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Incorporating Pavement Deterioration Uncertainty into Pavement 

Management Optimization 

 

Pavement management systems can be used to efficiently allocate limited 

maintenance budgets to better align with pavement deterioration. However, 

pavement deterioration is subject to uncertain factors that complicate the prediction 

of future pavement conditions accurately, entailing differences in the optimum 

maintenance strategy. This paper addresses this challenge by introducing a method 

to aid local engineers in optimizing the scheduling of maintenance activities under 

uncertain pavement deterioration conditions. Markov chains are used to simulate 

the variability of life-cycle performance. Moreover, a multi-objective optimization 

of an urban network is carried out to find the maintenance program that minimizes 

the mean life-cycle cost, maximizes the mean user benefit, and minimizes the 

standard deviation of life-cycle cost. This third objective enables the optimization 

routine to minimize the possibility of unintentionally increasing the life-cycle cost 

due to system variability.  This approach results in a reduction of the life-cycle cost 

variability by up to 62%, provides pavement strategies that benefit road users as a 

result of better pavement conditions, and reduces the risk of resorting to costly 

future maintenance activities. 
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uncertainty; performance 
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Introduction 

Considerable research has been published during the last three decades in the area of 

pavement management (Abaza et al. 2004). This research is motivated by both budget 

limitations and the demands of increasingly higher quality, comfort, and safety from road 

users (Meneses and Ferreira 2015). Pavement management systems (PMS) are used to 

efficiently allocate limited budgets (Zhang et al. 2012) and support the pavement 

management decision-making process (Fuentes et al. 2019). At a network-level, 

pavement management systems support the development of policies that optimize 

resources and ensure that maintenance strategies over each pavement segment will benefit 

the entire pavement network  (Wu and Flintsch 2009, Sathaye and Madanat 2011). 

To support good decision-making, a PMS requires an accurate and efficient 

pavement deterioration prediction model (Butt et al. 1987, Yang et al. 2005, Hassan et 

al. 2017). Abaza et al. (2004) also concluded that, in addition to the prediction model, an 

optimization process is needed as a basic component of a PMS to guarantee the best 

possible pavement conditions. Thus, prediction models forecast future pavement 

conditions, allowing for the design of optimal maintenance strategies during the service 

life, and thereby reducing life-cycle costs (Dong et al. 2015). Although both components 

must be integrated to devise a set of optimal maintenance strategies according to future 

conditions, efforts have been focused, separately, on the formulation of either a complete 

optimization tool (Zhang et al. 2012, Meneses and Ferreira 2015, Torres-Machi et al. 

2017, Santos et al. 2019) or on modeling deterioration through advanced probabilistic 

approaches (Hassan et al. 2017, Moreira et al. 2018, Park and Kim 2019). 

In other infrastructure applications, researchers have applied probabilistic 

performance approaches in multi-objective optimization (Morcous and Lounis 2005, Jha 
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and Abdullah 2006, Wu and Flintsch 2009). Morcous and Lounis (2005) presented a new 

methodology, combining Markov-chain models and heuristic algorithms, to obtain the 

percentages of bridge deck areas that require maintenance every year of an analysis 

period. Jha and Abdullah (2006) proposed a similar methodology for optimizing the 

maintenance of roadside structures. Regarding pavement maintenance, Wu and Flintsch 

(2009) obtained optimal global strategies for maintaining a pavement network, such as 

the annual budget allocation and the fraction of the network that must be maintained each 

year. In these studies, Markov chains are used to predict the fractions of the total network 

that are in each state of deterioration, translating the stochastic model into a deterministic 

result. However, Markov models can also be used to predict the probability of a road 

segment being in a certain condition at a particular time in the future (Ortiz-García et al. 

2006, Hassan et al. 2017). These models can be combined with Monte Carlo simulation 

to obtain a wide range of possible performance scenarios (Osorio-Lird et al. 2018), and 

therefore, the variability of deterioration. Although Markov models have been used to 

obtain global strategies (Morcous and Lounis 2005, Jha and Abdullah 2006, Wu and 

Flintsch 2009), and develop pavement performance models (Hassan et al. 2017, Osorio-

Lird et al. 2018), these have not been implemented together within a multi-objective 

optimization framework to schedule pavement network maintenance activities 

considering the probabilistic distribution of future performance. Such an approach allows 

pavement agencies to define maintenance activities with a high degree of likelihood and 

reduce unplanned costs. 

Building on this approach, this paper goes one step further by proposing a method 

that uses Markov chains and Monte Carlo simulation in the multi-objective optimization 

of the mean life-cycle cost, the mean benefit, and the standard deviation of the life-cycle 

cost. Using this approach, rather than obtaining global strategies, the optimization tool 
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can use the prediction of pavement conditions to specify the road segments that should 

be maintained each year, considering the different treatments that can be applied while 

taking into account their corresponding uncertainty. In addition, the inclusion of the 

standard deviation of the life-cycle cost as an optimization objective allows the 

optimization routine to consider the risk of a pavement section deteriorating at high rate 

and, consequently, the possibility that such a different deterioration rate can cause a 

change in strategy. Therefore, this paper proposes a method to optimize pavement 

maintenance at both project and network level under the uncertainty of future pavement 

deterioration. The method is tested in a case study of an urban network consisting of 15 

flexible road sections. 

