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Abstract8

Deviating multivariate observations are used typically to test the perfor-
mance of outlier detection methods. Yet, the generation of outlying cases
itself usually appears as a secondary methodological step in methods com-
parison. In the literature, outliers are defined using certain distribution pa-
rameters which differ from those of the clean or reference data. However,
these parameters change among authors, leading to a lack of a standard and
measurable definition of the characteristics simulated outliers. This makes
the comparison between methods hard and its results dependent on the pro-
cedure followed to simulate the data. In order to set a standard procedure,
a framework to simulate outliers is defined here. Since it is based on certain
specifications for both the Squared Prediction Error (SPE) and Hotelling’s
T 2 statistics from a Principal Component Analysis (PCA) model, tuning
them becomes a simple and efficient task. This procedure has been imple-
mented in a set of Matlab functions.
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1. Introduction11

Principal component analysis (PCA) models are specially useful in the12

context of highly correlated data sets, given its dimensionality and noise13

reduction power. This is accomplished by obtaining the A latent variables or14

principal components (PCs) that are linear combinations of the K original15

variables (usually with A << K). These A components explain most of the16
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variance of the K original variables. Beyond the use of PCA as a model17

itself, it is also widely used for Exploratory Data Analysis (EDA), given18

the effectiveness offered by the compression of a high-dimensional space to19

a lower dimension representation that retains most of its variability. One of20

the reasons why EDA is a good practice before any further use of a data21

set, is that during this prior steps one can deal with events such as missing22

data or the potential existence of rare events, also named outliers [1, 2, 3].23

When PCA is used in an EDA framework, a model is built, which is known24

as the PCA Model Building (PCA-MB) stage. In its basic definition, PCA25

uses least squares parameters which can be very distorted by the influence26

of outliers. In order to deal with this issue, several approaches that avoid27

this negative effect have been proposed in literature, assembled in what are28

known as robust PCA methods. There are plenty of strategies to conduct29

PCA in a robust way. However, beyond the particularities of each proposal,30

what basically defines these algorithms is their ability to neglect the influence31

of potential outliers during the PCA-MB stage. To develop methodological32

work on how to detect and how to treat outliers, it is often useful to simulate33

this type of data.34

Most approaches used to simulate outliers assume the paradigm of row-35

wise outliers. This paradigm defines an outlier as a whole observation or36

row in a matrix. Probably, the most famous model in order to define this37

situation is the classical Tukey-Huber Contamination Model (THCM) [4]. In38

these scenarios the observed data X is thus a mix of unobserved distribu-39

tions defining two different submatrices Y and Z, representing data from two40

different populations. As one could expect, the election of the distributions41

to simulate both the contaminated and clean parts of the data is a critical42

procedure step, as it creates the conditions under which the performance of43

different methods are evaluated and compared. Examining literature, one44

can notice that the task of simulating the data sets and outliers in the frame-45

work of PCA-MB has been addressed differently [5, 6, 7, 3]. In general terms,46

what remains in common among most proposals is that outliers are defined47

by setting the parameters of the population to which they belong. Thus,48

observations are classified as outliers because they are drawn from a distri-49

bution that is different from the one which describes the clean data. However,50

it is not straightforward to stablish the relationship between the chosen pa-51

rameters for the distribution of the outliers and the resulting properties of52

the simulated observations. As a result, simulating observations with the53

desired distance from the reference data set by setting different parameters54
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of the data distribution, becomes practically unfeasible. Moreover, working55

with this simulation paradigm means to make assumptions about the distri-56

butions that describe both the reference and outlying data set. Usually, a57

multivariate normal distribution is assumed and the mean vector or the co-58

variance matrix are altered in order to generate outlying observations. Yet,59

assuming a particular probability distribution might not be that simple in60

case that one wants to simulate outliers for a real reference data set. For61

these reasons, though the traditional paradigm is technically correct, our be-62

lief is that one could further exploit the information offered by a PCA model63

in order to generate outliers with more control of their properties based on64

two statistics: the Squared Prediction Error (SPE ) and the Hotelling T2
65

(T 2). In this work we propose a standard framework for outliers definition66

and simulation based on its characterization in terms of these statistics.67

Firstly, the conceptual framework is introduced, defining the PCA model68

and the aforementioned pair of statistics. Afterwords, the methodology to69

generate moderate and severe perturbations, based on shift directions of the70

SPE and the T 2, is explained. Later on, the proposed variants of the algo-71

rithm to simulate outliers are introduced, and some examples of how to simu-72

late controlled outliers are shown. Moreover, some practical applications will73

be provided to illustrate the potential of the proposed method as standard74

framework to simulate outliers. In these examples, our procedure to simulate75

controlled outliers will be configured to emulate other strategies of outliers76

generation from literature on PCA models. Additionally, the consistency of77

the outlying properties will be assessed by projecting our simulated outliers78

onto a robust PCA model. Finally, a summary of the main conclusions is pro-79

vided. The Matlab code and documentation for outliers generation are avail-80

able in the GitHub repository https://github.com/albagc/SCOUTer.git.81

Detailed code lines to reproduce the results from Section 3 are available in the82

howto.pdf document on the repository and further details about references83

for the outliers simulation are provided in Appendix A.84

2. Materials and methods85

2.1. The PCA model framework86

Let X be a matrix with N observations on K variables. After some pre-87

processing such as mean-centering and/or unit variance scaling, a PCA model88

is estimated. This is done by compressing the high-dimensional X matrix89

into a low-dimensional subspace of dimension A (with A ≤ rank(X)). PCA90
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is based on the bilinear decomposition of X in X = TP>+ E, where T is an91

N × A matrix of scores and P is a K × A matrix of loadings (Figure 1).92

Figure 1: Visual representation for the PCA model.

The A columns of the loading matrix P are the loading vectors pa, with93

a = 1, 2, . . . , A. The score matrix T can be considered as a collection of row94

vectors τ> (scores of an observation) or column vectors ta (latent variables,95

with ta = Xpa and a = 1, 2, . . . , A). The score matrix can be obtained as96

T = XP, that is, as the projection of the X matrix on the A−dimensional97

space of the PCA model (i.e., columns of P matrix). Analogously, given an98

observation x of the original K−dimensional space, its projection τ onto the99

subspace of the model can be obtained using the projection matrix P as well100

by τ = P>x.101

From the scores matrix one can recall the explained part of X in the102

PCA model as X̂ = TP
>

. This notation can be used as well for individual103

observations, where x̂ = Pτ . The original observation can be decomposed by104

the part explained (i.e., predicted) by the model (signal or x̂) and the error105

not considered in any of the A latent variables (noise or e). Thus, for a given106

