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Discussion of “A review of data science in business and industry and a future 
view” by Grazia Vicario and Shirley Coleman 
 
Grazia Vicario and Shirley Coleman are to be congratulated for writing this inspiring 
paper on such an important topic: clarifying the role of Data Science in business and 
industry. 
 
I am more involved in problem solving in industry than in business, so it is expected 
that my comments are biased from my industrial experience. 
 
In the following I would like to comment on some of the topics addressed by the 
authors and complement others. 
 
What has triggered Data Science?  
 
Data Science has emerged to cope with the so-called data tsunami. Modern industry and 
advanced technology is adopting the Industry 4.0 paradigm fostered by the Industrial 
Internet of Things (IIoT) connecting intelligent physical entities to each other and 
allowing complex equipment units to have embedded sensors and special modules 
(agents) providing connection to the monitoring center. Smartphones and Internet are 
contributing in a similar way in social networks, marketing, sales and finance. Processes 
not only produce goods or provide services but also data, and for the first time in history 
we have data everywhere. This is leading to the so-called Big Data environment, 
characterized by the four V´s: volume, variety, velocity and veracity. We live in a new 
era of digitalization where there is a belief that data contain useful information that has 
to be mined for helping the decision-making process.  
 
But data sets are so large and complex that it becomes difficult to process using on-hand 
database management tools or traditional data processing applications (Wikipedia). For 
example, a large data set, such as a petabyte of data (1015 bytes), will not fit into an 
Excel spreadsheet, and cannot be stored on a standard laptop, so alternative approaches 
are needed. Most commercial analytics software programs are unable to process data 
sets of this size. In terms of analysis, standard scatterplots with such data sets will 
generally produce a large black blob—too much data to see what is going on. Many 
statistical hypothesis tests will show statistical significance simply because of the 
massive sample size—even if the differences are not relevant in practice. So clearly, 
alternative approaches and analysis methods are needed for processing and analyzing 
Big Data (Hoerl et al 2014). 
 
To address these challenges a new discipline has emerged, and this is Data Science. 
There are many different issues to be solved in this new environment. These can be 
arranged in two groups: infrastructure (e.g., data collection, warehousing, integration, 
and cloud services) and analytics (e.g., data analysis tools for visualization, processing 
and interpretation). Although Big Data environment has posed some new challenges in 



the analytics (with respect to traditional data analysis), most of the Big Data projects are 
nowadays focused on the infrastructure. But investing just in infrastructure is not 
synonymous of big business success. The focus is on data analytics to effectively 
extract such information to give organizations new insights about their products, 
customers and services and drive the decision-making process. This can be particularly 
valuable when it is critical to maintain quality and uptime, such as in process 
monitoring applications, by quickly detecting and diagnosing abnormal activities, 
predicting the time-to-failure of equipment units, or when rapid new products 
development is critical for company survival. 
 
Data Science proposition: from Data to knowledge 
 
Vicario and Coleman state that the Data Science proposition is the transition from data 
to knowledge. In fact some people call Data Science as Knowledge Discovery from 
Databases. I would like to stress two things: i) this proposition is not new, ii) in most 
Data Science applications knowledge is not synonymous of scientific knowledge (i.e., 
process understanding) but feature extraction or pattern recognition, and iii) the 
transition from data to (scientific) knowledge is not one-shot but an iterative approach. 
 
As commented by Box (1976), R.A. Fisher devoted his entire life to the interpretation 
of empirical data by using the scientific method. So, the above proposition is not 
original of Data Science but comes from the use of statistics as a catalyst to learning. 
 
Regarding my second comment, most of the Data Science applications are predictive 
oriented (i.e., obtaining predictors or classifiers with best performance). They are 
mainly focused on extracting features or discovering patterns from databases that, used 
as predictors in the algorithms developed, yield good predictions or classifications. 
Given the “black-box” nature of the algorithms used and the usual correlation of 
predictors, model interpretation to gain process understanding (i.e., scientific 
knowledge) of the problem addressed is not possible.  
 
Therefore, this type of predictive applications is not suited for troubleshooting, and 
process improvement and optimization, critical goals in industry and technology. As 
discussed in the following, for fulfilling these goals the use of the scientific method 
(i.e., iterative inductive/deductive approach) is required. 
 
What science is in Data Science? 
 
