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Simple Summary: Genotyping costs are still the major limitation for the uptake of genomic selection
by the rabbit meat industry, as a large number of genetic markers are needed for improving the
prediction of breeding values by genomic data. In this study, several genotyping strategies were
examined through simulation scenarios to disentangle the best feasible options of implementing
genomic selection in rabbit breeding programs. Most scenarios emphasized the genotyping of
candidate animals with a low Single Nucleotide Polymorphism (SNP) density platform. Imputation
accuracies were high for the scenarios with ancestors genotyped at high or medium SNP-densities.
However, the scenario with male ancestors genotyped at high SNP-density and only dams genotyped
at medium SNP-density showed the best economically feasible strategy, taking into account the trade-
off among genotyping costs, the accuracy of breeding values and response to selection. The results
confirmed that by combining the imputation technique with a mindful selection of the animals to be
genotyped, it is possible to achieve better performance than Best Linear Unbiased Prediction (BLUP),
reducing genotyping cost at the same time.

Abstract: Genomic selection uses genetic marker information to predict genomic breeding values
(gEBVs), and can be a suitable tool for selecting low-hereditability traits such as litter size in rabbits.
However, genotyping costs in rabbits are still too high to enable genomic prediction in selective
breeding programs. One method for decreasing genotyping costs is the genotype imputation,
where parents are genotyped at high SNP-density (HD) and the progeny are genotyped at lower
SNP-density, followed by imputation to HD. The aim of this study was to disentangle the best
imputation strategies with a trade-off between genotyping costs and the accuracy of breeding values
for litter size. A selection process, mimicking a commercial breeding rabbit selection program for
litter size, was simulated. Two different Quantitative Trait Nucleotide (QTN) models (QTN_5 and
QTN_44) were generated 36 times each. From these simulations, seven different scenarios (S1–S7)
and a further replicate of the third scenario (S3_A) were created. Scenarios consist of a different
combination of genotyping strategies. In these scenarios, ancestors and progeny were genotyped with
a mix of three different platforms, containing 200,000, 60,000, and 600 SNPs under a cost of EUR 100,
50 and 11 per animal, respectively. Imputation accuracy (IA) was measured as a Pearson’s correlation
between true genotype and imputed genotype, whilst the accuracy of gEBVs was the correlation
between true breeding value and the estimated one. The relationships between IA, the accuracy of
gEBVs, genotyping costs, and response to selection were examined under each QTN model. QTN_44
presented better performance, according to the results of genomic prediction, but the same ranks
between scenarios remained in both QTN models. The highest IA (0.99) and the accuracy of gEBVs
(0.26; QTN_44, and 0.228; QTN_5) were observed in S1 where all ancestors were genotyped at HD
and progeny at medium SNP-density (MD). Nevertheless, this was the most expensive scenario
compared to the others in which the progenies were genotyped at low SNP-density (LD). Scenarios
with low average costs presented low IA, particularly when female ancestors were genotyped at
LD (S5) or non-genotyped (S7). The S3_A, imputing whole-genomes, had the lowest accuracy of
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gEBVs (0.09), even worse than Best Linear Unbiased Prediction (BLUP). The best trade-off between
genotyping costs and the accuracy of gEBVs (0.234; QTN_44 and 0.199) was in S6, in which dams
were genotyped with MD whilst grand-dams were non-genotyped. However, this relationship would
depend mainly on the distribution of QTN and SNP across the genome, suggesting further studies
on the characterization of the rabbit genome in the Spanish lines. In summary, genomic selection
with genotype imputation is feasible in the rabbit industry, considering only genotyping strategies
with suitable IA, accuracy of gEBVs, genotyping costs, and response to selection.

Keywords: genomic selection; imputation; litter size; rabbits; genomic simulation