observation we have x = Pτ + e = x̂ + e. From the previous expressions it107

can be seen that E = X
(
I−PP>

)
and then e =

(
I−PP>

)
x.108

2.2. Outliers in the PCA model109

An observation can be considered an outlier in terms of a PCA model,110

according to its values for the Squared Prediction Error (SPE ) and the111

Hotelling’s T 2 (T 2, or more specifically, T 2
A for a PCA model with A compo-112

nents). These statistics, obtained from the residuals and the scores respec-113

tively, offer complementary information about the distance of an observation114

to the PCA model and the majority of data. In [8], there is a comprehensive115
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explanation about the properties of these statistics and their use to detect116

outlying observations. Following their work, some mathematical aspects of117

SPE and the T 2
A are given in this section.118

The SPE is the squared Euclidean (perpendicular) distance from the119

observation x to the A−dimensional subspace of the model, that is SPE =120

e>e, where e is the error vector of the observation x. From the previous121

expression, the SPE can be rewritten as SPE = x>(I−PP>)>(I−PP>)x.122

Since (I−PP>) is symmetric and idempotent matrix:123

SPE = x>
(
I−PP>

)
x (1)

Assuming that residuals follow a multivariate normal distribution, [9],124

[10] and [11], derived approximate distributions for such quadratic forms.125

On the other hand, the Hotelling-T 2
A statistic for an observation is defined126

as127

T 2
A = τ>Θ−1τ =

A∑
a=1

(
τ 2
a/λa

)
(2)

where Θ(A×A) is the covariance matrix of T (diagonal matrix of the high-128

est A eigenvalues {λ1, . . . , λA}). It represents the estimated squared Maha-129

lanobis distance from the center of the latent subspace to the projection of130

an observation onto this subspace.131

When diagnosing which variables yield the obtained values for the SPE132

and the T 2 it can be useful to check the contributions of each variable to133

each statistic [8].134

From these two statistics (the SPE and the T 2), two complementary135

control metrics are obtained. Firstly, with an appropriate reference set of136

data, the in-control PCA model is built. The control limits are defined as137

well using the reference distributions for each statistic.138

Regarding the Upper Control Limit (UCL) for the SPE, several proce-139

dures can be used. In [10] it is shown that an approximate SPE critical140

value at significance level α is given by141

UCL(SPE)α = θ1

[
zα

√
2θ2h2

0/θ1 + 1 + θ2h0(h0 − 1)/θ2
1

]1/h0

(3)

where θk =
∑rank(X)

j=A+1 (λj)
k, h0 = 1− 2θ1θ3/3θ

2
2, λj are the eigenvalues of the142

PCA residual covariance matrix E>E/(N − 1), and zα is the 100(1 − α)%143

percentile of a standard normal variable.144
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Alternatively, one can use an approximation based on the weighted chi-145

squared distribution (gχ2
h) proposed by [9]. In [12] authors suggested a simple146

and fast way to estimate parameters g and h which is based on matching147

moments between a gχ2
h distribution and the sample distribution of SPE.148

The mean (µ = gh) and variance (σ2 = 2g2h) of the gχ2
h distribution are149

equated with the sample mean (b) and variance (v) of the SPE sample.150

Hence, the Upper SPE Control Limit at significance level α is given by151

UCL(SPE)α = vχ2
(2b2/v),α/(2b) (4)

where χ2
(2b2/v),α is the 100(1-α)% percentile of the corresponding chi-squared152

distribution with 2b2/v degrees of freedom.153

Upper Control Limits (UCL) for the T 2
A at a significance level (type I)154

risk α can be obtained assuming that the statistic follows an F distribution155

T 2
A ∼ A

(
N2 − 1

)
FA,(N−A)/(N (N − A)) (5)

Thus, the corresponding UCL from Equation 5 is given by156

UCL(T 2
A)α = A

(
N2 − 1

)
F(A,(N−A)),α/(N (N − A)) (6)

According to the aforementioned conceptual meaning of these multivari-157

ate statistics (SPE and T 2
A), observations above their associated UCL will158

be representing different types of outliers.159

The first type of outliers, with high SPE, occurs when the correlation160

structure between variables is different from the observed one during the161

model fitting with the clean data set. Using these observations to fit the162

model can lead to dramatic distortions on the correlation structure captured163

by the PCs. These perturbations are named “moderate outliers” or “anoma-164

lous observations” and are caused by unusual variations outside the model.165

The second type of outliers, with high values of the T 2
A, appears when166

the correlation structure between measured variables remains constant but167

their absolute values differ from the expected ones. These perturbations are168

named “severe outliers” or “extreme observations” and they are usually rep-169

resenting unusual shifts in the model (i.e. shifts that respect the correlation170

structure of the model). This leads to extreme values in the projection of171

these observations with respect to the ones obtained for the clean data set.172

These links between distances and types of outliers, or outlying properties,173

can be described using the Squared Prediction Error and Hotelling’s T 2
A. On174
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Figure 2: Types of outliers according to the PCA model built with a reference data set
(blue dots). Red discontinuous lines are the 95% control limits for the SPE and

Hotelling’s T 2.

one hand, moderate outliers will present high values for the SPE statistic,175

which is the reason why they are also known as orthogonal outliers. On176

the other hand, extreme outliers are observations with high values for the177

T 2
A. They are named as well good leverage observations, since their presence178

does not distort the correlation structure of the model. There can be as well179

observations that are both moderate and extreme outliers (Figure 2).180

In conclusion, outliers in the context of a PCA model will be associated181

with large values of the SPE, the T 2
A or both distances. Using this pair of182

statistics to describe observations provides more meaningful criteria to define183

outliers than setting their distribution parameters in the original or latent184

space. Setting not only the type, but also how far outliers will be from the185

reference data set, is something plausible when using the SPE and T 2
A as186

targets to simulate outliers. This idea of representing all types of outliers as187

combinations of SPE and T 2
A values, is the basis of the simulation approach188

presented in this work.189

2.3. Framework to generate outliers190

Our proposal for the generation of outliers is to transform an observation191

x, with given SPE and T 2 values (SPEx and T 2
x , respectively), into a new192

observation with an SPE and/or T 2 values specified by the user (SPEy and193
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T 2
y , respectively). The transformation will consist in a shift of the observation194

following certain direction in the space of the original variables.195

Moving the observation x in the direction v to obtain a new observation196

y = x + v, we can calculate the new value of the SPE and the T 2 statistics,197

based on the original values:198

SPEx+v = (x + v)>
(
I−PP>

)
(x + v) = SPEx + v>

(
I−PP>

)
(2x + v)

(7)199

T 2
x+v = (x + v)>PΘ−1P> (x + v) = T 2

x + v>PΘ−1P> (2x + v) (8)

