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Abstract: The two-parameter gamma function (G2P) design storm is a recent methodology used
to obtain synthetic hyetographs especially developed for urban hydrology applications. Further
analytical developments on the G2P design storm are presented herein, linking the rainfall convectiv-
ity n-index with the shape parameter of the design storm. This step can provide a useful basis for
future easy-to-handle rainfall inputs in the context of regional urban drainage studies. A practical
application is presented herein for the case of Valencia (Spain), based on high-resolution time series of
rainfall intensity. The resulting design storm captures certain internal statistics and features observed
in the fine-scale rainfall intensity historical records. On the other hand, a direct, simple method is
formulated to derivate the design storm from the intensity–duration–frequency (IDF) curves, making
use of the analytical relationship with the n-index.

Keywords: urban hydrology; design storm; convective rainfall; intensity–duration–frequency curves;
rainfall modelling

1. Introduction

Floods have increased within the last century in many parts of the world due to a com-
bination of factors with different levels of impact depending on the level of development of
each region [1]. In Europe, as in other developed areas, one of the main factors contributing
to the increase in this type of risk lays on the traditional configuration of cities, in which
large areas of land have been sealed during urbanization, reducing infiltration. In addition,
different authors have been warning for more than a decade that in the near future, an
increase in rainfall intensity is expected [2–4]. In coastal areas with maritime influence,
as it is the case in the Mediterranean, the problem is worsened because an increase in sea
temperature can increase the frequency of extreme rainfall events [5,6]. Therefore, many
urban drainage networks have to cope today with heavier rainfall inputs in a more sealed
urban environment. The consequence is a greater runoff production that may collapse
the urban drainage system. Urban hydrology has to face the challenges derived from
this evolving situation in our cities. In urban areas, where many catchments are small
with short times of concentration, it is important to adapt stormwater drainage systems
to these changes in rainfall intensities in order to prevent urban floods [7,8]. Thus, urban
hydrological models are essential tools to diagnose the system response and to define and
design the needed hydraulic infrastructures. To this end, the use of design storms is of
great interest for urban hydrology applications.

Most of the design storms available in the literature emerged between the 1970s and
1980s of the last century with the aim of reducing design uncertainty by introducing a
synthetic rainfall as input of hydrological simulation models. Design storms can be sorted
in two categories. On the one hand, there are those obtained straight from IDF curves. These
methods base their construction either on a point on the IDF curve to which they associate
different geometric shapes or on the entire IDF curve. Under the first group, we can find the
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rectangular [9], triangular [10], Sifalda [11], double triangle [12] or linear/exponential [13]
design storms. The Chicago design storm [14] or the alternating block method [15] are
examples basing their construction on the entire IDF curve. On the other hand, we can find
synthetic design storms derived from observed precipitation patterns, as it is the case of
the Illinois State Water Survey (ISWS) storm [16], the National Resources Conservation
Services (NRCS) storm [17], the average variability method (AVM) [18] or the more recent
two-parameter gamma function (G2P) design storm [19]. Regarding this second category,
many of these design storms associate a temporal distribution based on observed real
precipitation data to a precipitation volume obtained from the IDF curve, thus providing a
more realistic temporal distribution.

The G2P design storm [19] was developed as a new tool for designing urban infras-
tructures under convective rainfall events, such as in the Mediterranean coastline of the
Valencian Region (Spain). One of the main achievements of the G2P design storm is to
represent in a set of hyetographs for a given return period the most likely pairs of maxi-
mum rainfall intensity and event rainfall depth, for short periods of time representative of
convective storms.

The G2P design storm was compared with other well-known design storm method-
ologies [20]. The study highlighted two advantages of the G2P design storm. First, the
possibility of assigning a set of rainfall temporal patterns to a single return period. This
possibility enriches the hydrological analysis, since not all hydraulic elements within the
system will respond in the same way to a given rainfall shape. Indeed, most conditioning
storm parameters for a hydraulic design are not only rainfall intensities but also storm
duration, total rainfall depth and temporal structure of the storm, as it is the case when
designing storm tanks or sustainable urban drainage systems. Secondly, the possibility of
regionalising the model parameters, as a consequence of its compact analytical formula-
tion, is based on two parameters. This simple formulation eases the systematic statistical
treatment for regional analysis, allowing for the regionalization of the model parameters
for the characterization of G2P design storms for urban hydrology applications.