1. Introduction

The rabbit industry still plays an important role throughout the agricultural sector
in some European countries, such as Spain, Italy, France, Hungary, Portugal, Germany,
Belgium, Poland and Malta [1,2]. In recent years, the rabbit industry is currently facing a
critical period, mainly due to the increase in feeding, management costs and a constant
decline in rabbit meat consumption. Hence, farmers and researchers have been looking for
promising strategies to improve the current situation, one of them being the optimization of
genetic selection by using genomic information. Genetic selection can improve productive
and reproductive traits, such as meat characteristics, reducing feeding and management
costs, which makes rabbit more appealing for consumers, and hence, will aid the rabbit
industry [1]. Reproductive traits, especially litter size, are those with relevant economic
weight in the rabbit industry [3]. However, the response to selection for this trait has
been relatively low using traditional selection by Best Linear Unbiased Prediction (BLUP),
mainly due to its low-heritability [4–6]. Selection using genomic information can be an
efficient tool to guarantee a higher genetic gain for traits with low heritability and measured
in only one sex such as litter size. [7,8]. Genomic selection has generally showed better
accuracy for the predicted breeding value (BV) [9] due to a potentially more accurate
kindship estimation between animals. This method has produced positive selection results
for traits in dairy cattle [10,11], poultry [12] and pigs [13–15]. However, in rabbits, a high-
density commercial Single Nucleotide Polymorphism (SNP) platform (~200K SNPs) was
not available until 2015, which has delayed genomic selection application [16]. Further,
additional issues such as the small economic value of paternal rabbits, the costs of the
commercial SNP platform, and the short generation interval are still limiting genomic
selection as an evaluating method [17]. Strategies allowing us to diminish high genotyping
costs are vital in the rabbit industry. The imputation of a low SNP-density platform using a
high SNP-density platform has been carried out in other species, keeping or improving the
genetic progress. The technique normally consists of genotyping ancestors (grandparents
and parents) at high SNP-density in order to assign (impute) the most likely SNP allele to
missing genotypes of young candidate animals genotyped at lower SNP-density [10,18,19].
This approach depends on multiple factors concerning the level of SNP density, methods,
the structure and size of the reference population, the minor allele frequency of missing or
untyped SNPs, the genetic architecture of traits and the particular breeding scheme of a
livestock species [20–22].

The aim of this study was to disentangle the most appropriate imputation strategies
for implementing genomic selection in maternal rabbit breeding schemes. Under this
aim, the imputation accuracy was evaluated from low to moderate SNP-density platforms
considering the cost-effectiveness of each strategy. In addition, we investigated how the
imputation strategies influence the estimation of breeding values and consequently the
response to selection.
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2. Materials and Methods
2.1. Simulation Structure

We used stochastic simulation to create the populations for developing imputation
analyses. The structure of simulations is shown in Figure 1. The simulations were per-
formed by the AlphaSim program [23], available at https://alphagenes.roslin.ed.ac.uk/
wp/software-2/alphasimr/ (accessed on 10 June 2020). The objective was to simulate a rab-
bit population mimicking a single maternal line under the common rabbit breeding scheme
of a small nucleus breeding. The simulated trait was litter size at birth. First, founder
genomes were generated. The rabbit genome was simulated by sampling 2000 haplotype se-
quences for each of 20 chromosomes using the Markovian Coalescent Simulator (MaCS) [24].
Each chromosome was 100 cM long, as genetic distance, and included 124.43 × 106 base
pairs, as physical distance. Chromosomes were simulated according to rabbit population
history defined by the MaCS program using a per-site recombination rate 8.57 × 10−9,
a per-site mutation rate 1.74 × 10−9, and an effective population size varying over time
(according to “Internal rabbit” as an option of population history in MaCS). Later, in the
first generation of the foundation of the maternal line (initial population), quantitative
trait nucleotides (QTNs) were chosen randomly from the segregating sequence variants
and an equal number of QTNs were assigned to each chromosome. The QTNs had addi-
tive effects sampled from a Gamma distribution with a shape of 0.60 and a scale of 0.80.
These parameters were chosen after exploratory analysis evaluating various values of
Gamma distribution parameters against selection response after 20 generations (analyses
not shown). The heritability and residual variance were calculated relative to the additive
variance in the initial population. The heritability was 0.113 and the trait genetic variance
was 0.675 in the base population [5,25].
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Figure 1. Design of simulations. A first period, generating the linkage disequilibrium (LD) across the rabbit genome using
MaCS program. The remaining periods are carried out using AlphaSim: foundation of maternal line, selection for litter size
with Best Linear Unbiased Prediction (BLUP), and with Genomic Best Linear Unbiased Prediction (GBLUP).

After five generations of random mating, for details as in [26], a base population was
established using 138 does and 77 sires. The selection was carried out to select 70 does
and 35 sires per generation, involving 20 generations with the BLUP method (see the
parameters in Table S1). Litter size was assumed as a trait of sex-limited expression, hence,
only does presented phenotypic records. In every generation, the 70 does from the previous
generation with the highest estimated breeding values (EBVs) were selected to produce the
next generation. A total of 35 males were also selected, which stand for 25 principal and
10 surrogate sires used in practice. In addition, two further generations evaluated with the
Genomic Best Linear Unbiased Prediction (GBLUP) method were generated to obtain the

https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/
https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/
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last population, which consisted of a progeny with 1500 does and 1500 males. The two
selection methods used in these simulations (BLUP and GBLUP) are directly implemented
in the AlphaSim program.

