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ABSTRACT 

The spatial pattern of urban growth determines how the physical, socio-economic and 

environmental characteristics of urban areas change over the time. Monitoring urban 

areas for the early identification of spatial patterns facilitates assuring their proper 

development and counteracting unsustainable trends. In this paper, we assess the use of 

spatio-temporal metrics from land-use/land-cover maps to identify growth patterns by 

means of GIS techniques. We applied land use change models to simulate different 

scenarios of urban growth spatial patterns (i.e. expansion, compact, dispersed, road-

based and leapfrog) on various baseline urban forms (i.e. monocentric, polycentric, 

sprawl, and linear). Then, we computed the spatio-temporal metrics for the simulated 

scenarios, selected the most relevant by applying discriminant analysis and classified 

the growth patterns using clustering methods. Two metrics, Weighted mean expansion 

and Weighted Euclidean distance, which account for the densification, compactness and 

concentration of urban growth, were the most significant for classifying the five growth 

patterns, despite the influence of the baseline urban form. These metrics have the 

potential to identify growth patterns for monitoring and evaluating the management of 

developing urban areas.  
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Introduction 1 

The sustainability of developing and developed urban areas is an ongoing concern worldwide. 2 

The United Nations defined seventeen goals for ensuring a sustainable future for people and 3 

the planet, and the goal eleven focuses on the environmental, social and economic 4 

sustainability of cities. The knowledge of how urban areas are spatially configured and their 5 

variations is essential to successfully monitor the urbanization impacts on the environment 6 

and their socio-economic effects (Schneider and Woodcock 2008, Siedentop and Fina 2010, 7 

Reis et al. 2016, Salvati et al. 2016). In this regard, remote sensing and geographic 8 

information system (GIS) techniques are valuable assets to conduct such studies (Liu et al. 9 

2010, Ju et al. 2016, Zhao et al. 2016, Abrantes et al. 2019). Remote sensing provides an 10 

important source of geographic information for urban studies, while GIS allows for its spatial 11 

analysis. Their combined use has proven to be efficient in analysing urban form (Song et al. 12 

2017), monitoring urban dynamics (Wu et al. 2016), and modelling land use change (Liu et 13 

al. 2014), among other urban applications. 14 

On the one hand, scholars have relied on land use change (LUC) models to propose 15 

and validate methodologies that aim to reverse unsustainable trends in cities (Musa et al. 16 

2017). These LUC statistical models are spatial and location-based computational approaches 17 

that reproduce the dynamics of geographical features, considering a wide range of factors as 18 

change drivers (Tong and Feng 2019). Thus, Van de Voorde et al. (2016) and Ustaoglu et al. 19 

(2018) simulated alternative scenarios under different planning strategies to foresee their 20 

implications and serve as a tool for planning cities accordingly; Dorning et al. (2015) and Sun 21 

et al. (2018) simulated different development scenarios under various planning strategies to 22 

assess the effectiveness of regional natural resources conservation plans and to explore 23 



optimal strategies for improving ecosystem services; and Hoymann and Geotzke (2016) 24 

evaluated the effect of policy measures to mitigate climate change and developed new 25 

strategies based on simulated urban development scenarios. The use of simulation strategies is 26 

mainly due to the scarce availability of long time-series and high-resolution land use 27 

databases, which are the basis to monitor urban development and to evaluate growth patterns. 28 

LUC models may provide alternative data sources, creating synthetic and diverse urban 29 

scenarios based on different priorities and policies (Van de Voorde et al. 2016; Liang et al. 30 

2018). 31 

The form of the urban environment affects the population in many aspects. The 32 

influence it has in transport systems, commuting choices (Song et al. 2017), energy 33 

consumption (Chen et al. 2011), air quality, and health (Hankey and Marshall 2017), among 34 

many others, has been demonstrated so far. Moreover, not only there is a wide diversity of 35 

urban shapes and sizes, but also their spatial development is manifold, conditioned by the 36 

history of the territorial development, shape, topography, geography, economic and social 37 

development, land use policies, etc. (Schneider and Woodcock 2008, European Union 2016). 38 

