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Abstract: The objective of this research was to design a neural network (ANN) to predict the methanol
flux at the outlet of a carbon dioxide dehydrogenation plant. For the development of the ANN, a
database was generated, in the open-source simulation software “DWSIM”, from the validation of a
process described in the literature. The sample consists of 133 data pairs with four inputs: reactor
pressure and temperature, mass flow of carbon dioxide and hydrogen, and one output: flow of
methanol. The ANN was designed using 12 neurons in the hidden layer and it was trained with
the Levenberg–Marquardt algorithm. In the training, validation and testing phase, a global mean
square (RMSE) value of 0.0085 and a global regression coefficient R of 0.9442 were obtained. The
network was validated through an analysis of variance (ANOVA), where the p-value for all cases was
greater than 0.05, which indicates that there are no significant differences between the observations
and those predicted by the ANN. Therefore, the designed ANN can be used to predict the methanol
flow at the exit of a dehydrogenation plant and later for the optimization of the system.

Keywords: simulation; DWSIM; hydrogenation of carbon dioxide; ANN

1. Introduction

Carbon dioxide (CO2) is a compound that belongs to the so-called greenhouse gases.
In recent years emissions of CO2 have increased into the atmosphere, causing an increase
in the greenhouse effect, constituting one of the main causes of global warming; this has
also led to the acidification and increase of the sea levels to some extent [1,2].

In order to mitigate CO2 emissions, three methods have been proposed: capturing and
storing CO2 underground, biological treatment with algae, and chemical [3] conversion.
The catalytic hydrogenation of CO2 is the most promising process of chemical conversion.
This process allows products such as alcohols, formic acid, and formaldehyde to be ob-
tained; it is also possible to obtain light hydrocarbons such as methane depending on the
type of the catalyst used [4,5]. Methanol is the chemical that shows higher performance
both in the energy field (25.5 Kcal/H2) and at the hydrogen use level (H2) (67%) [6]. More-
over, methanol can be used both as a fuel for energy obtainment and as an intermediate
means for the production of other more valuable chemicals such as dimethyl ether (used in
aerosols) or formaldehyde (used in the manufacture of plastics) [7].

The reaction between H2 and CO2 is thermodynamically favorable. However, there
are limitations related to the reaction kinetics since the activation energy is high. As a conse-
quence, the hydrogenation speed decreases significantly, creating the need for a catalyst [4].
Copper-based catalysts, especially Cu/ZnO/Al2O3, due to their high activity, have been
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widely used for the hydrogenation of CO2. The main drawback of Cu/ZnO/Al2O3 is that
they are deactivated in the competitive reverse water gas displacement reaction that occurs
at the same time as the methanol production reaction [8]. In order to solve the problem of
catalytic deactivation, numerous studies have been carried out in which the performance
of supported catalysts based on transition metals such as Ni, Pd, and Ce is evaluated.
These catalysts are commonly used in the hydrogenation process of the synthesis gas.
Despite presenting favorable results at a lab scale, they have not been industrially tested.
Furthermore, only studies related to characterization, process thermodynamics, and kinetic
descriptions have been carried out [4,5,8–12].

This article discusses the use of an ANN tool to predict the catalytic process. Therefore,
the state of the art includes both concepts. First, the use of catalyst followed by the limited
application of ANN in processes in which different catalysts are involved.

The ANN method has been selected in this research because it can build from historical
data, experimental and/or simulations and does not require exact relationships between
the dependent and independent variables. Furthermore, ANN has been widely used in
various industrial chemical processes [13] because they have the ability to correlate input
and output variables of non-linear multivariate phenomena and have been successfully
applied in the prediction of complex, realistic and synthetic processes in areas where no
analytical or semi-experimental correlation is available [14].

The Methanol Production Process from CO2 Hydrogenation

Figure 1 illustrates the process of producing methanol from the hydrogenation of CO2
adapted from [15]. The entrance to the hydrogenation plant consists of a stream of CO2
and another of hydrogen, 88,000 kg/h and 12,100 kg/h, respectively. The stream of carbon
dioxide is compressed to 78 bars in a series of compressors with an isentropic efficiency of
70.3%, in each of these, the stream outlet pressure was specified, while the H2 stream is
compressed in only one step up to 78 bar. In Tables 1 and 2, the conditions to which the
currents enter are detailed.