The high SNP-density platform (HD; 200,000 SNPs) used in genomic selection was
generated by AlphaSim. Another two SNP platforms were set up according to SNP-
density size: medium SNP-density (MD; 6000 SNPs) and low SNP-density (LD; 600 SNPs)
platforms. All SNPs were assigned proportionally per chromosome. Genetic markers
for the MD platform were selected at random from the HD platform and, consequently,
genetic markers for the LD platform were selected at random from the MD platform (see
the parameters in Table S1). Regarding costs for implementing genomic selection, we only
considered the costs of genotyping based on the SNP platforms in the last three generations;
therefore, other indirect costs were ignored. Each platform contains 96 “BeadChips”
(genotyping proof). We assumed that the cost of the HD platform is EUR 9600. For the
other platforms, the costs are around EUR 4800 and EUR 1056 for MD and LD, respectively.
This information came from Thermo Fisher Scientific Inc. supplied by genotyping budgets
for previous genomic experiments in the Animal Breeding Group at the Institute for Animal
Science and Technology in the Universitat Politècnica de València.

An underlying polygenic nature was assumed for litter size, representing the genetic
architecture of complex traits [27]. We considered two QTN models, depicting: (1) a poly-
genic trait controlled by many QTNs with a total of 880 (44 per chromosome; QTN_44) and
(2) a polygenic trait controlled by a small number of 100 QTNs (5 per chromosome; QTN_5).
Simulated data were generated from 36 replicates for every QTN model. The results
were summarized over 36 replicates within the QTN model, and presented graphically.
The graphics were obtained by the R program [28].

2.2. Imputation Strategies

All imputation analyses were developed by AlphaImpute program v1.96. This pro-
gram is available at https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaimpute/
(accessed on 15 August 2020). AlphaImpute uses a hybrid imputation algorithm in which
the first step consists of a long-range phasing process, followed up haplotypes library
construction, and finally, pedigree-based imputations are performed [29].

Imputation accuracy (IA) was measured by the Pearson’s correlation between the
imputed allele and the true genotype at untyped SNP markers. The correlation was
computed one individual at a time and averaged over individuals [22]. This parameter
stands for the genotype probability for reasons sketched out in [30]. Genotype yield was
also computed for each imputation strategy below, as the percentage of the SNP allele calls
at untyped SNP markers after the imputation process.

To assess the trade-off between IA, genomic prediction accuracy and genotyping
cost, a number of hypothetical test scenarios were established, as outlined below and
represented in Table 1. We analyzed the simulated data in seven sets of hypothetical
scenarios with a replicate of the third scenario (S3_A). All grand-sires and sires were
genotyped at HD platforms, whilst grand-dams and dams were genotyped according to
the imputation strategy. The progenies were genotyped at the LD platform except the first
scenario (S1), as this scenario used MD platforms to genotype progeny and HD platforms
for the genotyping of grand-dams and dams. The second scenario (S2) was like the first
scenario, but LD platforms were used for progeny genotyping. The third scenario (S3)
used MD platforms for the genotyping of grand-dams, and only half of the progeny was
genotyped. S3_A included the further half of the progeny, having their imputed whole-
genomes. The fourth scenario (S4) used MD platforms for the genotyping of grand-dams
and dams, whilst the fifth scenario (S5) used LD platforms. The sixth scenario (S6) used
MD platforms for genotyping dams, but the grand-dams were non-genotyped. The seventh
scenario (S7) had non-genotyped grand-dams and dams. These above-mentioned scenarios
summarized all exploratory analyses concerning imputation strategies.

https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphaimpute/
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Table 1. Structure of imputation strategies and number of genotyped animals for implementing genomic selection in rabbits.

Imputation
Strategy

Training Populations For Imputation Validated Population
(Genomic Prediction)

26th Generation 27th Generation 28th Generation

Grand-Dams
(150)

Grand-Sires
(35)

Dams
(150)

Sires
(35)

Progeny
(1500)

Progeny
(1500)

S1 HD HD HD HD MD i-HD
S2 HD HD HD HD LD i-HD
S3 MD HD HD HD 1

2 LD 1
2 i-HD + 1

2 NG
S4 MD HD MD HD LD i-HD
S5 LD HD LD HD LD i-HD
S6 NG HD MD HD LD i-HD
S7 NG HD NG HD LD i-HD

S3_A MD HD HD HD 1
2 LD 1

2 i-HD + 1
2 i-WG

The “S” stands for scenarios. Animals of every scenario were genotyped according to different Single Nucleotide Polymorphism (SNP)-
density platforms. HD: high SNP-density platform (200,000 SNPs), MD: medium SNP-density platform (6000 SNPs), LD: low SNP-density
platform (600 SNPs). i-HD: animals with imputed genotypes to high SNP-density. i-WG: animals with imputed whole-genome. NG:
non-genotyped animals.

