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Abstract: This paper presents a solution to support service discovery for edge choreography based
distributed embedded systems. The Internet of Things (IoT) edge architectural layer is composed of
Raspberry Pi machines. Each machine hosts different services organized based on the choreography
collaborative paradigm. The solution adds to the choreography middleware three messages passing
models to be coherent and compatible with current IoT messaging protocols. It is aimed to support
blind hot plugging of new machines and help with service load balance. The discovery mechanism
is implemented as a broker service and supports regular expressions (Regex) in message scope to
discern both publishing patterns offered by data providers and client services necessities. Results
compare Control Process Unit (CPU) usage in a request–response and datacentric configuration and
analyze both regex interpreter latency times compared with a traditional message structure as well
as its impact on CPU and memory consumption.

Keywords: Internet of Things; service choreography; middleware; distributed embedded systems;
edge; fog computing; discovery; regular expressions

1. Introduction

The latest innovations in technology and communication allow for flexible adaptation
of the Internet of Things (IoT) paradigm to many application areas. A layered architecture
benefits the adaptation. We can find several examples that propose interconnected layers
from the sensors to the end user [1–5]. The complexity of these layers depends on the
application objectives and magnitude of the observation, the ubiquity of sensors and
actuators, and the available infrastructure.

Many scenarios could benefit from the advantages of an IoT architecture which
includes an edge or fog computing layer able to carry out data storage, control management,
decision making, service integration, and intra- and interoperability.

However, building an edge computing layer with embedded devices is a challenge.
The computational capacity of machines is usually between the low capacity of the sensors
and the high performance of cloud systems.

In advanced edge systems, machines need to exchange information to make decisions.
Orchestration and choreography models describe how this information should flow [6,7].
On the one hand, orchestration fits into a centralized model for service connection where a
central element manages the state of the process and the flow of data [8]. On the other hand,
choreography relies on a combination of distributed services that cooperate to provide
functionality and manage the processes and the flow of data. This makes choreography
appropriate to apply to distributed edge services with distributed data storage in machines
with similar computing capabilities.
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Choreography in embedded systems specifies interactions among services [9,10].
Every service collaborates to provide functionality. Choreographies support mechanisms
for a highly coupled integration of services, as compared to the loosely coupled integration
promoted in traditional service oriented architecture (SOA) systems.

In this paper, choreography is supported by the message passing engine in [11]
which allows for routing service invocations, as the lowest layer of a middleware that is
implemented on top of the transport layer. The engine efficiently exploits performance
and use of system resources, making it suitable for building edge devices oriented to the
IoT [12].

Furthermore, the choreographer facilitates the growth and extension of the ICT system,
providing a complete integration platform [13]. New, heterogeneous services can be easily
incorporated, removed, substituted, or moved to other choreographers in the system.

However, the engine does not include a discovery mechanism. Such a mechanism
is necessary to allow dynamic data flow composition for blinded hot plugging of new
machines. When a new machine is plugged into the system, services allocated in the
machine do not know a-priori the identification of any network service with which it could
connect to exchange data.

This paper proposes the implementation of a discovery service under this choreogra-
phy message passing engine. The engine is deployed in several Raspberry Pi machines.
Any machine with a choreograph engine is inside the choreography system. Each machine
hosts a set of microservices interconnected by the engines transparently to their physical
ubication and the transport layer.

We face two issues on building distributed embedded systems under a choreography-
based message exchange model. On the one hand, the specific application scope, cyber-
physical deployment, and infrastructure of each possible edge scenario require flexible
systems that support adaptable data exchange patterns. Specifically, our solution supports
three models: request-response, datacentric, and rules-server. The three models coexist.

On the other hand, the need of reducing structural complexity of queries in the
discovery process [14]. Regular expression has not been explored yet in embedded systems
to support service discovery. Our solution uses regular expression (Regex) to discern both
publishing patterns offered by a data provider and client necessities. It favors decisions to
balance the load by selecting suitable associations between services.

The paper is organized as follows. Section 2 motivates the research work. Section 3
explains the proposed solution. Section 4 analyzes the results obtained in a testing proto-
type. Finally, Section 5 discusses the overall approach of this paper and how useful it could
be in future development in IoT. Some open issues are provided too. Section 6 concludes
the paper.

2. Materials and Methods

Service composition in choreographies describes how services can interact with each
other at message level [15]. Choreography is applicable to edge and fog IoT layers, but
implicit constraints of devices and machines at the edge layer make challenges arise.