Different scholars have evidenced relationships between urban form and urban development 39 

with their sustainability, as collected in Williams et al. (2000). 40 

There is a growing interest in developing methods and indicators able to detect growth 41 

trends, which will be a source of information for planners and policy makers. Urban growth 42 

has been characterized using a diversity of GIS methods. Reis et al. (2016) compiled from the 43 

literature an extensive list of spatial metrics used for characterizing and quantifying urban 44 

growth, outlying that some of them may vary with the growth context and spatial scales. Tian 45 

et al. (2011) described the spatial growth patterns of five urban areas by means of urban 46 

growth rate, size distribution and spatial metrics, thereby using these values to describe 47 

growth patterns as a diffusion or coalescence growth process. Other studies used a 48 



straightforward index to quantify the adjacencies between urban and newly urban patches, 49 

classifying them into infill, edge-expansion and outlying growth types (Liu et al. 2010, Shi et 50 

al. 2012), which may serve as a basis for more complex pattern classification. Jiao (2015) 51 

proposed different indicators to characterize urban growth in nearly thirty Chinese cities, 52 

measuring the urban land density decline, the urban compactness, expansion rate and degree 53 

of sprawl. Two recent studies proposed new methods for characterizing urban expansion. The 54 

first combines spatial expansion dynamics with urban forms (Shi et al. 2017). The second 55 

study combines spatio-temporal metrics with the imbalance between population and urban 56 

growth (Sapena and Ruiz 2019). Spatial and spatio-temporal metrics were used in nearly all 57 

of the cited studies. Even if it is common to find redundant information when working with 58 

large set of metrics (Chen et al. 2011, Sapena and Ruiz, 2019), they seem to be successful in 59 

quantifying the growth and determining its type. However, these studies focused on various 60 

degrees of compact-sprawl growth (e.g.: Tian et al. (2011) and Jiao (2015) classified urban 61 

development processes as compact, sprawl or intermediate phase), instead of a more detailed 62 

classification of growth types. Since the consequences of the urban growth differ according to 63 

their pathways (Williams et al. 2000, Bhatta 2010, European Union 2016), the identification 64 

of different types of growth patterns will allow for more complex analyses of growth trends 65 

and the assessment of their consequences, which will eventually improve the understanding of 66 

their interrelationships. 67 

Monitoring and characterizing urban growth spatial patterns will contribute to a better 68 

understanding of past and present trends, allowing planners to make informed and better 69 

decisions for the future in order to minimize social, economic and environmental impacts of 70 

urban development. The purpose of this study is to identify an efficient subset of spatio-71 

temporal metrics for the identification of different urban growth spatial patterns, to evaluate 72 



them in a diversity of baseline urban forms, and to assess the influence of the initial urban 73 

form in the identification of such patterns.  74 

Materials and methods 75 

Figure 1 summarizes the overall methodology followed. First, we describe the urban forms 76 

and growth spatial patterns used in this study. Then, we select four urban areas that represent 77 

these urban forms (Figure 1.1), and apply a land use change model for simulating five urban 78 

growth patterns from the baseline forms (Figure 1.2 and 1.3), this provides a wider range of 79 

possible scenarios to evaluate the metrics. Afterwards, the extraction and selection of spatio-80 

temporal metrics for every simulated scenario are described (Figure 1.4 and 1.5A). Following, 81 

growth patterns are classified using the spatio-temporal metrics (Figure 1.5B), and the results 82 

are interpreted and described, including the influence of the initial urban forms in identifying 83 

growth classes (Figure 1.5C). 84 



 

Figure 1. Workflow of the methodology: (1) Definition and selection of four initial urban 85 

areas having four different urban forms. (2) Application of the land use change (LUC) model 86 

for the simulation of (3) five urban growth spatial patterns. (4) Computation of spatio-87 

temporal metrics for the twenty pairs of baseline-growth simulated scenarios. (5A) Selection 88 

of meaningful subset of metrics, (5B) classification of growth patterns using the metrics, and 89 

(5C) interpretation of results. 90 

Definition of urban forms and growth spatial patterns 91 

Urban 97form refers to the spatial configuration of the physical built environment and human 92 

activities (Georg et al. 2016, Abrantes et al. 2019). In this paper, we consider the urban form 93 

as the static physical configuration of the urban cover. We define four theoretical spatial types 94 

of urban forms extracted from the literature (ESPON 2005, Marshall 2005, Taubenböck et al. 95 