2.3. Estimating Breeding Values and Response to Genomic Selection

Typically, genomic selection entails a training population or reference population
(with genotyped and phenotyped individuals) and an evaluated population of young
candidates (with only genotyped individuals), using pseudo-phenotypes for sex-limited
traits [7,31]. In this study, the rabbit reference population comprised up to 300 females
(Table 2). As the reference population was small, genomic prediction was estimated
using the Single-Step GBLUP (ssGBLUP) algorithm. It allows us to evaluate jointly non-
genotyped and genotyped animals, combining pedigree and markers information into one
matrix [32,33]. Otherwise, prediction by GBLUP hinders a greater rate of genetic progress
compared to BLUP selection, with numerically small reference populations [11,34].

Table 2. Number of data used in the genomic analyses per generation.

Generation Pedigree Phenotypic 1 Genomic 2

23th 300 150 0:0
24th 300 150 0:0
25th 300 150 0:0
26th 300 150 35:150
27th 300 150 35:150
28th 1500 0 0:1500

1 Selected does are 47% of total females (150). Each female contributes to the progenies with the same proportion
of males and females (1:1). 2 Number of males: females with genotypes in each generation. The number varies
according to the imputation strategy given standard BLUPF90 parameters of quality control.

In each simulation, the accuracy of genomic breeding values (gEBVs) was estimated
using the imputed genotypes of the eight scenarios described above. In addition, the EBVs
of candidate animals were also estimated using only pedigree information (BLUP scenarios).
The model was the same for BLUP and ssGBLUP:

y = 1µ + Za + e (1)

where y is the vector of phenotypes, µ is the population’s mean, a is the vector of additive
genetic effects of animals, e is the vector of residuals, and Z is the incidence matrix for
additive genetic effects. Residual effects are sampled from distribution N(0,Iσ2

e ). In BLUP,
random additive genetic effects are sampled from distribution N(0,Aσ2

a ); σ2
a is the genetic ad-

ditive variance and A is the identity by descent (IBD) relationship matrix constructed from
pedigree information. In ssGBLUP, additive genetic effects are sampled from distribution
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with a∼N(0,Hσ2
a ). H matrix can be interpreted as the (co)variances of multivariate normal

distributions of additive effects of both genotyped and non-genotyped animals [32,33].
In ssGBLUP, the inverse of the (co)variance structure of random effect was replaced by
H−1, described as:

H−1 = A−1 +

(
0 0
0 G−1 − A−1

22

)
(2)

where A−1 is the inverse of pedigree matrix and A−1
22 is the inverse of the sub-covariance

structure containing only genotyped animals. G−1 is the inverse of the matrix built as
described in [35]. According to Garcia-Baccino et al. [36] and Aguilar et al. [37], A−1 was
computed accounting for inbreeding in order to avoid inflation (bias), particularly for BLUP
scenarios, and to minimize blending problems between genomic and pedigree matrices.

All analyses were performed using the BLUPF90 suite of programs under their stan-
dard parameters of quality control for genomic database [38]. Pedigree information from
the 23rd to 28th generations was retained (Table 2). Phenotypic data comprised does
from the 23rd to 27th generations. Phenotypic records of progenies at the last generation
(28th generation) were not considered because they represented young candidate animals.
Although all scenarios (S1–S7) used genotypes of grand-sires and sires (26th and 27th
generations) for genomic prediction, a few scenarios (S1 and S2) also used all genotypes
of grand-dam and dams. In the other scenarios (S3–S7), genotypes from grand-dams and
dams were discarded due to low IA and the large number of missing SNPs [39]. On the
other hand, in S3, EBVs of non-genotyped progeny were estimated as means of their
parents’ EBVs (Table 1).

The accuracy of gEBVs was measured by the Pearson’s correlation between predicted
and true breeding values (TBVs) on the progeny at the validated population, animals be-
longing to the 28th generation. To assess the gain of accuracies when genomic information
was introduced, the mathematical differences of accuracies between each scenario (S1–S7)
and BLUP were calculated within each simulation.

This study emphasizes the genetic improvement via doe selection. Hence, response to
selection was calculated by subtracting the TBV mean of young candidates (1500 does),
within each imputation strategy, from the TBV mean of the 150 selected individuals.
We also computed the percentage of candidate animals correctly selected. Results within
each scenario are exposed, comparing IA, the accuracy of gEBVs, the selection response
and genotyping cost.