Despite its advantages, the G2P design storm has still to overcome some difficulties
before becoming a mainstream method. The need to analyse long historical rainfall series
for estimating the model parameters makes it difficult to estimate its parameters.

To overcome such inconvenience, simpler procedures to estimate the two parameters
are proposed in this research, adapted to practical applications with no availability of
high-resolution rainfall records.

The paper presents an analytical relationship relating the shape parameter of the G2P
design storm with a convenient index of rainfall convectivity. Then, a simple procedure is
proposed to establish a relationship between the scale parameter of the G2P design storm
and the IDF curves. The procedures are illustrated with an application performed with
rainfall data from Valencia (Spain).

2. Rainfall Characterization
2.1. Selection of an Irregularity Index for the Storm Temporal Structure

An accurate representation of the temporal structure of precipitation is, among other
aspects, related to the storm magnitude, essential to design hydraulic infrastructures effi-
ciently. The most usual way of describing time dependent intensities is by means of design
storms. If historical records of enough temporal resolution are available, hyetographs
are obtained from observed series of precipitation to reproduce a better approximation to
the real phenomenon. However, this is not always possible, and many design storms are
derived from statistical characterizations of maximum average intensities for different time
scales to which a frequency or return period is associated (IDF curves). Nevertheless, the
temporal structure may vary according to the selected storm duration and IDF parameters,
as [21] demonstrated when using the Sherman equation, one of the most widely used
IDF curve.
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The lack of data with sufficient temporal resolution to approximate the real temporal
structure of precipitation is often solved by means of stochastic generation of sequences of
sub-daily rainfall [22–26]. Other authors used the fractal theory in which, considering the
self-similarity of precipitation, the rainfall scale properties may improve the characteriza-
tion of IDF curves. Vašková [27] applied the fractal analysis for IDF curves estimation using
historical data series from Barcelona and Valencia (Spain), both located on the Mediter-
ranean coast where high torrential intensities are frequent. Similarly, García-Marín [28]
analysed the multifractal characteristics of precipitation according to the observation scale
in Andalucía (Spain), relating this scale to IDF curves.

An alternative approach to describe the rainfall temporal evolution is based on esti-
mating descriptive indices of rainfall intra-event irregularity. Martín-Vide [29] and Ma-
raun·et al. [30] established several indices that classify precipitation according to its annual
distribution. Other indices characterize the temporal irregularity of rainfall by quantifying
its convective properties. The advantage of these indices over the former is their meteoro-
logical rather than climatic character. Three different examples of this type of indices are
the β-index [31], the Precipitation Index (IP), [32] and the n-index [33].

The β-index [31] quantifies the rainfall convectivity by means of an expression based
on a threshold that varies depending on the temporal aggregation level. This index was
developed for the climatic region in north-eastern Spain.

The Precipitation Index (IP) [32] resembles the β-index as it seeks for setting the
convective fraction of rainfall according to its relative intensity. It is a weighted index of
the maximum intensities of 5 min, 1, 2 and 24 h, as they are representative durations of
different scales in the origin of rainfall. The IP index was derived from a statistical analysis
in the same study area than the one used in the above described β-index.

Finally, the n-index method [34,35] describes the temporal intra-event structure of rain-
fall using a dimensionless index relating the potential relationship between two maximum
intensities corresponding to different temporal intervals within the storm. This method
allows us to describe the temporal distribution of any type of precipitation as a function of
the n-index, regardless the total amount of cumulative precipitation.

The author of the n-index discussed all the previous indices, concluding that the
n-index presents some advantages over the previous ones [34]. First, the n-index removes
the arbitrary introduction of thresholds, as 0 ≤ n ≤ 1. In addition, its possible definition for
different time scales makes it versatile for different study approaches. Indeed, the n-index
is consistent with the fractal dimension of the rainfall intensity. This property allows the
study of any typical rainfall temporal pattern worldwide by means of the n-index.