Literature review 

Markov models 

Deterioration is characterized by its uncertain nature, as it can vary under variable traffic 

load and environmental conditions (de Melo e Silva et al. 2000, Yang et al. 2005, Park 

and Kim 2019). While deterministic models, such as regression techniques, evaluate the 

deterioration based on specific conditions (Butt et al. 1987, Meegoda and Gao 2014), 

probabilistic models consider the probability of occurrence of a range of possible 

outcomes due to the effect of varying factors affecting road performance (Ortiz-García et 

al. 2006). Within the subset of probabilistic models, many authors agree that Markov 

models can be effectively applied to pavement deterioration (Abaza et al. 2004, Yang et 

al. 2005, Wu and Flintsch 2009, Pérez-Acebo et al. 2018).  Beginning in 1980, when the 

Arizona Department of Transportation in the United States introduced Markov processes 

into their pavement management system (Kulkarni et al. 1980), numerous studies have 

used this method to predict future pavement conditions (de Melo e Silva et al. 2000, 
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Abaza et al. 2004, Wu and Flintsch 2009, Moreira et al. 2018). The Markov process 

assigns “transition probabilities” to each element in a set, which represent the probability 

of transitioning from one condition state to another during a given time period (Wu and 

Flintsch 2009). Using this technique, the future state is estimated solely on the current 

state of the element and the likelihood of transitioning from this current state. Osorio-

Lird et al. (2018) found that these models can be developed without a large historical 

database. In addition, Morcous and Lounis (2005) pointed out that these models are 

functional for large-sized networks, and can capture randomness that ultimately affects 

the network performance.  

Pavement optimization 

With regard to optimization, both economic and technical aspects (concerning the 

pavement performance) of the pavement system are the most commonly adopted 

objectives. For example, Wu and Flintsch (2009) proposed a multi-objective optimization 

considering both the maintenance cost and the network level of service as objective 

functions. This second technical objective was evaluated as the weighted average state 

condition of the pavement. Other authors have used the long-term effectiveness of 

maintenance strategies as a technical objective, as measured in terms of service life 

extension, the average condition improvement, or the area bounded by the post-treatment 

performance curve, the do-nothing performance curve, and upper or lower threshold 

(Dong and Huang 2012, Chen et al. 2017). Li  et al. (2007) sought to maximize the total 

effectiveness-to-cost ratio of the network, with effectiveness calculated as the area 

between the predicted pavement performance curve and the minimum acceptable level 

multiplied by length and traffic volume of the road segment. Dong et al (2015) also used 

cost-effectiveness to compare different maintenance actions at different years in the 

future.  
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While all approaches include agency costs as part of life-cycle cost optimization 

of pavement networks, user costs are not always included since they are difficult to 

evaluate precisely and impartially, while also tending to dominate the decision process 

when considered (Golabi and Pereira 2003, Wang et al. 2003, Wu and Flintsch 2009). 

While some authors included environmental and social aspects in the analysis (Zhang et 

al. 2010, Torres-Machi et al. 2017), others have suggested that a technical evaluation 

based on effectiveness indirectly considers social aspects, since larger effectiveness can 

be translated into increased societal benefit due to the improved condition of the 

pavement (Torres-Machi et al. 2015). 

Method 

The method proposed for the multi-objective optimization of a pavement network is 

presented in Figure 1. It is comprised of two steps: (1) pavement performance models and 

(2) life-cycle optimization. The first step develops a pavement performance models based 

on data that is collected from in-service pavement sections.  The Pavement Condition 

Index (ASTM, 2018) is calculated based on pavement distress observations of different 

pavement sections over an inspection period. Based on the changing distress observations 

over time, a Markov transition matrix is created, evaluating the probability of a pavement 

section transitioning from one state of distress or deterioration to another in one-year 

period. Finally, a set of performance curves are obtained through Monte Carlo simulation 

that varies future conditions that affect pavement deterioration. 

[Figure 1 near here] 

The second step is life-cycle optimization, which includes the definition of 

optimization objectives, the definition of a set of maintenance action options and their 

effects on pavement condition, the multi-objective optimization routine, and the 
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interpretation of results. Different objectives are adopted to evaluate each maintenance 

program and select the best solution. Recognizing that some maintenance actions are only 

viable for certain levels of pavement distress (i.e., minor maintenance has little effect on 

high deteriorated pavements), treatment options are presented depending on the condition 

of the pavement when the maintenance is applied. If the variability of deterioration covers 

more than one pavement state, different treatments are applied with a corresponding 

probability. The objectives and the treatments are considered in the multi-objective 

optimization to obtain the optimal maintenance program that minimizes or maximizes the 

objectives, while ensuring compliance with optimization constraints. Finally, the results 

of the multi-objective optimization at the project-level and network-level are interpreted 

in order to draw conclusions regarding the advantages or disadvantages of delaying 

maintenance, the likelihood of increasing the life-cycle cost due to variability of future 

deterioration, and the optimal maintenance strategy.  

Performance models 

Data collection 

Observations of pavement conditions over time are required to define and calibrate the 

pavement performance models. This study uses observations from the Long Term 

Pavement Performance (LTPP) program database (https://infopave.fhwa.dot.gov/). This 

database was developed by the Federal Highway Administration of the United States. 

