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Abstract: Sustainable and green materials have been studied in dye and pigment productions to
reduce their environment impacts from being produced and applied. Although natural dyes are
an excellent choice to move from agrowaste, some improvements must be made before they are
applied given their poor fastness. One way of improving natural dye properties is their adsorption
into nanoclay structures to give hybrid pigments. This work used tubular halloysite and laminar
laponite to adsorb and stabilize natural copper chlorophyll. With a statistical design of experiments,
we observed interactions between synthesis factors, such as pH, ionic strength, and surfactant or
silane modification. Cool hybrid pigments with high TSR (%) values and a wide color range were
obtained by using dispersions with only distilled water at room temperature. Successful chlorophyll
adsorption on both nanoclay surfaces took place by XRD and DTA analyses. The maximum natural
dye absorption for both nanoclay types took place under acid conditions, pH 34, and in the presence
of mordant. The TSR (%) improved by the silane pH interaction, and halloysite hybrid pigments
obtained higher TSR values than the laponite ones. Finally, a wide chromatic green color range
was obtained with the surfactant modification in both nanoclays, and the color fastening was also
improved in the hybrid pigments application. The samples generated with 10% of hybrid pigments
from both nanoclays and an Epoxy bioresin, show higher colorfastness than the sample with the
natural chlorophyll, due to the nanoclays—dye interaction and protection.

Keywords: halloysite; laponite; nanopigments; chlorophyll; statistical design of experiments; statisti-
cal analysis; UV-VIS; NIR; CIELAB; properties

1. Introduction

Circular and sustainable economy is a trending topic in product and process design.
Industries and researchers are working to develop green products, and natural dyes are an
example of such [1]. Their production is growing in South America, and their extraction
from agricultural waste is successfully achieved [2,3]. Some of the advantages of natural
fibers are they are non-toxic, they possess antioxidant activity, their medical applications
and biodegradation capability, and they pose no environmental issues [4-6]. Chlorophyll is
one of the most abundant biological pigments, and it abounds in eubacteria and plants [7].
Due to their properties, chlorophyll dyes (CDs) have been used in biomedical applica-
tions [8], complex applications as solar cell dyes [9,10] and supramolecular structures [11].
However, CDs are unstable to retaining their antioxidant activity when exposed to oxygen,
high temperature, or light environments [9,10].

One way of improving the stability of natural dyes like chlorophyll is their adsorption
into inorganic structures like nanoclays. Laponite nanoclays have proven effectiveness in
cationic dye adsorption. Laponite is a synthetic disk-shaped hectorite silicate of approxi-
mately 25 nm in diameter and 1 nm thickness. Particle aggregation and gel generation de-
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pend on dispersion conditions, such as concentration, pH, temperature, etc., [12]. Laponite
can be used as a host for natural dyes to protect them. It has been demonstrated to adsorb
up to 93% of anthocyanin from jambolan fruit extract. In addition, anthocyanin-laponite
hybrid pigments have antioxidant properties and can be used as colorimetric indicator
material at pH > 7 [13]. The adsorption capacity of this nanoclay can change depending
on the dispersion conditions, as observed in other nanoclays like montmorillonite. Solvent
nature, pH [14], surface modification with surfactants [15], mordant salts or silane [16] can
be used to modify the nanoclay adsorption behavior [17].

Other nanoclay structures have been studied to adsorb and stabilize organic com-
pounds like dyes. Halloysite is a type of hollow tubular nanostructure mineral clay. This
nanoclay chemical structure is similar to kaolin, but is rolled into tubes. Because of its
tubule shape, halloysite does not stack together and can be easily exfoliated by steer-
ing. Halloysite clay is transparent and does not significantly change polymer composites’
transparency [18]. Halloysite nanotubes boost the properties of fluorescent dyes by their
encapsulation [19]. Functionalized halloysite has been fabricated as a novel hybrid clay
mineral for dye removal. This nanoclay can absorb cationic or anionic organic compounds
owing to their surface properties, which make it an excellent adsorbent used for the removal
of different dyes from wastewater [20].

With halloysite hybrid pigments, nanolevel dispersions of dyes provide polystyrene
with enhanced luminescence [21]. The hybrid materials that result from the adsorption
of dyes into modified nanoclays have been used to modify optical [22], mechanical, fire
or barrier properties of different polymer matrices with successful results, depending on
nanoclay particle exfoliation [23-28].