After reviewing the different existing methodologies and indices to characterize the
temporal distribution of rainfall, the n-index has been selected to relate the rainfall temporal
pattern to the G2P design storm parameters. The potential relation used to characterize
intra-event distribution of intensities (see Section 2.2) and the physical meaning of the
n-index related to the convective character of rainfall make this method feasible to achieve
the objective of this research.

2.2. Rainfall Data

The rainfall data series used in this research come from the automatic rain gauge
located in Valencia city (39◦28′35” N; 0◦21′28” W, altitude 25 m), Spain (Figure 1). Valencia
presents a combination of Csa and Bsh types of climate according to the Köppen–Geiger
climate classification [36]. It is characterized by a semiarid Mediterranean climate with
mean annual temperatures around 17.5 ◦, mild winter and hot and dry summer. The
average annual maximum rainfall is 495 mm, irregularly distributed between seasons.
Daily rainfall values over 200 mm have been recorded during the autumn season, due
to the effect of cut-off lows in this area, strongly influenced by the highest values of the
Mediterranean Sea surface temperature reached during September and October months.
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over 50 mm h−1. Figure 2 shows the hyetographs corresponding to some of the events 
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Figure 1. Location of the rain gauge station in Valencia. Images taken from Institut Car-
togràfic Valencià, Generalitat Valenciana (https://visor.gva.es/visor/, accessed on 3 July 2021)
and Google Earth.

The historical time period analysed covers 30 years, ranging from 1990 until 2019.
The time level of aggregation of the data series is 5 min. Following the procedure detailed
in [19], a total of 70 rainstorms were identified and extracted from the original time series.
All of them present one or more internal time intervals with recorded rainfall intensities
over 50 mm h−1. Figure 2 shows the hyetographs corresponding to some of the events
taken from the sample. Table 1 shows some relevant empirical statistics obtained from the
sample: the storm duration (D), the maximum intensity for a 5 min interval (I5) and the
total rainfall depth (V).

For each of the selected rainstorms, maximum rainfall intensities for durations of
10 min and 1 h were calculated. Figure 3 shows the resultant scatterplot, each point
corresponding to one rainstorm of the sample. As shown in Figure 3, a significant statistical
correlation exists between both variables, with an empirical determination coefficient of
R2 = 0.529.

The n-index [34,35] describes the temporal intra-event structure of rainfall using a
dimensionless index (Equation (1)),

I∆t1

I∆t2

≈
(

∆t2

∆t1

)n
(1)

where I∆t1 is the average maximum intensity for a duration or time interval ∆t1; I∆t2 is
the average maximum intensity for a duration or time interval ∆t2; n is a dimensionless
index (n ∈ [0; 1]). Using the above potential function, it is possible to describe the temporal
distribution of any type of precipitation as a function of the n-index, regardless the total
amount of cumulative precipitation. Table 2 shows the proposed five-level classification of
storms based on n-index values.

The n-index was estimated for each of the storms, using Equation (1). Figure 4 shows
the empirical distribution of n-values in the sample. According to it, 68.57% of the selected
events present values over 0.60, associated to dominantly convective storms according to
the n-index classification (Table 2).

https://visor.gva.es/visor/
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Figure 2. Representative hyetographs of some events from the sample. (a) Hyetograph of the 10/23/2000 event; (b) hyeto-
graph of the 10/11/2007 event; (c) hyetograph of the 09/18/2018 event; (d) hyetograph of the 11/15/2018 event.

Table 1. Univariate statistics obtained from the sample.

Storm Duration
D (min) Maximum Intensity I5 (mm h−1)

Rainfall Depth
V (mm)

Maximum 8530.0 223.2 220.8
Minimum 15.0 50.4 5.2

Mean 1049.3 96.9 43.8
Median 530.0 82.8 26.3

Standard deviation 1484.2 42.8 46.7
Bias 2.9 1.2 2.1

Kurtosis 10.8 0.8 3.9

2.3. Return Period Assignment

Following the methodology in [19], a criterion to quantify the storm magnitude based
on a principal component analysis (PCA) is used herein. The underlying idea here is to
evaluate the importance of the rainstorm attending to both its maximum 10-minute rainfall
intensity and the 1-hour cumulative rainfall. Therefore, we are assuming that both of them
are relevant when quantifying the magnitude of the event, in terms of its potential capacity
to produce drainage problems in an urban hydrology context.