Some people consider that the term “data science” does not have a broadly accepted 
definition; it is a “buzzword” that conveys little specific information. If we look at what 
people who claim to be data scientists actually do, data scientists are people with the 
following skills: i) processing of large data sets; ii) programming (Python, SQL, R, 
etc.); and iii) application of machine learning methods (e.g., neural networks, support 
vector machines, random forests, etc.). These are all existing skills; hence we could 
conclude that Data Science is not really a new science, per se, but rather an integration 
of existing sciences. Data Science motivation is to build something of importance to 
society from this skills list. Therefore, Data Science would be more accurately named 
“data engineering”. Note that while many claim otherwise, statistics (skills in inference 
and probability-based models) are not included in this list (Hardin et al 2015). 
 



In the Big Data community there are several messages that are creating a big debate in 
the scientific world. One comes from Chris Anderson 2008 paper entitled “The End of 
Theory: the Data Deluge that Makes the Scientific Method Obsolete” stating that 
because of the quantity and speed of data production, new technologies could now solve 
major scientific and industrial problems solely through empirical data analysis, without 
the use of scientific models, theory, experience, or domain knowledge. I guess that if 
this were true, this would imply that hereinafter there is no need on any kind of training 
but data scientist, and by “pushing the bottom” we would expect good results from 
analytics. A second worrying statement is that we no longer have to be fixated on 
causality and the world is shifting from causation to correlation (Mayer-Schönberger 
and Cukier 2013). 
 
I guess that both statements are severely biased due to the typical problems that Data 
Scientist have traditionally addressed from information technology companies such as 
Google, FaceBook, YouTube, Amazon, and so on. These companies have been 
traditionally focused on building efficient algorithms for getting good predictive models 
to forecast the future. Given the abundance of data and the powerful computing 
resources available, hundreds of complex predictive models can be fitted at a low cost. 
Overfitting is addressed by ensemble methods that resample the data, fit several models 
and average the output of the fitted models. Models degradation are fought by updating 
them at the appropriate pace. For these predictive goals only correlation (not causation) 
is needed, and good predictions may be obtained just by playing with the (abundance) 
available data (by trial and error). In industry this approach is used for building soft 
sensors that forecast the value of a response variable difficult or expensive to measure, 
based on process variables sampled with high frequency and cheap to measure. In those 
situations there is really no new scientific knowledge (i.e., process understanding) 
acquired, only patterns and good predictions (i.e., the so-called high-level knowledge 
extracted from low-level data), but not science.  
 
But as Breiman (2001) explains, in addition to forecasting, there is another culture of 
data analysis: modeling. This is focused on understanding the real world (i.e., process 
understanding) and assumes that the data are generated by a given stochastic model. For 
fulfilling this goal, theory, experience, domain knowledge and causation really matters, 
and scientific method is essential. This is the approach required for industrial 
troubleshooting, process improvement and optimization (and also for discovering new 
knowledge in basic sciences). Therefore, I strongly disagree with Anderson´s statement 
that faced with massive data, this approach to science (i.e., hypothesize, model, test) is 
becoming obsolete (Anderson 2008). What I consider in some way obsolete is the 
parametric statistical distribution-based (i.e., theoretical) approach of classical statistical 
tools. This will be discussed later on. 
 
In fact, realizing the benefits of modeling even in typical forecasting applications can 
generate significant economic revenue for companies. For example, yet besides 
obtaining a good model to know the probability that a customer returns a loan on time 
(passive attitude), an attempt is made to understand the loan repayment process and 
discover the customer characteristics that increase the probability of repayment, then, 
instead of waiting for potential customers, you can actively search for them. 
 
George Box (1976) wisely illustrated the inductive (questioning) / deductive (testing) 
iterative process of the scientific method. For this learning process to be effective there 



has to be two critical ingredients: subject matter knowledge (to ask relevant questions, 
formulate hypotheses and models, and deduce plausible consequences) and data (to 
evaluate the discrepancy between what hypotheses and models suggest should be so and 
what practice says is so), and a catalyst: statistics (Box and Liu 1999). 
 
A paradigm change 
 
In the DMAIC (i.e., Define, Measure, Analyze, Improve and Control) cycle, 
characteristic of Six Sigma process improvement methodology (Snee and Hoerl 2003) 
the Measure phase begins not by measuring but by asking questions, once the problem 
to be solved have been previously defined in the Define phase. The focus is on the 
problem to be solved and data is just one of the resources used to help accomplish our 
goals. Data have no meaning in themselves; they only have meaning within the context 
of a conceptual model of the phenomenon under study (Box et al 2005). In fact, data 
analysis without a problem is pure waste (Kempthorne 1980). The engine of the 
DMAIC cycle is the scientific method. 
 