Total solar reflectance (TSR) is the method that measures a surface coating’s reflective
capability. Urban areas show higher air temperatures than rural areas. The use of the
so-called “cool paints” or “cool coating”, i.e., with high TSR (%) values on building surfaces,
is a countermeasure to mitigate this urban heat island [29]. In addition, “cool coatings”
can decrease the sensitive heat load to the atmosphere and thermal storage in building
frames due to solar radiation [30]. TiO, particles have been employed to increase the TSR
of building coatings by functionalized anatase immobilization in an organosiloxane matrix.
In addition, nanoclays have displayed protection against UV for coatings [31].

This work utilizes different nanoclay structures, laminar laponite and tubular hal-
loysite, to protect natural chlorophyll. The aims are to: obtain natural sustainable hybrid
pigments with improved properties; compare different synthesis conditions with surface
modification and pH levels to improve synthesis performance, measured as natural dye
adsorption, and hybrid pigment optical properties as TSR (%) values.

2. Materials and Methods
2.1. Materials

Copper chlorophyll (NG) C1.75810 (C34H3;CuN4NazOg), was supplied by Sensient®
(Milwaukee, WI, USA). Nanoclays laponite and halloysite were supplied by Southern Clay
Products (Gonzales, TX, USA) and Sigma-Aldrich (St. Louis, MO, USA), respectively. To
modify nanoclay surfaces, surfactant (SURF) cetylpyridinium bromide Cp;H3gBrN-6H,0,
384.44 g/mol, mordant salt (MORD) aluminum potassium sulfate dodecahydrate
AIK(SO4);-12H,0, 474.39 g /mol, and coupling agent (SIL) (3-Aminopropyl) triethoxysilane
H,;N(CH3)3Si(OCH3)3, 179.29 g/mol, were used. To record any changes in pH during the
synthesis process, hydrochloric acid HCL-(37%) was purchased from Sigma-Aldrich. All
these agents were supplied by Sigma-Aldrich. Lastly, for bio-nanocomposite generation,
we used the bioresin whose trade name is GreenPoxy 55, which is an epoxy system with a
single hardener where 55% of the molecular structure is of plant origin. Catalyst SD 505
came from SICOMIN Composites (Chateauneuf les Martigues, France).



Appl. Sci. 2021, 11, 5568

30f16

2.2. Synthesis Process

The adsorption of chlorophyll dye into the laminar nanoclays was performed using
water as the solvent and the stirring method. The times to incorporate each modifier were
selected according to previous studies [32]. In this study, both nanoclays were dispersed at
1800 rpm for 20 h. Laponite dispersions were prepared at 18 g-L~! to avoid gel formation
in distilled water. The halloysite nanoclay was heat-treated for 24 h at 220 °C [33,34] and
dispersed in distilled water at 25-L~!. In both nanoclay dispersions, pH was adjusted
to —4 using 37% HCI [35,36]. The dye concentration in solutions was 2 x 1073 M. The
surface modifiers concentration fell within a range of 0-2% over the nanoclay mass. Dye
exchange was performed by stirring at 1800 rpm and room temperature for 4 h, and
then at 600 rpm for 20 h. Solvent separation was carried out by centrifuging to obtain
the paste-nano-pigment (PNP). Then the PNP was washed by redispersing its paste at
400 rpm for 30 min until the supernatant was clear. The complete separated supernatant
was collected from the beginning to the final washing step. Measurements were taken
for each sample immediately before collecting supernatants to avoid dye degradation.
To ensure that all the non-adsorbed dye was recovered, the water and solution from
washing were protected from light and temperature in airtight containers covered with
aluminum. Then the separated supernatants were made up to a known volume to continue
with the spectrometer measurements. Thirteen chlorophyll dilutions from 1 x 10~¢ [M]
to 1 x 10~* [M] were prepared to obtain the Lambert Beer line as the spectrophotometer
calibration method. Lastly, the PNP was cool-dried by an ALPHA 1-2 LDplus lyophilizer
(Martin Christ, Osterode am Harz, Germany) for 24 h providing the fine green powder that
we used for the characterization and the application (Figure 1).

