checks if the port is available.

If the port is available (free[p]), then it is selected. However, if the port (either



54 Chapter 3. NR-Mesh Topology

internal or switch-to-switch port) is busy, the algorithm checks if an extra hop

is possible (non-minimal routing). Six cases are considered, none of which

introduces a Y → X turn. For example, if the message is coming from the

west port and the destination is in the north-east quadrant, then the message

can still be routed either east or north. An end node is considered to be in

the north-east quadrant if it can be reached through the current Y column or

through the next Y column. The same reasoning is used for messages coming

from the east port.

For messages coming through the south port, they can still move north,

but cannot go east or west as this would lead to a Y → X turn. The same

occurs for messages coming through the north port. Notice also that U turns

are not allowed by the algorithm.

As a final step, the priority select function returns only one output port

from the set of non-minimal ports computed. The function gives priority to

X ports (east, west) over Y ports (north, south). If no valid output port is

selected, the routing algorithm is executed again at the next cycle.

In Figure 3.10 we can see an example of all the possible output ports the

message can take when moving from end node S to end node D. As can be

seen, at the columns near the destination different alternative choices can be

taken.

The topology also allows the use of adaptive routing. In this case, virtual

channels are needed to decouple adaptive paths from escape paths. One al-

ternative is to use one virtual channel to route messages adaptively and one

virtual channel to route messages through the escape path.

Figure 3.11 shows the adaptive routing algorithm proposed for the topol-

ogy. The algorithm returns an output port and a virtual channel to be used at

the next switch. First, the set of output ports providing minimal paths to the

destination is retrieved (function min adap and av ports), which returns the

available ports closer to the destination when they are not busy. Notice that

only output ports currently available are considered. If at least one port is

available, then the algorithm takes the port and outputs the adaptive virtual

channel that must be used for the message (adaptive vc). However, if all the

adaptive minimal paths are busy, then the algorithm takes the deterministic

routing path. In this case, the previous function (deterministic routing) is



3.1. NR-Mesh 55

Figure 3.10: All possible paths in the NR-Mesh.

called. The virtual channel to be used in this case is the deterministic one

(deterministic vc).

Messages may take adaptive virtual channels and deterministic virtual

channels along their path in any order. In wormhole switching networks,

however, this may lead to deadlocks. This happens as indirect channel depen-

dencies are introduced that potentially lead to cycles in the CDG. However,

this is not possible with virtual cut-through switching. If wormhole switching

is used, then the algorithm must prevent messages moving from deterministic

virtual channels back to adaptive virtual channels.

In the evaluation section, we evaluate the NR-Mesh topology with both

routing algorithms, deterministic and adaptive. The adaptive routing algo-

rithm will be later modified in order to be used in a system where input ports

and links are switched on and off dynamically.

3.1.4 Topology Properties

In this section, we explore the main properties of the NR-Mesh topology.

The first one is its flexibility when injecting and ejecting messages. An end

node may decide which injection port should be used. At the destination, the

routing algorithm is able to deliver the message through one of four different



56 Chapter 3. NR-Mesh Topology

function adaptive routing(iport, cur, dest) : port, virtual channel

var ap: set of ports

begin

ap = min adap and av ports(cur, dest)

if (empty(ap))

return deterministic routing(iport, cur, dest), deterministic vc

else

return random(ap), adaptive vc

end function

Figure 3.11: Adaptive routing algorithm for the NR-Mesh topology.

switches. This flexibility is not available in the original 2D-Mesh topology.

This property will be exploited by the power management technique that

switches off resources (ports and links) during idle periods. Also, congestion

within the network can be alleviated.

A second property of the NR-Mesh topology is its lower diameter. The

diameter of an N × N NR-Mesh network is 2N − 2, since at the injection

and ejection points, one hop per dimension is saved. This will also lead to

lower message forwarding latencies and lower power consumption within the

network. This property will, however, loose ground with larger configurations.

The NR-Mesh topology provides a high fault tolerance degree. Network

links and even switches could fail and still valid paths from sources to destina-

tions can be available. In contrast, the 2D-Mesh case with DOR routing does

not tolerate a single link or switch failure. Figure 3.12(a) shows an example

where a link failure is supported by the topology. The S end node is still able

to send messages to end node D through the highlighted path.

Collective communication can be efficiently implemented in the NR-Mesh

topology. A single unicast message may reach four destinations if they coin-

cide with the end nodes connected to the destination switch. Thus, localized

multicast can be efficiently implemented. When communicating to larger sets

of end nodes through multicast, or even when dealing with broadcast, the

topology is advantegeous. A broadcast operation that sends a single message



3.2. Power Management Algorithm 57

(a) Fault-tolerance. (b) Collective (broadcast)

communication.

Figure 3.12: Examples of additional properties of the NR-Mesh topology.

to all the end nodes may be reduced in that a message is only replicated at

some switches and then forwarded only through a few rows and columns. At

every visited switch, the message is forwarded to all the neighboring internal

ports. Traffic overhead is, then, significantly reduced. Figure 3.12(b) shows

an example. Only five links between switches, out of 24, are used to reach all

the end nodes. In a 2D-Mesh most of all the external links would be required.

Although such opportunities exist for the NR-Mesh topology, we do not

evaluate them. These features will further exacerbate the benefits of NR-Mesh

topology.

3.2 Power Management Algorithm

In this section, we propose a power management algorithm that works in

cooperation with the adaptive routing algorithm presented before. The basic

goal of the algorithm is to maximize the time that switch input ports and

input links are powered down. Due to the large power consumption in the

input buffers this technique potentially achieves large savings in static power



58 Chapter 3. NR-Mesh Topology

Figure 3.13: Powering on/off the next IP (input port) from the previous

switch.

consumption. The routing algorithm is modified in order to avoid, whenever

possible, the need to use input ports that are switched off, and to rather route

messages through other alternative minimal or non-minimal paths. Obviously,

depending on the message’s destination, this will not always be possible and

the port will need to be powered on.

The algorithm relies on three key steps. The first one is deciding when an

input port can be powered down. The second is making the routing algorithm

aware of which ports are switched off. The third one is related to deciding

when an input port needs to be activated again. We describe each step next.

Notice that an input port will be highly coupled with the associated output

port at the upstream switch. They will work in tandem, indeed, whenever an

input port switches off it will notify the associated output port.

3.2.1 Algorithm for Switching Off an Input Port

Every switch in the network includes a new Power Management control Logic

(PML). This logic is in charge of switching off and on every input port.

These actions are made locally and independently from the other switches in

the network. Only input traffic is taken into account from the previous output

port. Figure 3.13 shows the PML located at the switch to power off the next

input port from the previous output port.

For switching off a port, the PML logic measures the port utilization,



3.2. Power Management Algorithm 59

procedure check port(current output port)

begin

if (cycle empty cnt[current output port] > threshold)

send IP off signal to the corresponding input port into the next switch

cycle empty cnt[current output port] = 0

else

cycle empty cnt[current output port]++

end

end procedure

Figure 3.14: Algorithm for switching off an input port.

computed as the number of cycles the port is unused. When a given threshold

is reached, the port is switched off. Figure 3.14 shows the control algorithm.

Therefore, an internal control signal (IP off signal) is sent to the asso-

ciated input port to notify that the logic must be switched off (through power

gating). When all the input ports in a switch are powered down and there is

no left flit in the switch, the logic switches off the entire switch, including the

clock.

The process to power down a block may consume some power, however this

power consumption is compensated by the power consumption saved when the

port is powered off. To save power, the port needs to be powered off for at

least ten cycles. However, there is no power penalty for waking up the port

earlier. We have followed the recommendations in [16] for these numbers.

3.2.2 Algorithm for Routing Messages

The routing algorithm described in Section 3.1.3 is modified in order to support

powered down components. Two changes are required, the first one deals with

the need of the algorithm to know which ports are in off state and which are

not. This can be easily achieved by extending the concept of a busy port. A

port is busy if it is transmitting a message, there is no credit available, or the

associated input port at the other end of the channel is powered down.

The second change deals with the need for resuming an input port. This



60 Chapter 3. NR-Mesh Topology

(a) Avoiding powered off ports.
(b) Waking up a powered off port.

Figure 3.15: Routing algorithm assuming the status of the network.

may happen when a message ends up requesting the output port. Notice that

the adaptive routing algorithm may not find an available adaptive output

port, and, in that case, a deterministic output port is required. When the port

is disabled, the logic at the disabled next input port is notified by the PML in

the previous switch (IP on signal signal in Figure 3.13), and after the wake

up delay (explained in the next subsection), the message is forwarded. Figure

3.15(a) shows, on the one hand, how the algorithm avoids powered down or

busy ports and, on the other hand, Figure 3.15(b) shows how an input port is

woken up as the algorithm can not take another path.

3.2.3 Algorithm for Switching On a Port

In this dissertation, we assume the conservative approach of three cycles to

wake up a switch input port (obtained from [16]). To efficiently achieve this,

the PML logic wakes up an input port when a control signal from a connected

device (neighbor switch or attached end node) is received. This leads to three-

cycle penalty when switching on an input port attached to an end node. When

a signal is sent from a switch, there is one-cycle penalty (the VA SA and ST

stages are overlapped in this case). See Figure 3.16 for details of the switch



3.2. Power Management Algorithm 61

Figure 3.16: Switch stages.

Figure 3.17: Pipeline of the switch stages.

stages.

Figure 3.17 shows the pipeline of the stages when a packet is traversing a

switch. As we can see, the Packet header traverse all the stages in the router.

First, it is stored into the input buffer at the switch. Secondly, it computes

the routing stage to see whether the routing is possible in the current cycle or

we have to wait until the next cycle. In the next stage, the switch arbitrates

the header to provide a virtual allocation for the packet. Next, the header

traverse the switch and is ready to cross the link. Rest flits of the packet

(Payload fragment) need to be buffered in the switch and compute the swich

traverse. For each packet, the route computation and switch arbitration /

virtual allocation is taken only once in the Packet header.



62 Chapter 3. NR-Mesh Topology

Figure 3.18: First stages of the pipeline when an input port is being powered

on.

Figure 3.18 shows, on the other hand, the pipeline stages when an input

port is being powered on by the previous switch. Once a header flit reaches

the arbiter (VA stage), the IPon signal is forwarded. At the same time, the

header flit crosses the ST and OB stages and the link. By the time the header

flit arrives to the input port, the port is awake. However, OB represents in

this case one-cycle penalty as we do not use this stage in our simulator.

3.3 Performance Evaluation

In this section, we evaluate the new topology in different scenarios together

with the different routing algorithms, deterministic and adaptive (or power

saving algorithm). We also analyze, for comparison purposes, the 2D-Mesh

network. Finally in this chapter, we evaluate the performance of the NR-

Mesh topology compared with other similar topologies as the Concentrated

Mesh topology or the NR-Mesh using only two injection ports.



3.3. Performance Evaluation 63

3.3.1 Evaluated parameters

The comparison has been performed in terms of average message latency (cy-

cles), network throughput (flits/cycle/tile), power consumption (W), network

energy consumption (power consumption during the entire execution of each

application) and execution time (cycles). For the routing algorithms, we have

used the deterministic DOR algorithm and the adaptive routing algorithm

described in Figures 3.8 and 3.11, respectively. In both topologies, we use the

same number of virtual channels; for the deterministic algorithm we use two

VCs, and for the adaptive algorithm we use one adaptive VC and one escape

VC (implementing the deterministic routing algorithm). To avoid protocol

level deadlocks, we use virtual networks, where basically separate queues are

used for each virtual network. Notice that we use VCs inside each virtual

network.

Components in the network are switched off and on when using the adap-

tive algorithm in both topologies. Notice that when using the 2D-Mesh topol-

ogy the algorithm will have less options for skipping powered down links as

end nodes will be connected only to one switch. The number of cycles for

switching the ports on and off has been obtained from [16]. We assume that

logic requires more than nine cycles to switch off a port in order to save power.

The delay to power on a port is three cycles. The threshold to switch off a

port is set to 100 and 200 cycles for 16-node and 32-node CMP systems, re-

spectively. These values exhibited a good trade-off between performance and

energy savings.

Power estimates have been obtained from the Orion-2 power model [17],

assuming 45nm technology, with a network frequency of one GHz and a 1.1V

supply voltage.

Besides comparing the 2D-Mesh and NR-Mesh topology, we compare the

NR-Mesh with other similar topologies, namely, the one proposed in [43] (re-

ferred to as NR/2-Mesh) and the concentrated mesh (C-Mesh). Figure 3.19

shows the cited topologies. We assume both a 16-tile system and a 32-tile

system.



64 Chapter 3. NR-Mesh Topology

(a) NR-Mesh. (b) NR/2-Mesh. (c) C-Mesh.

Figure 3.19: The NR-Mesh and other topologies.

3.3.2 Simulation Model

We use different types of synthetic traffic patterns, which allow us to explore

a wider scenario:

• Uniform: Destination of messages are spread uniformly among all the

end nodes.

• Bit-complement: Unary operation that performs logical negation on each

bit, forming the ones’ complement of the given binary value. Digits which

were 0 become 1, and vice versa.

• Bit-reversal: Bit reversal is the permutation where the data at an index

n, written in binary with digits b4b3b2b1b0 (e.g. 5 digits for N=32 inputs),

is transferred to the index with reversed digits b0b1b2b3b4.

• Hot-spot: One node in the network is receiving much more traffic than

the others. In our case, 6% and 12% additional traffic is injected to the

hotspot node for a 16- and a 32-node system, respectively.

The acccepted traffic and power consumption metrics for synthetic traffic

are calculated as follows: the accepted traffic is the number of flits by cycle and

tile that the network is able to deliver to the end nodes for a given injection

rate. The power consumption is the average power by cycle in the network for

a given injection rate, using the Orion-2 model [17].



3.3. Performance Evaluation 65

In addition to synthetic traffic patterns, we use SIMICS [22] and GEMS [23]

to model a complete system. GEMS is a General Execution-driven Multipro-

cessor Simulator. It is a subset of modules for SIMICS that enables detailed

simulation of multiprocessor systems, including Chip-Multiprocessors (CMPs).

Simics is a full system simulation platform, capable of simulating high-end sys-

tems with sufficient fidelity and speed to boot and run operating systems and

commercial workloads. One of the most important modules of GEMS is Ruby.

The GEMS Ruby module provides a detailed memory system model, where

each end node includes an in-order processor core, an L1 data and instruction

cache, an L2 cache bank, and a directory/memory controller. L1 cache, L2

cache, and the directory are connected to the switch, and to four switches for

the NR-Mesh topology. One internal port is used to connect each end node

to the switch in the 2D-Mesh and C-Mesh topologies (four in the NR-Mesh

topology and two in the NR/2-Mesh one).