Table 1. Input flow’s conditions (CO2) [15].

Parameter Value Unit

Temperature 25 ◦C
Pressure 1 bar

Mass flow 88,000 kg/h
Molar flow 1999.57 kmol/h

Volumetric flow 48,667.4 m3/h

Table 2. Input flow’s conditions (H2) [15].

Parameter Value Unit

Temperature 25 ◦C
Pressure 30 bar

Mass flow 12,100 kg/h
Molar flow 6002.34 kmol/h

Volumetric flow 5038.15 m3/h
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Figure 1. Flowsheet methanol production.
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The feed streams are mixed with the recycling stream and then are heated to 210 ◦C
for being fed to the reactor; in this a 30% conversion of CO2 to methanol is obtained. The
kinetic model used was developed by Bussche and Froment [16] with mathematical artifices
developed in [15]. The kinetic model considers that the carbon source to produce CH3OH
comes from CO2. The reactions that occur inside the reactor are shown in Equations (1)
and (2), and the kinetic models are described by Equations (3)–(5), Table 3 summarizes the
kinetic parameters employed:

Table 3. Values of reordered kinetic parameters [15].

Constant Parameter Value

k1
A1 −29.87
B1 4811.2

k2
A2 8.147
B2 0

k3
A3 −6.452
B3 2068.4

k4
A4 −34.95
B4 14,928.9

k5
A5 4.804
B5 −11,797.5

k6
A6 17.55
B6 −2249.8

k7
A7 0.131
B7 −7023.5

•Methanol production reaction:

CO2 + 3H2 ↔ CH3OH + H2O (1)

• Reverse water gas shift reaction:

CO2 + H2 ↔ CO + H2O (2)

• Reaction kinetics of methanol production:

rCH3OH =

k1PCO2 PH2 − k6·
PH2O ·PCH3OH

P2
H2(

1 + k2·
PH2O
PH2

+ k3·P0.5
H2

+ k4·PH2O

)3 (3)

• Reaction kinetics reverse water gas shift:

rrws =
k5PCO2 − k7·

PH2O ·PCO2
PH2

1 + k2·
PH2O
PH2

+ k3·P0.5
H2

+ k4·PH2O

(4)

• Kinetics constants:
ln ki = Ai +

Bi
T

(5)

where, ki, Ai and Bi are the kinetic model constants.
The effluent of the reactor is divided into two streams; one is used to preheat the feed

to the distillation tower. Subsequently, the streams are mixed and condensed to separate
the unconverted gases of the product stream. The unconverted gases are recirculated to
the reactor while the water-methanol mixture expands to 1.2 bar where the unconverted
remaining gases are removed. Finally, this stream enters the distillation tower, from which
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methanol is obtained as a head product with 99% purity; this is cooled to 40 ◦C where it
separates from waste gas still contained in the phase separator.

2. State of the Art

In this section, a state of the art assessment is carried out focused on the two main con-
cepts related in this study; the hydrogenation process and the use of ANN as a prediction
method tool for catalytic process.

2.1. Catalysts and Simulation of the Hydrogenation Process

Despite the deactivation suffered by copper-based catalysts, they continue to be the
object of study to improve their catalytic properties. Fang et al. [1,17] prepared copper-based
catalysts with hydrotalcite. The catalysts prepared from Cu/ZnO/ZrO2 and Cu/ZnO/Al2O3
contained 56.6% and 40% respectively of hydrotalcite in their structure. As a result of
the addition of hydrotalcite, the catalysts had a greater dispersion of copper atoms on its
surface. After performing several tests at different conditions, comparing the performance
of the catalyst with and without hydrotalcite, it was determined that the later shows higher
yields and selectivity than the base catalysts (selectivity of 84% for the Cu/ZnO/ZrO2
catalyst and 73.4% for Cu/ZnO/Al2O3).