The edge layer supports simple IoT devices that cannot undertake complex computa-
tional processes or that need data streams from several devices to execute an action. The
offloading of data generated by sensors varies from improving the user experience by
reducing latencies in availability [16], to making decisions in complex event processing
systems (CEP) [17], among others.

The authors in [16] do not use choreography modeling but propose Data as a Service
(DaaS) at the fog layer in [18]. Among data movement actions it includes to move or
duplicate data from edge-to-edge storages. The work is focused on data quality and how a
dataset can be considered useful for one application and inadequate for another application.
Data is collected over long periods, thus not requiring real-time analysis. Although data
quality is very relevant, we focus on making decisions in real time.
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Lan et al. [17] propose an architecture with an IoT gateway or a separate computer in
the same LAN as part of the edge layer. The gateway receives data from different sources
and processes it with complex rules to provide complex events to cloud consumers.

We propose a similar organization and approach in the use of data. CEP concept
could be applied on choreography, assuming consumers also at the edge level to generate
automatic actions, as we propose in this paper.

In recent years, service composition modeling under choreography paradigm has been
addressed in several platforms such as CHOReOS [19,20] and its evolution into CHOReV-
OLUTION [21]; ActnConnect [22]; ChorSystem [23]; and research works such as [24–28].
Extensions integrated within choreography add functionality oriented to different scenar-
ios [29–32].

Usually, choreography models couple both control and data flow within the system
workflow. To decouple data flow and control flow modeling, TraDE [29] is a middleware
which supports cross-partners data flows by using data objects and intermediate storage.
The choreography model applies TraDE modeling extensions to replace the traditional
message-based data exchange by a data-aware choreography [30]. Previous works of TraDe
authors include the ChorSystem platform [23].

In TraDE, a data object has a unique identifier which describes the type of data
contained. Data objects are exposed in a web-accessible manner through a REST API.

TraDE efforts are mainly focused on efficiently placing and providing data. As an
advantage, TraDE middleware keeps a copy of the data generated or transformed by
service providers to be accessed at any time. A consumer will be able to locate and access
the data through the middleware. Therefore, the dataflow is highly decoupled from data
exchange. However, at the edge level, with an architectural approach like the one presented
in [17], data storage tends to be ephemeral. Data generated by sensors are useful during a
short period of time for immediate decision making. Over time, data is useful for machine
learning or historical observation, among others. Therefore, it is sensible to store copies in
the cloud. However, TraDe is an inspiration for us in organizing middleware integrated
with choreography modeling.

Thus, focused on the edge level, and assuming the ephemeral use of data in auto-
matic decision making, our approach integrates a middleware on choreography message
exchange. The control flow and the association of the relationships between the modeling
participants is decoupled. The objective is to offer the consumer different provided data
options but without permanent data storage.

The work presented in [31] uses a choreography model to associate consumers with
different providers. The approach is focused on dynamic configuration. For example,
it is possible to change the association between lights and switches in a room without
modifying the installed equipment and electrification. However, the system does not
include data from sensors or the run-time plugging of new services.

Finally, the work in [32] is integrated within CHOReVOLUTION to support real-
time information in traffic routing. The approach is promising in cooperative intelligent
transport systems (C-ITS) where vehicles, infrastructure, and numerous cloud services are
connected and cooperate for efficient transport solutions. Real-time service discovery is
not approached but it could be compatible with the Chen et al. proposal.

The choreography message passing engine in [11] is light enough to be supported
by typical machines at edge level as Raspberry Pi. The implementation was inspired by
OASIS Web Services standards, and it has been tested and recently applied to previous
IoT works [12]. The engine was created using the recommendations from the Foundation
for intelligent Physical Agents (FIPA) [33]. Message headers typing is extracted from the
Simple Object Access Protocol (SOAP) [34,35]. In case of needing to serialize the messages,
both XML and JSON are supported, but also extensions.

Choreography at edge level aims to distribute computational load among machines.
Edge machines can host multiple services. These services are independent but collaborate
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both inside and outside of the host to manage the wireless sensor networks (WSN), to
process data, to make decisions, and to implement interoperability with external services.

In Figure 1, each machine hosts a message passing choreograph engine. In choreogra-
phy, services are location-agnostic of other services. Thus, every sent message is forwarded
to every choreographer in the system. Messages have a routing identifier. A service receives
the message when the message identifier matches with one in its reception list. Moreover,
the matching accepts AND and OR masking (Masking). Routing invocations through the
choreography engine makes the location of services ubiquitous and the transport layer is
transparent to services.

Figure 1. A layered structured supported by a choreograph engine.