We have replaced the network simulator inside Ruby by a cycle-accurate

event-driven network simulator. We have developed an in-house network sim-

ulator (gNoCsim). gNoCsim is an event-driven cycle-accurate network sim-

ulator that models the pipelined structure of the gNoC switch (designed in

Verilog) and the network interface. This simulator is used in both scenarios,

real applications and synthetic traffic patterns.

Table 3.2 shows the main end node parameters and cache coherency pro-

tocol parameters. A directory-based protocol is used whereby five virtual

networks are required (to avoid protocol-level deadlock). Table 3.3 shows the

network parameters. The flit size has been set to eight bytes. For internal

and external links (links connecting to end nodes and links between switches,

respectively) one cycle delay is assumed for both topologies, except for the

internal links in the NR-Mesh case, where the link length has been modeled

with two cycles delay, because on average the switches are more distant from

the end node. Buffer size at switches is set to 10 flits to support virtual cut-

through switching (VCT) and one cycle is assumed for each switch stage (four

stages in total).

Several Splash-2 [40] applications and a commercial workload (when com-

paring with other topologies) [1] have been run. Only the parallel section

for the Splash-2 applications have been measured, while 5000 transactions for



66 Chapter 3. NR-Mesh Topology

Parameter Value Parameter Value

L1 size 128 KB private L1 hit latency 3 cycles

L2 size 8MB shared L2 hit latency 6 cycles

Coherency protocol Directory-based Virtual Networks 5

Processors 16 & 32

Table 3.2: End node and cache coherency protocol parameters.

General network parameters Router parameters

Flit size 8 bytes Buffer size 10 flits

Externals links 1c delay (2c C-Mesh) VCs per VN 2

Internal links 1c delay (2D-Mesh) Routing 1c delay

Internal links 2c delay (NR-Mesh) Arbiter 1c delay

Internal links 2c delay (C-Mesh) Crossbar 1c delay

Internal links 2c delay (NR/2-Mesh) Transmit 1c delay

Table 3.3: Network parameters.

the commercial workload have been considered. For this analysis, we combine

applications with low traffic loads (FFT, BARNES and LU) and with higher

traffic loads (RAYTRACE, RADIX, and APACHE). We show also the average

results for all the topologies.

The FFT kernel is a complex 1-D version of the radix-
√
2 six step FFT

algorithm, which is optimized to minimize interprocessor communication. The

data set consists of n complex data points to be transformed, and another n

complex data points referred to as the roots of unity. RAYTRACE renders a

three-dimensional scene using ray tracing. A hierarchical uniform grid (similar

to an octree) is used to represent the scene. A ray is traced through each

pixel in the image plane that reflects in unpredictable ways off the objects

it strikes. The BARNES application simulates the interaction of a system of

bodies (galaxies or particles, for example) in three dimensions over a number of

time-steps, using the Barnes-Hut hierarchical N-body method. The LU kernel

factors a dense matrix into the product of a lower triangular and an upper

triangular matrix. The integer RADIX sort kernel is based on the method

described in [3]. The APACHE commercial workload is a popular open-source

web server used in many internet/intranet environments.



3.3. Performance Evaluation 67

Component Power consumption

Injection 2.5 µW

3-port switch 34.63 mW

4-port switch 49.57 mW

5-port switch 63.11 mW

6-port switch 76.42 mW

7-port switch 88.37 mW

8-port switch 102.13mW

Table 3.4: Power consumption of the different components for the NR-Mesh

topology. Target frequency set to one GHz.

3.3.3 Implementation Results

We have designed and synthesized the network interface, and a 5-stage pipelined

switch with the 45nm Nangate open-source library [44]. We have modeled

switches with different number of ports, all of them with the same target

frequency (1GHz). We have obtained the total power consumption using

the Power Compiler tool from Synopsys [49] after place and route using En-

counter [46] Place&Route tool from Cadence [48]. Results are shown in Table

3.4. We have measured dynamic power for different traffic loads (from no load

to one flit/cycle/input port). Results did not vary significantly as the static

power is the main contributor. Furthermore, we have included the average

power consumption in the results shown in the table.

As can be deduced from Table 3.4, additional power consumption at the

network interface (due to the injection algorithm) is negligible when compared

with the switch power consumption. Also, we can see how power consumption

almost doubles when moving from a 5-port (as required in a 2D-Mesh) switch

to a 8-port switch (as required in the proposed topology). This is mainly

due to the addition of the buffer resources. However, it should be noted that

the listed power assumes that the entire switch is in on-state. The NR-Mesh

topology, combined with the adaptive routing algorithm will switch off ports

and links, thus saving power.

Table 3.5 shows the latency and area overheads of the injection algorithm



68 Chapter 3. NR-Mesh Topology

Component critical path (ns) area (µm2)

Injection 0.21 57.40 µm2

3-port switch 1.00 36,417.96 µm2

4-port switch 1.00 49,954.71 µm2

5-port switch 1.00 64,354.10 µm2

6-port switch 1.00 71,827.22 µm2

7-port switch 1.00 95,188.55 µm2

8-port switch 1.00 111,724.72 µm2

Table 3.5: Area and delay overheads for the different components. Target

frequency set to one GHz.

at the network interface as well as of the switch designs. The delay of the

injection algorithm is much smaller than the critical path of the switch and

therefore does not set the bottleneck in the transmission path of the message.

As expected, the area needs of the injection algorithm are also negligible when

compared to the switches. Less than 1% is really needed. This device will

provide much gains when combined with the power management mechanism

within the network.

In the next section, we evaluate the performance achieved for the differ-

ent applications when using both topologies (2D-Mesh and NR-Mesh) and

deterministic versus adaptive routing algorithms. When using the adaptive

algorithm, the power-saving algorithm is enabled, which leads to little perfor-

mance penalty. In the two next subsections, we analyze the accepted traffic

and the power consumption using synthetic traffic. Later, we analyze the

execution time and power consumption using GEMS.

3.3.4 Analysis with Synthetic Traffic

Figure 3.20 shows the performance and power consumption for a 16-tile system

(4 × 4 topologies) under synthetic traffic patterns (uniform, bit-reversal, and

bit-complement). Figures a, c, and e show accepted traffic and figures b, d,

and f show the power consumption.

One thing to notice is the higher throughput achieved by the NR-Mesh



3.3. Performance Evaluation 69

(a) accepted traffic, uniform (b) power per flit, uniform

(c) accepted traffic, bit-complement (d) power per flit, bit-complement

(e) accepted traffic, bit-reversal (f) power per flit, bit-reversal

Figure 3.20: Accepted traffic and power consumption for 16-node systems.

Synthetic traffic patterns.

topology for the three synthetic traffic patterns. This is because of the higher

bisection bandwidth (as some nodes are connected to both sides of the bi-

section) and the lower diameter of the topology. In bit-complement traffic,

the throughput of the 2D-Mesh is doubled. It can also be noticed that the

adaptive routing algorithm does not sustain the maximum throughput of the

deterministic algorithm in high traffic rates. This is due to the extra latency

when switching on components and the use of non-minimal paths. However,

the power reduction plays a good trade off between low and high traffic rates.

At low loads, we can see how the adaptive algorithm is able to signifi-



70 Chapter 3. NR-Mesh Topology

(a) accepted traffic, uniform (b) power per flit, uniform

(c) accepted traffic, bit-complement (d) power per flit, bit-complement

(e) accepted traffic, bit-reversal (f) power per flit, bit-reversal

Figure 3.21: Accepted traffic and power consumption for 32-node systems.

Synthetic traffic patterns.

cantly reduce the power per bit metric (reduction factor larger than 2x) in

both topologies. For higher traffic rates (near saturation), the adaptive algo-

rithm still achieves power reductions, although to a lesser degree. The best

combination with respect to performance and power is, therefore, the NR-

Mesh with adaptive routing.

Figures 3.21 show the same results, but now for 32-tile systems (4 × 8

topologies). The tendency in this case is different, specially, for the NR-Mesh.

The deterministic case takes more power to achieve good throughtput (ac-

cepted traffic). The adaptive case achieves lower power consumption with



3.3. Performance Evaluation 71

(a) 16 nodes. Accepted traffic. (b) 16 nodes. Power consumption.

(c) 32 nodes. Accepted traffic. (d) 32 nodes. Power consumption.

Figure 3.22: Performance and power consumption for 16- and 32-node systems.

Hot-spot scenario.

lower traffic loads. Power consumption increases with higher loads as in the

previous case. In some traffic patterns, when the network saturates, the ac-

cepted traffic in the NR-Mesh topology decreases compared to the 16-node

case. Thus, there is an expected trade off between power and performance.

Next, we use synthetic traffic to examine the impact of a hot-spot. In this

case, the NR-Mesh topology will be able to deliver more traffic. Consequently,

it will take less time to deliver the traffic and, with it, less power will be

consumed. Therefore, the higher power consumption, in this case, will be

compensated with the increase in performance.

Hot-spot Scenario

Figure 3.22 shows a hot-spot scenario where a significant amount of traffic to

one node in the center of the network is injected.

The measurements have been done for 16- and 32-node systems. Figure



72 Chapter 3. NR-Mesh Topology

3.22 shows accepted traffic and power consumption for the 2D-Mesh topology

and the NR-Mesh with both deterministic and adaptive routing.

In this scenario, the NR-Mesh is clearly superior to the 2D-Mesh topol-

ogy. And not only in terms of accepted traffic, but also in terms of power

consumption.

We could expect in NR-Mesh an increase in power consumption, because

of the additional internal links. However, this effect is compensated by the

fact that traffic is delivered faster, that is, a message spends less time in the

network, thus, saving power.

Though deterministic and adaptive routing perform similar in the 2D-Mesh

topology, this is not the case for the NR-Mesh one. Deterministic routing per-

forms better in a hot-spot scenario than adaptive routing, however, it requires

more resources and then, wastes more power. This behavior can be easily ex-

plained as follows: the deterministic routing in both 2D-Mesh and NR-Mesh

network on-chip topologies do not power off ports and/or switches obtaining

less latency to reach the destination. For this reason, in a saturated condi-

tion, the messages, when using the deterministic routing algorithm, do never

encounter off ports thus not having extra latencies. This is the opposite when

using the adaptive routing algorithm, where messages sometimes face an off

port and need to wait the port being woken up, although saving lot of power.

Therefore, this is a trade off between performance and power consumption.

Even though, the adaptive routing in the NR-Mesh greatly outperforms both

deterministic and adaptive routing to the 2D-Mesh topology by 50% and 20%

in high traffic scenarios for 16- and 32-node systems, respectively.

3.3.5 Analysis with Applications

Let’s now turn our attention into performance when running real applica-

tions. Figure 3.23(a) shows execution time for the 16-node CMP system,

for each topology/routing algorithm. Results are normalized for the 2D-

Mesh/deterministic case for each application. As we can see, execution time

when using the adaptive routing algorithm increases slightly in both topolo-

gies. In this configuration, components are switched off and on depending on

traffic conditions. Some ports are switched off and few cycles later turned

on to receive an incoming message (as the other links are busy). As the



3.3. Performance Evaluation 73

(a) 16-Node applications

(b) 32-node applications

Figure 3.23: Normalized execution time for different applications under differ-

ent topologies and routing algorithms.

link sometimes needs to wait several cycles to be woken up (as we described

before), some latency penalty is introduced. Also, avoiding turned off links

forces the traffic over non-minimal paths increasing the associated message

delay. Though, there is a trade-off between execution time (performance) and

power savings, the penalty is less than 2% more execution time on average in

the 2D-Mesh case. Although in the adaptive NR-Mesh the penalty is slightly

higher when comparing with the deterministic case in the same topology, the

execution time is always significantly lower than for the 2D-Mesh case.

Looking at the NR-Mesh (using either deterministic or adaptive routing),

we can see large reductions of execution time, up to 12% in Raytrace, when

compared with the 2D-Mesh. Regardless of the algorithm (deterministic or

adaptive), the NR-Mesh topology achieves better performance than the 2D-



74 Chapter 3. NR-Mesh Topology

Mesh topology.

Figure 3.23(b) shows the execution time for a 32-node CMP system. Re-

sults are similar to the previous case. On average, the NR-Mesh outperforms

the 2D-Mesh by 14% for the deterministic case, and by 8% for the adaptive

one. In addition, the adaptive version for 2D-Mesh topology increases execu-

tion time, by 2%. As we said before, even if the execution time in the adaptive

version of the NR-Mesh is increased, it is still better than the 2D-Mesh deter-

ministic case.

Now we compare the total NoC power consumption for each application

between both routing algorithms and topologies by combining: the average

energy consumption1 and the total execution time of applications. Figure

3.24 shows the results. Results are normalized to the 2D-Mesh deterministic

case for each application.

Large savings are obtained when using both the NR-Mesh topology and

the adaptive algorithm: 75% on average for the 16-Node CMP system. For

the 32-node CMP system results achieve a 69% improvement. Although the

2D-Mesh benefits greatly from the use of the adaptive algorithm (switching

off unused components), the NR-Mesh further increases improvements. For

instance, the Radix application with 16 nodes gets an additional benefit of

14% in energy reduction when compared with the 2D-Mesh case with adaptive

routing. Therefore, the flexibility provided by NR-Mesh significantly improves

the effectiveness of the power management algorithm.

3.3.6 Additional Performance Comparisons and Analysis

Now we focus on particular aspects of the NR-Mesh topology. First we analyse

the variability in performance and power consumption when changing the

number of injection ports. Then, we focus our attention into similar topologies,

comparing the total execution time of several applications.

We know that the potential of the NR-Mesh relies on the number of injec-

tion links and a proper power management mechanism using adaptive routing.

To verify this assumption, we simulate all the topologies shown in Figure 3.25.

1The energy consumption is calculated by adding the power consumed in the network

every cycle during the whole execution of the application.



3.3. Performance Evaluation 75

(a) 16-Node applications

(b) 32-node applications

Figure 3.24: Normalized energy consumption for different applications under

different topologies and routing algorithms.

We vary the topologies by removing an injection link from all the end nodes

until the NR-Mesh becomes a 2D-Mesh.

Performance Analysis with Hot-Spot Traffic

Now, we perform the same experiment as in the previous one but now varying

the number of injection links at the end nodes. We want to see the behavior

when varying the number of input ports. The final goal is to show the flexibility

provided when having 4 different injection ports.