2014, Georg et al. 2016, Nabielek et al. 2016, Salvati et al. 2016, Wei and Ewin 2018): 96 



Monocentric, polycentric, sprawl, and linear (Table 1). The urban growth spatial pattern is a 97 

dynamic process of urban development that, in some cases, modifies the initial urban form. 98 

The spatial patterns of urban growth are manifold and have been described using different 99 

nomenclature. We summarized the different urban growth patterns defined in the literature 100 

(Camagni et al. 2002, Chin 2002, Wilson et al. 2003, Marshall 2005, Schneider and 101 

Woodcock 2008, Terando et al. 2014, Georg et al. 2016, Salvati et al. 2016, Wu et al. 2016) 102 

in five types: compact, dispersed, expansion, leapfrog and road-based (Table 1). It must be 103 

considered that both, form and growth pattern defined, are pure theoretical types and they are 104 

often combined in real urban areas. 105 

Table 1. Name and description of urban forms and growth spatial patterns that are combined 106 

by means of a LUC model.  107 

 Name Description References 

U
rb

a
n

 f
o

rm
 

Monocentric A highly-dense urban settlement spreads over a wide area, 

density decreases as the distance to the city centre increases. 

Consists of a dominant city and several dependant cities or 

towns. 

(ESPON 2005, Marshall 2005, 

Georg et al. 2016, Nabielek et al. 

2016, Salvati et al. 2016) 

Polycentric It consists of a single functional unit formed by compact 

subcentres that are well connected, close to each other and 

consolidated around the main city. 

(Marshall 2005, Georg et al. 2016, 

Nabielek et al. 2016, Salvati et al. 

2016) 

Sprawl It is formed by a few relatively small settlements scattered and 

separated by long distances with low urban densities. Usually 

characterized by monofunctional land uses. 

(ESPON 2005, Marshall 2005, 

Nabielek et al. 2016, Georg et al. 

2016, Wei and Ewin 2018) 

Linear An elongated urban agglomeration. Usually follows the shape of 

physical restrictions such as transport routes, rivers, coastlines 

or valleys. It may not have an obvious centre. 

(Marshall 2005, Georg et al. 2016, 

Nabielek et al. 2016) 
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Compact This pattern fosters a more compact urban form by processes 

such as densification, coalescence, intensification or infilling 

among disconnected urban patches. Also called land recycling 

or re-used land, such as barren land development. 

(Camagni et al. 2002, Wilson et 

al. 2003, Marshall 2005, 

Schneider and Woodcock 2008) 

Dispersed When low-density urban development occurs out of the city 

boundaries in a scattered form, it is a process of decentralization 

and suburbanization; some authors relate it to unplanned or 

spontaneous urban growth. It is also known isolated, outlying, 

discontinuous, diffuse, sprawl, fragmented or scattered growth, 

among other terms. 

(Camagni et al. 2002, Wilson et 

al. 2003, Marshall 2005, 

Schneider and Woodcock 2008, 

Terando et al. 2014, Salvati et al. 

2016) 

Expansion It increases the built-up area from the boundaries of the 

urbanized area, fostering a greater extension of the urban layout. 

Some authors named it edge-expansion, edge or fringe growth. 

(Camagni et al. 2002, Wilson et 

al. 2003, Marshall 2005, Terando 

et al. 2014, Wu et al. 2016) 

Leapfrog When secondary new centres emerge at different distances from 

the inner city with vacant land interspersed. It can be found as 

cluster or new satellite agglomerations. It is usually large, 

(Camagni et al. 2002, Chin 2002, 

Wilson et al. 2003,  Marshall 

2005, Salvati et al. 2016) 



Data 108 

Four functional urban areas were selected as working data, comprising the cities and their 109 

commuting zones. The selection criteria were: (i) diversity: they represented different urban 110 

forms; (ii) extent: they had similar areas; and (iii) availability: they were available in the 111 

Urban Atlas database (EEA 2016). After a thorough visual review of the database and based 112 

on analyses of external studies, as referenced below, we selected the following urban areas 113 

(Figure 2): (a) Dijon, France, as an example of monocentric agglomeration, according to 114 