Furthermore, it was observed that the conditions under which the absorbent enhanced
catalyst operates are lower than those under which the base catalyst operates. These
observations are due to the fact that hydrotalcite improves the capacity of the catalyst to
absorb CO2.

Sadeghinia et al. [18] prepared samples of commercial catalysts Cu/ZnO/Al2O3, to
which different proportions of In2O3 were added. Then tests were conducted to measure
the catalytic activity using as feed a stream containing H2, CO, and CO2 and another
containing only H2 and CO2. These studies showed that, in the first stream, the use of
In2O3 causes a drop in the production of methanol. This is because the improved catalyst
has more capacity to absorb CO2, favoring only the hydrogenation of CO2.

Due to the high costs associated with the construction of pilot plants, studies were
carried out to evaluate the performance of the hydrogenation process at an industrial level;
they have been conducted by employing commercial software such as ASPEN PLUS [19].

Perez-Fortes et al. [20] developed the simulation of a CO2 capture and use plant. The
plant was simulated in the CHEMCAD software [21] in order to obtain the flow value of
energy and matter. Based on the results, they developed an economic analysis, obtaining
that the plant can produce 440 kTn/year of methanol. This study concluded that the
operation of the plant is not economically viable. Kiss et al. [22] proposed the use of a
stripping column to process a stream of wet hydrogen. This stream flows countercurrent
together with the effluent leaving the reactor. The use of the stripping column allows a
more efficient separation of unconverted gases present in the product stream from the
methanol-water mixture. This scheme allows the reduction of the amount of water present
at the inlet of the reactor, causing a drop in the flow of methanol produced. In turn, it
allows the recirculation of a greater quantity of unconverted CO and CO2. As a result, this
scheme consumes 550 kW/Tn of methanol produced and 0.48–1.16 Tn of steam for each
ton of methanol produced. As the studies [20,22] show in the proposed industrial schemes,
the energy consumption associated with methanol production is considerably high. To
solve this problem, Szima et al. [23] propose the use of a gas turbine and a simple Rankine
cycle that operates at low pressure to compensate for the energy requirements of the plant.
The plant was simulated in [21]. The supply to this plant was hydrogen that comes from a
water electrolysis process, while the CO2 was captured from a coal plant. The results of the
simulation showed that it is not economically profitable for its construction. Through a
sensitivity analysis, they determined that the plant would be economically viable if the
sales price of methanol was doubled or the costs of electricity decreased by half.

Do and Kim [24], to solve the energy problem, conducted a simulation in [19]. In this
process, the energy required for hydrogen obtainment from the water decomposition was
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obtained from solar collectors, while the CO2 is reduced to carbon monoxide using solar
energy. The primary CO2 reduction yielded methanol using the traditional process. This
technology proved to have a high energy efficiency of 15.5%. Moreover, it managed to
establish a competitive selling price of methanol.

Van Dal and Bouallou [15] carried out a simulation in [19], where the hydrogenation
plant is fed with CO2 captured from a thermoelectric plant. The hydrogen necessary to
produce methanol was obtained from the electrolysis of water. The results determined that
to produce one ton of methanol, 1.6 tons of CO2 can be removed.

On the other hand, the studies carried out to analyze the feasibility of implementing
an ethanol production process from CO2 and improving the capabilities of the catalyst
involved present great limitations. There are models that describe the behavior of a system
in a realistic way. However, they lead to the establishment of robust differential equations
that involve complex calculations and increase computational time. This procedure is
impractical for sensitivity and optimization studies [2]. Studies related to kinetic models
and characterizations of new catalysts are limited by DTF (density functional theory)
calculations that make idealized assumptions [15].

2.2. Artificial Neural Networks (ANN) as a Prediction Tool in Catalysis Processes

Artificial neural networks (ANN) are predictive tools able to learn directly from a
process and give short response times; this allows the modeling of systems in a more
complex and realistic manner [25,26].