This is the classical approach in Statistics, following the Question-Data-Analysis 
(QDA) paradigm (Cao, 2019). Once the objective of the study is defined, questions give 
rise to collect (or generate) data and analyze it in an iterative scheme of several steps: 
model selection, model estimation and model validation, until the model is considered 
satisfactory and some answers can be found from the questions posed. The outcome of 
the analysis leads to new questions and so on. 
 
Statistics as a scientific discipline was created in a data-scarce context: low number of 
variables with small sample sizes (usually more observations than variables that fit in a 
small Excel spreadsheet) that in most of the cases had to be measured (or generated) 
(i.e., there were no data available at the beginning of the project).  
 
However, this has nothing to do with the data-rich context, typical of the Big Data era. 
The previous paradigm has changed to a Data-Questions-Analysis (DQA). Most of the 
time, a lot of data are already available before the questions are posed. This is the result 
of the launching of digitalization projects that many companies are undertaking. In this 
context all eyes are focused on the (huge) data sets, relegating to the background other 
very important aspects of the scientific method that are critical for success when the 
interest is not just prediction but process understanding and improvement. 
 
Even in the new DQA paradigm, due to lack of statistical thinking, the fundamental 
principles well known to experienced statisticians are often ignored in some data 
science applications: i) critical evaluation of data quality; ii) integration of sound 
subject-matter knowledge; iii) development of an overall strategy for attacking the 
problem; and iv) sequential approaches versus “one-shot studies” (Hoerl et al 2014). 
These oversights have sometimes produced embarrassing errors like the breakdown of 
Google Flu Trend model (Lazar and Kennedy 2015), the Duke Genomics Center 
Debacle (Kolata 2011) or the bankruptcy of Lehman Brothers on September 15, 2008 
(Wikipedia).  
 
Big data vs Value data 
 



The aim of any big data project must be to add business value – by enabling cost 
reductions, productivity gains or revenue increases (White 2016). That is the reason 
why a new fifth V: value, should be added to the previous four V´s list. 
 
But do big data mean value data? Some people consider that massive data sets always 
reflect objective truth. This is what Crawford (2013) calls Data fundamentalism, and it 
is aligned with the idea that with enough data, the numbers speak for themselves. But 
this is not necessarily true because big data may be biased data (i.e., large-sized samples 
not representing the whole picture of the population under study). An illustrative 
example of biased big data is the Twitter data generated by Hurricane Sandy. The 
greatest number of tweets about Sandy came from Manhattan. This makes sense given 
the city’s high level of smartphone ownership and Twitter use, but it creates the illusion 
that Manhattan was the hub of the disaster. Very few messages originated from more 
severely affected locations due to extended power blackouts, drained batteries and 
limited cellular access.  
 
Therefore, quantity does not mean quality (i.e., more data do not mean better). 
Moreover, the larger the quantity and diversity of data the harder quality assessment is. 
Data Scientists must be involved in the data generating/collecting process and not adopt 
a passive role waiting for the data to come no matter: i) the science, engineering, and 
structure of the process or product from which the data were collected; ii) the collection 
process used to obtain data and prepare for analysis; and iii) how the measurements 
were physically obtained. These three issues summarize the data pedigree, a key 
information for the critical evaluation of data quality and relevance for solving a 
particular problem (Hoerl et al 2014). In fact, this issue is related to one of the four Big 
Data V´s: veracity, and it should not be ignored in Data Science projects. 
 
Nature of data in Industry 4.0 
 
The information technology revolution in Industry 4.0 has not caused only a change in 
the number of the variables (that in some cases is even higher than the number of 
observations) but also a change in the nature of the registered data. Nowadays it is 
possible to register data from customers, quality, process and even from equipment. 
There are a huge variety of different kind of sensors providing different type of signals: 
spectra (chemical signals), pressures, temperatures, flows, etc. (physical signals), pH, 
conductivity, dissolved oxygen, etc. (biochemical signals), electronic eyes (digital 
images), electronic noses and tongues (potentiometric signal), electronic ears (acoustic 
signals), and so on. These data mostly collected from daily production often exhibit 
high auto and cross correlation, rank deficiency, low signal-to-noise ratio, multi-stage 
and multi-way structure, and missing values. They are happenstance data (i.e., not 
generated from an experimental design) and, therefore, correlation does not mean 
causation.  
 