The next issue is how to choose the direction v. An obvious choice is to200

shift the observation in the direction that joins it with the origin of coordi-201

nates in the original data space, taking v = cx. In this case, it is easy to202

calculate the change in both statistics:203

SPEx+cx = (1 + c)2SPEx (9)
204

T 2
x+cx = (1 + c)2T 2

x (10)

However, we are interested in finding directions in which we can control205

the change that occurs in each statistic. For example, there are specific206

directions that allow the change in one of both statistics, without affecting207

the other. In particular, we can move the observation in the direction of its208

residual vector in the PCA model: e =
(
I−PP>

)
x, so that a change in the209

SPE will occur, without modifying the T 2. Similarly, we can move it in the210

direction that joins the projection of the observation on the model with the211

origin (i.e. the direction of the predicted observation x̂): PP>x, so that there212

will be a change in T 2, without modifying the SPE. As both directions are213

orthogonal, we can compose both displacements in one operator, with control214

over the amount by which each of them increases. This will be illustrated in215

following sections.216

2.3.1. Shift of the SPE statistic217

If we move the observation x in the direction given by its residual vector218

(according to the PCA model): e =
(
I−PP>

)
x, multiplied by a scalar a,219

we get, from Equation 7 and Equation 8:220

SPEx+a(I−PP>)x = SPEx+ax>
(
I−PP>

) (
2x + a

(
I−PP>

)
x
)

= (1+a)2SPEx

(11)
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221

T 2
x+a(I−PP>)x = T 2

x + ax>
(
I−PP>

)
PΘ−1P>

(
2x + a

(
I−PP>

)
x
)

= T 2
x

(12)
We can choose the value a to achieve a target value for the SPE statistic,222

say SPEy:223

(1 + a)2SPEx = SPEy −→ a =
√
SPEy/SPEx − 1 (13)

Note that the selected direction is the one that maximizes the change in224

the SPE, because the gradient of this statistic is: ∇(SPE)(x) = 2
(
I−PP>

)
x.225

2.3.2. Shift of the T 2 statistic226

If we move the observation x in the direction PP>x, multiplied by a227

scalar b, we get, from Equation 7 and Equation 8:228

SPEx+bPP>x = SPEx + bx>PP>
(
I−PP>

) (
2x + bPP>x

)
= SPEx (14)

229

T 2
x+bPP>x

= T 2
x + bx>PΘ−1P>

(
2x + bPP>x

)
= (1 + b)2T 2

x (15)

We can choose the value b to achieve a target value for the T 2 statistic,230

say T 2
y :231

(1 + b)2T 2
x = T 2

y −→ b =
√
T 2
y/T

2
x − 1 (16)

We can also select the direction that maximizes the change in the T 2
232

statistic, without changing the SPE statistic, choosing the gradient of the233

T 2 statistic: ∇(T 2) = 2PΘ−1P>x. We do not use this direction because it234

is difficult to parametrise the amount of change in the T 2 statistic.235

2.3.3. Shift both statistics simultaneously236

If we have an observation x with statistics SPEx and T 2
x , we can trans-237

form it into a new observation with statistics SPEy and T 2
y combining the238

aforementioned transformations:239

y = x + a
(
I−PP>

)
x + bPP>x (17)

With a =
√
SPEy/SPEx − 1 and b =

√
T 2
y/T

2
x − 1, as seen in Equa-240

tion 13 and Equation 16. The procedure to build a new observation with241

desired SPE and T 2 statistics, based on an arbitrary prior observation x,242
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(a) Scheme to generate a new observation with
target SPE and T 2 statistics.

(b) Simple representation of the transformation
from x to y.

Figure 3: Representation of the algorithm to generate y.

is illustrated in Figure 3a. The visual representation of the algorithm with243

a model of only one PC, for an original space with only two variables is244

represented in Figure 3b.245

Furthermore, there is another aspect that can be used to control the outly-246

ing behaviour of the new observations. Given the reference and target values247

of a statistic, one can generate a series of M − 1 intermediate observations248

between the reference and the target one: {y1,y2, . . . ,yM−1}. Mathemati-249

cally, the expected value of a statistic Hm as a result of a transition from the250

reference H0 to the target value HM :251

Hm = H0 + (m/M)γ (HM −H0) m = 1, 2, ...,M − 1 (18)

Thus, SPEm and T 2
m will follow a pattern of gradual change according252

not only to the number of steps, but also to the spacing between them.253

This spacing is regulated in Equation 18 by the γ parameter. As it can be254

appreciated in Figure 4, when this parameter is set to 1, the spacing between255

steps is linear, shifting towards a non-linear dynamic as it drifts from 1.256

Given that both parameters (γSPE and γT 2) can be shifted simultaneously,257

this gives to the user the flexibility to simulate a wider variety of trajectories258

for each possible combination of values along the spacing of the two param-259

eters. Performing simultaneous shifts with some values for the parameters,260

results in the curves of Figure 5.261

This framework, including the possibility of controlling the distance be-262

tween intermediate observations in series of outliers, can be useful in order263

to study and compare the sensitivity of different robust PCA approaches264
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Figure 4: Curves for the SPE (left) and T 2 (right) statistics along the shift in 20 steps
for different values of their spacing parameters γ.

Figure 5: Curves for the SPE and T 2 statistics along the shift in 20 steps for different
combinations of their γ parameters.

or methods for outlying detection. Thus, one could know not only for what265

type of outliers, but also at which step, one method performs differently from266

others. Finally, considering all these parameters one has the complete flux267

diagram of the procedure in Figure 6.268

If a given observation x is moved in different directions, it will be appre-269

ciated both in the SPE and T 2 statistics, and also in the scores. Figure 7270

illustrates different shifts on a five dimensional observation x according to a271

reference PCA model.272

In Figure 7a, red dashed lines represent the UCL for the T 2 and SPE273

statistics. The ellipse represented in the score plot from Figure 7b, is the274

contour curve of the confidence ellipsoid for the T 2 statistic, calculated for a275

confidence level of (1−α)×100%. From Equation 6, it is obtained an ellipsoid276

delimited in each dimension (i.e. PC) of the latent subspace. The contour of277

that ellipsoid represents a region of the space which holds T 2 = T 2
100(1−α)%CL278

for each observation lying on that contour. Since the score plot is a bi-279
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Figure 6: Flux diagram of simulation algorithm including all the parameters.

(a) Distance plot with five different shift
directions for an observation.

(b) Score plot with five different shift
directions for an observation.