Baumont et al. (2014). (b) Manchester, United Kingdom, as a conglomeration formed by the 115 

coalition of several cities originally separated (polycentric), fused later to form a continuous 116 

urban area (ESPON, 2005). (c) The region of Passau, Germany, identified as exurban sprawl 117 

growing in non-protected semi-rural areas in a discontinuous way (Siedentop and Fina, 2010). 118 

(d) Innsbruck, Austria, shows a linear pattern following the topography of the main valleys 119 

(Krajiver and Borsdorf, 2000). These areas were selected not as study cases, but as a 120 

representation of the four different spatial urban forms defined, providing the baseline for the 121 

analysis of potential development scenarios. 122 

 

Figure 2. The four urban areas representing different baseline urban forms. Source: Urban 123 

Atlas 2012 (EEA, 2016), with an aggregated legend. 124 

compact and dense development. 

Road-based The urban development takes place along linear structures such 

as highway or railway axes, also called ribbon, strip, and linear 

branch growth. 

(Camagni et al. 2002, Wilson et 

al. 2003, Marshall 2005, Terando 

et al. 2014, Georg et al. 2016, 

Salvati et al. 2016) 



For simulating development scenarios we used LULC data from the Urban Atlas 125 

dataset for the year 2012. The Urban Atlas is a two-date, detailed and harmonised LULC 126 

dataset in vector format (scale 1:10,000) for large European Functional Urban Areas, built in 127 

the context of the Copernicus European Earth Observation programme 128 

(http://land.copernicus.eu/local/urban-atlas). Digital elevation models (EU-DEM) from the 129 

land-monitoring services of Copernicus (https://land.copernicus.eu/imagery-in-situ/eu-dem) 130 

(25 meter/pixel), and location of city centres from Eurostat 131 

(https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data) were also used.  132 

Land use change model 133 

Even though image classification techniques in remote sensing are continuously improving, 134 

we still lack high-resolution long-time series of LULC datasets. A promising initiative in 135 

Europe is the Urban Atlas dataset, which provides high-resolution LULC data covering more 136 

than 300 urban areas for 2006 and 2012. However, this period is still insufficient for detecting 137 

reliable growth trends. Therefore, we created longer LULC time-series using the LUC model 138 

FUTURES (FUTure Urban-Regional Environment Simulation model). FUTURES was 139 

suitable to simulate long-term urban growth spatial patterns from different baseline forms, 140 

creating alternative synthetic growth scenarios by altering a few factors (Dorning et al. 2015). 141 

LUC model and factors of urban growth 142 

The model FUTURES is a cellular automata, stochastic and patch-based LUC model based on 143 

the logistic regression method, and was implemented in GRASS GIS (Meentemeyer et al. 144 

2013, GRASS development team, 2017). It requires an urban mask and geographic, 145 

economic, and social factors that determine where the development is likely to occur. We 146 

used FUTURES because it allows for the variation of the sprawl degree in the simulation, as 147 

well as the modification of several factors, constraints (limiting growth in specific areas, e.g.: 148 

http://land.copernicus.eu/local/urban-atlas
https://land.copernicus.eu/imagery-in-situ/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data


subject to political decisions) and stimulus (boosting growth in specific areas, e.g.: subject to 149 

land use planning). This high adaptability facilitates the creation of alternative growing 150 

scenarios. 151 

The LULC data were rasterized to 10-meter pixel size for the simulation. Accordingly, 152 

the EU-DEM was resampled using bilinear interpolation. From these datasets, we calculated 153 

several factors as possible predictors of urban development (Figure 3). The proximity to 154 

specific geographical elements may contribute to the development of new buildings, for 155 

instance, due to resident preferences to live in residential areas, close to the business district, 156 

with a good accessibility, nearby gardens or leisure areas, etc. These social and economic 157 

factors are included using the Euclidean distance to residential, commercial and industrial 158 

buildings, city centre, road network, green urban areas, leisure areas, agricultural plots, or 159 

natural areas, all extracted from the legend of the Urban Atlas and Eurostat (see the legend in 160 