ANNs are a computational model that can handle multiple complex problems of
the real world. The versatility of the ANN is due to the ability of information process-
ing, high parallelism, fault tolerance, nonlinearity, noise, and tolerance generalization
capabilities [27]. ANNs in their structure are made up of several layers of neurons that
connect to each other to share information and are distributed in input, hidden and output
layers; each neuron has an activation function that allows information to be reconstructed
or predicted [28]. Nowadays, ANNs are among the most used tools in different areas
of engineering and science to create complex and nonlinear models and to describe the
natural behavior of the system. They constitute a good way to find issues of malfunctions
inside a system. They have been used for years in different areas of engineering, science,
and business to deal with highly complex and non-linear data sets [29–31].

There are several relevant studies in the area of catalysis, and in most cases, the main
objectives are: setting the experimental conditions and/or properties of the catalyst system
as inputs and the catalytic activities as outputs of the model. In addition, research suggests
that automatic learning can be a good option to reduce the computational cost of the
catalysis study and promote the discovery of new catalysts. However, ANN in the field of
catalysis is not well studied since the acquisition of a database for training models is costly
and, at the same time, should take into account too many input variables for creating the
model [32].

Kito et al. [33] developed an ANN to estimate the acid strength of mixed oxides, cat-
alytic performance, and selectivities to various products in the oxidative dehydrogenation
of ethylbenzene in a series of promoted catalysts SnO2. The results from the study indicated
that the ANN has a large capacity of interpolation, extrapolation, prediction of the catalytic
performance of multiple components.

Liu et al. [34] trained a neural network with the ability to predict the catalytic activity
as well as the selectivity of various catalysts used for CO2 hydrogenation. The objective was
for the network to select the appropriate catalyst based on the products to be obtained. The
result of the work indicates that ANN can satisfactorily predict the activity and selectivity
of each catalyst. However, it is not possible to satisfactorily select the right catalyst for each
experiment because of the limited data used for training.

Zahedi et al. [2] designed an ANN in conjunction with a mathematical model to study
the behavior of an industrial packed bed reactor. The ANN is responsible for the prediction
of the reaction kinetics, while the mathematical model is used to determine temperature
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and pressure data at the outlet of the reactor. Two types of neural networks were trained,
a perceptron-type network and a radial-based one. The radial base network obtained a
lower root mean square error (RMSE) value, indicating it as the most suitable for predicting
the data. The results showed that there is a great agreement with the real values of the
reactor studied.

Sun et al. [35] designed an ANN with the ability to predict the selectivity of a catalyst
in a microchannel reactor. The neural network used was of the perceptron type with two
hidden layers and was trained with real data taken from a reactor. The ANN determined
the optimal operating conditions of the reactor.

Borisut and Nuchitprasittichai [13] developed an artificial neural network to analyze
the minimum cost of methanol production with three different configurations (I: once-
through reactor methanol production; configuration II: methanol production with recycling
and configuration III: two reactors in series), the configurations were analyzed with APSEN
HYSYS. However, this study proposes and design an ANN from the platform of open-
source chemical processes “DWSIM” using a new configuration proposed by Van Dal and
Bouallou [15]. In contrast to [13], this simulation of the methanol production process is
more realistic since it does not consider a perfect separation between liquid and gas in the
flash tank and, therefore, considers a fraction of gases in the column feed and moreover
contemplates a adiabatic reactor packed with a fixed bed of Cu/ZnO/Al2O3 commercial
catalyst. The ANN can be scaled to real processes in industry, using historical data as input
and output neurons. In this sense, the ANN would replace the simulation process, which
on several occasions is tedious and expensive.

3. Materials and Methods

The first part of this study deals with simulating the process of Figure 2, taking into
account the operating conditions of the process. The next step is to validate the results and
proceed with the design of an artificial neural network considering the inputs and outputs
determined for the prediction of the process and the restrictions imposed by the simulation.
Subsequently, training and validation of ANN using graphical and statistical analysis to
evaluate the predictive ability of the neural network are performed. Figure 2 illustrates the
flowchart of the methodology.