Dye exchange (dispersion)

Figure 1. Synthesis steps pictures with halloysite (GHA) and laponite (GLAP) examples.
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2.3. Biocomposite Generation

Bio-composite materials were handmade by mixing with the commercially recom-
mended catalyst, and using silicon templates to obtain plain rectangular samples (Figure 2).
We employed 10% over the bio-resin mass nano-pigment concentrations. The curing
process was carried out at 90 °C for 3 h.

Figure 2. Biocomposite preparation after epoxy 55 curing step with GHA and GLAP hybrid pigment
addition at different synthesis conditions.

2.4. Characterization

The determination of the amount of dye adsorbed by the nano-clay system allowed us
to define the synthesis performance of the process. For this purpose, a UV-Vis transmission
spectrophotometer (JASCO V650, Easton, MD, USA) was utilized to measure the dye
absorbance (%) in separate supernatants. Then the amount of dye adsorbed by nanoclays
was calculated as a percentage of the initial concentration in the exchange step. This
parameter was employed as a response to minimize in the DoE analysis.

XRD Bruker D8-Advance equipment (Bruker, Billerica, MA, USA), with a Goebel mirror
(power: 3000 W, voltage: 20-60 kV and current: 5-80 mA), was used. Measurements were
taken in an oxidant atmosphere at an angular speed of 1°/min, STEP 0.05°, and an angular
scan of 2.7-70°. XRD patterns were obtained to observe variations in the basal space on the
layers from the different nanoclays due to the interactions with the natural dye and modifiers.

For TSR (%), a double UV-Vis/NIR Jasco V-670 spectrometer was used, which works
within the wavelength range from 190 to 2700 nm. The equipment has a double-grating
monocromator, one for the UV-Vis region (1200 grids/mm) and the other for the NIR
region (300 grids/mm). Detectors are a photomultiplier tube for the UV-Vis region and
a PbS detector for the NIR region. Both the detector and grating changes are automated
at a user-fixed wavelength between 750 and 900 nm. The light sources are a deuterium
lamp (190 to 350 nm) and a halogen lamp (330 to 2700 nm). To calculate optical properties,
reflectance factors p(A) were applied for the hybrid pigments within the 370-740 nm range
with the D65 illuminant and the CIE-1964 standard [11] observer.

A thermogravimetric analyzer TGA /SDTA 851 (Mettler-Toledo Inc., Columbus, OH,
USA) was utilized to ensure that chlorophyll was successfully loaded on both nanoclays.
The experimental conditions were a temperature ramp of 5 °C/min within the 20-900 °C
range with oxidant medium N»:O; (4:1).

Finally, a SOLARBOX 1500e RH climatic chamber (ERICHSEN, Hemer, Germany) was
used to measure the color UV-Vis fastness. All samples were measured using a Konica
Minolta sphere integrated spectrophotometer (CM-2600d) to obtain the reflectance factors
P(A)(370-740) nm range with the D65 illuminant and the CIE-1964 standard observer. The
measurements were made at several exposure time intervals, and color differences were
calculated by measuring samples before and after radiation exposure. Color differences
AE,,* were calculated with the colorimetric attributes of the CIELAB color space.
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2.5. Statistical Design of Experiments

In order to perform the synthesis process by combining different parameters and to
find their contribution to the variance in the results, a fractional design of experiments
was followed 241 (Table 1) with factors: pH (34, or natural), nanoclay surface modifiers
addition (0-2% over clay mass) surfactant, mordant or silane, and two experimental laminar
(LAP) or tubular (HA) blocs for the nanoclay structure. This design allowed us to study
all the simple effects of factors and the pH modifiers interactions. Synthesis performance,
degradation temperature, and total solar reflectance were used as a response to analyze the
synthesis factors effects.

Table 1. Synthesis condition analysis using the 2~ DoE experiment and two experimental blocs;
1-laponite, 2-halloysite, and dispersion pH, surfactant (SURF), mordant (MORD), and/or silane
(SIL) factors.

Sample Code pH! SURF 2 MORD 2 SIL 2
GLAP1 4 0 0 0
GLAP2 9 0 0 2
GLAP3 4 2 0 2
GLAP4 9 2 0 0
GLAP5 4 0 2 2
GLAP6 9 0 2 0
GLAP7 4 2 2 0
GLAPS 9 2 2 2
GHA.1 4 0 0 0
GHA.2 9 0 0 2
GHA3 4 2 0 2
GHA 4 9 2 0 0
GHA5 4 0 2 2
GHA3 9 0 2 0
GHA.3 4 2 2 0
GHA.S8 9 2 2 2

! Nanoclay in water dispersion pH. 2 Modifier concentration % over nanoclay mass.