Regarding IoT data exchange, IoT messaging protocols define different communica-
tion patterns that are especially relevant to sensor data exchange [36]. For example, the
Constrained Application Protocol (CoAP) [37] is a web transfer protocol based on the
Hypertext Transfer Protocol (HTTP) that supports the request–response communication
pattern. The Message Queuing Telemetry Transport Protocol (MQTT) [38] and MQTT-SN
for Sensor Networks [39] support topic request–response. The Advanced Message Queuing
Protocol (AMQP) [40] supports both request–response and topic-based publish-subscribe
messaging. The Extensible Messaging and Presence Protocol (XMPP) standard supports
request–response, asynchronous messaging and publish-subscribe [41]. Finally, the Data
Distribution Service (DDS) [42] supports datacentric communication. The DataCentric
Publish-Subscribe protocol (DCPS) of DDS delivers information to the receivers not based
on their destination but rather as a function of the type of payload. Thus, datacentric
pattern is a one-to-many communication model.

The choreograph engine in Figure 1 supports both immediate request–response (Req-
Rsp) and asynchronous event messaging (Event) based on SOAP. The engine is built in a
layered structure style which accepts new layers for new exchange patterns and protocols.
Thus, our proposal adds datacentric (DC) and a type of publish-subscribe for rules (R-S) in
addition to immediate request–response (IR-R).

Figure 2 shows the service system. Gateway services receive data from a finite number
of sensors, sometimes deep constrained sensors without the standard IP layer, that are
deployed in a wireless sensor network (WSN) topology [43,44]. Many communication
technologies are useful to build long-range and low-power wireless communication [45,46].
Thus, the distance between sensors and gateways is no longer a problem.

Gateway services receive data which are stored in local databases to each machine.
Data are processed or distributed to other services in the edge within a communication pat-
tern.

Regarding service discovery, dynamic discovery has been implemented as a specific
service called broker which manages discovery and subscription updates while messag-
ing is carried out without broker intervention. Blind hot plugging allows the broker to
balance the load by selecting associations between services. For example, if a client needs
temperature data in an area where there are two or more sensors, the broker selects the
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one that is least used for request–response, or the one that is already sending data using
datacentric pattern.

Figure 2. Choreography system at the edge level.

Finally, in Figure 2, the choreography system includes proxies as components to
provide interoperability with other networks. A similar concept has been applied to other
works as in [47].

To facilitate interoperability, the discovery mechanism is inspired by the Web Services
Dynamic Discovery (WS-Discovery) OASIS standard protocol [48]. However, as mentioned
in [49] or [50], implementing WS standards directly on embedded devices is not always
straightforward.

Recent works in IoT discovery techniques appeal to the use of data semantic descrip-
tion. For example, in [51] the authors introduce a data stream centric ontology and in [52]
discuss the need of semantic data annotation in message syntax at the IoT edge level in
gateways to facilitate interoperability but considering machine constraints. However, the
description of message information by using structured formats generates long messages.

Typical constraints in embedded devices suggest the necessity of providing lightened
structures that are still compatible with standards. Using regular expressions could reduce
the size of messages.

Eventually, to interconnect all these services, any service needs both to support a
list of message identifiers that as receiver accepts with or without mask and a dynamic
mechanism to discover new identifiers to be added to its receiver list. Both mechanisms
are explained in the next section.

3. Basic Concepts

Services are implemented on top of the choreograph engine and are organized follow-
ing two principles:

1. Incoming data from sensors are stored among all interconnected edge machines in a
distributed way. Assuming an edge computing layer composed by storage limited
devices, this principle maximizes the use of memory.

2. Discovery is managed by a unique broker server in the choreography system. This
principle maintains consistency and facilitates the efficient use of service providers.

In a data distributed system, where data are stored among small memory units, packet
exchange is mainly focused on the exchange of data. Each service can be a provider or a
consumer, or both (prosumer).

• Data providers. Receive data from sensors and deliver data to other services.
• Data consumers. Receive data from other services and maintain interoperability.

For example, Figure 3 shows in blue two physical edge devices that contain a database
and several service providers and consumers. The logical abstraction layer inside the
choreography system is shown in Figure 4.
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Figure 3. Physical service level.

Figure 4. Logical service abstraction level.

Each machine adds specific TCP/IP or UDP/IP service connectors to handle network
and transport layers to interconnect the physical devices.

Figure 5 shows a general view of discovery based on WS-Discovery. HELLO and BYE
messages are part of the publishing mechanism, while PROBE, PROBE MATCH, RESOLVE,
and RESOLVE MATCH are part of the discovery protocol. The following subsections
analyze these mechanisms.