Figure 3.26 shows performance achieved for a 16-node system and Figure

3.27 shows results for a 32-node system. When looking at the accepted traf-

fic, we can see that with fewer injection links, less traffic is accepted in the



76 Chapter 3. NR-Mesh Topology

(a) four link injection. (b) three link injection.

(c) two link injection. (d) one link injection.

Figure 3.25: Link injection variation in the NR-Mesh.

saturated scenarios. A special case is adaptive routing for 32 nodes, where

we achieve the best results with two internal links, although the percentage

difference is not significant, however, by consuming more power. Fortunately,

having more internal links, we are able to decrease power consumption due to

the high number of alternatives to route a packet, achieving a better trade off

between performance/power.

The power consumption is also worse in both 16 and 32-node system as we

decrease the number of injection links, most notable in the adaptive routing

case. Also, note that by having four or three injection links, the behavior is



3.3. Performance Evaluation 77

(a) Accepted traffic. Det. (b) Power consumption. Det.

(c) Accepted traffic. Adap. (d) Power consumption. Adap.

Figure 3.26: Accepted traffic and power consumption for 16-node systems.

Injection variation in a hot-spot scenario.

quite similar, and the same when having two or one injection links, although

the best option is always with four injection link.

Performance Analysis with Applications

Figure 3.28 and Figure 3.29, show a comparison between a NR-Mesh with 16

and 32 nodes, respectively, with four injection links and the same topology

with one injection link per node removed in every new figure (for both 16-

and 32-node systems). That is, graphs are shown for four links versus three

links, four links versus two links and four links versus one link. For every

comparison, we give a graph for the 16- and one for the 32-node system.

Comparing the last case (four links versus one link) for 16 and 32 nodes,

we can see how the execution time increases about 10% on average in a 16- and

32-node systems using deterministic routing, and 13% and 14% using adap-

tive routing, respectively. The energy consumption increases about 20% in

deterministic routing for both types of systems and 58% and 29% for adaptive



78 Chapter 3. NR-Mesh Topology

(a) Accepted traffic. Det. (b) Power consumption. Det.

(c) Accepted traffic. Adap. (d) Power consumption. Adap.

Figure 3.27: Accepted traffic and power consumption for 32-node systems.

Injection variation in a hot-spot scenario.

routing for 16 and 32 nodes, respectively. We can see that as the number of

internal links is lower, the NR-Mesh topology performs worse, as expected.

To clearly understand the behavior when we vary the number of injection

links, we provide Table 3.6 where we show how performance decreases (nor-

malizing results for 4 injection links in deterministic and adaptive routing).

Further Comparisons with Other Topologies

Finally, we compare the performance achieved when assuming different topolo-

gies and using the deterministic routing algorithms. Also, notice that in this

evaluation links/switches are not switched off. The goal of this evaluation is to

analyze the performance among similar topologies. In particular, the NR/2-

Mesh and the concentrated mesh topology (C-Mesh) are compared with the

NR-Mesh topology. Figure 3.30(a) shows the normalized execution time (rela-

tive to the NR-Mesh) for different applications and the average results achieved

for a 16-tile system. In all the applications, the use of the NR-Mesh topol-



3.3. Performance Evaluation 79

(a) Execution time comparison using

four and three injection links.

(b) Energy consumption comparison

using four and three injection links.

(c) Execution time comparison using

four and two injection links.

(d) Energy consumption comparison

using four and two injection links.

(e) Execution time comparison using

four and one injection link.

(f) Energy consumption comparison

using four and one injection link.

Figure 3.28: 16-node link injection variation in the NR-Mesh.

ogy helped in reducing execution time, on average by 14% when compared to

the NR/2-Mesh and by 20% when compared to the C-Mesh topology. In the

Apache application, execution time is reduced by 23% when compared with

the NR/2-Mesh and by 52% when compared with the C-Mesh topology. The

C-Mesh topology is the one with the lowest performance. Although it behaves



80 Chapter 3. NR-Mesh Topology

(a) Execution time comparison using

four and three injection links.

(b) Energy consumption comparison

using four and three injection links.

(c) Execution time comparison using

four and two injection links.

(d) Energy consumption comparison

using four and two injection links.

(e) Execution time comparison using

four and one injection link.

(f) Energy consumption comparison

using four and one injection link.

Figure 3.29: 32-node link injection variation in the NR-Mesh.

better in applications with low traffic requirements (e.g. Barnes), when traf-

fic requirements increase (e.g. Apache), the lower bisection bandwidth of the

C-Mesh behaves as a bottleneck and higher contention levels arise.

Figure 3.30(b) shows the same experiments but using a 32-tile system

(4 × 8). Although relative performance of the different topologies is often



3.3. Performance Evaluation 81

Deterministic Routing

Injection Links 16N Time 16N Power 32N Time 32N Power

4 Link 1 1 1 1

3 Links 1.02 1.11 1.05 1.11

2 Links 1.07 1.19 1.09 1.17

1 Links 1.09 1.22 1.10 1.18

Adaptive Routing

Injection Links 16N Time 16N Power 32N Time 32N Power

4 Link 1 1 1 1

3 Links 1.08 1.36 1.07 1.10

2 Links 1.12 1.56 1.08 1.22

1 Links 1.13 1.58 1.14 1.29

Table 3.6: 16- and 32-node execution degradation when removing injection

links from the NR-Mesh in real applications.

(a) 16 (4× 4) cores (b) 32 (4× 8) cores

Figure 3.30: Normalized execution time for Splash-2 applications and com-

mercial workloads using different topologies.

similar to the 16-tile case, we can observe that differences between NR-Mesh

and the other topologies are lower, on average a reduction of 8% and 13%

when comparing with the NR/2-Mesh and C-Mesh respectively. This can

be the result of a higher number of hops that messages need to take in the

NR-Mesh topology. However, still, in systems of this size the NR-Mesh topol-

ogy improves performance. Notice, however, that reducing performance is a



82 Chapter 3. NR-Mesh Topology

secondary goal of the NR-Mesh topology. The main benefit of the topology

is its ability to switch off components while exhibiting adaptiveness without

degrading performance, as we analyzed in the previous sections.

3.4 Conclusions

In this chapter we have presented a flexible network on-chip topology referred

to as NR-Mesh (Nearest-neighboR mesh). Each end node in this topology is

connected to four different switches, which enables significant benefits when

compared to other topologies. Using the NR-Mesh topology, the average la-

tency in the network decreases significantly. Network contention is also re-

duced. Other benefits are fault tolerance and more efficient collective com-

munication support. The benefit explored is the higher flexibility exhibited

by the topology to inject and receive messages, enabling power aware routing

algorithms.

We also proposed a power-gating mechanism that is able to switch off most

components in the network. When combined with the NR-Mesh topology large

energy savings are obtained. The NR-Mesh topology is fully exploited when

adaptive routing is used. Adaptive routing has been combined with the power

gating mechanism. To do that, power gating is used to switch on/off input

ports and links in the switches. Due to the low utilization, as the NR-Mesh

topology enables multiple alternative paths, energy savings (when compared

to the deterministic 2D-Mesh topology) are clearly superior (75% on average

for a 16-node CMP system reducing the execution time by 7% on average).

Similar results were obtained for 32-node CMP system.

To sum up, the NR-Mesh topology provides more flexibility than the 2D-

Mesh when both performance and power consumption become decisive. Most

of the topologies proposed so far have the end node connected to a single

switch, thus power consumption management becomes complex.

However, one of the potential drawbacks of the NR-Mesh topology is that

we cannot decouple the network in smaller subnetworks, although we are using

several injection ports.

In the next chapter we propose a new network on-chip topology with the

same philosophy, but in this case we are able to decouple the network in



3.4. Conclusions 83

several smaller ones, improving the NR-Mesh topology results. This additional

decoupling will provide more flexibility and an improved trade-off between

performance and power consumption.



84 Chapter 3. NR-Mesh Topology



Chapter 4

PC-Mesh Topology

In this chapter, we take as a reference design the concentrated mesh (C-Mesh)

network due to its good performance with low traffic loads (low latency).

Moreover, we address the C-Mesh topology capacity limitations in high traf-

fic loads with an alternative approach. We extend the C-Mesh topology in

order to obtain savings in power with low traffic loads, as in the C-Mesh

topology, and to avoid congestion with high traffic loads, achieving similar

bisection bandwidth as of the 2D-Mesh, but still exhibiting low end-to-end

latency. The proposed network on-chip topology is the parallel concentrated

mesh (PC-Mesh). The new topology, as its own name indicates, is composed

by different concentrated meshes. Specifically, we have four different concen-

trated meshes (or subnetworks). Each subnetwork is used only when necessary,

otherwise the subnetwork is in off state and every switch is powered off. The

key differentiating point is the fact the end node is connected to different sub-

networks, thus, having more opportunities for power savings and performance

optimization.

In order to achieve large power saving values, the PC-Mesh topology is

enriched by an injection (selection) algorithm at the network interface of each

node. The algorithm manages the parallel networks in order to maximize

power savings without compromising performance. Similar to the NR-Mesh

design, this algorithm works in parallel and closely with a distributed on/off

power saving mechanism at every switch. The complementarity of both mech-

anisms is the key to achieve large power saving values. One key differing point

85



86 Chapter 4. PC-Mesh Topology

(a) PC-Mesh (b) FTPC-Mesh

Figure 4.1: Switch IDs and Node IDs in PC-Mesh network (left side), and

Fault-Tolerant PC-Mesh network (right side).

from the previous NR-Mesh topology is the fact that now we have separate

parallel networks and that traffic can be routed through separate networks

without affecting/needing the other networks. In contrast, NR-Mesh repre-

sents a single network with multiple injection/ejection ports.

One important design point in a NoC system is also the routing algo-

rithm. The routing algorithm, highly coupled with the topology, determines

on every switch which output port every message must take in order to reach

its destination. We assume the use of DOR algorithm by default, but with

the new topology, every source-destination pair will have more than one al-

ternative X-Y path, thus providing higher fault-tolerance rates than Mesh

and C-Mesh topologies. Indeed, in order to maximize fault-tolerance, and

still using the DOR algorithm, two different configuration layouts will be pro-

vided for the PC-Mesh topology, each one achieving similar characteristics.

However, because of the different connectivity pattern, they will show differ-

ent fault tolerance degrees. Notice that NR-Mesh also allowed different XY

paths. However, now those paths will be totally decoupled and disjoint, thus

enhancing the fault-tolerant degree of the final network.



4.1. PC-Mesh 87

4.1 PC-Mesh

Figure 4.1(a) shows the PC-Mesh topology. End nodes are represented as cir-

cles and switches as squares. When focusing only on switches, they build four

disjoint subnetworks, thus, every switch belongs only to a single subnetwork.

In our example, four 2× 2 networks are build (each with a different link color

and pattern). Notice that switches of different subnetworks are not connected

between them. Although it is possible, short links would be used, it would

increase the radix of the switch quite significantly, with the known problems

this carries on [33]. Also, as we plan to switch off entire subnetworks, they

should be isolated from the other networks in order to get an efficient power

management strategy.

When focusing on end nodes, we can see that they have different connec-

tivity patterns. Nine nodes are connected to four switches and the remaining

ones to fewer switches. In particular, the top left-most node is connected

to a single switch and the remaining boundary nodes are connected to two

switches. This is the same pattern as the NR-Mesh topology. As end nodes

are connected to some switches, additional logic is required at the network

interface. The logic will implement an algorithm that selects the switch (net-

work) to use on a per packet basis (described in the next section). As the case

of NR-Mesh, this injection algorithm has negligible impact.

To increase the fault tolerance deegree of the network, we add a row and a

column of extra switches, leading to the topology shown in Figure 4.1(b). Now,

the four C-Mesh topologies are different in size and number of switches, how-

ever, every end node is connected now to the four parallel subnetworks. This

configuration will be referred to as Fault-Tolerant PC-Mesh (FTPC-Mesh). It

is important to note that the FTPC-Mesh configuration uses more switches

than end nodes, and at first sight this will render more power consumption.

However, it is necessary to note that these extra switches will be also dynam-

ically powered on and off, thus, used only when really needed.

4.1.1 Tile-Based Design

One important aspect in CMP systems is to use a tile-based design as it

significantly reduces the design effort. Thus, the proposed PC-Mesh topology



88 Chapter 4. PC-Mesh Topology

Figure 4.2: 16-tile design assumed for the PC-Mesh topology (left side) com-

pared to the C-Mesh one (right side).

must be adapted to a tile-based structure. Indeed, the PC-Mesh topology

is similar to the C-Mesh topology. The key differentiating points are the

connection of each end node to more than one subnetwork and the existence of

a switch on every tile (as the 2D-Mesh). Figure 4.2 shows a possible tile design

for the PC-Mesh topology compared to the C-Mesh one. The differences with

the C-Mesh topology lay on the extra links connecting end nodes to switches

and the higher number of switches. Overlapped links can effectively be routed

over the logic through higher metal layers.

4.1.2 Injection Algorithm

In this section we describe the injection algorithm assuming a 4× 4 PC-Mesh

topology. The goal of the algorithm is to adapt the use of subnetworks to the

current injection load of the end node. The four subnetworks are used in an

ordered way and the algorithm is used on a per packet basis. The logic has

been modeled in Verilog and results in terms of power, area and delay show

negligible overheads (compared to a switch) as was the case for the NR-Mesh

topology.

As XY routing is assumed and an end node now can be reached through

four subnetworks, now we need to compute the final switch destination through



4.1. PC-Mesh 89

Subnetwork X Y Switch Node (b3b2b1b0)

N0 1 1 3 1010

N1 0 1 2 1010

N2 1 0 1 1010

N3 0 0 0 1010

Table 4.1: Example for different switches which can reach the node 10.

each possible subnetwork. The labels of end nodes and switches are depicted

in Figure 4.1(a). End nodes are labeled from 0 to 15 and switches belonging

to the same subnetwork from 0 to 3. As can be seen, end node 10 can be

reached through switch 3 in subnetwork 0 (green), 2 in subnetwork 1 (blue),

1 in subnetwork 2 (red), and 0 in subnetwork 3 (black).

Upon reception of a packet to be injected into the network, the algorithm

proceeds with three stages computed in parallel. In the first stage, to compute

the switch destination reaching the end node, we derive the following equations

(assuming destination end node is coded in four bits b3b2b1b0, the network to

use is represented by four signals nx, and x is the subnetwork id):

X = b1 × ((n1|n3)× b0)

Y = b3 × ((n2|n3)× b2)

In particular, this equation represents the following cases:

XN0 = b1

YN0 = b3

XN1 = b1× b0

YN1 = b3

XN2 = b1

YN2 = b3× b2

XN3 = b1× b0

YN3 = b3× b2

As an example, Table 4.1 shows the destination switches for reaching node

10 (coded as 1010) through the different subnetworks.