The PCA yields to the definition of two new variables, X1 and X2, first and second
principal components, respectively. The first one, X1, is found to explain in this case 92.73%
of the total variance. Accordingly, it can be reasonably considered a measurement of the
storm magnitude, involving both original variables (I10 and I60). Introducing this new
variable implies in statistical terms to handle in a single variable that contains by itself
more information than any of the two original ones. On the other hand, it facilitates the
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return period assignment to the storm, requiring the use of a single statistical variable.
Equation (2) shows the linear relationship between X1 and I10, I60, resulting from the PCA.

X1 = 0.939 I10 + 0.343 I60 (2)
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Table 2. Storm classification according to intensity regularity vs. time. Adapted from Refs. [37,38].

n Type of Curve Intensity Temporal Distribution Interpretation of Rainfall Type

0.00–0.20 Very gentle Practically constant Very regular Stationary/highly predominantly advective
0.20–0.40 Gentle Lightly variable Regular Predominantly advective
0.40–0.60 Normal Variable Irregular Effective
0.60–0.80 Pronounced Moderately variable Very irregular Predominantly convective
0.80–1.00 Very pronounced Strongly variable Nearly instantaneous Highly predominantly convective
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Several extreme value distributions have been explored to model variable X1. In
particular, general extreme value (GEV) [39,40], Gumbel [41], SQRT-ETmax [42] and two-
component extreme value (TCEV) [43] distributions were compared. In all cases, parame-
ters have been estimated by the method of maximum likelihood estimation (MLE). Table 3
shows the estimated values for each of the four distribution functions considered.
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Table 3. Estimated parameters of the fitted distribution functions.

Cumulative Distribution Function (CDF) Parameters

GEV [39,40] F(x)= exp
[
−
(

1−βα (x− x0)
) 1

β

]
α β x0

26.0882 −0.0480 62.324

Gumbel [41] F(x)= exp(−λ exp (−θx))
θ λ

0.0376 10.6652

SQRT-ET max [42] F(x)= exp
[
−κ

(
1+
√
αx

)
exp(−

√
αx

)] α κ

0.5219 41.8091

TCEV [43] F(x)= exp[−λ1 exp(−θ1x)−λ2exp(−θ 2 x)] θ1 θ2 λ1 λ2
0.0456 0.0265 11.1031 1.8180

There are many plotting position formulas available in the literature [44]. For the case
under study herein, the Gringorten formula was chosen [45] Equation (3).

Fj =
j−0.44

N + 0.12
(3)

where Fj is the estimate of the cumulative frequency of the jth term, j is the order of the
observation from the smallest, and N is the number of observations. This expression
provides an almost unbiased plotting position for the special case of Gumbel distribution.
In practice, though, it is commonly used and suitable to assign empirical probabilities
when dealing with samples of maximum values, as is the case [45–49].

Figure 5 shows a graphical comparison between the several theoretical distributions
tested in this analysis.
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The goodness of fit was assessed by means of the χ2 test and the Akaike information
criteria (AIC) [50]. Table 4 shows the resulting values for each of the functions. According
to them, the GEV distribution function was selected, providing best statistics for both tests.
Quantiles derived from the GEV distribution function are shown in Table 5.
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Table 4. Goodness-of-fit test statistics.

Criterion SQRT-ET Max TCEV Gumbel GEV

χ2 0.1896 0.1709 0.1542 0.1537
AIC 686.096 686.100 686.078 685.890

Table 5. Estimated quantiles for X1 derived from the GEV analysis.