Figure 5. Web Service Discovery: a general view.
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3.1. Discovery

To allow blind hot plugging, consumers need a flexible discovery mechanism. The bro-
ker manages both the publication and discovery processes. To facilitate an interoperability
layer with external web services, the broker implements a lightweight packets format based
on WS-Discovery. Target services are service providers and clients are consumer services.

To be compatible with services outside of the local area network (LAN), a proxy could
easily transform WS-* native messages into choreography WS-Discovery messages. WS
headers have been adapted to choreography message headers. Regarding the body of the
message, it explicitly includes the sensors and measurements, but the broker interprets the
subscription pattern with the Regex class [53]. The interpretation of natural language with
regular expressions facilitates the integration of heterogeneous services and a blind hot
plugging where the consumer does not know in advance the service or services with which
they can connect. Interpretation is based on the discernment of the delivery pattern, the
delivery frequency in case of events, and rules applicable to the rule-server pattern. The
Regex approach serves the broker by interpreting information contained in the “scope” of
the body. Some examples are given in Section 4.

Client services carry out the discovery process by incorporating regular expressions
into the message scope. As a client could accept one or several delivery patterns, to
express such a diversity only with basic expressions, the scope would be built with a nested
structure. However, the use of regular expressions allows one to express the diversity in a
single scope. Thus, depending on the current network traffic, the broker tries to balance the
use of the patterns, prioritizing datacentric. Thus, interpretation also implies traffic balance.

3.2. Communication Patterns

Each new provider that plugs into the system publishes its “provision” to the broker
service. The provision contains metadata and a body. The broker maintains a dynamic
list that is updated with each new publication. Metadata caters to the service address
identifier and the body includes the type of sensor and measurement, gathering frequency
and accepted data delivery patterns.

Service providers in Figure 4 are published through the broker, attending to three
possible data delivery patterns: request-response, datacentric, and rules-server. These
patterns indicate how the provider can deliver data to consumers. Following the WS-
Discovery, each new consumer plugged into the system asks the broker about a better
possible match.

The broker acts as the service network manager and checks if there is any provider
that meets the requested requirements and resolves the request with either a null, no
provision, or with the identifier of the provider. Both publishing and subscription must be
coincidental in the adopted pattern.

3.2.1. Request-Response Pattern

Request-response subscription is at least one quality of service (QoS) pattern initialized
by a service that requires a very specific answer from another service. A service provider
published in this mode attends to requests that are specifically addressed to it.

Suppose we have provider A and consumer B, as in Figure 4. B needs to request a
dataset from A directly, e.g., the ambient measurements recorded in the database over the
last hour. Thus, B’s discovery is resolved by sending to B the identification of service A.

Once the consumer has the provider’s identifier, messages are exchanged directly
between the provider and the consumer.

A provider can respond with the last sensor value received in the local device or with
a dataset between two timestamps. To provide with a dataset, the provider needs to request
data to the database service before responding to the consumer. Thus, a consumer-provider
request–response can imply a chain of request–response in the choreography system.
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3.2.2. Datacentric Pattern

Datacentric subscription is at most one QoS pattern based on asynchronous events. A
datacentric service is a bridge between sensors and the service layer. It asynchronously
transmits packets of data received from sensors. Filters, error detection, and correction
mechanisms can be implemented over datacentric services. Thus, after receiving data from
one or several sensors, data are processed by the provider and broadcasted through the
choreograph as an asynchronous event. No answer is expected from receivers. Packets are
identified by the contained data. Thus, one packet can be received by several consumers.
The discovery protocol for such providers responds to the query with the identification
mask of the expected packets.

Datacentric patterns are triggered by client subscription. Sending data without an
interested receiver only generates noise in the network. Thus, network traffic can be
reduced by the selective activation of target services.

The broker maintains a list of subscribed clients per target service provider. Algo-
rithm 1 describes the ACTIVATION of a target service after the publishing and subscription
of a client. In case of a null list, the broker notifies the provider of a NO-ACTIVATION
event. Figure 6 depicts the ACTIVATION concept.

Algorithm 1 Subscribe and unsubscribe updates

Init: The broker receives a message
CASE:

1. Receives a HELLO message from targeti; then targeti list = 0
2. Receives a Subscription to targeti; then targeti list++ and sends an ACTIVATION message
3. Receives an Un-subscription to targeti; then

a. targeti list–;
b. if list = = 0 then sends a NO-ACTIVATION message

Figure 6. Datacentric pattern: selective activation.

3.2.3. Rule-Server Pattern

The rule-server pattern consists of a server able to send events when a specific rule
matches. It is similar to topic based publish-subscription. Some examples of rules are
shown in Figure 7: detection of a value out of tendency, average, or thresholds; detection
of the max or min value between two timestamps.