This equation is compatible with the lower connectivity of the end nodes

along the first row and column of switches. A similar equation can be deduced



90 Chapter 4. PC-Mesh Topology

(a) Subnet N0 (S0 −D11) (b) Subnet N1 (S13 −D3)

(c) Subnet N2 (S14 −D4) (d) Subnet N3 (S7 −D9)

Figure 4.3: X-Y in every graph is followed from Sx to Dx represented with

the same color as the subnetwork, through switches of the same color.

for the FTPC-Mesh topology. Figure 4.3 shows an example of 4 pairs of

sources and destinations end nodes, each one taking a different subnetwork.

Every source follows X-Y through the subnetwork with the same color.

In parallel, at the second stage, the number of enqueued flits Fx for each

subnetwork is checked. A threshold register is used (Th) to compare with.

Several thresholds have been tested, and the chosen values are explained in

the evaluation section. For each subnetwork x, a Tx signal is computed rep-



4.1. PC-Mesh 91

resenting whether the threshold has been exceeded or not (Tx = Fx > Th).

This threshold is used for low injection rates of the node (when injection is

below 20%). For high injection rates (superior to 20%), the Th threshold is

considered to be zero (enabling all the networks to be used). This last value

was chosen after large simulation tests. We have experimented that when ex-

periencing injection rates superior to 20%, the PC-Mesh performs better with

this situation (enabling all subnetworks).

As different path lengths are available from the same source-destination

pair, depending on the subnetwork used1, in the third stage the end-to-end

node distances are computed. The manhattan distance (MDx) for each sub-

network is obtained by computing the distances along X and Y dimensions:

MDx = abs(Xx − XCx) + abs(Yx − Y Cx) where XCx and Y Cx are the co-

ordinates of the switch attached to the injection node for the particular x

subnetwork (these values are constant and, thus, there is no need to compute

them at every packet injection).

After the three parallel stages, at the fourth stage, the different man-

hattan distances are compared in order to prepare the selection of the final

subnetwork. To do this, three CMPx signals are computed, where manhat-

tan distances are compared (the CMPi signal just checks if the subnetwork i

provides equal or shorter path for the destination end node):

CMP1 = MD1 <= MD0

CMP2 = MD2 <= min(MD1,MD0)

CMP3 = MD3 <= min(MD2,MD1,MD0)

In the final stage, the subnetwork to use is computed, based on the CMPx,

Tx and Sx signals. The Sx signals indicate whether the attached switch in the

x subnetwork is powered on or not. SELx signals are computed appropriately

as follows:

SEL0 = (T0 × S0) + (SEL1 × SEL2 × SEL3)

SEL1 = SEL0 × T1 × CMP1 × S1

SEL2 = SEL1 × SEL0 × T2 × CMP2 × S2

SEL3 = SEL2 × SEL1 × SEL0 × T3 × CMP3 × S3

Networks are prioritized based on the previous equations. Notice that,

1As an example, end nodes 5 and 10 are one hop away through subnetwork 3, two hops

away through subnetworks 1 and 2, and three hops away through subnetwork 0.



92 Chapter 4. PC-Mesh Topology

in order to optimize the most frequent case (low injection rates), if T0 is set

(meaning enqueued flits for the first subnetwork is below the threshold), then

the remaining logic can be switched off.

With the designed algorithm, the PC-Mesh network will allow most of the

subnetworks to be switched off as traffic will be directed to only a subnetwork,

thus resembling a C-Mesh network for low traffic. For high traffic rates, the

PC-Mesh network will use an increasing number of subnetworks, thus, max-

imizing performance. The benefit of PC-Mesh lies on the fact of enabling

subnetworks only when necessary.

Therefore, the PC-Mesh topology will always use only one subnetwork in

low traffic scenarios. When the threshold is reached, then, all the subnetworks

will be enabled. The subnetwork used will depend on the number of flits

enqueued in the end node. Also, the injection path chosen will depend on the

distance to destination and the availability of the port, always prioritizing the

best scenarios, that is, more enqueued flits and shorter distances.

4.2 Power Management Algorithm

As done previously, now we combine the injection algorithm with a power

management algorithm. The goal is to switch off complete switches (not only

the ports of the switch) while they detect no traffic activity. Switches, however,

will cooperate with neighboring switches and attached end nodes. The basic

goal of the algorithm is to maximize the time switches and links are powered

down, thus enabling large savings in static power. The designed injection

algorithm will avoid, whenever possible, the use of powered down switches. We

focus exclusively on the switches, considering both, power and clock gating.

We elaborate the power management mechanism assuming a canonical

4-stage pipelined switch, virtual channel support, and stop&go flow control

implemented. The first stage (IB) of the switch allocates the flit in the input

buffer of the port, the second stage (RT) performs the XY routing computa-

tion, the third stage (VA SA) the virtual channel allocation and the switch

allocation, and the final stage the effective switch traversal (ST).

The switch has been enriched with the PML (power management control

logic). The PML is in charge of deciding when powering down the entire



4.3. Fault tolerance 93

Figure 4.4: Logic for the power management algorithm. The main difference

with the PML in the previous chapter is that here we power off the entire

switch.

switch and its attached clock. These actions are made locally within the

switch. Figure 4.4 shows the new logic. For switching off, PML measures the

number of cycles the switch is empty of flits (buffer use of every input port).

Upon reaching a threshold (Tswoff ) the switch is powered down as well as the

clock feeding the switch. The key difference with NR-Mesh now lies on the

fact that before we powered down at the port level and now we do it at the

switch level. This is because now we have decoupled networks.

The assumptions on cycles to power down and on components, as well

as the number of cycles to save power, are the same as the ones used in the

previous chapter for NR-Mesh. The PML logic is waken upon arrival of

a control signal from the upstream connected devices (neighbor switches or

attached end nodes). In order to overlap 2 of the 3-cycles needed to wake up

the switch, we have augmented the VA SA stage of the switch to trigger the

switchon signal, reaching the next switch at the same cycle (see Figure 3.16

for a description of the switch).



94 Chapter 4. PC-Mesh Topology

Figure 4.5: Faul tolerance comparison for the PC/FTPC-Mesh topologies. X-

Axis shows the number of faulty switches. Y-Axis shows the fault tolerance

percentage for each number of faulty switches in each topology.

4.3 Fault tolerance

One of the key properties of the PC-Mesh network is its fault-tolerance degree

(which should be higher than that of the NR-Mesh topology). Providing

parallel networks increases significantly the reliability of the entire network.

In this section we analyze this property by computing the probability that

one or more failed component (switches and the attached links) leave the end

nodes unconnected. We provide the analysis for both PC-Mesh and FTPC-

Mesh network topologies and assume the use of the DOR routing algorithm.

The hypergeometric distribution (which is a discrete probability distribu-

tion that describes the probability of k events in n draws) has been used to

obtain the fault tolerance for the PC-Mesh and FTPC-Mesh topologies. Fig-

ure 5.6 shows the obtained results for both versions of the topology: PC-Mesh

and FTPC-Mesh, when using 16 and 32 cores. As can be seen, FTPC-Mesh is

able to tolerate 3 failures as has four complete parallel networks. However, the

PC-Mesh version obtains only 75% of fault-tolerance for a single switch failure.

Indeed, having one end node connected to a single switch prevents achieving

100% fault tolerance coverage for the one-switch failure case. Even though,

when compared to the C-Mesh and 2D-Mesh topologies results are good, since

these topologies are not able to tolerate, assuming the DOR routing algorithm,



4.4. Performance Evaluation 95

a single switch failure in any case.

The figure also shows the graceful degradation of the fault tolerance for

the FTPC-Mesh network. For 6 switch failures, the network is still able to

achieve a level of 60% in fault tolerance.

4.4 Performance Evaluation

Now we evaluate the new topology and the injection algorithm at the network

interface. We compare the topology with the 2D-Mesh and C-Mesh topologies.

DOR is used in all the topologies and with the same number of virtual channels

(VCs). VCs are used to avoid protocol-level deadlocks induced by the cache

coherency protocols.

In all the topologies switches (including clock signal) are powered on and

off, following the algorithm provided previously. The number of cycles for

powering switches on and off has been obtained from [16]. The delay to power

on the switch again (including the clock signal) is fixed to 3 cycles. The

threshold to decide a switch needs to be powered off will depend on the current

traffic and will be applied on a per switch basis (distributed and local off

actions). In a first analysis we evaluate the robustness of the thresholds used

in the injection algorithm (Th) and the threshold used in the switches (Tswoff ).

This analysis will allow us to fix those thresholds. Once fixed, we analyze the

different topologies under a wide range of traffic, with synthetic traffic patterns

and real applications.

4.4.1 Threshold Analysis

The PC-Mesh network has two key threshold parameters. Th (shown in the

Figure 4.6 and Figure 4.7) is used on every end node to decide which sub-

network has to be used to inject a message. Whenever a queue reaches that

threshold the next subnetwork is set as a candidate to be used. This threshold

is analyzed under four different values: 1, 50, 100, and 200. The threshold

is measured as flit occupancy of the injection queue. The second parameter

(Tswoff ) relates to the switches being off. It indicates the number of cycles

the switch needs to have all its queues empty in order to be switched off. We

evaluate three values for this threshold: 1, 5, and 10 cycles. Figure 4.6 shows



96 Chapter 4. PC-Mesh Topology

throughput and power consumption when using uniform distribution of mes-

sages as the traffic pattern in a 4×4 and a 8×4 network. Twelve combinations

of threshold values have been explored. Each case is labelled with the Th value

followed by the Tswoff value.

(a) accepted traffic, 16 nodes (b) accepted traffic, 32 nodes

(c) power per flit, 16 nodes (d) power per flit, 32 nodes

Figure 4.6: Threshold analysis. Synthetic traffic patterns (uniform distribu-

tion of message destinations). Accepted traffic measured as flits/cycle/tile and

power consumption as W .

As can be seen, network throughput is largely insensitive to the threshold

values. Only marginal differences are seen for very high traffic loads. In any

case, the network is always ready to accept messages and the mechanism to

switch on the network components is efficient. Thus, no delays are incurred.

However, differences are much greater in terms of power consumption. Indeed,

for very low traffic conditions the threshold selection impacts power consump-

tion heavily. The Tswoff parameter is the one that impacts the highest in

power consumption in very low traffic conditions. Indeed, a threshold value of

1 allows to save the maximum power from switches. A threshold of 1 achieves

100% power reduction when compared with a threshold of 10. The value of 5

for Tswoff lies in between, as expected. For the Th value we can see that for



4.4. Performance Evaluation 97

(a) Execution time (b) Energy consumption

Figure 4.7: Different subnetwork thresholds cases. Results are normalized for

16- and 32-node system to the C-Mesh topology where Tswoff = 1. Then, Th

is shown for C-Mesh case and (Tswoff Th) are shown for PC-Mesh.

the same Tswoff value all perform the same both in performance and power

consumption.

One special case is the 0.32 injection rate point where power consumption

per flit slightly increases. At this point switches are toggling between on and

off modes thus incurring in a small penalty. Prior to this injection point only

the first sub-network is working and the rest of sub-networks are down. After

this critical injection point all the sub-networks are stable and working because

of the higher traffic demand.

From these results we could conclude the best threshold values would be

200 for Th and 1 for Tswoff . However, notice that the injected traffic is steady

and does not have burstiness. In order to better assess the correct threshold

values we also run an application (FFT) with different threshold values, and

compare the results with the C-Mesh network also with varying Tswoff values

(notice that C-Mesh has only one injection link thus there is no Th). Figure

4.7 shows the results for the FFT application, both the execution time and

the power consumption. As can be seen, the results with Tswoff set to 1 are

the ones that achieve the largest amount of power saving. However, for Th we

get differing results. Indeed, FFT consumes the same power in the network

with values of 50 and 100, however it consumes less power with a value of 200.

This is due to the burstiness of the application that leads to opening many

subnetworks thus having larger consumption levels. From these results, and

in combination with synthetic traffic results we conclude that a safe value for



98 Chapter 4. PC-Mesh Topology

(a) accepted traffic,

uniform

(b) power per flit,

uniform

(c) average latency,

uniform

(d) accepted traffic,

bit-complement

(e) power per flit,

bit-complement

(f) average latency,

bit-complement

(g) accepted traffic,

bit-reversal

(h) power per flit,

bit-reversal

(i) average latency,

bit-reversal

Figure 4.8: 16-node synthetic traffic comparison. Accepted traffic measured

as flits/cycle/tile, power consumption as W and latency as cycles.

Th is 200.

4.4.2 Synthetic Traffic Results

Once we set the threshold, we compare the PC- and FTPC-Mesh with the

2D- and C-Mesh. Figure 4.8 shows accepted traffic and power results for a

16-node system (4 × 4 topology) under synthetic traffic patterns (uniform,

bit-reversal, and bit-complement). Figures in the left show accepted traffic,

figures in the center show the power consumption per flit unit (namely, overall

power consumed divided by accepted traffic) and figures in the right side show

the average latency.

First thing to note is the higher throughput of both PC-Mesh and FTPC-



4.4. Performance Evaluation 99

Mesh, in the three scenarios. The PC-Mesh and FTPC-Mesh topologies ex-

hibit shorter paths and provide parallel paths not available in the 2D-Mesh

network, thus lowering contention in high traffic conditions. On the other

hand, the limited bisection bandwidth of the C-Mesh topology limits its max-

imum throughput, low below the 2D-Mesh network (except for the bit-reversal

traffic pattern where is almost equal).

Now, looking into the power consumption figures, we can see how PC-Mesh,

FTPC-Mesh and C-Mesh topologies exhibit a similar power consumption rate

per accepted traffic unit. The 2D-Mesh topology achieves worse results due

to its higher number of switches traversed. Also, at high injection rates, both

PC-Mesh and FTPC-Mesh obtain in some cases a small reduction in power

when compared with the 2D-Mesh and C-Mesh topologies. Anyway, we can

conclude that PC-Mesh and FTPC-Mesh exhibit the same degree of power

efficiency (per delivered flit) as C-Mesh. It is worth mentioning that this does

not mean all the topologies deliver the same amount of traffic (as seen in the

previous figures).

The results for the latency shows how the 2D-Mesh is the worst topology

in low traffic conditions, although the C-Mesh performs still worse in high

traffic scenarios. Then, looking at the figures it is clear that PC/FTPC-Mesh

is the most suitable topology due to its adaptability for every situation.

Similar results among different networks for a 32-node system (4×8 topol-

ogy) have been achieved (shown in Figure 4.9), although there is a general

drop in accepted traffic. Also, power and latency increases for every topology.