Figure 2. Methodology to devolopment the artificial neural networks (ANN).
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This section describes the applied mathematical model, as well as the design model
and training ANN. This section describes the applied mathematical model, as well as the
design model and training ANN.

3.1. DWSIM Simulation

Different thermodynamic models were used, following the recommendations estab-
lished in [22,36,37] for this type of system. For currents higher pressure 10 bar, the SRK
(Soave-Redlich-Kwong) model was used. For the remaining flows, the NRTL (Non-Random
Two Liquids) model was used. The model was simulated using the flash method of nested
valid loops for calculating the balance between liquid and vapor phases. Table 4 shows the
detailed reactor geometry configuration and the characteristics of the catalyst used for the
simulation of the packed bed reactor.

Table 4. Packed bed reactor configuration.

Property Value Unit

Pressure drop 0.453 bar
Residence time 0.007 h

Length 10 m
Catalyst loading 1775 kg/m3

Catalyst diameter 5.5 mm
Catalyst void fraction 0.4

Temperature difference 62.983 C
Heat load 0 kW

3.2. Design and Training of the ANN

ANNs consist of multiple layers of neurons, and each neuron uses the output of the
previous layer as input. Each neuron has a summation function that calculates the weighted
sum of the inputs and a sigmoid activation function (Equation (6)) that transforms the
weighted sum in values of different magnitudes between 0–1.

f (x) =
1

1− e−x (6)

The design of the ANN (Figure 3) is based on four input parameters and one output
parameter. There are studies, such as the one carried out by Wang et al. [38], where an
analysis based on the mean value of impact is used to determine the input parameters to
RNA. However, there is sufficient evidence [6,14,39–42] that determines that the pressure
and temperature in the reactor are the parameters that most influence the production of
methanol compared to other factors such as the type of catalyst and operating conditions
of the other equipment involved in the process. In this sense, the input parameters are
the outlet pressure and outlet temperature of the exchanger (HEAT–033) and the mass
flow of CO2 and H2 (the increase in the inlet pressure of the reactor and the decrease in
the inlet temperature can lead to increased methanol production). The output parameter
corresponding to the mass flow rate of methanol at the outlet of the hydrogenation plant.

Taking into account the recommendations established by Chen et al. [43] from the
total set of data generated, 70% of the data are selected for the design and training of the
ANN (107 data pairs), while 30% of the data are used to perform a validation (23 data
pairs) and testing (23 data pairs) to evaluate its level of learning. Figures 4 and 5 show the
distribution of the inputs and outputs used in the training, validation, and testing process
of the ANN. A correlation analysis between the input variables used in the model has been
carried out using SPSS 22.0. As shown in Table 5, all the analyzed data pairs do not present
a significant correlation (p-value > 0.05).
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Figure 3. The ANN designed.

Figure 4. Input values employed to training, validation and testing the ANN. (a) Outlet pressure
(bar); (b) outlet temperature (◦C); (c) flow H2 (kg/h); (d) flow CO2 (kg/h).

Figure 5. Outlet values (flow CH3OH) employed to training, validation and testing the ANN.
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Table 5. A correlation analysis between the input variables.

p-Value Pressure Temperature Mass Flow CO2 Mass Flow H2

Pressure - 0.636 0.934 0.06
Temperature 0.636 - 0.441 0.916

Mass flow CO2 0.934 0.441 - 0.2355
Mass flow H2 0.06 0.916 0.2355 -

The training process seeks to adjust the weights of the connections between neurons
in such a way that the predictions made by the network are as accurate as possible with
respect to those selected as the target. Validation is a process where the error thrown by
the network is measured with respect to the objective data and is used as a measure of the
performance of the network. ANN testing is equivalent to presenting data to the network
that was not used for training; this involves generating new pairs of data, presenting
them to the ANN without showing the desired outputs, and comparing how accurate the
predictions are. It is important to note that the Levenberg–Marquardt algorithm in some
cases is sensitive to the number of neurons and may suffer overtraining problems caused
by the noise present in the data outputs with which the ANN trains [44,45] and when an
ANN is overtrained lower its prediction capacity and will begin to “memorize” the data
too often; that is, it will try to predict the exact output values, rather than the expected
general trend in the data [46].