T (Years) 2 5 10 15 25 50

X1 (-) 100.73 129.05 150.38 163.02 179.20 201.68

3. G2P Design Storm Estimation from the Rainfall Convectivity n-Index
3.1. G2P Design Storm: Analytical Definition

The G2P design storm was introduced by García-Bartual and Andrés-Doménech [19].
This design storm was specifically developed for urban hydrology applications. It com-
prises the definition of a theoretical storm using only two parameters within a compact
analytical definition based on a two-parameter gamma function. The rainfall intensity
during a storm is represented through a functional form given by Equation (4)

I (t)= i0 ϕ t e1−ϕt (4)

where t (min) is the time elapsed from the beginning of the rainfall event, i (t) (mm h−1)
is the rainfall intensity in each instant t, i0 (mmh−1) is a scale parameter representative
of the instantaneous peak intensity of the rainfall event, and ϕ (min−1) is the storm
shape parameter.

The resulting design storm can be discretized in intervals of any chosen time level
of aggregation. Additionally, the methodology provides an easy way to build in practice
a design storm for any location in a given geographical region, based on a previous
regionalization of the two parameters involved.

Among the several analytical derived properties presented in [19], we will make use
herein of Equation (5), providing the maximum rainfall intensity for a given duration ∆t.

I∆t =
i0
∆t

[(
tL +

1
ϕ

)
e1−ϕtL −

(
tU +

1
ϕ

)
e1−ϕtU

]
(5)

tL and tU being the lower and upper limits of the central interval in the design storm
(Equation (6)).

[tL; tU] =

[
∆t

eϕ∆t−1
; tL+∆t

]
(6)

Combining Equations (5) and (6), we obtain the following analytical expression for I∆t:

I∆t =
i0
∆t

F(ϕ, ∆t) (7)

where

F(ϕ, ∆t)= e1−ϕtL

[(
tL +

1
ϕ

)
−e−ϕ∆t

(
tU +

1
ϕ

)]
(8)

3.2. Relationship between the G2P Shape Parameter and the n-Index

The n-index (Equation (1)) can be particularized for the chosen time intervals ∆t1 = 10
min and ∆t2 = 60 min.

I10

I60
=

(
60
10

)n
= 6n (9)
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Applying Equation (7) for the specific time intervals ∆t1 = 10 min and ∆t2 = 60 min,
the theoretical ratio I10

I60
is given by Equation (10).

I10

I60
=

60
10

F(ϕ, 10)
F(ϕ, 60)

(10)

Combination of Equations (9) and (10) provide a practical relationship between the
n-index and the shape parameter ϕ of the G2P design storm (Equation (11)).

n = 1 + 0.558 ln
F(ϕ, 10)
F(ϕ, 60)

(11)

Such expression in Equation (11) is particularly useful, as it allows to link the G2P
ϕ-parameter with the convectivity degree classification used by [37] (Table 2). In a practical
context of applied urban hydrology, characteristic convectivity of rainfalls in a given
geographical location can be used to assess recommendable values for the G2P design
storm shape parameter, ϕ (min −1). Figure 6 shows the relationship between the n-index
and ϕ, according to Equation (11). The different categories shown in Table 2 are illustrated
in the graph. Higher convectivity is linked to upper values of the G2P shape parameter.
For coastal Mediterranean regions in Spain, strongly affected by an extreme hydrological
regimen, typical values of ϕ are in the range 0.08 to 0.31 for design purposes [19].
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3.3. Practical Estimation of the G2P Design Storm for Urban Drainage Applications

Definition of the G2P design storm implies the estimation of parameters ϕ (shape
parameter) and i0 (scale parameter) in Equation (4). This estimation can be achieved in
different ways, depending on the available rainfall information in a particular geographical
location, from the simpler case with only IDF curves information available to a case similar
to the one introduced herein (Valencia), where a detailed insight analysis of historical
storms extracted from high temporal resolution series is available.

For this case study, and according to the rainfall data described in Section 2.2, there
is enough information to define several possible design storms for a given return period.
For illustration purposes, a return period T = 25 years will be adopted, as being the one
required by the local administration for urban hydraulic infrastructure design. The steps to
build a family of G2P design storms are the following.

• Shape parameter, ϕ (min−1). It derives directly from the possible convectivity quan-
tified in through the n-index, using Equation (11). Figure 6 shows the distribution of
n-index values for the particular case study analysed herein. For each of the classes
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assumed, a representative central n-index value is adopted, i.e., n = 0.3, 0.5, 0.7 and
n = 0.9. Different probabilities of occurrence might be assigned through the empirical
histogram shown in Figure 4. In any case, Equation (11) provides a unique ϕ value for
each of the selected n-index values. Table 6 shows the G2P shape parameter assigned
to each of the representative n-index values.