A provider publishes a rule or rules in the broker—for example, a humidity threshold
rule lower than var%. A rule can involve one or several measurements. Consumers
subscribed to the rule specifying var value in the delivery process. If the humidity drops
below the threshold imposed by the consumer, the provider will send an event message to
the consumer service.

The aim of the rule-server pattern is to reduce network traffic. For instance, when
the number of datacentric providers in the system is high, sending a rule assertive packet
instead of a continuous delivery loop of data reduces the traffic in the network.
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Figure 7. Examples of rules.

3.3. Publishing and Unpublishing

Publishing and unpublishing mechanisms are HELLO and BYE messages, the publish-
ing list, and the lists of subscribed clients per target service provider. Providers and broker
interchange information within a request-response pattern. HELLO and BYE messages are
request packets. The expected response is an acknowledge (ACK).

HELLO scope in the body message is assumed to be in natural language with regular
expressions. A provider has one or several communication pattern interfaces. Therefore, a
new provider that plugs into the system must announce to the broker its interfaces and
composition rules if available. The broker updates the publishing list.

In case of a datacentric the provider retains data delivery while there are no subscrip-
tions. As soon as the broker updates the first client subscription to a provider, the broker
sends a message to this target service advising the new client.

Similarly, unsubscribe messages update the lists of subscribed clients, causing an
asynchronous notification event when the list is empty (Algorithm 1).

BYE messages update the broker’s publishing list. BYE messages are critical for
rule-server clients. While request-response or datacentric patterns suffer from a delay in
detecting the non-reception of data, the rule-server pattern does not differentiate between
a target disconnection and a nonevent state. Therefore, the broker should provide advice to
the client about the unavailable provider. The message sent to the client by the broker has
the same identification as a provider event message, but the payload string is set to STOP.

4. Implementation and Results

The testing system is composed of a set of Raspberry Pi machines, each of which acts
as a sink of a LoRa RF-based WSN. The choreograph engine runs in. Net Core and each
Raspberry Pi includes a LiteSQL database to store sensor data. Machine interconnection is
TCP/IP supported.

The discovery algorithm needs two requests-response pairs: PROBE and PROBE
MATCH, and RESOLVE and RESOLVE MATCH, as shown in Figure 5:

• PROBE comprises the body with the type of sensor measurements, the minimum
gathering frequency, and the way in which the consumer prefers to receive data.
Message body is described with regular expressions.

• PROBE MATCH nests as many <d: ProbeMatches> sections as found matches, accord-
ing to the publishing list. Each section includes in the scope the type of measurement,
one delivery pattern, and the frequency. Messages are formed of strings, which makes
message processing easier for the client. Instances are predefined in the system.

• RESOLVE returns a subcollection of <d: ProbeMatches>. In case of no valid response,
the consumer will not start the second pair of requests-response messages. In case of
a rule-server pattern, the message scope includes the variable var that is applicable
to the rule. After receiving a RESOLVE package, the broker communicates with the
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target service provider, reporting the selected rule and variable. This communication
between broker and target follows a request-response pattern. The acknowledge of
the target to adopt the rule with the specific variable triggers the RESOLVE MATCH
message between broker and client.

• RESOLVE MATCH takes on great relevance in datacentric and request-response
patterns because the broker decides and assigns the provider to balance the load of
the different subscribed target services. In the case of rule-server patterns, RESOLVE
MATCH = RESOLVE and the purpose is an acknowledgement.

4.1. Data Patterns Analysis

The request-response pattern is well known and facilitates the connection of new
devices and services into the network. However, there is a maximum number of requests
that a provider can meet. Table 1 shows a sample of 200 tests and the number of responses
per second. The provider responds to a request with a dataset extracted from the local
LiteSQL database. Access time to the database increases as the response size increases
from 1 to 2M bytes. We observe in Table 1 that service availability is high. However, many
system control messages are based on the request-response pattern, which can increase
response latency. On the other hand, datacentric pattern reduces network traffic in case of
many consumers requesting the same data. This makes datacentric delivery attractive for
networks with high data distribution.

Table 1. Request-response pattern: messages replied to per second.

Response Payload Size Number of Responses DB Access_Max Time

1 byte 82 5 ms
10 bytes 80 5 ms
100 bytes 75 5 ms
1K bytes 42 20 ms
10k bytes 38 20 ms

100k bytes 20 50 ms
1M bytes 16 50 ms
2M bytes 7 100 ms

Moreover, while request-response is a double-message mechanism (one message
to request and one message to respond), datacentric and rule-server are one-message
mechanisms, reducing delivery delay and Control Process Unit (CPU) effort. For example,
Figure 8 compares the Raspberry Pi CPU usage percentage: request–response intensive
versus datacentric intensive to serve the same average number of messages per second.

