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Abstract: The Pascal triangle is so simple and rich that it has always attracted the interest of
professional and amateur mathematicians. Their coefficients satisfy a myriad of properties. Inspired
by the work of Shekatkar et al., we study the divisibility patterns within the elements of the Pascal
triangle, through its decomposition into Pascal’s matrices, from the perspective of network science.
Applying Kolmogorov–Smirnov test, we determine that the degree distribution of the resulting
network follows a power-law distribution. We also study degrees, global and local clustering
coefficients, stretching graph, averaged path length and the mixing assortative.
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1. Introduction

Number theory has been one of the most studied fields of mathematics for centuries. In contrast,
network science has emerged as a discipline in the last twenty years. Nevertheless, networks have
attracted the interest of many researchers due to their multiple applications to different disciplines,
such as biology, telecommunications, social and environmental sciences, as well as systems medicine.

Besides, some networks have emerged from mathematical concepts, such as the divisibility
network. This was firstly studied by Zhou et al. in [1]. Here, nodes represent natural numbers and
two nodes n, m ∈ N are connected by a directed edge if n divides m, denoted by n|m. These authors
noticed that this network has a large clustering coefficient of approximately 0.34, which is insensitive to
the network size. Besides, they showed that: (i) The average distance between a pair of nodes is upper
bounded, in contrast to small-world networks, (ii) it posses a hierarchical architecture, and (iii) the
degree distribution follows a power-law.

A divisibility network can also be considered as a non-directed one if we connect a pair of nodes
a, b ∈ N if either a|b or b|a. Shekatkar et al. [2] studied it using the framework of a growing complex
network. Among other properties, they showed that it is scale-free but has a non-stationary degree
distribution, reporting a stretching similarity pattern, and showing how this pattern evolves with
the size of the network. Related to divisibility networks, Yan et al. [3] showed that every layer in
a multiplex congruence network is a sparse and heterogeneous subnetwork satisfying the scale-free
property, providing an insight into the simultaneous congruences problem through the graphical
solutions provided there.

Mathematics 2020, 8, 254; doi:10.3390/math8020254 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6834-3654
https://orcid.org/0000-0002-6290-5644
https://orcid.org/0000-0003-3681-7533
http://dx.doi.org/10.3390/math8020254
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/254?type=check_update&version=3


Mathematics 2020, 8, 254 2 of 10

All these results have inspired us to look for other ways of consider the divisibility network
through a different growing network procedure. Due to the abundance of beautiful and unpredictable
properties hidden in the Pascal Triangle (PT), we have studied the non-directed divisibility following
a similar approach as Shekatkar et al. did. For this purpose, we have considered squared Pascal
symmetric matrices as a covering of growing finite subsets of the PT. These matrices were firstly
analyzed by Brawer and Pirovino [4]. We will denote by Sn the Pascal square matrix of order n, that is
obtained when taking the square with two orthogonal sides given by the first n ones of both sides of
the PT. As an example, we have indicated in bold font the Pascal matrix S4 in (1). From S4 we construct
a divisibility network whose nodes are {1, 2, 3, 4, 6, 10, 20}.

Row 0 1
Row 1 1 1
Row 2 1 2 1
Row 3 1 3 3 1
Row 4 1 4 6 4 1
Row 5 1 5 10 10 5 1
Row 6 1 6 15 20 15 6 1

(1)

Pascal matrices present some beautiful properties. As an example, we mention the decomposition
of the Pascal matrices proposed by Edelman and Strang [5] who showed how to decompose any Pascal
matrix Sn of order n, into the product of two matrices Ln, which is a lower triangular matrix, and Un,
which is an upper triangular matrix, such that, Sn = LnUn, for every n ∈ N.

For any given number k ∈ N, there is some n0 ∈ N such that k ∈ Sn for all n ≥ n0.
With this in mind, we will study the divisibility networks provided by these matrices. On the one hand,
using these matrices, we can cover all the natural numbers through a growing family of subnetworks.
On the other hand, the numbers in these matrices are not consecutive, and when sequentially ordered,
we can find big gaps between some of them. This suggests us to study whether the scale-free degree
distribution holds and other network properties are still satisfied as to the ones shown in [2].