Figure 7: Illustration of how moving in different directions would affect the SPE and T 2

(a) and the scores (b).

dimensional plot, the bi-dimensional representation of the confidence ellipsoid280

turns into a confidence ellipse. Therefore, observations lying outside the281

ellipse will be over passing the UCL for the T 2 statistic.282

The first set of directions are those that correspond to the five variables283

(labelled as x1, ..., x5). The trivial direction (v = x) is also considered.284

The direction corresponding to the residual vector (v = (I−PP>)x) is easy285

to recognize, since it causes an increase in the SPE without affecting the286

T 2 statistic. In the distance plot (Figure 7a) it is represented as a vertical287

arrow, whereas it does not appear in the score plot (Figure 7b), given that288

the projection of x + a(I−PP>x) in the model space is the same as that of289

x, for all a values.290

12



The last two directions are PP>x and PΘ−1P>x (labelled as ∇(T 2) in291

Figure 7). These two directions are in the model plane and this means that292

the SPE will not be affected, which can be appreciated by the horizontal293

arrows in Figure 7a. The magnitude of the shift in the T 2 value is bigger294

for the PΘ−1P>x direction, since it corresponds to the gradient of the T 2
295

statistic. The trajectory described by the scores when the direction PP>x296

is chosen, is an extension of the segment that joins the origin (0,0) with the297

scores of x (i.e. the direction of the predicted observation x̂). The trajectory298

followed when the shift is performed in the direction PΘ−1P>x (∇(T 2)) is299

perpendicular to the (1 − α) × 100 confidence level Hotelling’s T 2 ellipse,300

which is defined as the level curve for the T 2 statistic.301

3. Results302

In this section, some examples of how to simulate outliers with the desired303

properties are shown. This section is divided in two main parts. The first304

part will present results for three different scenarios of outliers simulation.305

Afterwards, four examples of outliers simulation extracted from literature are306

emulated using the framework proposed in this work. The aim of this exercise307

is to show how the technique described in this work can comprise other308

particular simulation settings. Finally, an assessment about the properties309

of the simulated outliers in terms of a robust PCA model is provided as well.310

3.1. Cases of use of the proposed method.311

These results illustrate three generic simulation scenarios: generating out-312

liers in one step, generating a sequence of outliers, and generating a grid of313

outliers. For this purpose, a reference matrix X of n = 50 observations and314

k = 5 normally distributed variables is simulated. The PCA model based on315

X is built with two PCs, assuming a type I risk α of 5% and performing a316

mean centering. All functions along their documentation and the script to317

reproduce the following scenarios can be downloaded from the github repos-318

itory https://github.com/albagc/SCOUTer.git. A detailed explanation319

abouth the obtention of the following results can be found in the howto.pdf320

file.321

3.1.1. Case I: One-step simulation of outliers.322

This is the simplest case, in which from an initial observation x with323

reference values SPEx and T 2
x , a new observation y is obtained, with the324
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desired SPEy and T 2
y values (8a). The aforementioned scheme can be easily325

generalised for a set of observations. In the following example, the original326

X matrix will be drifted from its initial coordinates. In this scenario a set of327

one-step outliers is generated by increasing only the T 2 value (i.e. extreme328

outliers). The SPE remains at its reference value.

(a)

(b)

Figure 8: (a) Illustration of a one-step simulation of controlled outliers. (b) Distance plot
with the reference (blue circles) and the shifted (red triangles) data sets, performing a

single step keeping the initial SPEX value, but setting a target value T 2
Y = 40 for all the

observations.

329

As it can be seen in Figure 8b, all observations have been shifted in their330

distance to the center on the model plane, drawing a contour on the score331

plot for the value T 2
A = 40, whereas they have kept their values on the SPE332

statistic. In other words, this is an example of a how to simulate a set of333

extreme observations.334

3.1.2. Case II: Step-wise simulation of outliers335

In this scenario, the transition between the reference and the target values336

for the statistics is performed with a spacing of n steps between them. From337

a reference observation x (or set of observations X) with reference values338

SPEx and T 2
x (or SPEX and T 2

X), a series of M − 1 new sets of observations339

up to y (or Y) with the desired SPEy and T 2
y (or SPEY and T 2

Y) values is340

generated (9a).341
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(a)

(b)

Figure 9: (a) Illustration of a M -step simulation of controlled outliers. (b) Distance plot
after performing a 10-step shift both in the SPEx and the T 2 values from one initial

observation x (blue circle).

In the example from above (Figure 9b), there is a linear spacing between342

steps for the SPE and the T 2. However, the spacing between steps can be343

tuned, as seen in Figure 4 and Figure 5 from Section 2.3.344

3.1.3. Case III: Grid-wise simulation of outliers345

With the step-wise approach the same number of steps is performed for346

both statistics. Finally, the grid-wise case enables a different number of347

steps for each statistic. Starting from an initial data set x (or X) with348

reference values SPEx and T 2
x (or SPEX and T 2

X), a grid of new observations349

combining each step of the statistics is obtained (Figure 10a). As a result,350

there are as many data sets simulated as combinations between the steps of351

the statistics.352

In this last case, a grid with 2 steps for the SPE and 3 steps for the T 2
353

has been produced, setting different spacing parameters for each parameter354

as well (Figure 10b).355

3.2. Comparison to other simulation methods and PCA frameworks356

The aim of this section is to address two important questions about the357

simulation method proposed in this work: i) the proposed simulation frame-358

work can encompass other existing simulation strategies, and ii) if the prop-359
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(a)

(b)

Figure 10: (a) Illustration of a grid-case simulation with M -step shifts for the SPE and
the T 2. (b) Distance plot after performing two steps for the SPE with γSPE = 3 and
three steps for the T 2 with γT 2 = 0.3 from one reference observation x (blue circle).

erties of the simulated outliers will be maintained when they are projected360

onto PCA models fitted with other algorithms rather than the classical least361

squares version.362

3.2.1. Simulation of other outlier generation strategies363

With the aim of assessing if the proposed method can be seen as a gen-364

eral simulation framework, four strategies to simulate outliers extracted from365

literature [5, 6, 13, 3] will be redefined in terms of the proposed simulation366

framework. Figure 11 provides a graphical comparison between the simu-367

lated outliers following the original strategy from the aforementioned works368

and using the algorithm proposed in this article. Each simulation procedure369

and all the details to get the results presented in this section, are further370

explained in the Appendix A.371

At first glance, one can notice in Figure 11 that despite sharing the pur-372

pose of simulating outliers, each strategy leads to very different outliers in373
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(a) (b) (c) (d)

Figure 11: Distance plots of the observations simulated as in [5] (a), as in [6] (b), as in
[13] (c) and as in [3] (d) using the approach from the original work (first row) and the

proposed algorithm controlling the outlier properties (second row).

qualitative and quantitative terms. In Figures 11a and 11d outliers are far in374

terms of their orthogonal distance but their projection onto the model plane375

seems still under control limits. These plots differ from the ones reported in376