Once the simulation process of the carbon dioxide hydrogenation plant in DWSIM was
validated. The specialized bibliography in the development of ANN suggests a minimum
of 50 points to predict quantities determined with regression algorithms [47–49]. In this
sense, 153 data pairs (4 inputs and one output) were generated to train the network. Table 6
details the variation range of the input variables selected for the study. To validate the
ANN and demonstrate the reliability of the model for the prediction of methanol flow,
the general performance indicators were used: RMSE, Pearson’s correlation coefficient
(R), and additionally a comparative statistical analysis of variance (ANOVA). Similarly, to
determine the optimal ANN, a trial and error procedure was carried out until the neural
network with the lowest RMSE associated with the network was found and based on
the correlation coefficients obtained for the training, validation, and testing process of
the network.

Table 6. ANN input’s restrictions.

Parameter Pressure Temperature Mass Flow (CO2) Mass Flow (H2)

Details bar ◦C kg/h kg/h
* Range 58–78 200–210 88,000–100,000 12,100–20,000

* Less or greater than the established ranges, the simulation does not run.

4. Results and Discussion

The analysis and discussion of results include both the description and validation and
topology of the ANN and the performance of the model. In this section, both are presented.

4.1. Simulation Validation

Before designing the ANN, it is essential to carry out the comparison of the simulation
developed in DWSIM with results from the literature. The study developed in [15] was used
for validation. The process DWSIM was adapted according to the simulation developed in
ASPEN PLUS. Table 7 details the comparison of the results; as it can be seen, the percentage
errors do not exceed 5%. The existence of the error between the values obtained and those
of the literature is justified by the thermodynamic model used (SRK-MVHS) and by the
volume of the reactor that is not defined in [15].
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Table 7. DWSIM simulation validation.

Component Input Flow
Entrada (kg/h)

Output Flow [6]
(Kg/h)

Output Flow
DWSIM (kg/h) Error (%)

Methanol 0 59,300 58,297.99 1.69%
Water 0 33,700 32,559.83 3.38%

Carbon dioxide 88,000 5820 5710.52 1.88%
Carbon monoxide 0 510 524.53 2.85%

Hydrogen 12,100 870 833.46 4.19%

4.2. ANN Topology

This section defines how the ANN was structured through the analysis of the correla-
tion coefficient (R) and the RMSE.

4.2.1. Methods Used for Selection of ANN Training Algorithm

This study employs a MATLAB library, NNTOOL, which provides three different
training algorithms: Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled
conjugate gradient backpropagation (SCG). These methods were used because they are
capable of obtaining lower RMSE than some other algorithms [50–52].

A trial and error test was carried out, varying the training algorithm and number of
neurons in the hidden layer. As in other prediction studies, for example, those developed
by Wang et al. [38,53], R and RMSE were evaluated to determine the appropriately ANN
structure R and RMSE results of the analysis are provided in Table 8.

Table 8. Pearson’s correlation coefficient (R) and root mean square error (RMSE) values for trial and
error using Levenberg–Marquardt (LM), Bayesian regularization (BR) and scaled conjugate gradient
backpropagation (SCG) algorithms.

# Neurons
LM BR SCG

R Global RMSE R Global RMSE R Global RMSE

500 0.318 1.26 0.956 0.012 0.206 1.72
100 0.497 0.18 0.924 0.068 0.861 0.042
50 0.939 0.022 0.939 0.045 0.936 0.013
12 0.944 0.0085 0.940 0.009 0.891 0.010
6 0.935 0.0048 0.938 0.036 0.907 0.010
3 0.932 0.0087 0.933 0.01 0.650 0.037

After the training process, the results detailed in Table 8 conclude: the most suitable
training algorithm to predict the methanol flow are LM and BR. The minimum RMSE value
and maximum R value are: 0.0085 and 0.944 when LM algorithm is used (training time:
10.2 min), while when BR is applied the minimum RMSE is 0.009 and maximum R is 0.940
(training time: 60.5 min).