4.4.3 Application Execution Time and Power Results

In this section we evaluate application’s performance, and power savings,

when real applications are run. Figure 4.10 shows normalized execution time

and network energy consumption of different applications when using differ-

ent topologies for the 16- and 32-node configurations. The execution time is

reduced when using the C-Mesh, PC-Mesh, FTPC-Mesh. On average, a re-

duction of 20% is achieved when compared with the 2D-Mesh topology. This

is mainly due to the reduction in the path length. The take away message here

is that performance of the application is not sacrificed in the new topologies.

The benefit comes also with the network energy consumption values. These



100 Chapter 4. PC-Mesh Topology

(a) accepted traffic,

uniform

(b) power per flit,

uniform

(c) average latency,

uniform

(d) accepted traffic,

bit-complement

(e) power per flit,

bit-complement

(f) average latency,

bit-complement

(g) accepted traffic,

bit-reversal

(h) power per flit,

bit-reversal

(i) average latency,

bit-reversal

Figure 4.9: 32-node synthetic traffic comparison. Accepted traffic measured

as flits/cycle/tile, power consumption as W and latency as cycles.

results demonstrate the on/off mechanism can be used effectively in the new

topologies, together with the injection algorithm at the network interfaces.

Average results indicate savings of 20% when compared with the 2D-Mesh

topology.

4.4.4 Results with Overloaded Systems

The previous results clearly indicate the PC-Mesh topology behaves like the

C-Mesh network. This is due to the low injection rates of the tested applica-

tions. In order to test the network in a much stressed scenario, and to identify

the potentials of the proposed networks, we evaluate every topology with a

background synthetic traffic in addition to the application’s traffic. This traf-



4.4. Performance Evaluation 101

(a) 16-cores, execution time (b) 16-cores, energy consumption

(c) 32-cores, execution time (d) 32-cores, energy consumption

Figure 4.10: Application execution time and network energy consumption.

fic model represents a more stressed system where multiple applications will

be running at the same time. In such scenario the network will need to facil-

itate much higher bandwidth. Figure 4.11 shows the performance and power

consumption values for both 16-node and 32-node systems. Background uni-

form traffic of 12% (for 16-node systems) and 6% (for 32-node systems) of

total injection rate is injected. As can be seen, the C-Mesh network is not

able to run efficiently the application’s traffic. Application’s execution time

is severely impacted and in most cases, more than doubled. On average,

execution time is tripled. For power consumption values, on average, the C-

Mesh network now achieves a 50% higher consumption values than the other

topologies. When comparing 2D-Mesh with the PC-Mesh topology, and with

the FTPC-Mesh one, the 2D-Mesh (normalized result) achieves higher exe-

cution time and larger power consumption values. Therefore, the PC-Mesh

topology is the one that achieves better performance. In particular, PC-Mesh

reduces execution time and power consumption by 20% on average for both

16- and 32-node systems.

Another interesting point is when different traffic classes can be mapped

on different networks in PC-Mesh. Indeed, this is a key property that is not



102 Chapter 4. PC-Mesh Topology

(a) 16-cores, execution time (b) 16-cores, energy consumption

(c) 32-cores, execution time (d) 32-cores, energy consumption

Figure 4.11: Application execution time and network energy consumption with

a background of 12% (16-node) and 6% (32-node) of synthetic traffic.

available in 2D-Mesh and C-Mesh topologies. To demonstrate the potential,

we have analyzed the impact of mapping a congested traffic on a PC-Mesh

subnetwork while injecting the full range of traffic through other networks.

Figure 4.12 shows the performance and the energy consumption in hot-spot

scenarios for a 16-node configuration using uniform traffic. As can be seen, the

mapping of the hotspot traffic on a particular PC-Mesh subnetwork allows to

attain much larger performance levels, even with similar energy consumption

values (per accepted flit). In particular, the 2D-Mesh network reduces the

maximum accepted traffic by 160% and C-Mesh by 40%, compared with the

figure 4.8(a) (uniform traffic without a hot-spot scenario). The PC-Mesh

topology does not get impacted by the hotspot scenario. Similar results have

been obtained also for the 32-node configuration. These results open the door

to a smart use of the four subnetworks available in the PC-Mesh network

on-chip topology.



4.5. NR-Mesh versus PC-Mesh topology 103

(a) Accepted traffic, hotspot (b) power per flit, hotspot

Figure 4.12: Accepted traffic and power consumption in hot-spot scenarios.

16-node system. Accepted traffic measured as flits/cycle/tile and power con-

sumption as W .

4.5 NR-Mesh versus PC-Mesh topology

Now in this section, we provide results comparing the NR- and PC-Mesh

topologies. We show results for synthetic traffic and real applications, both of

them using 16- and 32-node systems.

The purpose of this section is to demonstrate which topology performs

better. Once we obtain the results, we can continue improving the best one.

However, this is left for the next chapter.

4.5.1 Uniform Synthetic Traffic

First, looking at the accepted traffic (Figure 4.13(a)(b)) with 16 and 32 nodes,

respectively, we can see how the PC-Mesh outperforms the NR-Mesh topology

when a good quantity of traffic arises. When the injected traffic is low, both

network on-chip topologies are able to accept the same traffic. However, in

Figure 4.13(c)(d) for 16 and 32 nodes, respectively, the power consumption

is clearly higher in the NR-Mesh in almost every injected traffic range. This

is due to PC-Mesh provides separated networks that are able to power down

themselves when not needed, while the NR-Mesh finds more difficult to power

down entire components. Besides, Figure 4.13(e)(f) shows how the latency

degrades as the injected traffic increases in the NR-Mesh, compared with the

PC-Mesh topology.



104 Chapter 4. PC-Mesh Topology

(a) 16-cores, accepted traffic (b) 32-cores, accepted traffic

(c) 16-cores, power consumption (d) 32-cores, power consumption

(e) 16-cores, latency (f) 32-cores, latency

Figure 4.13: Accepted traffic, power consumption and latency comparison

between NR- and PC-Mesh topologies using uniform synthetic traffic.

4.5.2 Real Applications

Figure 4.14 shows a similar reasoning in real applications as in the previous

section. We can see that the execution time is very similar in both topologies

due to the low traffic in the SPLASH-2 applications. However, the energy

consumption is much higher in the NR-Mesh topology. As we saw in the pre-

vious section, the power consumption is much lower in almost all traffic ranges



4.6. Conclusions 105

(a) 16-cores, execution time (b) 16-cores, energy consumption

(c) 32-cores, execution time (d) 32-cores, energy consumption

Figure 4.14: Normalized application execution time and normalized network

energy consumption comparison between NR- and PC-Mesh topologies using

real applications.

for the PC-Mesh topology. That is the reason why the energy consumption

(average power consumption added every cycle during the application’s exe-

cution) is much lower in the PC-Mesh network. Although the traffic is low

in real applications, the power consumption is always higher in the NR-Mesh

network topology.

4.6 Conclusions

We have proposed two alternative topologies, PC- and FTPC-Mesh, to address

the increasing network power consumption in CMP systems. The proposed

topologies rely on extending the connectivity of the nodes to different subnet-

works. Parallel networks allow an efficient on/off mechanism to cooperatively

work with an injection algorithm at the network interface. Switches are pow-

ered down in a distributed manner and subnetworks are used based on the

traffic injection requirements. When using the concentrated mesh as a sub-

network, network latencies are kept low, when compared with the 2D-Mesh

topology.

Experimental results with both synthetic traffic patterns and real appli-



106 Chapter 4. PC-Mesh Topology

cations, using 16- and 32-node system configurations demonstrated the high

benefits of the new topologies, achieving large savings in network power con-

sumption without increasing path lenghts nor execution time of applications.

As a result of the comparison between NR-Mesh and PC-Mesh topologies,

in the next chapter we continue studying the PC-Mesh one exploiting its flexi-

bility, improving some additional properties, as its fault tolerance, but without

adding extra resources (switches/links) as we performed in the FTPC-Mesh

topology to increase the fault tolerance.



Chapter 5

HPC-Mesh Topology

In the previous chapters we have proposed the NR-Mesh topology and the

PC-Mesh topology. Also, we showed the superior performance of PC-Mesh

when compared with the NR-Mesh. The benefit comes from the fact of using

parallel networks and having disjoint paths through those networks.

Now, we propose a new topology for NoCs that, similar to PC-Mesh, it

offers reduced hop count latencies as the C-Mesh network and enables the use

of alternative paths when necessary but improving the fault tolerance of the

PC-Mesh topology . The new topology will be homogeneous, all the nodes are

connected to the same number of switches, in contrast to the PC-Mesh that

can be considered a non-homogeneous topology. Therefore, the new topology

will have the same fault tolerance degree as the FTPC-Mesh, but having the

same number of switches and nodes like in PC-Mesh.

As done in previous chapters, we show an injection algorithm that allows

every end node to decide the best subnetwork to use in order to achieve low

end-to-end latencies and minimized power consumption values. We explain

results extracted from detailed simulations including all the possibilities when

faulty components are present. Also, we show a possible implementation for

the new topology in a 3D structure with a relative minimal effort, that is,

without adding complex routing algorithms or a prohibitive number of extra

resources.

107



108 Chapter 5. HPC-Mesh Topology

(a) Connection pattern between

switches (external links)

(b) Connection pattern between both

switches and end nodes (internal

links)

Figure 5.1: HPC-Mesh topology.

5.1 HPC-Mesh

Figure 5.1 shows the HPC-Mesh topology: (a) the connection pattern between

switches in the same subnetwork or concentrated mesh and (b) the connection

pattern between switches and end nodes. Every end node is connected to four

switches each one belonging to a disjoint network. When focusing only on

switches, they build four disjoint networks, thus, every switch belongs only to

a single network. In our example, four 2× 2 subnetworks are build (each with

a different color). Notice that switches of different networks are not connected

between them. As we plan to switch off entire subnetworks, they should be

isolated from the others in order to get an efficient power management (as was

done for the PC-Mesh).

When focusing on end nodes, Figure 5.1.(b), we can see that they have

the same connectivity pattern. Every node is connected to 4 switches, each

one in a different subnetwork. The four end nodes located in the north-west

quadrant of the chip are connected to the four switches of the same quadrant.

The rest of end nodes follow the same approach in their quadrant. As an

end node is connected to four switches, the logic for the injection of packets



5.1. HPC-Mesh 109

(a) PC-Mesh (b) Fault-tolerant PC-Mesh

Figure 5.2: PC-Mesh topology.

will implement an algorithm that selects the switch (subnetwork) to use on a

per packet basis (described later). The injection algorithm will have a similar

overhead of the previous one for PC-Mesh topology, thus, having a negligible

impact.

The PC-Mesh topology is shown again in Figure 5.2 for comparison pur-

poses. The major problem of the previous topology is the connectivity pat-

tern having several nodes connected to less than 4 subnetworks and decreasing

fault tolerance. For example, the worst case scenario is when the top left-most

switch fails. The entire network will be inoperable because of the first end

node is only attached to the first switch.

To provide higher fault tolerance degree, the PC-Mesh topology requires

an additional row and column of switches. In addition to this extra overhead,

the HPC-Mesh topology solves this problem by a smart connection pattern

between end nodes and switches (Figure 5.1).

An overview of the overall topology is shown in Figure 5.3.

5.1.1 Tile-Based Design

One important aspect in CMP systems is to use a tile-based design as it sig-

nificantly reduces the design effort. Thus, the proposed HPC-Mesh topology



110 Chapter 5. HPC-Mesh Topology

Figure 5.3: HPC-Mesh overview. Octagons are the end nodes and squares the

switches.

must be adapted to a tile-based structure. Figure 5.4 shows a possible tile-

design for the HPC-Mesh taking into account both the external links (Figure

5.4.(a)) and the internal links (Figure 5.4.(b)). As can be seen, tiles exhibit

an homogeneous design for both the external and internal links. Upper metal

layers must be used to route properly those links. External links are homoge-

neous (have the same layout pattern) at tile level. However, internal links are

homogeneous (have the same layout pattern) at 2 × 2 tile level. Anyway, we

can use the mirror effect for building neighbour tiles.

5.1.2 Injection Algorithm

In this section we describe the injection algorithm assuming a 4×4 HPC-Mesh

topology. The goal of the algorithm is to adapt the use of subnetworks to the

current injection load of the end node. The four subnetworks are checked in

an ordered way and the algorithm is used on a per packet basis.

As XY routing is assumed and an end node now can be reached through

four subnetworks, we need to compute the final switch destination through

each possible subnetwork. However, as can be seen in Figure 5.1, each end

node is attached to four switches with the same location in their subnetwork.



5.1. HPC-Mesh 111

(a) Connection pattern between

switches (external links)

(b) Connection pattern between

switches and end nodes (internal

links)

Figure 5.4: HPC-Mesh topology tile design.

For instance, the top left-most node is attached to switches located at the

first row and column of its subnetwork. This is different from the PC-Mesh

network where switch IDs to reach the same end node were different at each

subnetwork.

In the algorithm, the number of enqueued flits Fx for each subnetwork

is checked, that is, for every injection port at every network interface. By

default, the subnetwork with the lowest number of enqueued flits is taken.

However, to save power in low traffic conditions a threshold value is used

(Th). Several thresholds have been tested, and the chosen value was 200 flits

because it presented the best trade-off between power and performance. It

means that the four networks can only be used when the flits enqueued in

the first subnetwork (F0) overcomes the Th value. In this situation, we open

the remaining subnetworks and use them in an ordered way (we analyzed

the effects of gradually opening every subnetwork obtaining worse results).

Otherwise, when F0 < Th, the chosen subnetwork is the first one and the rest

of the networks are powered off (once all the enqueued flits are injected, that

is, Fx becomes 0). Figure 5.5 shows the injection algorithm.

With the designed algorithm, the HPC-Mesh network will allow most of



112 Chapter 5. HPC-Mesh Topology

function injection-algorithm(F0, F1, F2, F3) : subnetwork

var s: subnetwork

var th: threshold

begin

s = 0

if (F0 >= th) then

if (F1 <= F0) then s = 1

if (F2 <= F1) then s = 2

if (F3 <= F2) then s = 3

else s = 0

return s

end function

Figure 5.5: Injection algorithm for the HPC-Mesh topology.

the subnetworks to be switched off as the traffic will be directed to only the

first subnetwork, thus resembling a C-Mesh network for low traffic minimizing

the power consumption. However, for high traffic rates the HPC-Mesh network

will use the four subnetworks by prioritizing queues with less number of flits,

thus, maximizing performance and power.