In particular, we have considered the evolution of several network measures along with the size of
Pascal matrices, such as the average degree 〈k〉, the histogram of the connectivity degree distribution;
the local and global clustering coefficients Ci and C∆, the assortativity index r; and the average path
length 〈d〉. We will recall the definition of these notions in the next section.

The degree distribution is studied in Section 2.1, where we show that it is scale-free. We also
study an example of how to compute the fitting parameters. In order to study the structure of this
network, we have studied how the clustering evolves with the size of the network. The local and
global clustering coefficients are presented in Sections 2.2 and 2.3. The tendency of nodes to connect to
nodes of similar degree is analyzed through the assortative coefficient in Section 2.4, and how nodes
are separated respect to the others through the average path length, see Section 2.5.

We refer the reader to the books of Barabási [6], Estrada [7], and Newman [8], as basic references
of Network Science.

2. Network Analysis

For any arbitrary n ∈ N, we consider the divisibility network Mn = (Vn, En), associated to the
Pascal matrix Sn of order n. This network has Vn as its set of nodes and En as its set of edges. We point
out that we exclude the number 1 of Vn since it will be linked with any other number, which does not
provide useful information for studying the evolution of the network properties of these matrices.

We denote card(Vn) by Nn, with Nn ∈ O(n2), and card(En) by Ln. Once fixed the set of nodes Vn

with the non-repeated elements of Sn, we recall that an arbitrary pair of elements a, b ∈ Vn are linked
by an edge if, and only if, a|b or b|a. Figures 1a,b are generated from matrices S6 and S7.
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(a) Divisibility network associated to S6 (b) Divisibility network associated to S7

Figure 1. Examples of divisibility networks obtained from Pascal matrices S6 and S7. From S6, we have
that the network M6 has 14 nodes and 29 edges, see Figure 1a, and from S7 we have that M7 has 20
nodes and 72 edges, see Figure 1b.

2.1. Degree Distribution

Given the sequence of nodes from a network Mn, with n ∈ N, we first analyze the evolution of
the degree distribution p(k) = nk/Nn, where nk is the number of coefficients with degree k in Mn,
along with n. First, we check if the scale-free property holds, which will result into the existence of
many nodes with only a few edges and a few nodes with a large number of edges, that are called hubs,
see [6,9].

In Figure 2, we illustrate the asymptotic growth of the cumulative and the averaged cumulative
degree distributions for the network M26 , that has a total of 2001 nodes and 51147 edges. The nodes
are indexed in increasing order respect to the term of S26 that they represent. We appreciate how both
measures tend to stabilize when adding the last nodes of each network.

(a) (b)

Figure 2. Cumulative degree and average degree distributions for the network M26 . Figure 2a shows
the cumulative degree as the coefficients of S26 grow in value. Figure 2b plots the evolution of the
average degree when the coefficients of S26 are progressively added. For n = 26 the average degree is
〈k〉n = 51.114.

Applying the Maximum Likelihood method [2,10], we confirm that the divisibility network of
Pascal matrices satisfies a scale-free law. This means that the network degree distribution follows,
at least asymptotically, a power-law of the form p(k) = C · k−γ for all k ≥ kmin. We recall that when
the power-law governs a process, this usually occurs from what we determinate the “minimum value”
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kmin, which is exactly the point where one can start to observe the fall of the heavy tail. In Figure 3a,
we represent again the degree distribution for M211 with logarithmic binning in the degree values.

(a) (b)

Figure 3. In Figure 3a, the sizes of the bins are equal to successive positive powers of 2, and the count
in each bin is normalized dividing by the bin width, like in ([2], Figure 2). In Figure 3b, we characterize
the uncertainty in the parameter fitting to a power law using 1000 bootstraps for M26 .