Figures 11b and 11c, where outliers are distant both in terms of the T 2 and377

in the SPE.378

Furthermore, the simulation procedure from Figure 11c differs strategi-379

cally from the others, since the same set of observations is shifted apart in380

50 steps from their reference values. In Figure 11d, it can be appreciated the381

gradual shift of the same set of observations increasing their SPE and ran-382

domly shifting the T 2. This can be seen as well in Figure A.13. It also stands383

out the difference between the upper and lower distance plots in Figure 11d.384

This is because we considered that variations of the T 2 in their simulated385

outliers were not a strategical feature of the simulation. This is explained in386

detail in the Appendix A.387

Comparing the original methods to simulate outliers (upper row of plots388

in Figure 11), it can be seen that all of them increase the SPE of the out-389

liers. This is because in the end, despite following different strategies, all390

procedures to simulate outliers rely on breaking the correlation structure de-391

scribed by the reference data set. This is done differently by each author. In392

[5] the simulation strategy relies on adding noise to the outlying observations,393

whereas in [3], the noise is introduced as the new mean vector of the outly-394

ing distribution. This results in outliers with an increased SPE but with a395

moderate T 2, as it can be seen in Figures 11a and 11d. In [6], outliers are396

generated by altering the variance of variables, which leads to an increase in397
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the T 2 (Figure 11b). The mean vector of the outliers distribution is changed398

as well, in such a way that the correlation pattern is not respected anymore,399

which leads to the increase of the SPE. Finally, in [13], authors shift the400

sign of randomly selected cells. As a consequence, they are clearly breaking401

the correlation structure and this can lead as well to an increase in the T 2 of402

the outlying observations (Figure 11c).403

The comparison between plots from the upper and lower row in Fig-404

ure 11, shows that results obtained by the proposed algorithm to simulate405

outliers with the desired properties, are fairly similar to the ones obtained by406

other simulation settings. Furthermore, some limitations of the traditional407

paradigm to simulate outliers can be seen as well. This traditional frame-408

work relies on changing the parameters of the distribution that describes the409

outlying population, but there is not a direct and clear relationship between410

the new parameters of the outlying distribution and their effect on the SPE411

or the T 2. Consequently, it is difficult to control how this new distribution412

will affect to the outlying properties of the outliers when they are projected413

onto the reference PCA model. This can be appreciated in the fact that most414

simulation strategies easily increase the SPE of their observations, but with-415

out controlling its value and without having the same control over the T 2 of416

the outliers. In fact, the T 2 seems to be a more uncontrolled parameter and417

any of the proposals includes specific outliers for the T 2. This is probably418

because it is not trivial how to find a new mean vector for the distribution of419

the outliers that still respects the correlation structure of the reference data420

set.421

The change from the traditional simulation paradigm, to the new one pro-422

posed in this work, simplifies the relationship between the simulation setup423

and the properties of the resulting outliers.The algorithm proposed in this424

work does not rely on the distribution of the reference and the outlying ob-425

servations and it has an independent control over the SPE and the T 2. This426

results in a new simulation approach that is versatile enough to encompass427

other particular simulation strategies (Figure 11). Besides, differences be-428

tween simulation settings can be directly measured in terms of the target429

SPE and T 2 of the outliers.430

3.2.2. Properties of the simulated outliers in a robust PCA model431

The second aspect to assess in this comparison is to what extent (just432

quantitative or also qualitative) outliers simulated by the proposed algorithm433

behave as outliers in terms of other detection techniques. In this sense, it is434

18



also interesting to assess if the properties of simulated outliers change when435

they are expressed in terms of different distance metrics. For instance, some436

robust PCA techniques differ not only in the core algorithm to calculate the437

principal components, but also in terms of the statistics that measure the438

distance of an observation to the model. Hence, the whole basis used by our439

proposed framework to define the outliers, is different in these cases. This440

may affect the properties of simulated observations when they are defined in441

these new terms.442

For this purpose, simulation scenarios from sections 3.1.1, 3.1.2 and 3.1.3,443

will be projected onto a robust PCA model calculated with MacroPCA[3].444

This technique can be considered as an ensemble of several outlier detection445

methods. It includes the Detect Deviating Cells (DDC) [14] algorithm as first446

step in order to detect outlying cells, which itself, can be regarded as an out-447

lier detection technique. Later on, MacroPCA algorithm fits a robust PCA448

model using a version of the ROBPCA algorithm [15]. In this ROBPCA step,449

they include the detection of outlying observations in several steps. Firstly,450

in the Projection Pursuit step, to rank rows according to their outlyingness.451

Secondly, after the iterative subspace estimation, they apply a filter on ob-452

servations based on their orthogonal distance to the model. Thirdly, they453

apply the DetMCD method [16], for the covariance matrix estimation, which454

also includes intermediate distance calculations to use the least distant ob-455

servations for the covariance matrix computation. Finally, when the PCA456

model has been estimated, they perform a last outlier detection based on two457

robust distance metrics: the orthogonal distance and the score distance.458

It is worth to highlight that although the distance metrics used in [3]459

do not coincide with the SPE and T 2, their conceptual meaning is equiva-460

lent, since they represent the orthogonal distance and the Mahalanobis dis-461

tance on the model plane, respectively. Thus, we considered that MacroPCA462

was clearly representative as a state-of-the-art outlier detection method and463

as a robust PCA model building algorithm. Moreover, its good perfor-464

mance in outliers detection and the comparable meaning of its distance465

metrics (orthogonal and score distances) to ours (the SPE and the T 2),466

were considered as interesting factors for the comparison. Results shown467

in Figure 12 were obtained using the cellWise package in R (available in468

https://CRAN.R-project.org/package=cellWise).469

As it can be seen in Figure 12, qualitative properties of the simulated out-470

liers are still met in terms of alternative PCA models and distance metrics.471

However, there are some differences in the distance values and their Upper472

19

https://CRAN.R-project.org/package=cellWise


(a) (b) (c)

Figure 12: Distance plots of the observations simulated in Figure 8b (a), in Figure 9b
(b) and in Figure 10b (c), when they are projected onto the PCA model fitted using
MacroPCA with the reference data set. Blue circles represent reference observations,

whereas red triangles represent the simulated outliers. Black lines represent the Upper
Control Limits for the Orthogonal Distance (ordinate) and the Score Distance (abscissa).