3. Results
3.1. Simulation Outcomes

The outcomes from the 36 simulations were similar with regards to the response to
the selection of experiments using Spanish rabbit lines and the BLUP method for genetic
evaluations: an average of 2.53 kits after 20 generations of selection [4,5]. For genomic
selection, the average response to selection across QTN models computed for the first two
generations with HD platforms was 0.15 kits (0.13 and 0.17 for QTN_5 and QTN_44 models,
respectively), which corresponds to a response per generation of 0.08 (ranging between
0.002 and 0.20) across QTN models. These results are in line with outcomes of pig genomic
selection experiments [40], as hitherto there have been no empirical genomic selection
experiments in rabbits. As expected, the additive genetic variance was smaller in QTN_5
than in QTN_44. As expected, scenarios with 44 QTNs per chromosome presented higher
additive genetic variance than QTN_5 ones. This is strictly correlated with the number of
QTNs that were fixed during haplotype creation. On the other hand, this discrepancy did
not have a clear effect on the response to selection as reported on Figure 2.
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3.2. Performance of Imputation Strategies

The average of IA for the animals in the validated population (28th generation) was
computed for each scenario. The results are shown in Figure 3. No difference, in terms of
IA, was shown between two different QTN models. The greatest IA (0.99) was achieved in
the S1. The IA decreased to 0.941 (S2) when the LD platform was used. A great decline in
IA was found in S3_A (0.797) when the half validated population had imputed the whole-
genome, unlike S3 (0.935). IA decreased to 0.918 when dams of the training population
were genotyped with the MD platform (S4). S6 also presented an intermediate value (0.902)
between all scenarios. Using LD platforms on does, IA decreases to 0.858 (S5); whereas
IA declines to 0.811 with non-genotyped does (S7). In addition, lower standard deviation
was obtained in S1 (0.0003), S2 (0.002) and S3 (0.002). Conversely, S7 and S5 presented the
highest values of standard deviation (up to 0.005 and 0.004, respectively).

In the same way as IA, genotype yields across QTN models were higher in S1 (0.999)
and S2 (0.984). The values were intermediate for S3 (0.952), S3_A (0.951) and S4 (0.945).
Lower genotype yields were presented in S6 (0.899), S5 (0.893) and S7 (0.866).

3.3. Gemomic Prediction vs. Pedigree-Based Analyses

The accuracy of gEBVs presented, on average, a higher accuracy of prediction for
QTN_44 than for QTN_5 (Figure 4). The accuracies of gEBVs of S1 were 0.26 ± 0.015
(QTN_44) and 0.228 ± 0.014 (QTN_5), representing mean ± standard error. S2 presented
lower accuracy for both QTN models, 0.237 ± 0.014 (QTN_44) and 0.205 ± 0.013 (QTN_5).
S3 presented similar values compared to S2, 0.237 ± 0.016 (QTN_44) and 0.193 ± 0.015
(QTN_5). S4 and S6 were very similar to S3 in QTN_44, with 0.232 ± 0.016 (S4) and
0.234 ± 0.016 (S6), and had slightly higher values than S3 in QTN_5, with 0.197 ± 0.015
(S4) and 0.199 ± 0.016 (S6). Conversely, lower accuracy values were found for S5 and
S7, with 0.223 ± 0.016 (S5) and 0.22 ± 0.015 (S7) for QTN_44, and 0.185 ± 0.014 (S5)
and 0.18 ± 0.015 (S7) for QTN_5. The accuracy of gEBVs drastically declined in S3_A,
0.09 ± 0.016 (QTN_44) and 0.09 ± 0.013 (QTN_5), because of low IA presented in progeny
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with its imputed whole-genome. The S3_A values were even worse than BLUP accuracies,
which showed 0.202 ± 0.014 (QTN_44) and 0.166 ± 0.015 (QTN_5).
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The results presented a great variability on simulation-based analysis (on average S.D.
of 0.08). Figure 5 shows the mathematical differences of accuracy between all genomic
scenarios (S1–S7) and BLUP scenarios for each simulation. S1 presented better results than
BLUP over 36 simulations for QTN_5, whilst it had better results in 95% of simulations
for QTN_44. S3 outperformed in 82% of simulations, whilst S2 outperformed in 75% for
QTN_5. By contrast, S3 was in the 75% of simulations better than BLUP for QTN_44,
whilst S2 was in the 80%. S4 and S6 performed in a rank of 70–80%, whereas S5 and S7
performed in a rank of only 50–60%. S3_A was better than the BLUP scenario in only 25%
of simulations.
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The response to genomic selection and the percentages of correctly selected candidates
are showed in Table 3. These parameters are strictly correlated with the accuracy of gEBVs
in prolific livestock; however, they represent more pragmatic methods of comparison and
dissemination for farmers. The correlations were 0.90 and 0.88 between the accuracy of
gEBVs and response to genomic selection, and the first one and percentages of animals
correctly selected, respectively. A response to selection of 0.105 was found when only
pedigree information was used. In S1, the number of kits per generation increased by 22%
with respect to BLUP. A slight decline was observed in scenarios S2, S3, S4 and S6 with a
value of 0.120, 0.117, 0.114 and 0.116, respectively. S5 and S7 did not show any significant
augmentation with respect to the BLUP scenario. As expected, a lower selection response
than BLUP was noticed in S3_A (0.046). The percentages of correctly selected animals
were similar to the trend of selection response, thus best performance was obtained in S1
with a value of 30.54%, followed by S2 and S3 with a percentage of 29.45% and 29.36%,
respectively. S3 to S7 presented a range between 29.06% and 28.42%. BLUP presents a
percentage of correctly selected animals of 27.81%. Even for this parameter, the values in
S3_A were lower than in the BLUP scenario.
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Table 3. Response to genomic selection and percentages of correctly selected animals across QTN
models for each scenario.