Several studies (Khattak and Alrashidi 2013, Chen et al. 2017, Moreira et al. 2018) have 

used this dataset to analyze the performance of pavement over extended time periods. 

This database collects information on pavement sections located in the United States and 

Canada for use by engineers and researchers. The dataset contains information related to 

the structure, climate, traffic, and performance of pavement sections. In addition to data 

https://infopave.fhwa.dot.gov/
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on pavement performance, climate data is downloaded as part of this study, as several 

authors have shown that pavement deterioration depends on climate factors, particularly 

the temperature and the average annual precipitation (Perera and Kohn 2001, Hall et al. 

2003, Anastasopoulos and Mannering 2015). LTPP database information on pavement 

distress is used to calculate the Pavement Condition Index (PCI). The PCI is a surrogate 

measure of the structural integrity and surface operational condition of the pavement 

(ASTM 2018). This index is calculated as a function of the severity and extent of 19 types 

of pavement distresses, providing a value between 0 and 100. PCI can be divided into 

different rating scales (Table 1) according to the pavement state (PS) (ASTM 2018). This 

paper uses the first five PS ratings to classify the pavement condition. Thus, pavements 

with PCI lower than 40 are all considered as “very poor.”  

[Table 1 near here] 

Markov chain creation 

Markov chains are used as a modeling method for evaluating the deterioration of the 

pavement over time. Markov prediction modeling is a stochastic process that evaluates 

the expected probability of a pavement section to be in a certain state that will deteriorate 

to another state over a period of time based on available data or expert judgement (Yang 

et al. 2005). This method is characterized by predicting the future event from the present 

event, independent of past events. The Transition Probability Matrix (TPM) is comprised 

of the conditional probabilities of a pavement segment to transition from any one 

deterioration state to another (Pérez-Acebo et al. 2018). Thus, even though pavement 

deterioration is continuous over time, a finite number of fixed condition bands are defined 

and the condition of pavement segments are analyzed at specific points in time (Osorio-

Lird et al. 2018).  
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Equations 1 and 2 show the matrix, Pt,t+1, whose elements, pij
t,t+1, represent the 

probability to move from state i to j  from time t to t+1. The diagonal elements represent 

the probability that there is no transition of state from time t to t+1. The lower left 

elements below the principle diagonal are zero when no maintenance is applied, while 

the upper right elements represent the probability to deteriorate by one or more condition 

states within a time increment from time t to t+1. 

𝑃𝑡,𝑡+1 = [
𝑝11

𝑡,𝑡+1 ⋯ 𝑝1𝑛
𝑡,𝑡+1

⋮ ⋱ ⋮
𝑝𝑛1

𝑡,𝑡+1 ⋯ 𝑝𝑛𝑚
𝑡,𝑡+1

] ; 𝑝𝑖𝑗
𝑡,𝑡+1 ≥ 0 (𝑖, 𝑗 = 1,2, … , 𝑛); ∑ 𝑝𝑖𝑗

𝑡,𝑡+1𝑛
𝑗=1 = 1 (𝑖 = 1,2, … , 𝑛)    (1) 

𝑝𝑖𝑗
𝑡,𝑡+1 = 𝑃𝑟[𝑋(𝑡 + 1) = 𝑗||𝑋(𝑡) = 𝑖]        (2) 

The TPM is constructed based on available data or expert knowledge. Transition 

probability matrices created from available data need information of the evolution of 

pavement conditions over time. When intervals between inspections are not constant for 

all pavement sections, a continuous time Markov process can be adopted (Moreira et al. 

2018). In this case, authors such as Park and Kim (2019) and Surendrakumar et al. (2013) 

have used Poisson’s method to obtain the transition matrix for one year. The Poisson 

distribution (Equation 3) provides the probability that there will be j − i events over a 

time interval of length t. 

p𝑖𝑗(𝑡) =
(𝜆𝑡)𝑗−𝑖

(𝑗−𝑖)!
𝑒−𝜆𝑡           (3) 

where λ is obtained from the LTPP database as the number of elements per time interval 

that move from a state i to j over the time t. 

Monte Carlo simulation 

Once the TPM is defined, the predicted life-cycle performance is calculate using Monte 

Carlo simulation (Osorio-Lird et al. 2018). The Monte Carlo simulation builds a set of 
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performance curves that model the condition of the pavement as a function of time. Each 

curve begins with the pavement being in a “good” state and remaining in the same state 

or transitioning to another state at every timestep, depending on the randomness of the 

simulation. To build this Monte Carlo simulation, a Cumulative Probability Matrix 

(CPM) is obtained for each transition probability. Next, random numbers are generated 

and compared to the cumulative probability matrix to determine the evolution of the states 

of each pavement segment over the analysis period.  Then, the pavement condition (PC) 

is set at 5 at the initial time to show a decreasing deterioration model. In this way, the 

pavement condition has an inverse relationship to the pavement state, which means the 

following correspondences: PS1 (5≤PC<4), PS2 (4≤PC<3), PS3 (3≤PC<2), PS4 

(2≤PC<1) and PS5 (PC=1). The minimum pavement condition is PC = 1, as pavements 

in very poor condition cannot deteriorate to another state. Finally, to obtain the final 

performance curve, the waiting times in each condition range are linearized through the 

slope of the deterioration trend, which can be obtained as −1/(n + 1), where n is the 

number of time periods within a range (Osorio-Lird et al. 2018). This process is repeated 

10,000 times to obtain 10,000 possible performance curves.   