Control Limits, which is reasonable given that the Orthogonal Distance and473

Score Distance are not exactly the SPE nor the T 2. Results in Figure 12a474

show also an increase of the simulated outliers in terms of the orthogonal475

distance. Given the robust estimation of the covariance determinant in the476

detMCD step of MacroPCA, extreme observations in the T 2 were detected477

as outliers, and excluded for the computation of the final PCA model param-478

eters. As a result, since these observations were excluded at some point for479

the PCA model building, we find reasonable that they also increased their480

distance to the model. Nonetheless, in all cases simulated outliers keep the481

outlying character that they were asked to represent in first instance. This482

can be appreciated by their position above the cut-off values for the distances483

in all distance plots, indicating the persistence of their outlying properties.484

4. Conclusion485

In this work, a new framework to simulate outliers directly controlling486

their outlying properties has been proposed. This approach is based on the487

use of a well-known pair of statistics, the SPE and the Hotelling-T 2 from a488

PCA model, which evaluate in a complementary way how far an observation489

is from the majority of the data set (i.e. the outlyingness degree).490

Given an observation with initial values for the statistics, a PCA model491

and target values for the pair of statistics, our simulation method drifts492

the aforementioned observation in a direction that shifts the initial SPE493

and Hotelling-T 2 until reaching their target values. This shift direction is a494
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combination of two orthogonal directions, each one independently controlling495

the shift on the SPE and the Hotelling-T 2.496

This feature is a key factor, since it enables a specific control over the497

two properties that define multivariate outliers in terms of a PCA model.498

This becomes critical specially when simulating anomalous data, which is499

a extremely common procedure when testing the performance of different500

statistical methods handling datasets with outlying observations. However,501

the outliers generation is usually an ad hoc procedure, with a lack of standard502

protocols and being based most of the times, even when working with PCA503

models, on distributions and parameters that do not tune neither how nor504

how much an observation is outlying. This makes the supposed benefits505

of the different statistical methods depend on the nature of the simulated506

outliers and consequently, the comparison of the different methods reported507

in the literature becomes difficult or impossible. Moreover, most simulation508

methods require an assumption about the distribution of the reference data509

set, and simulate outliers by changing one of its parameters, such as the510

mean or the covariance matrix. This simulation paradigm might not be511

feasible to implement with real data sets, when the distribution is unknown.512

Furthermore, the relationship between the new parameters of the distribution513

and the outlying properties of the simulated observations is not simple and514

direct.515

In Section 3.2.1 we showed how the methodology proposed in this arti-516

cle, successfully encompasses particular simulation strategies proposed in the517

literature in a common framework. Consequently, the comparison between518

approaches can be easily measured in terms of target specifications or in519

terms of the strategy followed to shift the outliers, i.e.: one step, step-wise of520

grid-wise. Besides, we also illustrated the shortage of extreme (good lever-521

age) outliers simulated in the literature given the difficulty of modifying the522

reference distribution while respecting its covariance structure, which is eas-523

ily achieved by the simulation framework proposed in this paper (Figure 8b).524

Moreover, in Section3.2.2 we also showed how the outlying properties are, at525

least, qualitatively consistent when the simulated outliers are projected on a526

robust PCA model.527

However, the proposed method has some limitations, which are further528

addressed in Appendix B. The simulation procedure does not set any restric-529

tion in case that binary or categorical variables are present in the matrix.530

Naturally, this framework is also restricted by the same limitations as the531

PCA model is, such as the inability to model non-linear relations between532
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variables (see Appendix B.2).533

In summary, the framework proposed in this paper offers the possibility534

of generating outlying observations with a wide range of desired properties,535

given that the user can control the pair of statistics that essentially define536

the outlyingness degree: the SPE and the Hotelling-T 2. This procedure has537

been implemented in Matlab, providing a set of functions to perform the PCA538

Model Building and the simulation of controlled outliers. Further details539

about the Matlab code can be found in the documentation file available in540

the GitHub repository.541

Computational details542

The results have been obtained executing the functions from https://543

github.com/albagc/SCOUTer.git in Matlab version R2020a 9.8.0.1323502.544

Further information about the functions can be found in the documentation545

and howto documents on the repository.546
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ulation strategies621

This section contains information about how to replicate the strategies622

to simulate outliers present in different articles of PCA-MB dealing with623

outliers. In each case there are two main items to simulate: the reference624

data set used to fit the PCA model and the outlying observations.625

The aim of this section is to provide a brief summary about the simulation626

strategies followed in each reference and to give the details about the set up627

of our proposed algorithm to imitate them, getting the results of Figure 11.628

The following table provides information about the method used in each629
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referred work to simulate the reference data set and the outlying observations.630

Some notation has been changed from the original works to avoid potential631

confusions with other terms used in this paper.

Ref. Simulation of reference data set Simulation of outliers

1 - [5]

X0 ∼ Nn(0n, In)→ X0 = TAP>A + E0

E1 ∼ N(0,1) · 0.1
X1 = T1,AP>A + E1

n = 98; k = 20;A = 4

X2 = T2,AP>A + E2

E2 ∼ N(10,1)

2 - [6]

TA ∼ NA (0A, IA)

PA :⊥ k × A uniformly

distributed pseudorandom numbers

Ek ∼ Nk (0k,1k)/100

X1 = TA P>A + E

X2 ∼ NA (15A, 8 ∗ IA)

3 - [13]
X1: Data reconstructing the metabolic network

of thebenchmark problem 4 from the original work

X2 : outliers

∀i ∈ 1, . . . , n2

∀j ∈ 1, . . . k

mj = mean(xj)

sj = std(xj)

if |xij,1| ≤ mj + 1.5sj :

xij,2 = −xij,1

4 - [3]

X1 ∼ N(0,ΣA09)

A = 6PCs,N = 100, K = 200

ΣA09 = VA09DA09V
>
A09

DA09 = diag(30, 25, . . . , 5, 0.098, 0.0975, . . . , 0.005)

X2 ∼ N(mνA+1,ΣA09)

m ∈ 1, . . . , 50

νA+1 = VA09 [:, A+ 1]

Table A.1: Strategies followed by different authors to simulate the reference data sets
and the outlying observations.

632

Appendix A.1. Reference 1633

In [5], an adaptation of the classical Expectation Maximization PCA634

(EM-PCA)is provided. The core least squares PCA is substituted by the635

robust spherical PCA. [17] Their reference data set is a matrix of dimen-636

sions n = 98 and k = 20, with its variables following a multivariate normal637

distribution. After its reconstruction with A principal components, an error638

term following a N(0, 1) distribution is added to regular observations. A639

certain percentage of observations is randomly sampled and instead, their640
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added error term follows a N(10, 1) distribution. Before its addition to the641