5.2 Fault tolerance

One of the key properties of the HPC-Mesh network is its fault tolerance

degree. Providing parallel networks increases significantly the reliability of

the entire network. In this section we analyze this property by computing

the probability that one or more failed component (switches and links) leave

end nodes unconnected. This study assumes the faulty switches are identified

during the initialization phase. We provide the analysis for 2D-Mesh, C-Mesh,

PC-Mesh and HPC-Mesh network topologies and assume the use of the DOR

routing algorithm.



5.2. Fault tolerance 113

5.2.1 Faulty subnetworks

Table 5.1 shows the fault tolerance for the 2D/C-Mesh networks and for the

PC/HPC-Mesh subnetworks. As can be seen, the 2D-Mesh and C-Mesh do

not support any failure. Otherwise, the PC-Mesh does not support a failure

in the first subnetwork. In contrast, the HPC-Mesh support failures in up to 3

subnetworks. Notice that any subnetwork could perform as network 0 because

of the homogeneous design of the HPC-Mesh.

All the faulty combinations where subnetwork 0 is affected means PC-Mesh

will be impacted. On the contrary, the homogeneous design of HPC-Mesh

allows the system to keep connectivity. For 2D-Mesh and C-Mesh cases, as

there is no any redundancy in each subnetwork, the case for one failure on

each subnetwork leads to every configuration to fail.

FNS 0 1 2 3 0-1 0-2 0-3

2D-M N N/A N/A N/A N/A N/A N/A

C-M N N/A N/A N/A N/A N/A N/A

PC-M N Y Y Y N N N

HPC-M Y Y Y Y Y Y Y

FNS 1-2 1-3 2-3 0-1-2 0-2-3 1-2-3 0-1-2-3

2D-M N/A N/A N/A N/A N/A N/A N/A

C-M N/A N/A N/A N/A N/A N/A N/A

PC-M Y Y Y N N Y N

HPC-M Y Y Y Y Y Y N

Table 5.1: Faulty Network Support. The used acronyms in the table are FNS

(Faulty Network Support) which shows the failed networks separated by a

dash. For instance, 1-2 means they are failed components in subnetworks

1 and 2. N/A means Not Applicable (never supported) and Y (supported

failures) or N (unsupported failures).

5.2.2 Faulty switches

As done in the previous chapter, the hyper-geometric distribution has been

used to obtain the fault tolerance for both PC-Mesh and HPC-Mesh topologies.

Figure 5.6 shows the obtained results for both versions: PC-Mesh and HPC-

Mesh using 16 and 32 cores, respectively. As shown in the figure, the HPC-

Mesh topology is able to tolerate up to 3 failures as it has four complete



114 Chapter 5. HPC-Mesh Topology

Figure 5.6: Fault tolerance comparison for PC-Mesh and HPC-Mesh using 16

and 32 nodes.

disjoint networks.

However, the PC-Mesh topology obtains a degree of 75% of fault tolerance

for a single switch failure. Indeed, having one end node connected to a single

switch prevents achieving 100% fault tolerance coverage for the one-switch fail-

ure case, although when compared with the 2D-Mesh and C-Mesh topologies

results are also good, since these topologies are not able to tolerate, assuming

the DOR routing algorithm, a single switch failure in any case.

Figure 5.6 shows the graceful degradation for the fault tolerance in the

PC-Mesh and the HPC-Mesh topologies. The results (as explained before)

demonstrate how the HPC-Mesh topology achieves a higher degree of fault

tolerance than the PC-Mesh one.

5.3 Performance Evaluation

In this section we evaluate the new topology. We compare the HPC-Mesh

topology with the 2D-Mesh, C-Mesh and PC-Mesh ones. DOR is used in

all of them with the same number of Virtual Channels (VCs), only one in

this case. Virtual Networks (VNs) are used to avoid protocol-level request-

reply deadlocks induced by the cache coherency protocols (for the scenarios

evaluated with applications). The same scenarios of the previous chapter are



5.3. Performance Evaluation 115

(a) accepted traffic, uniform (b) power per flit, uniform

(c) accepted traffic, bit-complement (d) power per flit, bit-complement

(e) accepted traffic, bit-reversal (f) power per flit, bit-reversal

Figure 5.7: 16-node synthetic traffic comparison (accepted traffic measured as

flits/cycle/tile).

used, please refer to that part for details of each scenario.

5.3.1 Synthetic Traffic Results

Figure 5.7 shows the performance and power results for a 16-tile system (4×
4 topology) under synthetic traffic patterns (uniform, bit-reversal, and bit-

complement). Figures a, c, and e show accepted traffic and figures b, d, and

f show the power consumption per flit unit (namely, overall power consumed

divided by accepted traffic).

First thing to note is the higher throughput for both HPC-Mesh and PC-

Mesh, in the three scenarios. The HPC-Mesh and the PC-Mesh topologies



116 Chapter 5. HPC-Mesh Topology

exhibit shorter paths and provide parallel paths not available in the 2D-Mesh

network, thus lowering contention in high traffic conditions. Besides, the HPC-

Mesh network throughput is higher than the PC-Mesh for high traffic rates as

all the end nodes have four disjoint subnetworks, not provided in the PC-Mesh.

On the other hand, the limited bisection bandwidth of the C-Mesh topology

limits its maximum throughput, low below the 2D-Mesh network (except for

the bit-reversal traffic where is almost equal).

Now, looking into the power consumption figures, we can see how all the

topologies (except the 2D-Mesh which performs worse) exhibit the same power

consumption rate per accepted traffic unit in low traffic conditions. When the

traffic increases, the HPC-Mesh usually performs better than the other topolo-

gies. It is worth mentioning that this does not mean all the topologies deliver

the same amount of traffic (as seen in the previous figures). However, at all

rates the HPC-Mesh usually helps to obtain good results in power consump-

tion.

Figures 5.8 show the same results but now for 32-node systems (4 × 8

topologies). Both HPC-Mesh and PC-Mesh throughput is increased for the

different traffic patterns when compared with the 2D-Mesh and C-Mesh topol-

ogy. Also, as in the 16-node case, the power per flit unit delivered in the

HPC-Mesh topology remains low when compared to the 2D-Mesh and similar

with the other topologies.

5.3.2 Real Application Results

Now we evaluate application’s execution time, and energy savings, when real

applications are run. Figures 5.9 and 5.10 show normalized execution time

and network energy consumption for different applications when using differ-

ent topologies for 16- and 32-Node system configurations, respectively. Results

are normalized to the 2D-Mesh case. We can see in either case how the ex-

ecution time is reduced when using the C-Mesh, PC-Mesh and HPC-Mesh.

This is mainly due to the reduction in the path length. Another benefit comes

when looking into the network energy consumption values. Here we can also

notice a significant reduction again when using C-Mesh, PC-Mesh and HPC-

Mesh. These results demonstrate the low traffic conditions in the SPLASH-2

applications leading the PC-Mesh and HPC-Mesh topologies to perform as the



5.3. Performance Evaluation 117

(a) accepted traffic, uniform (b) power per flit, uniform

(c) accepted traffic, bit-complement (d) power per flit, bit-complement

(e) accepted traffic, bit-reversal (f) power per flit, bit-reversal

Figure 5.8: 32-node synthetic traffic comparison (accepted traffic measured as

flits/cycle/tile).

(a) 16-cores, execution time (b) 16-cores, energy consumption

Figure 5.9: 16-node execution time and network energy consumption compar-

ison.

C-Mesh topology almost all the time, on average.



118 Chapter 5. HPC-Mesh Topology

(a) 32-cores, execution time (b) 32-cores, energy consumption

Figure 5.10: 32-node execution time and network energy consumption com-

parison.

Figure 5.10 shows results for a 32-Node system, where the same trends are

achieved, thus exhibiting good scalability values.

Thus, the main conclusion from this evaluation, and taking as a reference

the same evaluation performed in the previous chapter, is that the HPC-Mesh

is able to behave as the PC-Mesh, at least, in low traffic conditions. Therefore,

from performance and power point of view, there are no significant differences

and gains. Notice that the aim of the HPC-Mesh topology is to enhance fault

tolerance of the PC-Mesh topology and not enhancing its performance.

5.3.3 Performance Under Faulty Networks

As fault tolerance is the driving factor of HPC-Mesh, in this section we evaluate

its performance in the presence of network failures. We evaluate both PC-Mesh

and HPC-Mesh (PC and HPC in the figures). NF in the figures means when

there is no failure at all, and xF means when x subnetworks have failed. A

subnetwork fails when one of its components fails, e.g., a switch or a link. We

only compare the PC-Mesh and HPC-Mesh because of 2D-Mesh and C-Mesh

do not support any component failure combination.

To perform a fair comparison between both topologies, we take into account

all the possible failures. Notice that in the PC-Mesh, the first subnetwork can

fail and the accepted traffic in this case is 0, because the node 0 is dependent

to this network and it only has one injection link going to this subnetwork.

For either 1 faulty network, 2 faulty networks and 3 faulty networks we obtain

the average accepted traffic taking into account all possible failures, that is,



5.3. Performance Evaluation 119

(a) accepted traffic, 1 network failure (b) accepted traffic, 2 networks failure

(c) accepted traffic, 3 networks failure

Figure 5.11: 16-node fault tolerance support. HPC-Mesh versus PC-Mesh

(accepted traffic measured as flits/cycle/tile).

we average the accepted traffic when one subnetwork fails (0, 1, 2 or 3), 2

subnetworks fail (0-1, 0-2, 0-3, 1-2, 1-3 or 2-3) and 3 subnetworks fail (0-1-2,

1-2-3 or 1-2-4). Obviously, there is nothing to do when the 4 subnetworks fail.

Figure 5.11 shows performance results when different number of subnet-

works have failed. The first thing to notice is the higher performance of

HPC-Mesh when compared to PC-Mesh. This is noticeable when several sub-

networks have failed. For the 0F case no differences are present.

Also, we can notice that 1F and 2F cases do not affect performance of HPC-

Mesh until the injected traffic is high. This does not happen with PC-Mesh

as one failure in the first subnetwork makes the topology unpractical.

For the 3F case, although the HPC-Mesh performance gets more degraded,

it still delivers acceptable throughput numbers, much higher than the ones

achieved by PC-Mesh topology. Notice that the HPC-Mesh topology supports

a failure in the first network (see table 5.1) in contrast with the PC-Mesh one.

Figure 5.12 shows the results with faulty components when simulating 32-node



120 Chapter 5. HPC-Mesh Topology

(a) accepted traffic, 1 network failure (b) accepted traffic, 2 networks failure

(c) accepted traffic, 3 networks failure

Figure 5.12: 32-node fault tolerance support. HPC-Mesh versus PC-Mesh

(accepted traffic measured as flits/cycle/tile).

systems. Although the accepted traffic is lower for both topologies, the HPC-

Mesh topology still achieves very good results compared with the PC-Mesh

topology.

To conclude this section, it is worthy to say that very good results have

been obtained in terms of fault tolerance with the HPC-Mesh in contrast with

other topologies, and all of this avoiding using complex routing algorithms.

5.4 Towards a 3D mesh structure

As a final effort in this chapter, and due to the homogeneity provided by

the HPC-Mesh topology, now we propose and discuss how the HPC-Mesh

network can be extended to a 3D stacking scenario. By providing a new

dimension, end-to-end latency and power consumption can be further reduced.

The trend is to implement the additional links in the vertical dimension by

using through silicon vias (TSVs), although there are several problems to



5.4. Towards a 3D mesh structure 121

consider (manufacturing costs and thermal effects).

Figure 5.13 shows the structure for a 3D HPC-Mesh implementation (HPC-

3DMesh). As can be seen the vertical links, implemented as TSVs, are a

quarter of the switches used in the 2D mesh plane (see also [20] and [41]).

TSVs are only used for the first subnetwork. In contrast of other solutions,

a complex routing algorithm is not needed. We just need to know whether

the destination is in another layer, then the dimension order routing algorithm

(Z-X-Y) is used through subnetwork 0. Using this implementation we simplify

the network design and we reduce its manufacturing costs.

The routing algorithm can be implemented at the network interface. By

simply comparing the Z coordinate of the source node and the destination

node, the network interface can know whether the first subnetwork or any

other one can be used. In case both nodes are placed in different planes (Z

components differ) then subnetwork 0 is used. If not, the usual power-aware

injection algorithm of HPC-Mesh is used. Notice that subnetwork 0 is never

switched off, thus packets crossing the Z dimension will always find the network

available and ready for transmission.

We evaluate the performance using the HPC-Mesh as a 3D network on-

chip. Although TSVs are faster than horizontal links, we take the conservative

approach where vertical links still need two cycles (as the horizontal links).

We leave the power consumption estimation for a future contribution. Notice

that this section intends to show a preliminary implementation of a 3D HPC-

Mesh version, which could help to understand the potential of the HPC-Mesh

design in this new environment.

Figure 5.14 shows the performance comparison between 2D and 3D HPC-

Mesh structures. Figure 5.14.(a) shows results for different Splash-2 real ap-

plications normalized to the 2D case (4x8 HPC-Mesh). By using a new dimen-

sion, execution time is reduced by 9% on average in the HPC-3DMesh topol-

ogy. Although the improvement seems not to be as expected, this is due to the

low traffic injected by the applications (we have observed that the overall link

utilization in Splash-2 applications is usually around 10% on average in most

cases). Looking at Figure 5.14.(b), we can see the same comparison when us-

ing synthetic traffic with a uniform distribution of message destinations. This

time we compare the average latency for a packet through the network. Here,



122 Chapter 5. HPC-Mesh Topology

Figure 5.13: HPC-Mesh 3D structure.

we can see that at low traffic rates the latency does not vary much. However,

when a moderate traffic arises the latency reduction in the HPC-3DMesh is

very significant because the HPC-Mesh 2D has roughly double latency for

moderate and high traffic rates. In Figure 5.14.(c) we run the same appli-

cations, but now we add synthetic traffic, specifically 0.06 flits/tile/cycle as

a background component. Provided results are very promising for the HPC-

3DMesh, achieving on average up to 57% reduction in execution time and,

therefore, achieving large power consumption savings.

Then, as a conclusion we can state the HPC-3DMesh exhibits better per-

formance than the HPC-Mesh using a limited number of vertical links (TSVs)

and the most important, using a simple algorithm benefiting from the HPC-

Mesh implementation just adding a quarter of possible TSVs.