Scenario Selection Response 1 SE-1 2 Percentage of ACS 3 SE-2 4

BLUP 0.105 0.007 27.81 0.56
S1 0.129 0.007 30.54 0.56
S2 0.120 0.007 29.45 0.54
S3 0.117 0.008 29.36 0.60

S3_A 0.046 0.008 23.62 0.65
S4 0.114 0.007 28.93 0.54
S5 0.108 0.007 28.42 0.53
S6 0.116 0.007 29.06 0.55
S7 0.109 0.007 28.26 0.56

1 Mean of response to genomic selection (kits). 2 Standard error of response to genomic selection. 3 Percentage of
animals correctly selected. 4 Standard error of percentage of animals correctly selected.

3.4. Genotyping Costs

Figure 6 shows the relationships between the price of genotyping and IA, and the
accuracy of gEBVs. As expected, the more investments, in terms of genotyping, the more
IA and accuracy of gEBVs were found. However, that is not a strictly linear correla-
tion, especially for IA. S1 showed the most expensive investment (EUR 112,000) due to
progeny genotyping at the HD platform. The second ranking position was S2 with a
genotyping cost of EUR 53,500. S3, S4 and S6 presented a lower cost compared to S2 from
EUR 38,500 to EUR 31,000. S5 and S7 are the cheapest scenarios, with costs of EUR 26,800
and EUR 23,500, respectively.
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4. Discussion

Our results highlight four main points for discussion: (1) imputation strategies;
(2) causes that affect genomic prediction; (3) comparison with other studies; and (4) search-
ing for trade-off: cost and genetic accuracy trends.

4.1. Imputation Strategies

Genotype imputation was introduced as a tool to increase detection power on associa-
tion studies for linking results across studies that rely on different genotype platforms [41].
On the other hand, imputation can be a suitable tool to reduce the cost of genotyping in
both plant breeding [30,42] and animal breeding programs [18,43,44]. In this case, close an-
cestors are typically genotyped at HD platforms, whilst progeny are genotyped at lower
SNP density. When the marker position of different platforms perfectly overlaps and
pedigree information is present, imputation accuracies (IAs) are usually high [29]. In our
situation, in which all close ancestors are genotyped with the HD platform, this approach
may not produce the same benefit as in the other species due to the prohibitive cost of HD
platforms. For this reason, we examined how IAs are affected by the different genotype
information of the ancestors. There are several factors influencing IA, highlighting the
missing rate of LD platforms as one of the main factors [22,30]. Missing rate is the percent-
age of SNPs present at an HD platform that are untyped (not covered) at LD platforms.
The missing rates were 70% and 99.7% for MD and LD platforms in the current study.
Although the first imputation studies suggested values between 50% and 75% [29,45],
the values of the current study are in line with other studies that presented very high IA
for both plant [42] and animal breeding programs [18,43,46]. The missing rate can be even
higher when pedigree information is available for the imputation process. AlphaImpute,
which uses both genotype and pedigree information, has been demonstrated to have high
imputation performance [18,29,43], even in populations with low levels of linkage disequi-
librium [47]. Thus, software and missing rates seem appropriate for imputation in rabbit
breeding programs.