Life-cycle optimization 

Objectives definition 

While pavement performance models are used to predict future performance, different 

objectives or criteria are required to evaluate the consequences of each maintenance 

program and, therefore, select the optimal overall maintenance program. The objectives 

should be set to align with the final goals of the decision-maker. This paper aims to find 

a method to optimize pavement maintenance in a network while considering the 

uncertainty of future pavement deterioration rates. For this purpose, although 
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environmental and social aspects are important, they are not explicitly considered in 

accordance with the final goal. The life-cycle cost variability is considered and represents 

the deviation from the predicted cost due to the need to perform a different maintenance 

treatment as a result of unknown future conditions. Penadés-Plà et al. (2020) considered 

the standard deviation and the coefficient of variation of life-cycle cost to obtain robust 

solutions. 

This paper proposes the standard deviation of the life-cycle cost (LCC) as an 

objective to find robust solutions with low sensitivity to the variation of the deterioration 

rate. In addition to the standard deviation of LCC, the mean LCC and the mean user 

benefit (B) are also objectives. The LCC sums the cost of maintenance activities 

throughout the analysis period taking into account the time-value of money by time-

discounting all future cash flows (Kleiner 2002) using a discount rate. The mean LCC is 

calculated as the mean value of the network life-cycle cost for all deterioration curves. 

The user benefit is estimated as the area between the predicted pavement performance 

curve and the minimum acceptable level multiplied by traffic volume of the road segment. 

The user benefit objective represents the improvement in pavement condition that 

benefits the motoring public (Haider and Dwaikat 2011). While this study proposes three 

objectives for optimization, other objectives that are based on environmental and social 

impacts could also be considered following the same method. Thus, the objectives 

considered in this paper are the mean life-cycle cost (LCCm) (Equation 4), the mean 

benefit (Bm) (Equation 5), and the standard deviation of the life-cycle cost (LCCsd) 

(Equation 6). 

𝐿𝐶𝐶𝑚 = 𝑚𝑒𝑎𝑛 ∑ 𝐿𝐶𝐶𝑖𝑗
𝑁𝑠
𝑖=1          (4) 

𝐵𝑚 = 𝑚𝑒𝑎𝑛 ∑ 𝐵𝑖𝑗
𝑁𝑠
𝑖=1          (5) 
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𝐿𝐶𝐶𝑠𝑑 = 𝑠𝑡𝑑 ∑ 𝐿𝐶𝐶𝑖𝑗
𝑁𝑠
𝑖=1          (6) 

𝐿𝐶𝐶𝑖𝑗 = ∑
𝐶𝑜𝑠𝑡𝑘𝑖𝑗  

(1+𝜐)𝑡𝑘
∗𝑁𝑡

𝑘=1 𝐴𝑖          (7) 

𝐵𝑖𝑗 = ∫ (𝑃𝐶𝑖𝑗(𝑡)
𝑇

𝑡=0
− 𝑃𝐶𝑚𝑖𝑛) 𝑑𝑡 ∗ 𝐴𝐴𝐷𝑇𝑖       (8) 

where LCCiJ is the life-cycle cost of a pavement section i for a deterioration curve j; Ns is 

the number of sections; Nt is the number of maintenance actions incurred over the analysis 

period; ν is the discount rate; costkij is the cost per unit area of each maintenance action k 

of a pavement section i for a deterioration curve j; Ai is the area of a pavement section i; 

tk is the year of the action k; Bij is the benefit of a pavement section i for a deterioration 

curve j; PCmin is the minimum pavement condition considered and AADTi  is the average 

annual daily traffic of a pavement section i. A discount rate of 2% is assumed (Dong et 

al. 2013, García-Segura et al. 2017a). 

Maintenance action options 

Maintenance actions are performed to restore or rehabilitate the pavement condition. 

When maintenance is conducted, the pavement segment is assumed to return to PS1 

(“good condition”). The type of maintenance performed depends on the state of the 

pavement. This paper considers three maintenance action options: minor maintenance, 

major maintenance, and rehabilitation. These maintenance actions are based on a 

literature review (Wu and Flintsch 2009, Zhang et al. 2012, Meneses and Ferreira 2015). 

In further studies, these reference maintenance actions can be extended. Table 2 

summarizes the cost of each action (ITEC 2020). Minor maintenance can be applied for 

pavements with condition PS1 and is comprised of routine maintenance in the form of 

crack sealing, pothole patching and localized surface treatment. Major maintenance 

consists of an asphalt overlay (up to 10 cm) used on road segments with a condition of 

PS2. Finally, rehabilitation is comprised of surface milling and structural resurfacing that 
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restores the pavement condition to PS1 for pavements with a condition of PS3, PS4 or 

PS5.  The selected maintenance action depends on the condition of the pavement when 

maintenance is programmed. If the variability of deterioration covers different pavement 

states, different treatments are applied with a corresponding probability.  