We characterize the power-law of the degree distribution of M26 through bootstrapping, using
1000 iterations of bootstrapping. The obtained fitting parameters were kmin = 3 and γ = 1.2256.
In Figure 2a, we plot the histogram of the values obtained for the γ parameter. For γ = 1.2256,
the Kolmogorov–Smirnov coefficient was 0.976, see Figure 3b, which shows the goodness of the
estimation. It is worth to mention that network with similar degree distributions could have a different
inner structure, see [11].

We also show the degree distributions of M25 , M26 , M27 and M28 in Figure 4. We observe a high
concentration of nodes (plateau) in the region of high values of the degree. This suggests a bias in the
linear model fitting due to the comparatively large number of nodes with low degrees respect to the
fewer number of nodes with large degrees [6,12].

In order to correct the non-uniform sampling seen with the linear binning, we show these degrees
distributions with logarithmic binning again, see Figure 5.

As n grows, the γ coefficient of the power-law fitting decreases. Increasing the number of nodes
of the network does not guarantee a better fit of the linear model. It is worth to mention that these
indicators do not fully reflect the network robustness due to the inherent bias of the particular sampling
process, see for instance [13].

We also have wondered how important is the role of the lowest numbers, which have the highest
degrees, in determining the scale-free nature of the network. In this line, we have removed the hubs
corresponding to nodes associated with numbers 2 to 6. These new degree distributions also follow
a power-law, as we can see in Figure 6.
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(a) M25 (b) M26

(c) M27 (d) M28

Figure 4. Representation of the degree distribution for M25 , M26 , M27 , and M28 .

(a) M25 (b) M26

(c) M27 (d) M28

Figure 5. Representation of the degree distribution for M25 , M26 , M27 , and M28 , with logarithmic bining.
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(a) (b)

Figure 6. Degree distributions of the Pascal network M211 with logarithmic bining. In Figure 6a we
have removed node 2 and in Figure 6b we have removed nodes 2 to 6.

2.2. Local Clustering Coefficient

Many scale-free networks also display a high degree of clustering. This is the result of a hierarchical
organization in which small groups of nodes organize into increasingly larger ones while preserving
the scale-free property [14].

Since all the natural numbers appear along the first row/column of Pascal matrices, and the rest
of their elements are composite numbers, there will be many connections from the first elements to
the second ones. Besides, as numbers in the inner columns/rows of the matrices grow pretty fast,
there will be fewer edges among them. Therefore, we have analyzed how clustered the network is.
The main two measures for analyzing the clustering are the local and the global clustering coefficients.
The global version provides an indicator of the clustering in the network, whereas the local one gives
an indicator of the connection between the adjacent nodes to a given one.

We recall that given Mn = (Vn, En) and a node vi ∈ Vn with degree ki, we denote by ṽi the set of
nodes adjacent to vi. Then, the local clustering coefficient Ci is the number of pairs of adjacent nodes
to vi that are connected between them by an edge, divided by the number of admissible neighbor pairs
of vi [8,15,16] that is:

Ci =
2
∣∣∣{ljk : vj, vk ∈ ṽi

}∣∣∣
ki(ki − 1)

, where ljk denotes an edge linking vj and vk. (2)

From Equation (2), we generate some stretching graphs to show how the clustering coefficient
evolves when adding the nodes one by one to the networks M26 , M27 and M28 , see Figure 7.

To see this evolution, we can also represent the difference between the local clustering of two
consecutive nodes, namely ∆C = Ci − Ci+1. This can be compared respect to ([2], Figure 5). Figure 8
shows a symmetrical pattern with respect to the value ∆C = 0, as the network grows.
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Figure 7. Local clustering coefficient in terms of the node index for different network sizes: (a) M26 ,
(b) M27 , (c) M28 . Nodes are indexed in increasing order of the number to which they are associated.
This graph shows a stretch of similarity due to the divisibility between the coefficients of the Pascal
matrix. The stretch is the same, regardless of the size of the network, as was shown in [2].

Figure 8. Behavior of the evolution of the difference between the clustering coefficient Ci and the
clustering coefficient Ci+1.