3. Results and Discussion

Different characterization analyses were performed to know the structural and optical
properties of the different hybrid pigments.

3.1. Chlorophyll Adsorption

All the supernatants separated after the centrifugation step were measured to find
the presence of natural colorants to calculate synthesis performance as the percentage of
dye adsorbed in both nanoclays (Ads(%)) (Table 2). Significant differences were found
depending on the synthesis conditions. The analysis of variance revealed that the significant
factors in the percentage of dye adsorbed in both nanoclays (Ads(%)) were the mordant
and pH interactions (see Table 3). The p-values in both factors were lower than 0.05.
According to Figure 3, when mordant salt was present (MORD = 1.0), no differences
appeared due to the pH level (from —1.0 to 1.0), and the supernatant was clear and dye
adsorption was maximum (~99%) in both structures. However, when no mordant salt
was present (MORD= —1.0), pH became a critical factor and had to be acidic (pH = —1.0
(3-4)) to maintain dye adsorption close to 99% in both nanoclay structures. The lowest
adsorption percentage (~84%) was found at a natural pH (pH = 1.0 (9-7)) with no mordant
salt present (MORD= —1.0). Based on these results, the mordant-modified solvent ion
strengthened and favored the chlorophyll—clay interaction similarly to the textile dying
process. In the halloysite structures, the protonation constants increased accordingly to
ionic strength, which favored the chlorophyll interactions. At a low pH, halloysite layers
were protonated from pH 2 to pH 6.5, the silicic surface underwent deprotonation, and its
lowest possible negative charge was reached at the highest point of the range. Depending
on the nanoclay layer, both ionic strength and pH changed protonation and favored H-
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bonding. The aluminic layer was protonated up to pH 6 and then its deprotonation process
was affected by ionic strength. The presence of H" in the W-SiO-H system did not allow
water molecules to interact with the inner halloysite layer. The preferred protonated site in
the acidic chemical environment was the aluminic surface, which was slightly stabler than
its silicic counterpart. In addition, the formation of H3O™" species on the positively charged
silicic layer made the systems in which it was present much stabler than their analogous
version on the aluminic layer [36].

Table 2. The absorption (Ads (%)) results at A 405.4 nm and the percentage of dye adsorbed under

different synthesis conditions by the DoE 24—, calculation.

REF Abs A (405.4 nm) Ads (%)
GLAP1 0.1267876 97.91
GLAP2 0.4166450 80.21
GLAP3 0.1168471 98.51
GLAP4 0.1445317 96.82
GLAPS5 0.1220899 98.19
GLAP.6 0.1101210 98.92
GLAP7 0.1197555 98.34
GLAPS 0.1242313 98.06
GHA.1 0.1197628 98.34
GHA.2 0.2486290 90.47
GHA.3 0.1279232 97.84
GHA 4 0.6237080 67.57
GHA5 0.1153758 98.60
GHA.6 0.1140121 98.69
GHA.7 0.1160737 98.56
GHA.8 0.1136496 98.71

Table 3. Analysis of variance for the percentage of dye adsorbed under different synthesis conditions
by DoE 241,

Source Sum of Squares f.d. Medium Square F-Ratio p-Value
A:pH 201.863 1 201.863 472 0.0526
C:MORD 228.084 1 228.084 5.33 0.0414
AC 211.765 1 211.765 4.95 0.0479
Block (nanoclay) 20.7034 1 20.7034 0.48 0.5010
Total Error 470.507 11 42.7734
Total (corr.) 1132.92 15

Inteactions plot for Ads (%)

MORD=1.0 MORD=1.0
a7l MORD=-1.0 1
95 B
= 93| -
=X
2L 9f -
<
89 4
87 =
85 4
MORD=-1.0
831 4
-1.0 1.0

pH

Figure 3. Interactions plot for the synthesis performance as the percentage of dye adsorbed (Ads (%))
under different conditions with pH and MORD levels.
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3.2. UV-VIS-NIR

We represent the reflectance factors p(A) for both nanoclays and hybrid pigments. We
observed that both nanoclays reflected more than 60% NIR radiation from 700-1400 nm,
with reflectance decay of 20%. As expected, significant differences appeared when chloro-
phyll dye (CP) was incorporated into both the nanoclays. In the halloysite hybrids (GHA),
NIR reflectance lowered to negative values from 1600-2700 nm, which means radiation
absorption. This phenomenon appeared in all the GHA samples, except for the two samples
with no surfactant and mordant salt. Another remarkable phenomenon that affected the
optical properties and the final TSR% from both hybrid pigments was VIS reflectance. The
laponite hybrid pigments (GLAP) showed less reflectance in UV-VIS, and a close NIR from
700 to 1400 nm, than the GHA samples (Figures 4 and 5).