[Table 2 near here] 

Multi-objective optimization 

The optimization problem is formulated as the minimization of LCCm (Equation 9), 

maximization of Bm (Equation 10), and minimization of LCCsd (Equation 11). One 

optimization constraint is imposed as a minimum condition threshold for the entire 

network over the analysis period. In this case, the median value of pavement condition 

must be greater than 1. This means that half of the pavement conditions must be greater 

than 1, considering all the deterioration possibilities and all years of the analysis period 

(Equation 12). The variables of the optimization problem are the time of the first 

maintenance application (t1) and the time interval between the following applications (Δt) 

of all the network sections. The aim of the multi-objective optimization is to find the 

values of the variables that maximize or minimize the objectives.  

min 𝐿𝐶𝐶𝑚(𝑥)           (9) 

max𝐵𝑚(𝑥)           (10) 

min 𝐿𝐶𝐶𝑠𝑑(𝑥)           (11) 

g(x)= median PCij (t) > 1          (12) 

Figure 2 shows a flowchart of the optimization process. The multi-objective 

optimization uses the Multiobjective Harmony Search algorithm, which was used in other 

multi-objective optimizations providing satisfactory results (García-Segura and Yepes 
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2016, García-Segura et al. 2017b, Sierra et al. 2018). Firstly, the algorithm parameters 

are assigned: the Harmony Memory Size (HMS) or number of solutions, the Harmony 

Memory Considering Rate (HMCR), and the Pitch Adjusting Rate (PAR). These two last 

parameters (HMCR and PAR) define the creation of new solutions. The process starts 

with a population of HMS feasible random solutions. To evaluate the feasibility and 

fitness of solutions, the simulation of the performance curves and the assessment of the 

objective functions and constraints are carried out. Feasible solutions are saved in the 

Harmony Memory (HM). The improvisation of new solutions is based on the combination 

of three approaches: random selection, memory consideration and pitch adjustment of 

memory. The first approach diversifies the search by exploring all possible values. The 

second approach selects values from the HM. Finally, the third approach selects from 

solutions stored in the HM and introduces slight variations. The probability of choosing 

the first approach is 1 minus HMCR. Otherwise, the new alternative is obtained from the 

HM with a probability of HMCR. In this case, the probability of choosing the second 

approach is 1 minus PAR, while the probability of choosing the third one is PAR.  

New feasible solutions are created following this strategy and, afterward, are 

compared to the solutions in memory based on Pareto criterion. Each iteration creates 

HMS new solutions and updates the Harmony Memory and Pareto solutions. As multi-

objective optimization is governed by several conflicting objective functions, Pareto 

criterion is used to select the non-dominated solutions, which are the solutions that cannot 

be improved without worsening the value of any one objective. This set represents the 

best maintenance programs, from which a specific solution can be selected by a decision 

maker. This study uses the hypervolume measure as a termination criterion (García-

Segura et al. 2017b, García-Segura et al. 2018). This indicator evaluates the convergence 

towards the ideal point, as well as the representative distribution of solutions along the 
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front. A complete flowchart of the algorithm can be found in García-Segura and Yepes 

(2016). 

[Figure 2 near here] 

Result interpretation 

Project or segment level  

The method proposed at project or segment level provides the optimal maintenance 

program for a pavement section according to the established objectives. This first step 

provides insight regarding the advantages or disadvantages of a delayed maintenance 

action. This information contributes to understanding the likelihood of increasing the life-

cycle cost due to the variability of future deterioration rates. In this case, a multi-objective 

optimization is carried out to minimize LCCm and maximize Bm. The maximum and 

minimum life-cycle cost is also given for each Pareto solution. Note that the pavement 

area and the average annual daily traffic are not considered at this level, as this analysis 

is performed at project level. Pareto solutions represent the best maintenance programs 

which have the highest user benefit and the lowest life-cycle cost. 

Network level  

At the network level, Pareto solutions are obtained for the LCCm, Bm and LCCsd 

objectives. Therefore, results show the best and robust maintenance schedules of the 

entire network that have low sensitivity to the variation of the deterioration rate, reduce 

the life-cycle cost, and increase user benefit.  This approach provides a set of optimal 

solutions so that pavement managers can select the most appropriate solution according 

to their preferences. For example, the closest solution to the ideal point can be selected 

as the most satisfactory solution (Wu and Flintsch 2009, Penadés-Plà et al. 2020). In 
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addition, conclusions about the relationship between the objectives can be drawn, 

highlighting the tradeoff between LCCm and LCCsd when a benefit improvement is 

sought.  

Case study 

This research proposes a case study of an urban network of 15 asphalt pavement sections 

located in a wet-no freeze (WNF) climatic region. The Latin hypercube sampling (LHS) 

technique is employed to design a case study that covers all pavement characteristics. 

This technique constructs a sample of variable values guaranteeing that all of the design 

variables are represented covering their respective ranges (Penadés-Plà et al. 2019). The 

variables that correspond to the road characteristics are initial pavement state, area (m2), 

and annual average daily traffic (AADT). This method determines 15 non-overlapping 

intervals for each variable and assigns one point in each region so that each point 

corresponds to a combination of different intervals of each design variable. Table 3 shows 

the characteristics of the 15 pavement sections used for the case study. The maximum 

value allowed for the three variables are an initial state of PS4, an area of 2,000 m2, and 

an AADT equivalent to 60,000 vehicles per day. The multi-objective optimization aims 

to determine the best maintenance program over an analysis period of 25 years. 