2.3. Global Clustering Coefficient

The global clustering coefficient is based on ordered triplets of connected nodes, that can be linked
by 2 (open triplet) or 3 edges (closed triplet). With this, a triangle graph has 3 closed triplets: That is,
a triangle ABC has 3 triplets associated to it: ABC, BCA, and CAB. With this, the global clustering
coefficient can be computed as

C∆ =
3 × number of triangles

number of connected triplets
(3)

As we can see in Figure 9 the global clustering coefficients decreases when the size of Mn grows,
approaching 0 for high values of n, which represents that the networks Mn become more and more
sparse when increasing its size n.
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Figure 9. Evolution of the global clustering, assortativity, and average path length for
M22 , M25 , M27 , M29 , and M211 .

2.4. Assortative Coefficient

The assortativity coefficient r the correlation coefficient of the degrees of adjacent nodes. It shows
the preference of nodes to connect with other nodes of comparable degree [8,17].

Given a network Gn = (Vn, En), it is defined as follows:

r =
∑ij(Aij − kik j/2Ln)kik j

∑ij(kiδij − kik j/2Ln)kik j
(4)

where ki is the degree of vi, Aij is the (i, j)th element of the adjacency matrix associated to the eventual
connection between vi and vj, Ln is the total of links in the network, and δij is the Kronecker delta.
However, determining the assortativity from (4) supposes a high computational cost, and therefore it
is suggested to approximate the assortativity by means of the next expression ([8], Section 10.7):

r =
S1Se − S2

S1S3 − S2
2

with Se = ∑
ij

Aijkik j = 2 ∑
l(i,j)

kik j, and Sm =
Nn

∑
i=1

km
i for m = 1, 2, 3, (5)

where we have introduced l(i,j) for referring to all unordered pairs of nodes connected by an edge and
Nn is the total number of nodes of a network Mn.

Assortativity coefficient presents values ranging from−1 to 1. If r = 1, we called the network to be
fully assortative. In case of r = 0 the network is said to be not assortative, while if r = −1, the network
is called disassortative [15,17,18]. The divisibility networks Mn approaches to be disassortative as long
as n increases, see Figure 9, which reflects that nodes that have a high degree tend to connect with
low-grade nodes.

2.5. Average Path Length

The network average path length, denoted by 〈d〉 is the averaged distance between all pairs of
nodes. For each pair, the distance between them is given by the shortest path connecting them. Clearly,
if two nodes belong to different connected components, the distance will be ∞. For computing the
average path length we have excluded pairs of nodes belonging to different connected components.
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〈d〉 = 1
N(N − 1) ∑

i,j=1,N
i 6=j

di,j. (6)

We can see that, if connected, the averaged path length is short. In Figure 9, we show it for several
networks. It increases with the size of the network, but even for M211 it is 2.05. This means that the
biggest connected component is closed to be a bipartite network.

3. Conclusions

PT and Pascal matrices present multiple properties that have fascinated mathematicians for ages.
Here, we have studied them from the perspective of Network Science. We have considered Pascal
matrices as a ground for constructing a growing divisibility network. Its structure has been studied,
following the approach of [2]. The interest of this choice lies in the fact that PT contains all the natural
numbers on each of their sides. The way in which we increasingly construct the divisibility network
by taking the Pascal matrices provides a different arrangement of the natural numbers, with gaps
between some of them. Nevertheless, the scale-free property for the degree distribution also holds.

Either in [2] or here, both growing networks present similar structures and characteristics to real
based networks. This can be noticed when looking at the degree distribution, the global and local
clustering coefficients, the assortativity, and the average path length. This work fits within our interest
in studying divisibility networks constructed from subsets of the natural numbers, and to see how
network measures can help us to describe them and how to find hidden structures and hierarchies [19].
In future works, we will study the divisibility networks provided by other arrangements of the natural
numbers, and the divisibility networks of other countable sets of numbers such as the rational numbers
in the unit interval [20].

The results concerning the local clustering coefficient are similar to the ones given by [2]. Besides,
we have seen that when the size of the network grows, the global clustering coefficient tends to 0,
and the divisibility networks approach more and more to being disassortative. Both results agree with
the average path length that, despite low, it increases as the network size grows and indicates that the
network is close to being bipartite.
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