LAP_Green_Hybrid pigments

e o AP === +GLAP.1 = «=GLAP.2 = + +GLAP.3 === GLAP.4 «:sss+ GLAP.5 ===GLAP.6 GLAP.7 GLAP.8
VIS
100 uv NIR
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80
— 70
X
<
o 60
2
o S0
—
o
é’ 40 -
Q
20
10
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
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Figure 4. Spectral reflectance UV-VIS-NIR of laponite clay and chlorophyll hybrid pigments GLAP.
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——HA = :GHA.1 = =GHA.2 =+ GHA.3 ===GHA4 s+ GHA.5 ——GHA.6 GHA.7 GHA.8
1

100 . W VIS NIR

20 -

80 -
— 70 -
X
s
@ 60 -
Lc) |
@ 50 -
—
o
9 40 -
el
]
& 30 4 x

- N
[ W
20 - W
10 |
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

A (nm)

Figure 5. Spectral reflectance UV-VIS-NIR of halloysite clay and chlorophyll hybrid pigments GHA.
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3.2.1. Total Solar Reflectance %

The total solar reflectance calculation requires taking raw reflectance data and applying
the solar weighting factors for each collected wavelength. These factors and calculations are
included in the respective norms ASTM G173-03 [37]. The total solar reflectance coefficient
TSR (%) calculation subtraction (1 — TSR) corresponds to the degree of total solar absorption
of the nanoclay /hybrid pigment. Figure 6 depicts how there were no significant differences
between the TSR of the original nanoclays. However, the hybrid pigments from halloysite
had higher TSR values than the hybrid pigments from laponite.

ah i
-
o Lo

Sl annia.

25 4
20 A
15
10 A
5 4
0

TSR (%)

Figure 6. TSR (%) values from halloysite (HA), laponite (LAP), and chlorophyll hybrid pigments
GLAP (1-8) and GHA (1-8).

In addition, differences appeared between the synthesis factors using TSR (%) as a
response to maximize. According to the ANOVA analysis, to maximize the TSR values the
optimal levels were obtained for the halloysite nanoclay with no surfactant and mordant,
and neither pH nor the silane modifier factors had any influence (Figure 7). However, sig-
nificant interactions took place. No influence was noted for the laponite clay in the presence
of the surfactant, while halloysite obtained the highest results without this modifier.

At an acidic pH, the presence of silane had a significant influence because the TSR of
the hybrid pigments abruptly lowered. However at a natural pH, the effect of silane-treated
nanoclay was the exact opposite because the TSR values of the hybrid pigments increased
(Figure 8). The functional role of the chemical silane treatment on the hydrophilic halloysite
surface contributed with rearranged and delaminated HNT particles, which improved
their exfoliation in the polymer matrix and could reflect solar radiation [38]. For instance,
we found that this effect in the interaction analysis depended on the pH level, which also
affected the nanoclay sheets arrangement.
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Figure 7. Mean plots of the LSD 95% confidence intervals from the TSR (%) response analysis.
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Figure 8. Interactions plot for TSR (%) with the pH and CLAY factors.
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3.2.2. Chromatic Diagrams

Once the spectral analysis of all samples was carried out, a direct comparison of all
the hybrid pigments at the colorimetric level was made. For the colorimetric calculations
of each hybrid pigment or clay, the main CIE 15:2004 standard [39] guidelines of the
International Commission on Illumination and Color (CIE) were followed to make the
absolute and relative colorimetric comparisons. The colorimetric CIELAB parameters
codified by the CIE 1931 xyz patron and D65 standard illumination were used. The
CIE a*b* and CIE-C,;,*L* diagrams in Figure 9 showed significant differences according
to the nanoclay and the synthesis process. The GHA pigments became greenish and
yellowish samples. The chroma (C?"*) and lightness L* attributes were also higher in the
GHA samples. The DoE analysis showed that more chromatic samples were found in
the presence of the surfactant, but the main difference in that parameter was due to the
nanoclay (Table 4) (Figure 10). Darker samples were obtained with the laponite nanoclays

when the surfactant was present and at a natural pH (Table 5) (Figure 11).