[Table 3 near here] 

Performance models 

Observation data of flexible pavements located in urban road sections were downloaded 

from the LTPP database. For this case study, sections located in WNF climatic regions 

were filtered. Consequently, information of pavement distresses was obtained for a total 

of 51 sections inspected over a period of between 2 and 18 years.  From the distress 

observations, the PCI was calculated as a measure of the condition of the pavement. The 
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Transition Probability Matrix (TPM) for one-year period was calculated from the data 

following Equations 1-3 (Equation 13). In this case, P11=0.87 corresponds to the 

probability of no transition (j=i) occurring in one year when the initial state i is 1, while 

P12=0.12 corresponds to the probability of a transition to state 2 (j-i=1) occurring in one 

year when the initial state i is 1.  

𝑇𝑃𝑀 =

[
 
 
 
 
0.87  0.12  0.01  0.00  0.00
0.00  0.83  0.16  0.01  0.00
0.00  0.00  0.68  0.26  0.06
0. 00  0.00  0.00  0.75  0.25
0. 00  0.00  0.00  0.00  1.00]

 
 
 
 

       (13) 

The Cumulative Probability Matrix (CPM) is calculated by adding up the 

probabilities of the row until the j position (Equation 14).  To model the evolution of the 

condition states during the analysis period, random numbers are compared to the CPM. 

The row is selected according to the current state. The column whose number is greater 

than the random number shows the state after the cycle. For example, if the current state 

is 1 and the random number is 0.5, the first row is selected and 0.5 is compared against 

0.87. As 0.87 is greater than 0.5, the future state will be 1. Whereas, if the current state is 

1 and the random number is 0.9, the future state will be 2. The process is repeated for all 

the years to provide the evolution of the states during the analysis period. Then, PC, which 

represents an inverse correspondence to PS, is evaluated and the waiting times in each 

condition range are linearized. Figure 3 shows that after 5 years the mean pavement 

condition is 3.8, while the 5th percentile is 2 and the 95th percentile is 4.8.  

𝐶𝑃𝑀 =

[
 
 
 
 
0.87  0.99  1.00  1.00  1.00
0.00  0.83  0.99  1.00  1.00
0.00  0.00  0.68  0.94  1.00
0. 00  0.00  0.00  0.75  1.00
0. 00  0.00  0.00  0.00  1.00]

 
 
 
 

       (14) 

[Figure 3 near here] 
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Life-cycle optimization 

A calibration process of the optimization routine suggested the algorithm parameters: 

HMS = 200, HMCR = 0.8, PAR = 0.4. The optimization process finished after ten 

consecutive HM improvisations with a difference in hypervolume value of less than 

0.0005. In this case, 15 iterations and 760 iterations are performed for the project and 

network level, respectively.  

Project or segment level 

The set of Pareto solutions are shown in Figure 4, which represent the best maintenance 

programs that exhibit the highest user benefit and the lowest life-cycle cost. Note that 

dash lines divide different values of the time interval between applications. As explained 

previously, the pavement area and the average annual daily traffic are not considered due 

to the fact that this analysis is performed at the project level. The five points with the 

greatest mean life-cycle cost (around 150€/m2) have a Δt of 1 year, while t1 varies between 

1 year and 5 years. These solutions have higher mean life-cycle cost because a 

maintenance action is performed every year, but they have no possibility of needing a 

costly treatment. The following three solutions have a Δt of 2 years. These solutions have 

a lower mean life-cycle cost (around 95€/m2), but they have a higher likelihood of 

ultimately having a greater maximum life-cycle cost (around 210€/m2). Although the 

variability of each maintenance action after two years is not high, the sum of the actions 

over the 25 years leads to a greater maximum life-cycle cost.  

[Figure 4 near here] 

The solutions with the lowest life-cycle cost are those with a Δt of 17 years, with 

a benefit of approximately 65. These solutions have an 11% likelihood of needing minor 

maintenance, a 16% likelihood of needing major maintenance, and a 73% likelihood of 
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needing rehabilitation.  Note that a strategy of no maintenance during the 25 years has a 

benefit of 43.7, although this solution is not feasible as it violates the optimization 

constraint. Thus, when maintenance is delayed, LCCm and Bm are reduced. Although the 

maintenance actions are more expensive, the sum of the maintenance costs in the analysis 

period is lower. Regarding Bm, a delayed maintenance application deteriorates the 

pavement and results in a negative impact on the user benefit. The maximum life-cycle 

cost increases initially as the risk of needing a more expensive maintenance action 

increases, but then decreases because the number of interventions in the analysis period 

is lower. 

Network level 

The network case study proposed consists of an urban network of 15 asphalt pavement 

sections that covers characteristics of initial condition state, area and AADT. Figure 5 

presents the two-dimensional projections of the non-dominated Pareto frontiers for the 

three-objective optimization problem. Figure 6 shows the three-dimensional projection 

of the non-dominated Pareto surface for the three-objective optimization problem. Figure 

5a shows an asymptotic relationship between LCCm and Bm, such that a large increase of 

Bm is realized for small marginal increases of LCCm at the lowest values of LCCm. At 

increasingly larger LCCm values, a smaller marginal benefit increment is observed with 

an increase in LCCm. For instance, increasing the mean life-cycle cost from 1·106 € to 

1.5·106€, results in a user benefit increase of 22%.  However, from this point, a larger 

increase of the mean life-cycle cost from 1.5·106 € to 3·106 € is needed to increase the 

user benefit by only 11%.  In addition, lower variability was observed as both LCCm and 

Bm increase. These solutions point the decision-maker toward more frequent maintenance 

schedules. When maintenance is applied at short intervals, the mean life-cycle cost is 
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higher, but the mean benefit is also higher and the variability of life-cycle cost is lower. 