• Scale parameter, i0 (mm h−1). It basically depends on the return period. For T = 25 years,
an X1 quantile is estimated (Table 5): X1 = 179.20. Then, solving Equations (2) and (9),
we obtain I10 = 157.27 mm h−1 and I60 = 91.88 mm h−1. Finally, i0 is obtained from
Equation (7), using either ∆t = 10 min or ∆t = 60 min. The resultant estimated values
for the scale parameters are: i0 = 160.90 mm h−1 (for n = 0.3); i0 = 175.33 mm h−1 (for
n = 0.5); i0 = 195.72 mm h−1 (for n = 0.7); i0 = 249.55 mm h−1 (for n = 0.9).

Table 6. Shape parameter, ϕ, assigned for each n-index value selected.

Storm Classification n ϕ (min−1)

Mainly advective 0.3 0.0745
Effective 0.5 0.1163

Mainly convective 0.7 0.1799
Strongly convective 0.9 0.3189

Figure 7 shows the four design storms defined in this way, all of them associated to a
return period of T = 25 years, for the presented case study in Valencia. As explained before,
each of these theoretical hyetographs are defined exclusively in terms of two parameters.
On the other hand, they can be conveniently discretized as needed using a given time level
of aggregation [19].
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For a given practical case where only IDF rainfall information is available, a shortcut
in the procedure is to be applied. Readings of I10 and I60 values from the ID curve (for
T = 25 years, to continue with the same example) are needed to obtain the n-index value
(Equation (9)). Then, ϕ (shape parameter) is obtained after Equation (11), while scale
parameter i0 is again calculated from Equation (7).

For the case of Valencia city in Spain, the ID curve for T = 25 years is given by the
local authorities [51] I10 = 133.3 (mm h−1), I60 = 70.1 (mm h−1) for the adopted return
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period. Thus, I10
I60

= 1.9017, and n= 0.359. From Equation (11), ϕ = 0.0856 min−1, and finally,
i0 = 137.3 mm h−1, from Equation (7).

Proceeding in such way, IDF curves might be easily translated into analytical forms of
design storms, setting the basis for regionalization of design storms for a given geographical
area. This strategy obviously requires at least availability of IDF curves information over
the studied area.

4. Conclusions

Many real-world applications dealing with urban drainage systems are performed
using as main inputs fine-resolution historical rainfall records or even synthetic series
generated through stochastic models. However, the old concept of design storms, as
well as the classical intensity–duration–frequency curves, still have a significant interest
for some engineering applications, especially in geographical points with a lack of high-
resolution rainfall data. In such case, technical recommendations can assess design criteria
on a regional basis. The G2P storm definition involves only two parameters, and thus, it is
particularly suitable for this kind of approaches. Some analytical features of the G2P design
storm are reviewed herein, and a useful relationship is proposed, allowing the estimation
of the shape of the storm from the n-index rainfall convectivity index.

A practical application for the case of Valencia (Spain) is presented, using as input
high-resolution time series of rainfall intensity. This kind of data allows us to perform a
deep analysis, yielding to the estimation of the design storm directly from the observed
internal features of the rainfall intensity process at the finest scale. On the other hand, a
direct, easy-to-apply procedure is introduced, deducing the design storm directly from
the intensity–duration–frequency curves. The proposed methodology makes use of the
analytical relationship with the n-index.

This versatility of the G2P design storm makes it particularly useful in the context of
practical urban hydrology applications at a regional scale. In fact, many studies estimating
the impacts of global climate change present their results on a regional basis, referring
results to expected spatial and temporal variations of given climatic or hydrological vari-
ables [52–57]. Such variables include precipitation, streamflow and temperature, among
others. Geostatistical analysis and other popular interpolation techniques are commonly
used to provide useful outputs for water resources applications. Such a concept could be
extended to rainfall hypotheses as an input for urban drainage applications, through the
G2P design storm.
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