®HA ©GHA.1
ALAP
\120 @_"H\ /eo
7
\\ 15 /
150 \ /
Ny ~

Ke] . - \

/ % \ / // \

/ \\\ \ 5 / /’/ \".
: ‘I \\\ / //,/ ﬂ,l
s | . ‘L
3 0 15 -10 55 10 15 20

| A N

\ e / 5 \ \\\ .."I

\ 7/ \ ~_ /

\ / \ 33
21 / 10 \\ ~
/ AN
/ s \
[ X
240/ T ol aw

green - red a*

Lightness L*

OGHA.2 OGHA.3 EBGHA4 BGHAS5 OGHA.6 OGHA.7 AGHAS
AGLAP.1 AGLAP.2 @ GLAP.3 @GLAP.4 OGLAP.5 OGLAP.6 ¢ GLAP.7 ¢GLAP.8

90 L.

85

80

-
L=}

(=21
o

(=21
(=]

o
[l

10

15

chroma C_*

20

Figure 9. Graphic CIELAB plots for laponite (LAP), halloysite (HA) and the hybrid pigments with chlorophyll, GLAP and
GHA using the D65 illuminant and the CIE-1931 XYZ standard observer. Left: CIE-a* b* color diagram; right: CIE-Cab* L*

color chart.

Table 4. Analysis of variance for C,,* values for the different synthesis conditions by DoE 241

Source Sum of Squares f.d. Medium Square F-Ratio p-Value
B:SURF 6.50922 1 6.50922 4.26 0.0562
C:MORD 2.5302 1 2.5302 1.62 0.2297
AD 2.30904 1 2.30904 1.48 0.2499
Block (nanoclay) 505.654 1 505.654 323.14 0.0000
Total Error 17.2128 11 1.5648
Total (corr.) 534.215 15
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Figure 10. The LSD median plots for the SURF and CLAY factors with the C,},* response.

Table 5. Analysis of variance for L* values for the different synthesis conditions by DoE 241

Source Sum of Squares f.d. Medium Square F-Ratio p-Value
A:pH 6.40622 1 6.40622 3.34 0.0950
B:SURF 11.6339 1 11.6339 6.06 0.0316
D:SIL 2.74599 1 2.74599 1.43 0.2569
Block (nanoclay) 769.524 1 769.524 400.68 0.0000
Total Error 21.1259 11 1.92053
Total (corr.) 811.436 15
581 k 58
57F 1 st
% 56] = 56l
551 1 s5f
s4f 4 saf
-1 1 -1 1
SURF pH

Figure 11. The LSD median plots for the SURF and CLAY factors with the L* response.

3.3. XRD

The XRD pattern of the halloysite and GHA hybrids exhibited the characteristic peaks
at 20 = 8°,13°, 22.8°, 28°, 31°, 58°, and 67° [40,41]. In these samples, the first halloysite
peak appeared at 11.5°, with an increase to 12.3° in all the GHA samples. This increase
corresponded to an effect on the displacement of the dgg; peaks, which indicates a short
distance from 0.756 nm in the original nanoclay to 0.730 nm (GHA samples). The organic
load onto the nanoclay structure under all the synthesis conditions resulted in clay layer
compression, with no significant differences in the selected factors (Figure 12).

Therefore, as previously mentioned before, it was clear that the surface modification of
laponite with hydrophobic groups greatly enhanced the intercalation of bulky hydrophobic
molecules in laponite [16]. In Figure 11, the XRD patterns show the displacement of the
dgo1 peaks over a longer distance, from 1.41 nm in the original nanoclay to 1.46-1.54 nm,
depending on the synthesis conditions. However, no significant statistical differences were
found due to the factor level changes. The displacement of laponite sheets was due to the
organic compounds adsorption between the laponite basal spaces (Figure 13).
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Figure 12. XRD patterns for the halloysite (HA), and the chlorophyll hybrid pigments [GHA.1_8].
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Figure 13. XRD patterns for the laponite (LAP), and the chlorophyll hybrid pigments [GLAP.1_§8].