Figure 8. Request-response vs. datacentric pattern: CPU usage in a Raspberry Pi.
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4.2. Latency Interpreter Analysis

The use of regular expressions should also be considered in latency analysis. Interpre-
tation adds complexity to the discovery process.

Strings are composed of predefined simple expressions that describe the type of service.
To compare the interpretation latency in this section we define the semantic annotation in
Table 2 for the discovery scope: serv = service, p = pattern, f = frequency, ch = channel, r = rule,
m = model.

Table 2. Semantic annotation used in the testing examples.

Annotation Description Domain Value

p Pattern: request–response,
datacentric and rule–server String REQRES, DATACENTRIC,

RULESERV

f Time: milliseconds, seconds,
minutes, hour String ms, s, m, h

ch Data ID (HELLO messages) Integer [00...99]

r treshold, average, tendency,
maxmin String thrs, avg, tnd, max, min

m sensor model String Manufacturer ID

For example, a rule-server provider that serves humidity data according to a certain
threshold, which is received from a sensor every 10 min (sensor delivery frequency), will
compose a body HELLO message with strings as follows:

<d:Types> i: humidity </d:Types>
<d:Scopes> serv:///p = RULESERV, f = 10m, r = thrs </d:Scopes>
A provider could offer more than one delivery pattern, or a consumer could accept

more than one pattern. In such a case, the use of strings requires nested descriptions of
the message body. Each pattern is described separately. The use of regular expressions
allows integrating new services with a minimum semantics knowledge of atomic words.
For example, in Figure 9 we developed a testing interpreter of regular expressions in three
stages. The regular expression is the input in the interpretation process. In each phase of
Figure 9, the interpreter uses a list of atomic words or expressions. Expressions such as
“and,” “or,” or punctuation marks divide the input chain into several chains, each of which
is a unique potential delivery pattern. A unique pattern needs to be identified for each
chain. Each pattern is associated with a list of words. Expressions such as “when,” “every,”
or “rule” are examples of words that refer to the pattern type. Each pattern has a list of
associated words. The words contained in each list are exclusive. It means that a word can
only be contained in one list. If the process finds two words of the same chain in different
lists, it fails.

Figure 9. Regular expressions interpreter: example.
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Finally, expressions such as “from,” “tendency,” “threshold,” “maximum,” “mini-
mum,” and “frequency”, among others, are pattern attributes. There are exclusive at-
tributes assignable only to a pattern and attributes that can be found in two patterns. In
the first case, attributes also serve to identify the pattern.

Therefore, the process is based on the completeness of the interpretation lists. In future
work, the interpreter could allow more complexity in the parsed expressions. However,
the more complex, the more delay it will introduce into the system. We will use the one in
Figure 9 for comparison.

The simplest HELLO message described with a regular expression is a request-
response. For example, a blank scope will be interpreted to provide the most recent
data, while “dataset” in the scope will be interpreted to provide the dataset between two
timestamps:

1. XFIPAMSG_payload {
2. <d:Hello>
3. <a:EndpointReference>
4. <a:Address>Service.address</a:Address>
5. </a:EndpointReference>
6. <d:Types>i: humidity </d:Types>
7. <d:Scopes> dataset </d:Scopes>
8. <d:MetadataVersion>0000</d:MetadataVersion>
9. </d:Hello>
10. }

Patterns such as datacentric or rule-server include more information. Moreover, a
provider published out of the local network includes complementary XAddrs parameters:

1. XFIPAMSG_payload {
2. <d:Hello>
3. <a:EndpointReference>
4. <a:Address> Service.address </a:Address>
5. </a:EndpointReference>
6. <d:Types> i:humidity </d:Types>
7. <d:Scopes>
8. Rule THRESHOLD percentage
9. </d:Scopes>
10. [<d:XAddrs> xs:localhost:9020 xs:192.168.1.215:9031 </d:XAddrs>]
11. <d:MetadataVersion> 0001 </d:MetadataVersion>
12. </d:Hello>
13. }

Compared to messages generated with strings of basic expression, regular expressions
do not need to nest sections within the body of the message as many options are offered.
The scope contains the overall information. For example, the following client probe message
sets four chains inside the scope: <d:Scopes> Req-res service OR data every 30m from
STM32 OR rules of threshold OR rules of avg</d:Scopes>. Message composition in shown
in Figure 10:

Message size with a regular expression is 209 bytes. The size of the same message
but with four nested PROBE requests is 494 bytes. The difference is significant in complex
descriptions which implies an advantage.