Classical statistical assumptions as normality or independence, and the parametric 
statistical distribution-based (i.e., theoretical) approach of classical statistical tools are 
no longer appropriate in these data-rich environments. For example, in Statistical 
Process Control (SPC) the hypothesis that assignable causes of variation result in shifts 
of a particular subset of the parameter vector characterizing the statistical distribution of 
the monitored variables is hard to believe in practice. A holistic role of SPC for process 



improvement, and not only for monitoring, must be considered. The focus must be the 
process, not the model (Ferrer, 2014). 
 
Process data in industry, although shares many of the characteristics represented by the 
four V´s (i.e., volume, variety, veracity and velocity), may not really be Big Data in 
comparison to other sectors such as social networks, sales, marketing and finance. 
However, the complexity of the questions we are trying to answer with industrial 
process data is really high, and the information that we wish to extract from them is 
often subtle. This info needs to be analyzed and presented in a way that is easily 
interpreted and that is useful to process engineers. Not only do we want to find and 
interpret patterns in the data and use them for predictive purposes, but we also want to 
extract meaningful relationships that can be used to improve and optimize a process 
(García-Muñoz & MacGregor 2016). 
 
Latent variables models, such as principal component analysis–PCA (Jackson 2003) or 
partial least squares–PLS (Wold et al 2001), are especially suited for successfully 
addressing the characteristics 4 V´s of Big Data. They are compressing tools that easily 
handle the dimensionality and collinearity issues of the high volume of data. They can 
cope with the variety of data by using multiblock methods (Westerhuis 1998) for 
integrating data from different sources (data fusion). Latent variables models can be 
updated in real time to cope with the speed of data acquisition (velocity). Finally, these 
multivariate models are specially suited for outlier detection, missing and noisy data, 
typical issues for checking the veracity of the data. 
 
Latent variable methodology exploits the correlation structure of the original variables 
by revealing the few independent underlying events (latent variables) that are driving 
the process at any time. This is done by projecting the information in the original 
variables down onto low-dimensional subspaces defined by a few latent variables. The 
multivariate scores are mathematically orthogonal and optimal summaries of the 
measured variables. The scores are also less noisy than the measured variables, because 
they are weighted averages (linear combinations) of the measured variables. Classical 
statistical assumptions (independency, normality and so on) can be reasonable for the 
scores, and therefore classical statistical tools are appropriate to analyze them. We could 
conclude that in the latent space, dealing with big data is easier than in the original 
variables space. 
 
All models are wrong, some are useful 
 
As commented by MacGregor (2018), to analyze historical data, one needs to make use 
of models, usually empirical – such as regression, machine learning (deep learning 
neural networks, support vector machines, random forest, etc.) or latent variable models 
(e.g., PCA or PLS). All models are wrong but some are useful (Box 1976). But all 
empirical models are not equally useful. Whether a model is useful depends on three 
issues: i) the objectives of the model (passive vs active); ii) the nature of the data used 
for the modeling (historical operating data vs data from design of experiments–DOEs); 
and iii) the regression method used to build the model (machine learning and classical 
regression vs latent variable models (PLS). 
 
Regarding the objective, there are two major classes of models – those to be used for 
passive use and those to be used for active use. Models for passive use are intended to 



be used just to passively observe the process in the future. Such passive applications 
include predictive modelling and maintenance, pattern recognition and classification, 
and process monitoring, fault detection and diagnosis. For such passive uses one does 
not need or even want causal models, rather one wants to just model the normal 
variations common to the operating process. Historical data are ideal for building such 
models. On the other hand, models for active use are intended to be used to actively 
alter the process. Such active applications include gain causal information (i.e., process 
understanding) from the data, trouble-shooting, optimization and control. For active use 
one needs causal models. Causality implies that for any active changes in the adjustable 
variables in the process, the model will reliably predict the changes in the output of 
interest (MacGregor 2018). 
 
To guarantee causality when using data-driven approaches, however, independent 
variation in the input variables is required (Box et al 2005). But, even if nowadays large 
amounts of historical data are available in most production processes, the variation in 
the inputs is commonly not independent (i.e., data are not obtained from a DOE that 
guarantees this independent variation in the inputs). Therefore, input-output correlation 
does not mean causation. 
 