3.4. Thermal Analysis DTA

The thermograms of the original nanoclays and the GHAL or GLAP hybrid pigments
were performed. In the laponite hybrid pigments, it was difficult to find peaks for the
temperature degradation of the chlorophyll dye due to noise and the strongest nanoclay
effect. It was only possible to see the reduced H,O desorption in the hybrid pigments due
to water substitution occurring during the synthesis process. The same occurred with the
halloysite hybrids (Figure 14). According to the literature [42,43], the two weight losses
observed for halloysite could be due to loss of H,O and halloysite matrix dehydroxylation.
The first peak assigned to H,O loss before 100 °C significantly decreased for all GHA hybrid
samples [1_8]. DTA showed a mild endothermic and marked exothermic behavior at 100 °C
and 300 °C, respectively, which is consistent with the TGA data, and showed the physical
desorption of the sample’s adsorbed water at 100 °C and the oxidative desorption of organic
compounds (chlorophyll, surfactant and silane) between 300-400 °C [44]. Therefore, all the
hybrid samples displayed good thermal stability up to 300 °C. This analysis confirmed the
formation of one phase because only one exothermic step was shown for the GHA samples
(Figure 15).
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Figure 14. TGA-DTA diagram of laponite (LAP), chlorophyll (G) and the synthesized hybrid
pigments GHA for the different conditions [1_8].
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Figure 15. TGA-DTA diagram of halloysite (HA), chlorophyll (G) and the synthesized hybrid
pigments GHA for the different conditions [1_8].

3.5. Colour Fastness

The aging test was controlled by taking color measurements from t0 (initial) using the
samples with the 10% hybrid pigment or the original dyes, to 102 h, which corresponds
to three months with real sun exposure. Previous works have checked organic dye stabi-
lization in nanoclay structures by changes in absorption curves [45]. We calculated the
color difference (AEab*), and standardized the calculated values by natural dye content
(g) in each sample (AEab*/g.dye). Standard errors were also calculated and represented
to make comparisons. Figure 16 shows, the color UV-Vis fastness of chlorophyll natural
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dye increased when used as hybrid pigment with both nano-clays. The color differences
calculated as AEab* (g.col) were significantly bigger for the sample with the original natural
dye. For 22 h, the color differences of the samples with the original dye was bigger than
4 AEab* units, which corresponds to a marked visible change for the human eye, mean-
while the hybrid samples keep the color differences under 1 AEab* units (Figure 16). It is
also remarkable that the color differences that we could observe in the biocomposites with
both nanoclays were yellowish due to the epoxy resin degradation. However, in the sample
generated with the natural chlorophyll the color difference corresponds to a significant dye
degradation with lighter appearance.
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Figure 16. TGA-DTA diagram of halloysite (HA), chlorophyll (G) and the synthesized hybrid
pigments GHA for the different conditions [1_8].

4. Conclusions

In the present study, the adsorption of copper chlorophyll in two types of nanoclay
structures, halloysite nanotubes and laponite sheets, was successfully achieved, which was
found in the XRD pattern modifications and the DTA thermal analysis. By using DoE, we
found interactions in different synthesis factors, which affected the final hybrid pigments.
First, adsorption behavior was affected by pH and ionic strength from adding mordant
salt. Maximum dye adsorption took place at an acidic pH with or without mordant salt, or
at a natural pH in water dispersion when mordant salt was added. Optical properties were
also affected by the modifiers during synthesis. TST (%) improved without silane under
acidic conditions or with silane at natural pH. The halloysite hybrid pigments obtained
higher TSR(%) values with no surfactant.

Color perceptions were affected, and darker samples were obtained with the laponite
sample, the surfactant and at a natural pH, while the Chroma C,,* value increased. The
highest values were obtained with the surfactant and halloysite samples. These new hybrid
halloysite/laponite pigments can be optimized following the results of the DoE analysis to
be used for different industrial applications, such as thermoplastic polymers for 3D printing
filaments, packaging, coatings, inks, etc., and by putting to good use a wide natural color
range and improved TSR (%) properties.

The color fastens was also improved in the biocomposites application. The samples
generated with 10% of hybrid pigments (from HA or LAP clay), show higher colorfast-
ness than the sample with the natural chlorophyll, due to the nanoclays-dye interaction
and protection.
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