The number of animals in the reference population, as a second factor, influences the
resolution of haplotypes during the phasing process. A large number of individuals in the
reference population ensures high IA in validated populations. However, it can be reduced
considerably if the animals from both populations are close relatives, sharing the structure
of linkage disequilibrium and haplotypes across wide chromosome segments [22,29]. S7
showed a high IA using only 70 male ancestors, which is explained by the close relationship
between them, the female ancestors and progeny under ongoing selection. As expected, S1
presented the highest IA and genotype yields due to the larger number of animals in the
reference population (training) and lower missing rate. In general, many studies showed
that imputation using HD platforms on ancestors and MD platforms on the progenies
produces high levels of IA and concordance rate in dairy cattle [46,48,49], pigs [13,18,19],
poultry [12,50], sheep [20] and farmed Atlantic salmon [43]. When the SNP densities of
MD (S1) platforms were reduced to LD (S2) in the validated population, IAs decreased
only five percentage points. Hence, vast haplotype information keeps retrieving, using LD
platforms, because of the high relatedness of rabbits. The IA results of S1 and S2 were
similar to those reported in a pig imputation study, especially for Landrace and Yorkshire
breeds [19]. In the current study, fewer differences in IA were found when grand-dams
were genotyped at MD platforms (less than two percentage points, S3 and S4) compared
to S2. This demonstrated that dams at MD platforms were enough to retrieve female
haplotypes and to keep high IAs, being noticeable when S6 presented better IA values than
S5. The female haplotype resolution is better when dams are genotyped at a higher SNP
density than any level of SNP density on grand-dams. On the other hand, the imputation
of whole genomes (S3_A) seems to not be a feasible technique for rabbit breeding programs.
IA declined up to 0.797, probably due to the small number of training populations and the
higher error rate of imputed SNPs associated with QTNs—very important if they have
low minor allele frequency (MAF). Many animals with imputed whole-genomes presented
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very low IA—less than 60%. Conversely, some studies showed the benefits of strategies
based on imputed whole-genomes in part of training populations [47,51] and evaluated
populations using a larger number of genotyped individuals [51].

4.2. Causes That Affect Genomic Prediction

In this study, ssGBLUP was used as a method for genomic evaluations. This method
includes a different sort of information: phenotypes, pedigree, and genotypes. Previous
studies demonstrated that ssGBLUP gives potentially more accurate and less biased ge-
nomic gEBVs than multistep methods, especially in the presence of small populations and
sex-limited traits [31,52].

The accuracy of the EBVs varies greatly within each scenario with respect to IA
(Figures 3 and 4). Conversely to the IA, which is mainly influenced by the genotyping
strategies, the accuracy of gEBVs is affected by several factors. Some of these are re-
lated to the genetic architecture of the traits such as QTNs distribution and their allele
frequency [22,53]. The number of SNPs in LD with these QTNs and the allele frequency
of those SNPs also played an essential role in the accuracy of genomic prediction [54].
In addition, working with imputed genotypes, it is important to consider the influence of
the imputation error of those SNPs and therefore IA [22,53]. In these studies, scenarios with
a higher IA value also presented higher accuracy on genomic prediction and the opposite.
However, a strong correlation between these two-type accuracies cannot be defined due
to the high variability of gEBV accuracy within the scenarios. Additionally, with S3_A
and S7, it was confirmed that low IA values (under 85%) can be deleterious for genomic
prediction. For that reason, conservative thresholds for genotype imputation and quality
control before genomic selection must be adopted. Furthermore, Cleveland and Hickey [18]
showed that differences in gEBVs may be due to both different values of IA but also to the
intrinsic genotyping structure of each scenario. There may be animals that have a marginal
influence on IA but can significantly affect gEBVs.

As mentioned previously, variability in these scenarios was also caused by different
allele frequencies of SNPs and QTNs. High heterogeneity of these factors was observed
between simulations due to the random events that occurred during the 28th generation of
mating. In some simulations, a larger number of QTNs were fixed, and in some, many SNPs
were not associated with the rest of the QTNs. This would also explain the variability
between simulations, and why few simulations presented a lower accuracy of gEBVs for
genomic scenarios compared to BLUP, even in the scenarios with high IA as in S2 and S3.

Regarding QTN distributions, QTN_44 presented better performance than QTN_5.
This trend agrees with the study of Zang et al. [53], in which ssGBLUP outperformed
when the phenotype was controlled by several genes of equal effect sizes. A method that
assumes unequal variances for each marker could suit for the genomic prediction of QTN_5.
Modeling SNP’s effect and its variance can potentially give better results in short term
selection for this simulation. Iterative ssGBLUP and/or nonlinear weight A can easily
be implemented and can potentially lead to an increase in prediction accuracy [55,56].
Fernando et al. [57] also propose a single-step Bayesian regression in which it is possible
to model the distribution of marker effects in many forms such as t distribution, variable
selection model, and mixture distributions. Despite this, the method of estimation and of
building G matrices was kept the same in all simulations for the sake of simplicity and for
comparison with other studies.