The RMSE and R values are similar in both algorithms. However, in this study LM
was used because it requires less training time (6 times less), this agrees, with what is
established by Tabbussum et al. [54]; Cheng et al. [55]; Negash et al. [56] which indicate
that Bayesian Regularization takes more time to generate results.

4.2.2. Selection of Neurons in the Hidden Layer

Figures 6–8 show the evolution of R-values for the training, validation, test, and global
phase using 500, 100, and 12 neurons, respectively. The global R-value using 500 neurons
is: 0.318 and the RSME = 1.26 (Table 9). These results suggest that the network is not
suitable for methanol flux prediction. On the other hand, in 100 neurons the value of
R = 0.49 and the RMSE = 0.18. In this case, the value of R in the training phase is 0.99,
indicating an adequate correlation between the observed data and those predicted by the
network. However, the value of R in the validation and testing phase drops to 0.25 and
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0.076; these values indicate that the ANN is overtrained, losing the ability to generalize
its predictions. When 12 neurons were used (Figure 9), it is observed that the value of R
both in the training, validation, test, and global phases are: 0.948, 0.940, 0.942, and 0.944,
respectively, and according to Table 9, the value of the RSME is 0.0085; these results indicate
that ANN has a good predictive ability.

Figure 6. Regression and correlation coefficient using 500 neurons in the hidden layer for stage (a) the
training phase, (b) validation, (c) testing, and (d) overall.

Figure 7. Regression and correlation coefficient using 100 neurons in the hidden layer for stage (a) the
training phase, (b) validation, (c) testing, and (d) overall. Using 100 neurons in the hidden layer.



Energies 2021, 14, 3965 13 of 18

Figure 8. Regression and correlation coefficient using 12 neurons in the hidden layer for stage (a) the
training phase, (b) validation, (c) testing, and (d) overall.

Table 9. R and RMSE values for trial and error using LM algorithm.

# Neurons R Train R Validation R Test R Global RMSE

500 0.817 0.048 0.149 0.318 1.26
100 0.994 0.256 0.076 0.497 0.18
50 0.976 0.917 0.686 0.939 0.022
12 0.948 0.940 0.942 0.944 0.0085
6 0.933 0.947 0.936 0.935 0.0048
3 0.943 0.915 0.920 0.932 0.0087

Figure 9. Comparative graph of the experimental data (DWSIM) and ANN predictions regarding
methanol flux (kg/h).
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Through these experiments, we defined that the network topology is a layer with four
input neurons, a hidden layer with 12 neurons, and an output layer with a neuron based
on the above analysis. This is consistent with the previous research, which highlights that
a hidden layer may be sufficient in most practical applications of ANN [27]. The designed
ANN is of the simple perceptron type and is trained with the Levenberg–Marquardt
algorithm using the MATLAB tool NNTOOL version R2018a. The overall parameters are:

Population size: 153
Maximum iteration: 1000
Epochs: 11
Time: 10.2 min
Performance: 0.00236
Gradient: 0.000407
Mu (Control parameter): 0.0001

4.3. Prediction Model of Methane Flow Topology

Figure 9 shows the comparison between predictions (ANN) and the values defined by
simulation (DWSIM). It is possible to appreciate the approximation between observations
and predictions. The average percentage error of the predictions is: 2.55%. Therefore, the
network prediction is acceptable since there is an excellent correlation between the input
and output data of the ANN. It can be concluded that the developed model approaches
the data of the observations, proving that the ANN is a robust model and suitable for
predicting the flow of methanol by ANN hydrogenation plants.