Figure 3). Similarly, under the assumption that development stimulates more development in 161 

near proximity, we computed three different types of development pressure based on the 162 

distance-decay effect (Meentemeyer et al. 2013): The urban pressure within a radius of 1 km, 163 

the road network pressure within 0.5 km, and the urban nucleus pressure within 5 km. The 164 

urban nucleus was defined as the biggest urban cluster when combining all urban plots within 165 

a distance of 200 meters, based on the concept of Urban Morphological Zones defined by 166 

Goerlich and Cantarino (2013). Since topographic conditions may limit or ease urban 167 

development, we included elevation and slope factors extracted from the EU-DEM. Finally, 168 

two additional factors were included: the constraint and the stimulus. The constraint limits the 169 

development of specific areas, in our case roads, water bodies and green urban areas, since 170 

they may be protected or have low probability of change. The stimulus encourages 171 

development in specific areas, such as boosting centralized growth and land-recycling from 172 

barren land patches (compact growth) or stimulating growth around the emergence of new 173 



centres (leapfrog growth). All the aforementioned factors were scaled to a range from zero to 174 

one to avoid the influence of the measurement units (Figure 3). 175 

 

Figure 3. Example of factors computed for the monocentric form. On the top left, 176 

reclassification of Urban Atlas legend (five digits, see the interpretation in 177 

https://land.copernicus.eu/user-corner/technical-library/urban-atlas-2012-mapping-guide-178 

https://land.copernicus.eu/user-corner/technical-library/urban-atlas-2012-mapping-guide-new/


new/) into nine classes for computing factors (distances to, pressures, stimulus and 179 

constraint), and into seven classes for creating the reference LULC map.  180 

Simulated urban growth patterns 181 

Based on the growth patterns described above, five development scenarios were simulated: 182 

 Expansion growth represents an expansion of the existing urban cover from the urban 183 

fringe.  184 

 Compact growth encourages infill growth and land use recycling, prioritizing the 185 

development of open land inside urban areas, nearby the urban nucleus, and bare soil. 186 

 Dispersed growth follows a scattered, isolated and uncontrolled urban development 187 

beyond developed areas. 188 

 Road-based growth occurs when the urban development takes place nearby the road 189 

network. 190 

 Leapfrog growth creates new urban centres at a considerable distance from the 191 

developed area.  192 

In order to have different scenarios simulating urban development in different 193 

pathways, we computed twenty different models, one for each combination of baseline form 194 

(monocentric, polycentric, sprawl and linear) and simulated growth (expansion, compact, 195 

dispersed, road-based and leapfrog). The simulation steps were:  196 

(1) Training the logistic regression model with five percent of the study area, using the 197 

urban cover as dependent variable and the factors as independent variables. The 198 

factors vary according to the simulation pattern (see Figure 4). 199 

(2) Retraining the model discarding those factors not statistically significant according to 200 

their p-values (see Figure 4).  201 

https://land.copernicus.eu/user-corner/technical-library/urban-atlas-2012-mapping-guide-new/


(3) Applying the trained model to the total study area, predicting for every pixel the 202 

probability of becoming urban. This output is called potential (P). 203 

(4) The potential can be modified by the incentive (IP) parameter that applies a power 204 

function to transform the probability gradient in the new potential (P
IP

) (Figure 4). 205 

This transformation increases or decreases the probability of urban development by 206 

altering site suitability, allowing the model to encourage compact or dispersed growth 207 

trends. 208 

(5) Calibration of urban patches, a list of sizes and shapes is stored and will be used in the 209 

patch allocation process. 210 

(6) Defining the demand based on the spatial area of development instead of the 211 

population growth or time span. We established that fifty percent of the total urban 212 

area is developed, except for the polycentric urban area where a twenty-five percent 213 

was established, due to the fact that this urban area was initially highly developed (the 214 

demand of development in number of pixels is shown in Figure 4). 215 

(7) Iterative allocation of development using the Monte Carlo method until the demand is 216 

achieved. First a potential seed is located. Second, based on suitability of contiguous 217 

pixels and a random size and shape from the calibration step list, the patch is finally 218 

allocated (Figure 4, right). 219 



 