4.3. Comparison with Other Studies

S1 represented the typical genotyping strategy used in all livestock species in which
parents are genotyped with HD platforms and progeny are genotyped at LD platforms.
As expected, S1 exhibits the best accuracies of gEBVs, and the accuracy of genomic predic-
tion presented in S1 is close to that presented when the same candidate animals are geno-
typed with HD platforms; correlation is almost one in all simulations for both QTN models
(data not shown). A similar correlation was found in pigs [18,58] and cattle [21,22,53],
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even if the proportion between HD and LD animals was different due to distinct breeding
schemes present in these species. Previous imputation studies conducted in commercial
pig breeding programs are a good comparison method due to a similar mating system,
although the number of animals is lower in rabbits. Scenarios comparable to those present
in this study have been reported in Cleveland and Hickey [18]. A similar sharp drop
in IA and the accuracy of gEBVs was observed when animals of validated populations
were genotyped with MD to LD platforms. In addition, an analogous decline in gEBVs
was observed when grand-dams and dams were genotyped with LD or MD, although in
both studies IA was quite high for these scenarios. However, Cleveland and Hickey [18]
demonstrated that genotyping at HD platforms for animals that are not related with LD
animals has little impact concerning IA, but it can significantly affect the accuracy of gEBVs.
Nevertheless, this scenario was not included in our study because the limited number of
animals would not guarantee the same gap of accuracy presented in pigs. The same con-
sideration made on Grossi et al. [19] can be also made for our study; genotyping reference
animals with the LD platform can ensure good accuracy levels of IA and gEBVs when
parents are genotyped with HD, if not low levels of prediction have been observed, i.e.,
S5 or S7.

4.4. Searching for Trade-Off: Cost and Genetic Accuracy Trends

Cost evaluations are usually performed by comparing imputation strategies against an
idealistic genomic selection in which all candidate animals are genotyped at HD platforms.
Under this condition, imputation strategies are always a cost-effective technique [18,42,43].
Here, we show only genotyping costs to evaluate investment for moving from traditional
genetic evaluation (BLUP) to genomic selection (ssGBLUP). Imputation was further demon-
strated as a reliable tool for reducing genotyping investment, with an accuracy higher than
BLUP in the majority of cases.

However, some scenarios present a cost-benefit inefficiency when compared with the
other scenarios. Clearly, S3_A cannot be taken as an option due to the low performance of
prediction—even worse than BLUP. Results from this scenario suggest that a method based
on high thresholds of individual-specific IA must be considered, especially when genomic
characterization is available [22], and for strategies with non-genotyped animals [51].
Using animals with imputed whole-genomes for genomic selection is still a challenge
due to the imputation error rate [51,59]. In this sense, high error rates of imputed SNPs
associated with QTNs are clear in S3_A, presenting 75% of simulations lower than BLUP
scenarios. BLUPF90 reported genotypes duplicated for S3_A, as AlphaImpute copied whole-
genomes of full-sibs for some progenies.

The same reason can be applied to S7 and S5 as, even if lower genotype investment was
present in these scenarios, these strategies cannot be considered one of the best scenarios
because the number of simulations in which genomic selection outperformed BLUP is
limited—about half of the cases. Conversely, S3, S6, and S4 presented a considerable
increase in accuracy and response to selection with a marginal increment investment.

The opposite situation was presented in S1, and even if a significant reduction in
accuracy was observed switching from MD platforms to LD platforms (S2), the big drop in
price observed can potentially justify this decline in accuracy. No significant differences in
terms of percentage of correctly selected animals and response to selection were observed
between S2 with S3 and S6, thus these two scenarios are preferable over S2 due to the
lower cost. In addition, S4 can be discarded among the best scenarios, as it presents a
lower selection response than S6 and S3 but at a higher price. In conclusion, the best
scenarios can be identified as S3 and S6. Genotyping only half of the animals per litter
(S3) is an effective strategy to reduce the impact of the cost of genotyping, especially in
prolific species such as rabbit and pig. This approach is commonly adopted in the pig
industry selection scheme [15,17,18]. On the other hand, S6 demonstrated that genotyping
grand-dams (S4) leads to a negligible difference in accuracies when sires and dams are
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genotyped, with S6 being cheaper than S3 (+ EUR 6750). Thus, we considered S6 as the
strategy with the best trade-off for implementing genomic selection in rabbits.

5. Conclusions

Imputation strategies are feasible in rabbit breeding programs as in other species,
as IAs were high, particularly in scenarios with parents’ genotype at HD platforms. Fur-
thermore, the slight positive correlation between IA and the accuracy of gEBVs was also
demonstrated, and scenarios with IA also have a high gEBV accuracy. The results of the
response to genomic selection and the percentage of correctly selected candidates are in the
same line as genetic accuracy values. Despite this, gEBV accuracy showed great variance
among simulations. Therefore, we must be cautious with the results from simulated data as
they are conditioned to several factors of the small reference population (e.g., size, relation-
ships between individuals, inbreeding level, and update). Another comparison between
genomic selection and BLUP could be made by enlarging the reference population using
dams of the nucleus farms and the multipliers, or even crossbreeding from commercial
farms. In conclusion, the adoption of imputation strategies can be an effective strategy for
drastically reducing the genotyping cost in rabbits, maintaining an accuracy slightly lower
than that with all HD animals. Hence, the best trade-off scenario can be identified in S6;
although, as previously stated, these results may change under different conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
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