On the other hand, Table 3 compares several HELLO messages. RE is the broker delay
in resolving a message written with a Regular Expression. S is the broker delay with strings
in semantic annotation. The table shows both the scope written with regular expressions
and the equivalent composition with strings.
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Figure 10. Message built with a regular expression in the scope: C# example.

Table 3. RE and S latency comparison: HELLO messages.

RE Scope S Scopes RE S

Send data on demand p = REQRES 24 ms 7 ms

Request type service frequency 5 m p = REQRES + f = 5 m 19 ms 8 ms

Req-resp service p = REQRES 24 ms 9 ms

Hello, I am a req service p = REQRES 21 ms 10 ms

Send data every 30 m from DHT11 on channel 00 p = DATACENTRIC + m = DHT11 + f =
30 m + ch = 00 50 ms 27 ms

Send every 1 h from SGP40 on ch 1 p = DATACENTRIC + m = SGP40 + f =
1 h + ch = 01 84 ms 32 ms

Data frequency 30 m on channel 02 p = DATACENTRIC + f = 30 m + ch = 02 64 ms 19 ms

Accept rules of threshold p = RULESERV + r = thrs 60 ms 17 ms

Accept rules of average p = RULESERV + r = avg 62 ms 21 ms

Req-resp service and accept tendency rules String_1: p = REQRES
String_2: p = RULESERV + r = tnd

113
ms 78 ms

Average rules, data every 30 m on
ch 04

String_1: p = DATACENTRIC + f =
30 m + ch = 04

String_2: p = RULESERV + r = avg

135
ms 89 ms

ch: channel; thrs: threshold.

Similarly, PROBE messages to the broker are built with regular expressions. Table 4
compares the broker delays to different client PROBES, depending on the scope being a
regular expression or using strings.

As shown in Tables 3 and 4, although the use of regular expressions opens a great
opportunity in the building of blind hot plugging, the delay in the interpretation of these
messages is high compared with the use of typical message scopes.
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Table 4. RE and S latency comparison: PROBE messages.

1 PROBE S Scopes PROBE MATCH *
Coherent with TYPE Field RE S

- - REQRES service 4 ms 3 ms

Request every 1 h p = DATACENTRIC +
f = 1 h 2 DATACENTRIC services 17 ms 9 ms

Data every 1 h
from SGP40

p = DATACENTRIC +
f = 1 h + m = SGP40 1 DATACENTRIC service 20 ms 10 ms

Data from SGP40

String_1:
p = DATACENTRIC +

m = SGP40
String_2:

p = REQRES +
m = SGP40

1 DATACENTRIC service 27 ms 21 ms

Threshold service max 30 and
min 14

p = RULESERV + r = avg + arg =
30, 14 1 RULESERV service 128 ms 22 ms

Avg service between A and B p = RULESERV +
r = avg + arg = A, B 2 RULESERV services 142 ms 69 ms

Data every 30 m and a thrs rule
with max 31 and min 23

String_1:
p = DATACENTRIC +

f = 30 m
String_2:

p = RULESERV +
f = 30 m + r = thrs +

arg = 31, 23

1 DATACENTRIC service + 1
RULESERV service 167 ms 96 ms

* PROBE MATCH means the number of services found in our system that meet the probe request. arg: arguments; thrs: threshold; avg:
average.

4.3. CPU Usage and Memory Analysis

Finally, we analyzed the impact of the choreograph engine and the discovery service
on CPU usage and memory. We deployed two Raspberry Pi machines: RP1 and RP2.
The analysis included four steps to stress RP1 machine and analyze the maximum load it
can hold:

(1) Figure 11 (upper) shows a machine hosting eight microservices but without data
exchange. Services require half of the Raspberry Pi memory.

(2) Figure 11 (middle) shows the eight microservices exchanging data. Three services are
request–response data consumers; one service is request–response data provider; four
services are datacentric providers. Data exchange is continuous, and messages are
produced in a ratio between 0.4 and 1.0 s. The CPU usage increases up to 38%.

(3) Figure 11 (lower) includes a ninth microservice, the broker. The experiment stresses
CPU and memory. The broker receives on average 10 discovery probes per second
from services hosted in RP2. CPU raises up to a 95% and memory usage near 100%.
We observe that, in addition to discovery process times shown in Table 4, internal
choreography message passing introduces a latency λ of 29.4 ms average per petition.
The system is stable but λ ranges from 2 to 59 ms with a σ standard deviation of
18.07 ms in 135 samples.