In this context classical predictive models (such as linear regression and machine 
learning models), proven to be very powerful in passive applications, cannot be used for 
process optimization (active use). They cannot be used for extracting interpretable or 
causal models from historical data for active use. With historical data, there are an 
infinite number of models that can arise from any of these machine learning methods, 
all of which might provide good predictions of the outputs, but none of which is unique 
or causal. Because the process variables are all highly correlated and the number of 
independent variations in the process is much smaller than the number of measured 
variables, one can get many of those models all using different variables and having 
different weights or coefficients on the variables that give nearly identical predictions. 
This does not allow for meaningful interpretations, even more so if the results come 
from averaging or voting on many models, such as in random forest (MacGregor 2018). 
 
Latent variables methods, such as PLS regression, allow the analysis of large datasets 
with highly correlated data. Since they assume that the input (X) space and the output 
(Y) space are not of full statistical rank, they not only model the relationship between X 
and Y (as classical linear regression and machine learning models do), but also provide 
models for both the X and Y spaces. This fact gives them a very nice property: 
uniqueness and causality in the reduced latent space (this is the only space within which 
the process has varied) no matter if the data come either from a DOE or daily 
production process (historical data). By moving the latent variables one can reliably 
predict the outputs (Y) (i.e., the definition of causality in the latent space). But to move 
the latent variables one cannot just adjust individual X variables, but rather 
combinations of the X variables that define the latent variables as defined by the X 
space model (i.e., respecting the correlation structure of the model). This property 
makes them suitable for finding the combinations of input variables that guarantee 
appropriate outputs (if possible), such that the desired values for the quality attributes of 
interest for the final product are met (Jaeckle and MacGregor 2000, MacGregor et al 
2015). Furthermore, since the initial number of variables involved is reduced to a 
smaller number of uncorrelated latent variables, the computational cost of any 



optimization problem in the latent space will decrease in comparison to the equivalent 
problem in the original space (Palací-López et al 2019, Tomba et al 2012). 
 
Teamwork in interdisciplinary groups 
 
The time to solve relevant problems just by one person has ended; complex problems 
require interdisciplinary teams and good communication between data scientists, 
process knowledge people (technical and operational staff) and managers. 
 
This has tremendous implications in the way data scientists are trained. Data scientists 
have to understand the application domain of the projects they face, therefore in 
addition to the mathematics, statistics and computer science already present in their 
curricula, they have to be trained on the basics of different branches of science 
(chemistry, biology, physics, economy…) and technology (i.e., basic engineering). 
There are different ways to fulfill this: working in interdisciplinary projects with 
chemists, biologists, economists or engineers, or enrolling in a Bachelor in Science, 
Economy or Engineering, and later on a Master in Data Science. 
 
Data analysts are not people who just analyze the given data; they have to be involved 
in all the process of collecting data. They are not people who just plug the data into the 
algorithms to get a prediction/classification. The problem to be solved and the relevant 
questions really matter. As commented by Box (1976), Fisher´s work made clear that 
the statistician´s job did not begin when all the work was over – it began long before it 
was started. 
 
What is required for Data Science to be successful in Industry 4.0? 
 
I would like to summarize in the following bullets what I consider should be the 
requirements for Data Science to be successful in Industry 4.0: 
• Powerful storage and computational facilities, parallel processing management and 

display infrastructure. 
• Statistical thinking strategy. 
• Teamwork and basic domain knowledge of the problems to solve. 
• Focus change:  

– From deductive (theoretical) to inductive (exploratory) reasoning. Be more 
exploratory minded. Do not just try to prove your a priori assumptions with 
hypothesis testing. Let yourself be surprised by what data can teach. Be open 
minded to discover something new from the data.  

– From parametric statistical distribution-based (i.e., theoretical) to distribution 
free methods by resampling methods such as bootstrap or jackknife, and 
permutation testing. 

• Let the data speak for themselves. Do not select in advance the variables to be used 
but compressed, and prune later if desired. 

• Programming skills and good knowledge of optimization algorithms, machine 
learning techniques and classical statistical tools (for passive applications) and latent 
variables models (for passive and active applications). 

• Real-time analytics (fast decision making): perform time-critical analysis almost 
immediately after the data are generated. 
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