4.4. Verification of the ANN Model

To evaluate the reliability of the performance of the ANN designed during the training,
validation and testing phase, unknown data pairs were created by the ANN to verify their
predictive capacity. For this, a set of 10 random data (P, T, mass flows) simulated in DWSIM
has been generated to collect new observations based on the new operating conditions. To
verify the prediction capacity, the ANN designed to predict the methanol flux at the exit
of the hydrogenation plant was used. The comparison between the observations and the
predictions is shown in Figure 10. The overlap between them allows us to deduce that the
designed ANN has a good capacity and precision of prediction of the methanol flow at the
exit of the carbon dioxide hydrogenation plant. The graphic analysis was complemented
with an ANOVA analysis in order to guarantee that the designed ANN is reliable and
suitable as a prediction tool.

Figure 10. Comparison between observations (DWSIM-blue) and predictions of ANN (orange)
methanol flow.

In this research, the ANOVA was used to statistically validate the ANN. The results
of the ANOVA are summarized in Table 10. According to the statistical test employed,
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the p-value of F-ratio is greater than 0.05. The ANOVA analysis shows no statistically
significant difference between the predictions and observations (experimental data). For
this reason, the constructed ANN is statistically valid for predicting the methanol flow
in the dehydrogenation plant. In addition, as seen in Table 11 measuring the average
percentage errors (%E) between predictions and observations, the %E is lower than 1.5%.

Table 10. Analysis of variance (ANOVA) results ANN model.

Source DF Middle Square F-Reason p-Value

Between groups 1 231,849 0.02 0.8968
Intra groups 18 1.34 × 107

Total (Corr.) 19

Table 11. Percentage error values between predictions (ANN) and experimental data.

Pressure (Bar) Temperature
(◦C)

Flow H2
(kg/h)

Flow H2
(kg/h)

Flow CH3OH
ANN

Flow CH3OH
Exp. Data %E

67 206 92,000 18,000 61,087.27 61,678.39 0.968
69 203 100,000 20,000 66,943.53 66,956.09 0.019
70 202 97,000 15,000 63,806.52 63,155.75 1.020
73 210 80,000 19,000 57,800.02 57,333.64 0.807
64 203 100,000 18,000 66,143.67 65,640.04 0.761
71 206 87,000 19,000 61,887.38 61,187.57 1.131
59 200 86,000 13,000 56,438.23 56,022.78 0.736
68 208 97,000 20,000 65,456.97 65,522.59 0.100
69 210 100,000 19,000 65,822.90 65,831.86 0.014
58 205 98,000 16,000 61,069.53 60,973.94 0.157

5. Conclusions

In this study, a neural network was designed to predict methanol flux in a carbon
dioxide dehydrogenation plant from the simulation process in DWSIM. The designed
neural network has a hidden layer with 12 neurons and was trained, validated and testing
with a base of 153 data pairs with four input variables: pressure (P) and temperature (T) of
the reactor, mass flow of CO2 and H2 and is capable of predicting the methanol flux as an
output variable.

The ANN was trained with the Levenberg–Marquardt algorithm, has an RMSE of
0.0085, and has a total regression coefficient of 0.9442. The ANN was validated through
a comparative statistical analysis (ANOVA) between the observations (DWSIM) and the
values predicted by the network. The statistical test indicates that the network adequately
predicts the flow of methanol with a significance level of 95%. Based on the results, it is
deduced that the ANN designed in this study can be used as a prediction tool to improve
the processes for obtaining methane from the dehydrogenation of carbon dioxide.

The advantage of using the ANN is the reduction of the calculation time to predict
the methanol flow from the inputs to the model and implies fewer mismatches, in fact
the current trend is for the ANN to be coupled to dynamic processes and used in a way.
Extensive for process optimization. In addition, the ANN does not have a defined structure,
other input parameters that have not been analyzed could be added to make the prediction
more accurate. The disadvantage of the ANN is the need for continuous data collection to
adapt to change and improve learning and prediction.

Further study will focus on the development of an ANN trained, validated and
testing with a broader database, coupled with a genetic optimization algorithm to maxi-
mize methanol production and minimizing economic costs. Additionally, the optimization
would include current trends including process performance, CO2 conversion, and pre-
heat/precool energy intensification using the mean impact value-based analysis. However,
it will be necessary to obtain a broad base of experimental and/or industrial data from the
methanol production process.
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