(4) Finally, data exchange between consumers and providers is stopped. Input and
output broker messages maintain CPU activity up to 95%. The experiment reduces λ
to 4.97 ms and σ to 2.52 ms in 250 samples.
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Figure 11. CPU usage and memory consumption under test.

Therefore, the impact of the choreography messaging layer is variable and λ depends
on the overall activity of the machine. This can be a drawback in real-time systems design,
although clustering is also possible to limit the number of services per cluster.

5. Discussion

Intermediate layers in the IoT architecture, the edge and fog layers, receive a large
amount of information and act as an intercommunication gateway between things and
cloud systems. The edge layer is composed of both single IoT devices and edge machines or
gateways able to execute different microservices in the same machine. Such machines can
improve systems performance by processing and filtering data to reduce traffic to the cloud
and carrying out automatic decisions, among others. However, the growth in number of
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IoT devices implies the growth in complexity of edge machines. In this paper, choreography
is explored as a well-known service composition model in large computational services, to
support complex distributed edge systems.

Under choreography message exchange models, services are location agnostic of other
services. Data exchange is abstracted from the transport layer. Thus, it allows the flexible
relocation of services among the cyber–physical components, as well as the incorporation
of new services without reprogramming the existing ones. To explore this advantage at the
edge layer, we should face different issues.

On the one hand, IoT systems present a high heterogeneity in terms of data demand.
Some data are scarcely required, while others are in high demand. Therefore, the same data
exchange pattern between data providers and consumers cannot always be applied. We
need mechanisms that allow to choose or discover dynamically the subscription pattern
type of a service consumer according to the existing providers but reducing the number of
requests-responses in favor of datacentric and rule-server patterns.

This paper discusses the request-response pattern, proposing as alternatives (but
not wholesale replacements) other models: datacentric and rule-server. Both models
are focused on IoT systems with high demand for distributed data streams among edge
machines or gateways. For example, a datacentric pattern combined with the use of
reception masks allow for the sending of one-to-many data. Moreover, we observe that
CPU usage also decreases with datacentric intensive use.

On the other hand, discovery mechanisms are necessary to advance in the design and
improvement of flexible edge layers. We propose an implementation based on a global
vision of the system and centralized in a specific broker service. As an advantage, the broker
can be supplied with interpretation features to associate provider–consumer to balance the
load of the services and reduce traffic. However, we have seen that the centralization in a
unique machine limits the scalability of the system. The delivery latency is conditioned by
the volume of packages that moves the choreography engine. Thus, to support scalability
it will be necessary to explore in the future decentralization mechanisms.

Using regular expressions reduces the size of the messages but we observe that it
generates a non-negligible CPU overload. It is an open issue, and a solution could be
the use of dedicated machines on clustering. For example, web service discovery current
trends in clustering [54,55] are focused on effectively narrowing down the searching scope.
Clustering techniques could be applied to decentralize the discovery service and to avoid
single point failures in future.

6. Conclusions

There are few works that provide solutions and evaluate the use of choreography
models on low-cost machines with limited features such as the Raspberry Pi. In this paper,
these machines were tested to support a data exchange engine that allows collaborative
dataflows of choreography models.

The paper presented an adaptation of the typical patterns of data exchange in IoT,
considering the two most frequent: request–response and datacentric. In addition, event
services triggered by rules based on sensor input data were also considered.

These three patterns agreed on a mechanism for the discovery of services or mi-
croservices providers of data and datasets. The WS-Discovery managed discovery rules
were adapted to reduce the burden on the service broker by limiting it to provider–
consumer matching, while the dataflow is resolved by the choreography engine and
its exchange rules.

To reduce the size of discovery probe and hello messages, the use of regular expres-
sions is built into an interpreter method. In this paper, the CPU and memory resources
required to support this facility were analyzed, as well as the difference in latency inter-
pretation compared to the traditional string-based messages. The CPU effort depends on
the number of discovery requests per second. We stressed the CPU with about 10 requests
per second and introduced an additional latency in the interpreter response of 29.4 ms.
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Both the latency and the number of requests served per second can be improved if the
broker is hosted on the Raspberry Pi without sharing CPU or memory with other service
providers–consumers.

Therefore, there are open issues such as reducing CPU consumption of the interpreter
or such as the distribution of the discovery effort in clusters or similar.

In general, this paper is novel because of the distributed functionality and collaborative
data model, the adaptation of the typical messaging mechanisms in IoT, and the use of
mechanisms to exploit the possibilities of hot blinded scalability at the IoT edge layer.
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