This outcome is in line with the results at the project level.  

[Figure 5 near here] 

The closest solution to the ideal point is marked in Figures 5a and 5b. In this 

solution, LCCm is 1.54·106 €, Bm is 3.26·107, and LCCsd is 2.73·105 €.  This satisfactory 

solution is located around the aforementioned point, from which a benefit improvement 

is more expensive. In addition, this solution has a reduced standard deviation of the life-

cycle cost. Analyzing its maintenance schedule, it is worth mentioning that pavement 

sections with smaller area and higher AADT are prioritized. Particularly, this solution 

presents the time between the applications (Δt) shown in Table 4. Pavement sections with 

an area smaller than 660 m2 are maintained every year, as they have smaller LCCm and 

LCCsd. If they have an area between 660 m2 and 1,320 m2, they are also maintained every 

year, except for low volume roads, which are maintained every 15-17 years as there are 

a small number of users that can benefit of the good condition of the pavement. Finally, 

high volume roads with area greater than 1,320 m2 are maintained every 5 years, while 

low volume roads are maintained every 15-17 years. Regarding medium volume cases, 

both results are obtained, suggesting a Δt of 15-17 years in very large sections. This last 

case corresponds to large sections with medium volume, whose maintenance is expensive 

and confers little benefit.  

[Table 4 near here] 

Note that this case study covers all possible cases, although some are less likely. 

The first maintenance application depends on the initial condition state. If t1 of Pareto 

solutions is analyzed, roads with an initial condition state of PS1 undergo a first 

maintenance action before 17 years, while roads with an initial condition state of PS2, 
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PS3 or PS4, undergo a first maintenance action before 11, 5 and 3 years, respectively. 

This limitation is conditioned by the constraint imposed in the multi-objective 

optimization.  

Regarding maintenance actions, these are applied with a corresponding 

probability depending on the time interval. For instance, solutions which have a time 

interval of 5 years have a 58% likelihood of needing minor maintenance, a 26% likelihood 

of needing major maintenance, and a 16% likelihood of needing rehabilitation. 

Alternatively, if a time interval of 15 years is chosen, minor maintenance is needed with 

a likelihood of 14%, major maintenance with a likelihood of 21%, and rehabilitation with 

a likelihood of 65%. Thus, when the standard deviation of the life-cycle cost is optimized, 

the preferred annual maintenance schedules reduce the variability of the deterioration and 

the possibility of requiring costly future maintenance. These solutions also present good 

user benefit results.  However, these solutions also tend to have higher mean life-cycle 

cost due to the high number of maintenance events during the analysis period.  

An alternative solution to reduce the standard deviation of the life-cycle cost is 

carrying out maintenance with a Δt of 15-17 years. In this case, rehabilitation would be 

needed with a high likelihood. Each maintenance action is more expensive, but the sum 

of the maintenance costs in the analysis period is lower. This also results in the user 

benefit objective being reduced significantly. Therefore, the proposed satisfactory 

solution combines different time intervals to obtain balanced results for the three 

objective functions. 

Validation 

To verify the benefits of this method, a bi-objective optimization was carried out without 

considering the variability of future pavement deterioration and the results of both 
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approaches were compared. The mean value of the pavement condition was considered 

for the pavement deterioration and the bi-objective optimization was performed for the 

objectives LCCm and Bm. Although the results provided a 2D Pareto front, the LCCsd was 

calculated for the set of solutions as in the previous sections. These solutions are 

represented on the multi-objective view of the three-objective optimization (Figure 6) to 

compare these findings against the variability of the solution when pavement 

deterioration is ignored. Solutions resulting from the bi-objective optimization have 

higher variability in the life-cycle cost.  It is worth noting that for a value of LCCm around 

2.3·106, the bi-objective optimization obtains a solution (LCCm, Bm, LCCsd) of (2.3·106, 

3.5·107, 10.9·105), while the three-objective optimization obtains a solution of (2.3·106, 

3.5·107, 4.1·105). Therefore, the method proposed in this paper achieves a reduction of 

the life-cycle cost variability of 62%. This reduction indicates that the LCCsd objective is 

important to consider when searching for robust solutions that present low variability of 

life-cycle cost. 

[Figure 6 near here] 

Conclusions 

This paper proposes a method to optimize pavement maintenance at both project and 

network levels while considering the uncertainty of future pavement deterioration rates. 

Pavement performance models are obtained using the Markov chain method and Monte 

Carlo simulations. The variability of the deterioration process is explicitly considered in 

the optimal design of pavement maintenance programs. A multi-objective optimization 

minimizes the mean life-cycle cost, maximizes the mean benefit, and minimizes the 

standard deviation of the life-cycle cost. The optimization routine aims to find low cost 

and robust pavement maintenance programs that have low sensitivity to the variation of 
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the pavement deterioration rate and that benefit the motoring public by ensuring good 

pavement conditions over the analysis period.  