reconstructed matrix, the error term is multiplied by a 0.2 factor.642

Following one of the simulation settings from the original work, we set643

a number of A = 4 PCs and selected 10% of the observations to transform644

them into outliers. After building a PCA on the clean data, the outliers645

simulated as in the original work, were projected onto the model, obtaining646

their SPE and T 2. These metrics were used as an input to our simulation647

function, setting them as target values for the algorithm.648

The code used to generate the outliers is the following one:649

pcamodel_ref1 = pcamb_classic(Xref1, 4, 0.05, ’cent’);650

pcaxout = pcame(Xoutref1, pcamodel_ref);651

Xout1 = scout(Xoutref1_0, pcamodel_ref, ’simple’, ’spey’,652

pcaxout.SPE, ’t2y’,pcaxout.T2);653

The elements Xref1, Xoutref1 and Xoutref1 0 are matrices containing the654

reference data set used to build the PCA model, the outliers simulated as655

in the original work and the outlying observations before being transformed656

into outliers, respectively.657

Appendix A.2. Reference 2658

In [6], the simulation procedure begins by simulating the latent subspace.659

On one hand, scores are simulated as independent normally distributed vari-660

ables with zero mean and unitary variance. On the other hand, loadings are661

simulated as orthogonal vectors with pseudo-random uniformly distributed662

pseudo-random numbers. In third place, the error matrix is simulated as663

normally distributed random noise divided by 100. Using this terms, the664

reference matrix (X1) can be reconstructed.665

Afterwards, the outlying data set is simulated as a matrix X2, with n2 =666

0.1 · n1 observations, and which follows a normal distribution NA(15A, 8IA),667

where 15A is a vector containing A elements equal to 15.668

Following this simulation procedure to generate outliers, authors create669

three different setups (C1, C2 and C3) varying the number of observations670

(nC1 = 100, nC2 = 40, nC3 = 40), the number of variables (kC1 = 5, kC2 =671

10, kC3 = 200) and maintaining the number of PCs (AC1 = AC2 = AC3 = 2).672

Results shown in Figure 11b are the ones obtained with the configuration B.673

The following lines of code were used to replicate the PCA model of the674

reference data set and the outliers simulated in this work:675
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pcamodel_ref2 = pcamb_classic(Xref2, 2, 0.05, ’cent’);676

pcaxout= pcame(Xoutref2, pcamodel_ref2);677

Xout2 = scout(Xoutref2_0, pcamodel_refB, ’simple’, ’t2y’,678

pcaxout.T2,’spey’,pcaxout.T2);679

The elements Xref2, Xoutref2 and Xoutref2 0 are matrices containing the680

reference data set used to build the PCA model, the outliers simulated as681

in the original work and the outlying observations before being transformed682

into outliers, respectively. In this case, observations from Xoutref2 0 were683

observations following the same distribution as the reference data set.684

Appendix A.3. Reference 3685

In [13], authors provide a solution based on Trimmed Scores Regression686

(TSR) to enable network inference methods work in presence of missing data687

and outliers. Outlying observations are simulated by shifting the sign of cells688

above the variable average plus 1.5 times the standard deviation, or below689

the mean minus 1.5 times the standard deviation. Thus, the correlation690

pattern between variables is broken for these outliers. In order to illustrate691

the results, we show the outliers generated for the benchmark problem 4, one692

of the five benchmark problems addressed in the original paper.693

The original work provides the information about the data used in the694

article. After downloading it, we built a PCA model based on the Xref3 ma-695

trix, and projected. Afterwards, a random selection of rows determined the696

observations that were transformed to outliers using the original procedure697

in [13] and the algorithm proposed in this article.698

The process to achieve this simulation framework is very similar to the699

ones from previous references, where the SPE and the T 2 of the outliers700

generated following the procedure from the original work are used as target701

values in our simulation function.702

pcamodel_ref3 = pcamb_classic(Xref3, 3, 0.05, ’cent’);703

pcaxout = pcame(Xoutref3, pcamodel_ref3);704

Xout3 = scout(Xoutref3_0, pcamodel_ref3, ’simple’, ’spey’,705

pcaxout.SPE, ’t2y’,pcaxout.T2);706

The elements Xref3, Xoutref3 and Xoutref3 0 are matrices containing707

the reference data set used to build the PCA model, the outliers simulated as708

in the original work and the outlying observations before being transformed709

into outliers, respectively.710

27



Appendix A.4. Reference 4711

In [3] authors propose an adaptation of their previous robust PCA algo-712

rithm to deal with missing data and cellwise outliers. However, in this work713

we are focusing exclusively in the comparison between rowwise outliers, i.e.714

anomalous observations. In this case the reference data set is generated as715

a matrix whose columns follow a multivariate normal distribution N (0,Σ).716

Two different covariance matrices (A09 and ALYZ) are used and their singu-717

lar values are adapted in order to reach over the 80% of explained variance718

with the first 6 principal components.719

Later on, a certain percentage of rows is randomly sampled and changed720

by new observations that follow the distribution N (mνA+1,Σ). In the pre-721

vious expression, A is the number of principal components and the term νj722

refers to the jth eigenvector of the covariance matrix. The factor m that723

multiplies the new mean vector ranges from 1 to 50, leading an increasing724

noise introduced in the outliers along with the increase in the m parameter.725

This is equivalent to make outleirs more distant to the model hyperplane.726

The following code lines show the procedure used to imitate the simulation727

with the A09 covariance matrix. The matrix dimensions are n = 100 observa-728

tions and k = 200 variables, with A = 6 principal components, m = 1, · · · , 50729

and 20 rows randomly selected to transform them into outliers.730

pcamodel_ref4 = pcamb_classic(Xref4, 6, 0.05, ’cent’);731

pcaxout4 = pcame(Xout4, pcamodel_ref4);732

The matrix Xout3 contains the outlying rows for all the values of the733

step parameter m, i.e. it is a matrix of 1020 rows (20 × 51, the 20 original734

observations and their progressive 50 shifts). Vectors SPE2
y and T2

y contain735

the SPE and T 2 values of the 20 outliers along the 50 steps.736

A characteristic aspect of this simulation is the gradual shift described by737

the outliers. In terms of our proposed procedure, this is equivalent to use the738

step-wise generation of outliers as in Section 3.1.2. For this purpose, we need739

the final values of the statistics at the m = 50 step for all the observations,740

but also the step parameter γ. In order to study the progression for the SPE741

and the T 2 along the m steps, we plotted their evolution. in Figure A.13.742

After visualising Figure A.13, it stands out a clear difference between the743

growing patterns of the SPE and the T 2 along m . Whereas the SPE trajec-744

tory for the outliers draws a clear ascending pattern for all the observations,745

the T 2 does not seem to do so.746
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Figure A.13: SPE (left) and T 2 evolution of the outliers simulated in [3] along the m
steps.