5.5 Conclusions

We have proposed in this chapter an homogeneous parallel concentrated net-

work (HPC-Mesh) which uses a tiny injection algorithm to inject packets

through four alternative concentrated networks. We study the impact of the

HPC-Mesh when compared to other topologies. This topology exhibits a good

trade-off between performance, power consumption and fault tolerance sup-

port, using an intelligent injection algorithm capable of managing every con-

centrated subnetwork dynamically. The HPC-Mesh supports a high degree

of fault tolerance in contrast with the other studied topologies, and using a



5.5. Conclusions 123

(a) real applications (b) synthetic traffic

(c) real applications + synthetic

traffic

Figure 5.14: HPC-Mesh versus HPC-3DMesh.

simple routing algorithm (Dimension Order Routing).

Also, the HPC-Mesh can perform as a 3D structure with a reasonable

cost by using a quarter of vertical TSV links and, therefore, reducing thermal

effects.

Although we provide notable improvements compared with the PC-Mesh

topology, we can expect an increase in latency when high traffic arises because

of the connection pattern. As an example, the central nodes do not have a

direct connection between them (See Figure 5.3). To overcome this problem,

in the next chapter we design an hybrid topology between PC-Mesh and HPC-

Mesh, the HNPC-Mesh topology, using the best properties from each topology

at every time.

Besides, in the last chapter with also compare our contributions with the

2D-Mesh with express channels (a virtual express channels approach is pro-

vided in [19]).



124 Chapter 5. HPC-Mesh Topology



Chapter 6

HNPC-Mesh Topology

In this final chapter we propose the final topology, HNPC-Mesh, which in-

cludes the best properties from the previous two topology proposals, PC-Mesh

and HPC-Mesh. Also, we compare the proposed variants of the PC-Mesh and

C-Mesh topologies against the 2D-Mesh with express channels, taking the 2D-

Mesh network on-chip topology as a reference. First of all, we compare the

execution time and energy consumption when using real applications. Later,

we compare the same parameters but adding background synthetic traffic.

6.1 HNPC-Mesh

The HNPC-Mesh topology (Homogeneous/Non homogeneous Parallel Con-

centrated Mesh) is a hybrid design between the PC-Mesh and HPC-Mesh

topology. The purpose of this implementation is clear: provide fault tolerance

and the maximum possible performance at the same time.

One drawback in the PC-Mesh topology is the lack of support for fault-

tolerance. However, the PC-Mesh achieves the best performance among all the

topologies studied in this thesis. On the other hand, the HPC-Mesh topology

is able to provide full fault tolerance support without adding extra resources.

Although this last topology overcomes the PC-Mesh, when high traffic arises,

the HPC-Mesh can provide worse results in some cases. As we will see later,

the HPC-Mesh provides higher execution time than the PC-Mesh when high

traffic arises. This is mainly due to the connection pattern, because, as an

125



126 Chapter 6. HNPC-Mesh Topology

example, the central nodes need 3 hops to connect between them instead of

one as in the PC-Mesh topology.

To prevent the HPC-Mesh from providing lower perfomance when com-

pared to the PC-Mesh, we extend the HPC-Mesh topology and add the in-

ternal links used in the PC-Mesh topology. The injection algorithm includes

a multiplexor which will decide whether the PC-Mesh or HPC-Mesh topol-

ogy is used, choosing the injection algorithm described for each one in the

last chapters. Therefore, the new topology, HNPC-Mesh should be seen as

an overlapping of both previous topologies, where the injection links of both

topologies can be used and are selected at the injection. The final topology

will behave as the PC-Mesh or as the HPC-Mesh depending on the traffic and

on the presence of failures.

6.2 Tile Based Design

Figure 6.1(a)(b)(c) shows the tile based design for internal links (those con-

necting the end nodes to the switches) for the PC-Mesh, HPC-Mesh, and the

new topology, the HNPC-Mesh topology. Figure 6.1(d) shows the connection

pattern in a tile base design for the external links, which is the same for all

the topologies.

Basically, the HNPC-Mesh merges the internal links of both PC-Mesh

and HPC-Mesh topologies. Because of the negligible impact of the selection

function, the idea is to use the PC-Mesh injection algorithm and, in case a

switch fails, changing to the HPC-Mesh selection function. As only one of the

selection functions is working, the internal links not used are powered off.

In this way we provide lower message latencies and fault tolerance at the

same time. Notice that we add only seven internal links per tile, one to connect

to the local switch in the tile, three to connect to the switches following the

PC-Mesh pattern, and three to connect to the switches following the HPC-

Mesh pattern. Notice that three of such links will always be powered off, one

set or the other depending if there is a permanent failure or not and depending

on the traffic load.



6.3. Injection algorithm 127

(a) PC-Mesh tile based design.

Internal links.

(b) HPC-Mesh tile based design.

Internal links.

(c) HNPC-Mesh tile based design.

Internal links.
(d) PC/HPC/HNPC-Mesh.

External links.

Figure 6.1: PC-Mesh, HPC-Mesh and HNPC-Mesh tile based design.

6.3 Injection algorithm

As mentioned before, the logic is in charge of choosing between the PC- or

HPC-Mesh only enabling the proper internal links. By default, the PC-Mesh

is enabled because of its performance properties. However, when a compo-

nent fails, the logic enables the internal links for the HPC-Mesh topology and

disables the links for the PC-Mesh network. See Figure 6.2.

In the next section we perform a further evaluation of the different topolo-

gies. In that evaluation we will identify the shortcoming of the HPC-Mesh



128 Chapter 6. HNPC-Mesh Topology

function HNPC injection-algorithm()

if (!fail) then

switch off HPC-Mesh internal links

switch on PC-Mesh internal links

PC-Mesh injection-algorithm()

else

switch off PC-Mesh internal links

switch on HPC-Mesh internal links

HPC-Mesh injection-algorithm()

end if

end function

Figure 6.2: Injection algorithm for the HNPC-Mesh topology.

network in terms of performance and, thus, the need of the HNPC-Mesh de-

sign. Notice that in the evaluation performed, the HNPC-Mesh network would

work as the PC-Mesh, thus achieving the maximum performance but keeping

the fault-tolerance properties of HPC-Mesh.

6.4 Performance Analysis

In addition to further compare PC-Mesh and HPC-Mesh, in this section we

also compare with the 2D-Mesh network with express channels (we term this

topology EC-Mesh). The express channels are added to the 2D-Mesh as shown

in Figure 6.3 (blue color), every two switches. In particular, every switch is

now connected to 2-hop neighbors along each direction and dimension. The

algorithm used is DOR (as the rest of studied topologies in this chapter),

prioritizing the use of long channels when possible. That is, when a message

is headed to a destination that is more than one hop away trough a direction,

then the express channel is selected as candidate for routing. On the contrary,

if the message destination is one hop away, then the normal channel is selected

as candidate. Thus, one-hop channels are used for local traffic and express

channels are used for non-local traffic.

In this topology we can also use the power management logic described



6.4. Performance Analysis 129

Figure 6.3: 2D-Mesh topology with express channels.

in previous chapters. Indeed, we do the evaluation by assuming that logic on

every switch.

6.4.1 Real Applications

Parameters of the simulations are the same as of previous chapters. Indeed, we

evaluate 16- and 32-core systems, for the different topologies analyzed so far:

2D-Mesh (as a baseline), C-Mesh, PC-Mesh, HPC-Mesh, and the 2D-Mesh

with express channels, which we refer to EC-Mesh.

Looking at the performance numbers in Figure 6.4, we can see how the

use of the express channels is sufficient to reduce the execution time of ap-

plications to the levels achieved by the proposals in this thesis. Indeed, for

16-core systems, the execution time is almost identical. However, for 32-core

systems performance is impacted and the use of express channels does not

solve the execution time problem of the 2D-Mesh completely, mainly due to

some applications, such as BARNES in this case.

However, when looking at the energy consumption plots, we can clearly see

totally different numbers. The express channel approach consumes far more

energy than the 2D-Mesh and, of course, than the proposals in this thesis.

40% more energy is wasted when using express channels. This extra energy



130 Chapter 6. HNPC-Mesh Topology

(a) 16-cores, execution time (b) 16-cores, energy consumption

(c) 32-cores, execution time (d) 32-cores, energy consumption

Figure 6.4: Application execution time and network energy consumption com-

parison. Results normalized to the 2D mesh case.

is mainly due to the extra buffers and extra links required at each port of the

2D-mesh with express channels. As high-radix switches are used, more buffers

are needed.

6.4.2 Real Applications with Background Traffic

Now (Figure 6.5) the network is loaded with additional synthetic background

traffic, made of a uniform distribution of message destinations, and with an

injection rate of 6% and 12% more messages for 16- and 32-node systems,

respectively. As in previous chapters the C-Mesh topology is the one achieving

the worst results when high traffic arises. The 2D-Mesh with express channels

performs similar with background traffic with respect to the other topologies,

except to the HPC-Mesh, when we can see how the execution time is larger

than the one achieved even for the 2D-Mesh in both analyzed system sizes,

16-core and 32-core. Therefore, from a performance point of view, the HPC-

Mesh network, in a overloaded configuration, presents higher execution times.

This is mainly due to the higher latencies of this topology for certain pair of

end nodes. For instance, the end nodes located in the center of the topology

do not have a direct link connection between them, thus, hurting performance.

From the energy point of view, we see clearly that this effect does not



6.5. Conclusions 131

(a) 16-cores, execution time (b) 16-cores, energy consumption

(c) 32-cores, execution time (d) 32-cores, energy consumption

Figure 6.5: Application execution time and network energy consumption com-

parison with background traffic.

translate to higher energy consumption levels for the HPC-Mesh network.

Indeed, we see comparable results as without background synthetic traffic.

Therefore, in the previous examples, the HNPC-Mesh can be mapped into the

PC-Mesh, and only it would map into the HPC-Mesh in presence of failures.

This is the motivational example that triggered us to design the HNPC-

Mesh topology, the need to develop a high performance and power efficient

on-chip network topology, but having a good degree of fault tolerance.

6.5 Conclusions

It is clear that the best solution here is to combine the PC-Mesh and the

HPC-Mesh topologies to create the HNPC-Mesh network on-chip topology.

As said before, the hybrid design allows to perform very fast without wasting

a large amount of power consumption and, besides, is able to tolerate up to

three failures in different subnetworks.

To summarize this chapter, we can see how the EC-Mesh topology performs

better than the rest of the topologies, however, the power consumption in this

topology is prohibitive and higher than the one dissipated by the HNPC-Mesh

topology. Therefore, the best trade-off between performace, power consump-



132 Chapter 6. HNPC-Mesh Topology

tion and fault tolerance is for the HNPC-Mesh topology. All these properties

convert the Homogeneous/Non-homogeneous Parallel Concentrated Mesh in

the best topology we have designed in this thesis.



Chapter 7

Conclusions

In this final chapter, we present the conclusions of this dissertation, the con-

tributions to the research domain and a brief list of research directions that

will be addressed in the future. Finally, we also expose the results in terms

of industry internships and publications and other contributions derived from

the work presented in this dissertation.

7.1 Conclusions

The following is a list of conclusions extracted from the current dissertation.

These conclusions helped to obtain the contributions and scientific publica-

tions that are at the core of the document.

• Current high-performance multicore solutions pledge for tile-based de-

signs. Tile-based design is gaining momentum for newer Chips Multi-

processor (CMPs) solutions. As the expected trend is to include more

and more cores inside a chip, these solutions rely on networks-on-chip

(NoCs) to handle all the communication traffic between cores.

• 2-Dimensional mesh and the proposed topologies are appealing for CMPs.

Manufacturers prefer planar mesh topologies due to their simplicity for

routing purposes and because they fit very well the chip layout. Al-

though other topologies are also interesting, from the point of view of

performance, design tools are not suitable (e.g. fat-tree topologies) or

133



134 Chapter 7. Conclusions

the tile-based design enforce an homogeneous and regular structure of

the network.

• It is imperative to find NoC solutions that offer at the same time flexibil-

ity and high perfomace, lower power consumption, and high redundancy

leading to fault tolerance support. These are critical key aspects in the

NoC domain. 2-Dimensional meshes offer an excellent flexibility, but

they suffer from poor scalability, affecting the performance and power

consumption on the network on-chip. Our proposals are able to scale

better than the 2-Dimensional meshes achieving much better results in

terms of performance, power consumption and fault tolerance support.

• Future challenges in CMPs will demand dynamic mechanisms in the chip

so to adapt to such challenges. Challenges identified in the document

are (1) to improve the performance obtaining power consumption savings

using mechanisms which are able to power on/off unnused components

in the network, (2) the use of several injection links in each end node to

be able to achieve the previous goal, (3) to decouple the network on-chip

topologies in several smaller subnetworks to obtain more power saving

opportunities when low traffic arises and improving the fault tolerance

support, and (4) the implementation of a 3-Dimensional structure with

a relative minimal effort.

The previous conclusions from the dissertation put the research performed

in perspective so to obtain the intended goals. In the next section the spe-

cific contributions of the current dissertation are highlighted, and conclusions

derived from the proposals are provided.

7.2 Contributions

The overall contribution of the dissertation is to design a network on-chip

topology able to provide a good trade-off between performance and power

consumption providing a high degree of fault tolerance at the same time.

This overall achievement has been obtained with a step by step procedure

described next, improving every proposed topology at the same pace the dis-

sertation has been progressing. Constant to all the proposals, every node has



7.2. Contributions 135

up to four injection ports through different switches and has up to four re-

ception ports also through different switches. The contributions and derived

conclusions are:

• NR-Mesh (Nearest neighboR Mesh) network on-chip topology. This

topology improves the performance and power consumption by saving

several hops, and by, powering off unnused components (using a power

management logic), thus, avoiding congested situations. Besides, pro-

vides a good degree of fault tolerance.

• PC-Mesh (Parallel Concentrated Mesh) network on-chip topology. This

topology provides four completely decoupled parallel concentrated net-

works. It is able to power on/off entire subnetworks depending on the

traffic conditions with a new power management logic. The performance

and power savings are improved respect to the NR-Mesh, and the PC-

Mesh also improves the fault tolerance support.

• HPC-Mesh (Homogeneous Parallel Concentrated Mesh) network on-chip

topology. This topology mainly improves the fault tolerance property

with respect to the previous one. This is achieved at the same time it

significantly reduces the number of switches than the FTPC-Mesh (Full

tolerant PC-Mesh version) requires.

• HPC-Mesh provides a 3-Dimensional structure with a relative minimal

effort, reducing the vertical links by 75% and, therefore, reducing the

thermal effects due to the homogeneous positioning of the links.

• HNPC-Mesh (Homogeneous/Non-homogeneous Parallel Concentrated Mesh)

network on-chip topology. This topology is a hybrid design between both

PC-Mesh and HPC-Mesh. It is able to provide a good trade-off between

performance and power consumption in high traffic conditions as the

PC-Mesh network, while providing the same fault tolerance degree as

the HPC-Mesh with no extra resources added.