Results of the multi-objective optimization at the project-level reveal that delayed 

maintenance actions reduce the LCCm and Bm. The maximum life-cycle cost increases 

initially as the likelihood of needing a more expensive maintenance action increases. With 

additional delay, the maximum life-cycle cost then decreases because the number of 

interventions in the analysis period is lower. As far as network is concerned, the results 

reflect an asymptotic relationship between LCCm and Bm, highlighting a point beyond 

which a benefit improvement is marginally more expensive. The closest solution to the 

ideal point is located at this point. The optimal strategy corresponds to frequent 

maintenance actions being taken on high volume pavement segments, leading to a higher 

user benefit, combined with a reduction of life-cycle cost by delaying maintenance in 

road sections with greater area and lower AADT. To validate the benefits of this method, 

a bi-objective optimization was carried out without considering the variability of 

pavement deterioration. Findings indicate that the proposed method achieves a reduction 

of life-cycle cost variability by up to 62%, reducing the likelihood of requiring a costly 

future maintenance action. 

Recommendations 

Pavement agencies, departments of transportation, and road directorates that manage 

large-scale pavement networks can scale this proposed method to consider a large number 

of pavement sections. Further, pavement managers can develop their own management 

strategies based on a case study that covers all network characteristics and use it in support 

of efficient decision-making and the identification of robust maintenance schedules. 

Some agencies may also include environmental and social aspects affected by the 

pavement maintenance strategy. For instance, life-cycle CO2-equivalent emissions can be 
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considered using Equation 7. In this case, the emissions per unit area of each maintenance 

action would be considered instead of the cost per unit area and the discount rate would 

be altered.  

Limitations and further research 

The proposed method was tested on a case study of an urban network consisting of 15 

flexible road sections located in a wet-no freeze climatic region. Therefore, the results are 

limited to this case study and further research is needed to apply the method to other case 

studies with varying climate zones, types of pavement, and traffic conditions. Regarding 

the deterioration models, this study does not consider different Markov transition 

matrices for roads with different traffic conditions. Such an improvement would allow 

for a more accurate assessment of the pavement deterioration and an improved 

prioritization of road sections. Finally, the identification and consideration of a larger 

dataset of historical pavement distress observations should be undertaken, which may 

result in the construction of different Markov chains that can be used to develop more 

accurate post-treatment pavement performance models.  
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Table 1. Pavement states and descriptions (ASTM 2018) 

Pavement state Verbal description PCI 

PS1 Good [100; 85) 

PS2 Satisfactory [85; 70) 

PS3 Fair [70; 55) 

PS4 Poor [55; 40) 

PS5 Very Poor [40; 25) 

PS6 Serious [25; 10) 

PS7 Failed [10; 0] 

 

 

  



 

32 

 

Table 2. Cost of pavement maintenance actions 

Type of treatment Cost (€/m2) 

Minor maintenance  8.18  

Major maintenance  22.30 

Rehabilitation 62.44 
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Table 3. Characteristics of the case study pavement network 

  Initial pavement state Area (m2) AADT (vehicles per day) 

Road 1 PS1 902.4 43337.0 

Road 2 PS3 1500.1 3295.6 

Road 3 PS1 1631.8 20417.4 

Road 4 PS4 446.4 27610.6 

Road 5 PS1 1495.7 31722.0 

Road 6 PS4 870.2 545.3 

Road 7 PS3 1441.5 5218.6 

Road 8 PS1 1978.7 32862.6 

Road 9 PS1 1812.3 41985.9 

Road 10 PS2 1583.6 8187.8 

Road 11 PS2 635.0 53024.3 

Road 12 PS3 506.1 45699.1 

Road 13 PS1 1145.7 39487.4 

Road 14 PS4 605.2 17228.0 

Road 15 PS2 1755.9 3864.8 

 

 

 

  



 

34 

 

Table 4. Time between maintenance actions for the most satisfactory solution 

 

AADT 

Low volume 

<19800 vpd 

Medium volume 

[19800; 39600] vpd 

High volume 

>39600 vpd 

Area 

Small 

<660 m2 

1 1 1 

Medium-sized 

[660; 1,320] m2 

15-17 1 1 

Big 

>1,320 m2 

15-17 15-17 / 5 5 
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Figure 1. Schematic representation of the two-step pavement management system 

optimization; (top) Step 1 – performance models and (bottom) Step 2 – Life-cycle 

optimization 
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Figure 2. Flowchart of the optimization process 
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Figure 3. Expected pavement condition as a function of pavement age 
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Figure 4. Pareto set of pavement management solutions at the project or segment level 
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(a) LCCm versus Bm 

(b) LCCm versus LCCsd 

Figure 5. Network level Pareto front for (a) LCCm versus Bm and (b) LCCm versus LCCsd 
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Figure 6. Multi-objective Pareto front characterizing LCCm versus Bm versus LCCsd 
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Figure captions 

Figure 1. Schematic representation of the two-step pavement management system 

optimization; (top) Step 1 – performance models and (bottom) Step 2 – Life-cycle 

optimization 

Figure 2. Flowchart of the optimization process 

Figure 3. Expected pavement condition as a function of pavement age 

Figure 4. Pareto set of pavement management solutions at the project or segment level 

Figure 5. Network level Pareto front for (a) LCCm versus Bm and (b) LCCm versus 

LCCsd 

Figure 6. Multi-objective Pareto front characterizing LCCm versus Bm versus LCCsd 

 

 

 