Moreover, when the outliers are visualised in the distance plot from Fig-747

ure 11c, barely any of them is above the UCL for the T 2. This lead us to748

consider that changes in the T 2 among the outliers were more an artifact than749

a desired outcome of the simulation. Hence, we focused on calculating the750

γSPE parameter only.This parameter appears in Figure 3a and Equation 18751

tunning the spacing between the SPE steps in the following expression.752

In order to fit the γSPE parameter, we used the MatLab function lsqnonlin.m:753

sperw = reshape(pcaoutrw4.SPE,20,51)’;754

xg_spe = nan(20,1);755

for i = 1:20756

HM = sperw(end,i);757

H0 = sperw(1,i);758

Hm = sperw(:,i);759

M = 50;760

m = 0:50;761

gfun = @(gamma)H0 + (m./M).^gamma*(HM - H0) - Hm;762

xg_spe(i) = lsqnonlin(gfun,3);763

end764

g_spe_mean = mean(xg_spe);765

After calculating the γSPE for each observation, the mean value is calcu-766

lated and stored in the g spe mean variable. Figure A.14 shows the estimated767

trajectory using the average γSPE = 2.6348 value. This parameter used later768

as an input to the scout.m function:769

Xout4 = scout(Xoutref4_0, pcamodel_ref4, ’steps’, ’spey’,770

sperw(end,:)’, ’nsteps’, 50, ’gspe’, g_spe_mean);771

29



Figure A.14: SPE of outliers simulated by the strategy from the original work [3] (black)
and SPE of the outliers simulated by the proposed algorithm (red) along the m steps.

Appendix B. Limitations of the proposed algorithm772

This section addresses in further detail the results obtained with the773

method to simulate outliers with desired properties, when it is used on a774

matrix with non-linearities or with binary data.775

The reference matrix X0 is simulated using the functions from [18]. The776

following code lines are the ones used to generate the reference matrix:777

[X,S,srnd] = simdataset(100,10,[6,3],ones(1,10));778

[X_0,srndn]=randnm(S,100,srnd);779

The resulting matrix has 100 observations, 10 variables normally dis-780

tributed and two principal components which explain above the 80% of the781

variance.782

Appendix B.1. Non linearities783

In this case, the matrix will present relations between variables that the784

classical PCA model will not be able to capture. In order to study to what785

extent this limitation of the PCA model would affect the simulations, we786

carried out a generation of outliers with a reference matrix that contained787

non-linearities and increasing only the T 2 of the outliers. This means that the788

generated observations should nor break the correlation pattern described by789

variables.790

The new matrix Y is the result of concatenating the original matrix X0,791

and a set of non-linear variables generated from the original ones in X0. The792

non-linear relations included in each variable are:793

rng(1101)794

varind = randperm(10,8);795
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Y_11 = X_0(:,varind(1)).^2;796

Y_12 = X_0(:,varind(2)).^3;797

Y_13= exp(X_0(:,varind(3)));798

Y_15 = rand(1,1) + X_0(:,varind(5)) + X_0(:,varind(5)).^2;799

Y_16 = X_0(:,varind(2)).*X_0(:,varind(4));800

Y_17 = X_0(:,varind(6)).*X_0(:,varind(7)).^2;801

Y_18 = exp(X_0(:,varind(3))).^(X_0(:,varind(7)) + X_0(:,varind(8)));802

Y_19 = X_0(:,varind(3))*2;803

804

Y = [X_0,Y_11,Y_12,Y_13,Y_14,Y_15,Y_16,Y_17,Y_18,Y_19];805

806

As one can notice, the selection of the variables that were non-linearly807

combined was perform randomly. Also, a linearly generated variable (y19)808

was included in the set, to compare if the outliers on this variable still followed809

their analytic relation with the column. used to generate them.810

As we aforementioned, some outliers on the T 2 were generated to keep811

the original correlation structure between variables. In order to do so, the812

PCA reference model based on Y had to be calculated. By setting “0” as813

the second input argument in the PCA-MB function, it returns a suggestion814

about the number of PCs to consider:815

pcamodel_ref = pcamb_classic(Y, 0, 0.05, ’cent’);816

817

Sugested number of PCs:818

- Singular values of covariance matrix > 1 = 6819

- Minimum PCs to reach cummulative variance > 80 % = 3820

Select the number of PCs: 3821

822

A number of 3 PCs was selected. Then, outliers on the T 2 were generated823

setting the same target value for all of them in the scout.m function:824

T2target = 60*ones(size(Y, 1), 1);825

Yextreme = scout(Y, pcamodel_ref, ’simple’, ’t2y’, T2target);826

Yall = [Y; Yextreme.X];827

828

The resulting outliers are represented in Figure, B.15 where it can be seen829

that the new observations accomplish the specified target values for the T 2.830
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Figure B.15: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.

However, the relations between the non-linear variables and the original831

columns use to generated have been distorted. In Figure B.16 there is a clear832

difference between blue and red observations.

Figure B.16: Scatter plots with the reference (blue circles) and new (red triangles)
observations for all the new variables in Y generated as combinations of the variables in

X0.

833

Whereas the blue circles perfectly describe the analytical relation used834

to generate them, that is not the case for red triangles, since they clearly835

break the relative pattern between variables. This is not the case for the836

last variable (x19), which was generated as a linear combination. This result837
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reinforces the limitation that is produced when the method has to take into838

account non-linear relations between the variables.839

Appendix B.2. Binary variables840

In this second example the purpose is to show the changes produced on841

categorical variables when the algorithm is used on a mixed matrix with842

continuous and categorical data.843

In this case, four binary variables with different percentage of 0s and 1s844

are simulated. The resulting matrix Y has the original variables from X0845

and the four additional binary columns.846

rng(1101)847

Y = [X_0,zeros(size(X_0,1),4)];848

Y(randperm(size(X_0,1),round(0.2*size(X_0,1))),11) = 1;849

Y(randperm(size(X_0,1),round(0.4*size(X_0,1))),12) = 1;850

Y(randperm(size(X_0,1),round(0.6*size(X_0,1))),13) = 1;851

Y(randperm(size(X_0,1),round(0.8*size(X_0,1))),14) = 1;852

Similarly as in Appendix B.1, a PCA model is fitted with Y, but in this853

case, two PCs were selected.854

pcamodel_ref = pcamb_classic(Y, 0, 0.05, ’cent’);855

Sugested number of PCs:856

- Singular values of covariance matrix > 1 = 2857

- Minimum PCs to reach cummulative variance > 80 % = 2858

In this case we generated outliers increasing the SPE and the T 2, im-859

posing a target value of 50 for both of them and for all the data points. As860

it can be seen in Figure B.17, the set of new observations has the specified861

values for both statistics.862

T2target = 50*ones(size(Ybin, 1), 1);863

SPEtarget = 50*ones(size(Ybin, 1), 1);864

Yout = scout(Ybin, pcamodel_ref, ’simple’, ’t2y’, T2target,’spey’,SPEtarget);865

Yall = [Ybin; Yout.X];866

Nonetheless, it is easy to see in Figure B.18 that new observations are867

outside the range of accepted values for binary variables. This artefact is868

produced because the simulation algorithm assumes to work with continu-869

ous variables. Consequently, it does not include any constraint in the data870

generation to respect the binary or qualitative nature of variables.871
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Figure B.17: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.

Figure B.18: Distance (left) and score (right) plot for the reference (blue circles) and the
outliers (red triangles) generated.
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