• All the topologies have been evaluated and compared against a baseline

design as the 2D-Mesh and C-Mesh topologies. Also, the best perfor-

mant network has been compared against other variations like the 2D



136 Chapter 7. Conclusions

Mesh with extra express links. In all the cases, results provided positive

margins for the proposed topologies in this thesis.

• All the topologies use simple routing algorithms, mainly deterministic

XY algorithm, and in some cases basic adaptive routing algorithms,

using on/off link status as an input for routing decisions. All these

algorithms present no design challenges nor overheads.

• All the topologies use very simple injection algorithms based exclusively

on queue occupancy thresholds. In all the cases, delay and area overhead

are negligible.

7.3 Future Work

There are several research directions that can be taken out of this dissertation.

This is a brief list of possible efforts for the future:

• To improve the 3D study for the HPC-Mesh topology providing results

such as the power consumption. A similar direction is the analysis of

thermal effects and manufacturing costs when dealing with other routing

algorithms in addition of DOR routing.

• To study adaptive routing algorithms for the PC/HPC/HNPC-Mesh

topologies and compare them with the deterministic DOR algorithm.

• To use different subnetworks of the topologies for different purposes. For

instance, coherence protocols require different virtual channels to avoid

protocol-level deadlocks. We could conceive a parallel network where

different traffic classes are mapped into different subnetworks.

• Analyze the effect of higher/lower number of subnetworks in the different

proposed topologies. Different performance/power numbers would arise.

7.4 Industry Internships and Related Publication

During the research period of this dissertation, two internships in Sun Mi-

crosystems (later became Oracle) have been achieved. Both were used to



7.4. Industry Internships and Related Publication 137

propose new topologies and new evaluations of topologies. In particular, cross-

bars, rings and meshes were evaluated in the presence of real applications and

different design parameters. Also, the first proposal of this dissertation (NR-

Mesh) was co-developed during the first internship.

The following list enumerates the papers related with this dissertation that

have been published, or are under review process, in specialized conferences or

journals. We outline for each contribution the novelties that are part of this

dissertation.

• Camacho, J., Flich, J., Duato, J., Eberle, H., Gura N. and Olesinski, W.

A performance evaluation of 2D-mesh, ring, and crossbar interconnects

for chip multi-processors. In 2nd International Workshop on Network

on Chip Architectures (NoCArc 2009), pages 51 -56.

The previous paper represent a study between Crossbars, Rings and 2D-

Mesh topologies. This work allowed the setting of the simulation infrastructure

for the analysis of the different topologies when running applications on top

of SIMICS simulator.

Next papers are all related with the NR-Mesh topology, first using small

crossbars within the end node (not included in the thesis), and finally using

a simple injection algorithm (implemented using different tools with Verilog)

decreasing the complexity and, then, obtaining negligible impact in the final

node.

• Camacho, J., Flich, J. and Duato, J. Multiples Puertos de Inyección en

una Red en Chip. In Actas XXII Jornadas de Paralelismo (JP2011),

pages 273-278.

• Camacho, J., Flich, J., Duato, J., Eberle, H and Olesinski, W. A power-

efficient network on-chip topology. In Proceedings of the Fifth Inter-

national Workshop on Interconnection Network Architecture: On-Chip,

Multi-Chip (INA-OCMC 2011), pages 23-26.

• Camacho, J., Flich, J., Duato, J., Eberle and H. Olesinski, W. Towards

an Efficient NoC Topology through Multiple Injection Ports. In Pro-

ceedings of the 14th EUROMICRO Conference on Digital System Design

(DSD 2011), pages 165-172.



138 Chapter 7. Conclusions

Next papers are related with the PC-Mesh topology and its improvements.

They mainly study the performance, power consumption using a power man-

agement logic, fault tolerant degree, and simulations with synthetic traffic and

Splash-2 real applications with/without background traffic.

The second paper improves the first one mainly in terms of fault tolerance

support, achieving the same degree using much less resources.

• Camacho, J., Flich, J., Roca A., Duato, J. PC-Mesh: A Dynamic Parallel

Concentrated Mesh. In Proceedings of the International Conference of

Parallel Processing (ICPP 2011), pages 642-651.

• Camacho, J. and Flich, J. HPC-Mesh: A Homogeneous Parallel Con-

centrated Mesh for Fault-Tolerance and Energy Savings. In Proceedings

of the Seventh ACM/IEEE Symposium on Architectures for Networking

and Communications Systems (ANCS 2011), pages 69-80.

These papers are summarize of the work done in the dissertation and be-

long to national and international conferences.



Bibliography

[1] Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M.K.

Martin, Daniel J. Sorin, Mark D. Hill and David A. Wood, ”Evaluating

Non-deterministic Multi-threaded Commercial Workloads,” in Workshop

on Computer Architecture Evaluation Using Commercial Workloads.

[2] J.D. Balfour and W. J. Dally, ”Design Tradeoffs for Tiled CMP On-Chip

Networks,” in International Conference on Supercomputing, June 2006.

[3] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,

and M. Zagha, ”A Comparison of Sorting Algorithms for the Connection

Machine CM-2,” in Proceedings of the Symposium on Parallel Algorithms

and Architectures, pp. 3-16, July 1991.

[4] E. Carara, F. Moraes, And N. Calazans, ”Router architecture for high-

performance NoCs,” in Proceedings of the 20th annual conference on In-

tegrated circuits and systems design (SBCCI), 2007.

[5] C.-H. Chao, K.-Y. Jheng, H.-Y. Wang, J.-C. Wu, and A.-Y. Wu, ”Traffic-

and thermal-aware run-time thermal management scheme for 3D NoC

systems,” in ACM/IEEE Int. Symp. Networks-on-Chip (NoCS), pp. 223-

230, May 2010.

[6] X. Chen and L.-S. Peh, ”Leakage Power Modeling and Optimization in

Interconnection Networks,” in International Symposium on Low Power

Electronics and Design, pages 90-95, August 2003.

[7] W. J. Dally, ”Express Cubes: Improving the Performance of k-ary n-

cube Interconnection Networks,” in IEEE Transactions on Computers,

40(9):10161023, September 1991.

139



140 Bibliography

[8] W. J. Dally and B. Towles. ”Principles and Practices of Interconnection

Networks,” in Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2003.

[9] W. J. Dally, ”Virtual-channel flow control,” in IEEE Transactions on

Parallel and Distributed Systems, 3(3):194205, March 1992.

[10] J. Duato, ”A New Theory of Deadlock-Free Adaptive Routing in Worm-

hole Networks,” in IEEE Transactions on Parallel and Distributed Sys-

tems, 1993.

[11] J. Duato, S. Yalamanchili, and Ni. L. M, ”Interconnection Networks:

An Engineering Approach,” in Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2002.

[12] J. Flich, D. Bertozzi, ”Designing Network On-Chip Architectures in the

Nanoscale Era,” in Chapman & Hall/CRC computational science series,

528 pages, 2011.

[13] B. Grot, J. Hestness, S. Keckler, O. Mutly, ”Express Cube Topolo-

gies for On-Chip Interconnects,” in International Symposium on High-

Performance Computer Architecture, 2009.

[14] K. C. Hale, B. Grot, S. W. Keckler, ”Segment Gating for Static Energy

Reduction in Networks-on-Chip,” in International Workshop on Network-

on-Chip Architectures, December 2009.

[15] W.-H. Hu, S. E. Lee, and N. Bagherzadeh, ”DMesh: a Diagonally-Linked

Mesh Network-on-Chip Architecture”, in First International Workshop

on Network on Chip Architectures Workshop, 2008.

[16] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and

P. Bose, ”Microarchitectural Techniques for Power Gating of Execution

Units,” in International Symposium on Low Power Electronics and De-

sign, pages 32-37, August 2004.

[17] A. Kahng, B. Li, L.-S. Peh and K. Samadi, ”ORION 2.0: A Fast and Ac-

curate NoC Power and Area Model for Early-Stage Design Space Explo-



Bibliography 141

ration,” in Design Automation and Test in Europe (DATE), Nice, France,

April 2009.

[18] J. Kim, J. Balfour, W. Dally, ”Flattened Butterfly Topology for On-chip

networks,” in International Symposium on Microarchitecture, December

2007.

[19] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, ”Express Virtual Chan-

nels: Towards the Ideal Interconnection Fabric,” in International Sympo-

sium on Computer Architecture, pages 150-161, May 2007.

[20] C. Liu, L. Zhang, Y. Han, X. Li, ”Vertical interconnects squeezing in sym-

metric 3D mesh Network-on-Chip,” in ASP-DAC 2011: 357-362, 2011.

[21] I. Loi, F. Angiolini, and L. Benini, ”Supporting vertical links for 3d

networks-on-chip: Toward an automated design and analysis flow,” in

Proceedings of the Nano-Net Conference, pp. 23-27, 2007.

[22] P. S. Magnusson et al., ”Simics: A full system simulation platform,” in

Computer, 35(2):50-58, 2002. IEEE Computer Society Press.

[23] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Almadeen, K.

Moore, M. Hill and D. Wood, ”Multifacet, a general execution-driven mul-

tiprocessor simulator (GEMS) toolset,” in Computer Architecture News,

September 2005.

[24] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano, ”Adding Slow-

Silent Virtual Channels for Low-Power On-Chip Networks,” in Interna-

tional Symposium on Networks-on-Chip, pages 23-32, April 2008.

[25] H. Matsutani, M. Koibuchi, H. Amano, and D. Wang, ”Run-time Power

Gating of On-Chip Routers Using Look-Ahead Routing.,” in Asia and

South Pacific Design Automation Conference, pages 55-60, January 2008.

[26] A. Mello, L. Copello, O. Gehm, N. Laert, V. Calazans, Evaluation of

Routing Algorithms on Mesh Based NoCs, in Technical Report Series,

No. 040. Faculty of Informatics, Pontif́ıcia Universidade Católica do Rio

Grande do Sul, Brasil, May 2004.



142 Bibliography

[27] G. D. Micheli , L. Benini, ”Networks on Chips: Technology and Tools

(Systems on Silicon),” in Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, 2006.

[28] S. Noh, V.-D. Ngo, H. Jao and H.-W. Choi, ”Multiplane Virtual Channel

Router for Network-on-Chip Design”, in First International Conference

on Communications and Electronics (ICCE), 2006.

[29] V. F. Pavlidis and E. G. Friedman, ”3-D Topologies for Networks-on-

Chip,” in IEEE TVLSI, October 2007.

[30] D. Pham et al., ”Overview of the Architecture, Circuit Design, and Phys-

ical Implementation of a First-Generation Cell Processor,” in IEEE Jour-

nal of Solid-State Circuits, 41(1):179196, January 2006.

[31] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, ”Gated-

Vdd: a Circuit Technique to Reduce Leakage in Deep-Submicron Cache

Memories,” in International Symposium on Low Power Electronics and

Design, pages 90-95, July 2000.

[32] S. Pasricha, ”Exploring serial vertical interconnects for 3D ICs,” in Pro-

ceedings of the 46th Annual Design Automation Conference, pp. 581-586,

ACM, 2009.

[33] A. Pullini et al, ”Bringing NoCs to 65nm,” in IEEE Micro Magazine, Vol.

12, Nr. 5, pp. 75-85, IEEE Press, September 2007.

[34] V. Soteriou and L.-S. Peh, ”Dynamic Power Management for Power Op-

timization of Interconnection Networks Using On/Off Links,” in Inter-

national Symposium on High Performance Interconnects, pages 15-20,

August 2003.

[35] S. Vangal et al., ”An 80-Tile 1.28 TFLOPS Network-on-Chip in 65nm

CMOS,” in International Solid-State Circuits Conference, pages 9899,

February 2007.

[36] E. Waingold et al., ”Baring It All to Software: RAWMachines,” in IEEE

Computer, 30(9):86-93, September 1997.



Bibliography 143

[37] R. Weerasekera, L. Zheng, D. Pamunuwa, and H. Tenhunen, ”Extend-

ing systems-on-chip to the third dimension: performance, cost and tech-

nological tradeoffs,” in Proc. IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, pp. 212-219, 2007.

[38] D. Wentzlaff et al., ”On-Chip Interconnection Architecture of the Tile

Processor,” in IEEE Micro, 27(5):1531, September/October 2007.

[39] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and L. T. Smit.

”An energy-efficient reconfigurable circuit-switched network-on-chip,” in

IPDPS05: Proceedings of the 19th IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS 2005) - Workshop 3, page 155.1,

Washington, DC, USA, 2005. IEEE Computer Society.

[40] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, A., ”The SPLASH-

2 programs: characterization and methodological considerations,” in 22nd

Annual Int. Symposium on Computer Architecture, Italy, June 22 - 24,

pp. 24-36, 1995.

[41] T. C. Xu, P. Liljeberg, and H. Tenhunen, ”A study of through silicon via

impact to 3d network-on-chip design,” in Proceedings of the 2010 Inter-

national Conference on Electronics and Information Engineering (ICEIE

2010), August 2010.

[42] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph, ”Three-dimensional

chip-multiprocessor run-time thermal management,” in IEEE Transac-

tions on Computer-Aided Design, vol. 27, no.3, 2008.

[43] A.E. Zonouz et al. ”A Fault Tolerant NoC Architecture for Reliability

Improvement and Latency Reduction,” in 2009 Euromicro Conference

on Digital System Design, 1999.

[44] 45nm Nangate opensource library available at

http://www.si2.org/openeda.si2.org/projects/nangatelib.

[45] Broadband Engine Processor available at

http://en.wikipedia.org/wiki/Cell (microprocessor).



144 Bibliography

[46] Encounter RTL Compiler available at

http://www.cadence.com/products/ld/rtl compiler/pages/default.aspx

[47] Intel Teraflops Research Chip available at

http://www.intel.com/pressroom/kits/teraflops.

[48] Place and Route from cadence available at

http://www.cadence.com/products/pages/default.aspx.

[49] Power Compiler from Synopsys available at

http://www.synopsys.com/tools/implementation/rtlsynthesis/pages/

powercompiler.aspx.

[50] Single-chip Cloud Computer available at

http://techresearch.intel.com/articles/Tera-Scale/1826.htm.

[51] Source Routing (Linktionary term) available at

http://www.linktionary.com/s/source routing.html.

[52] Tile-Gx Processors Family available at

http://www.tilera.com/products/TILE-Gx.php.

[53] TOP500 Supercomputing Sites available at http://www.top500.org.