Figure 4. (Left) Factors used in the LUC model are in grey (rows) for the twenty simulated 220 

scenarios (columns). White grids were not included in the model, while the dot (·) means that 221 

the factor was not statistically significant. Growth patterns: (E) expansion, (C) compact, (D) 222 

dispersed, (R) road-based, and (L) leapfrog. The incentive parameter and the demand are 223 

shown on the last two rows. (Right) Example of the patch allocation steps. 224 

Computing spatio-temporal metrics  225 

We computed twenty-four spatio-temporal metrics related to the aggregation and spatial 226 

distribution of land use change for each simulated growth scenario, using the IndiFrag 227 

software (Sapena and Ruiz 2015). This software, available at 228 

http://cgat.webs.upv.es/software/, is a tool that extracts an exhaustive set of fragmentation, 229 

spatial and temporal indices from LULC data. 230 

When working with many spatial metrics or variables, as in this case, it is expected to 231 

find high correlations, making difficult the interpretation and introducing noise in the 232 

classification process. Therefore, it is advisable to remove correlated metrics and keep only 233 

the most informative (Uuemaa et al. 2009, Schwarz 2010). Hence, we conducted a correlation 234 

analysis of the spatio-temporal metrics to discard those metrics with strong correlation (ρ≥0.8) 235 

http://cgat.webs.upv.es/software/


and avoid redundancies in the spatial information. As a result, only the eleven metrics 236 

described in Table 2 were used. Some spatio-temporal metrics were computed as the 237 

difference between those obtained from the initial LULC maps and the final simulated 238 

scenarios (spatial metrics in Table 2). Others were computed as direct spatio-temporal metrics 239 

from both maps. Thus, a set of eleven metrics was obtained from the twenty urban 240 

development scenarios (Table 2). 241 

Table 2. Description of the selected spatio-temporal metrics. Formulas can be found in 242 

doi:10.4995/raet.2015.3476 and Reis et al. (2016). 243 

 Metric Description 

Spatial metrics Leapfrog (LPF) Proportion of isolated urban patches. It is considered 

isolated when the distance to the closest patch is higher 

than 20 m (avoiding two patches separated by roads to be 

isolated). 

 Porosity (P) The ratio of open space (area of holes within the land 

cover) compared to the total land cover area (Reis et al. 

2016). 

 Weighted Euclidean 

Distance (DEP) 

Concentration degree, or area-weighted mean distance of 

patches to the centroid of the land cover (kilometres).  

 Mean nearest 

neighbourhood 

distance (DEM) 

Mean distance between nearest patches (meters). It is 

considered adjacent when the distance to the closest patch 

is lower than 20 m. 

 Compactness (C) The ratio between area and perimeter. Measures the shape 

complexity of the urban cover. 

 Radius dimension 

(DimR) 

Measures the centrality of the urban cover with respect to 

the urban center. 

 Effective mesh size 

(TEM) 

Measures landscape connectivity. Lower values mean 

more fragmentation (hectares). 

 Splitting index (IS) The number of patches when dividing the cover into equal 

size parts with the same division.  

Spatio-

temporal 

metrics 

Weighted mean 

expansion (AWM) 

Weighted growth compactness. It is the area-weighted 

mean of the proportion adjacencies between new urban 

patches and the urban cover. 

 Disaggregation (DI) Mean distance from new urban patches to the closest patch 

of the urban cover (metres) (Reis et al. 2016). 

 Centroid displacement 

(CNT) 

The distance between the geometrical centroid of the urban 

cover at two different times (metres). 

The metrics with area and length units might be affected by the scale, size, and 244 

boundary effect. However, as input data have the same spatial resolution, the scale will not 245 

affect DEM, CNT and DI metrics in this comparative analysis, since they measure relative 246 

distances. The influence of size and boundary were tested normalizing DEP and TEM by 247 



dividing their values by the radius and area of the circumference with the same area than the 248 

boundary. Since these values did not change significantly (correlation coefficients 249 

𝜌(DEP−nDEP) =0.98 and 𝜌(TEM−nTEM) =0.99), we used the non-normalized metrics to ease 250 

further interpretation. 251 

Urban growth spatial pattern classification 252 

In order to harmonise the differences in units, the values of the metrics were standardised to 253 

mean zero and standard deviation one. From the pre-selected metrics (Table 2), a supervised 254 

stepwise linear discriminant analysis was applied to select the best combination of metrics for 255 

classification. In this method, all variables are progressively reviewed and evaluated at each 256 

step to determine which will contribute most to the discrimination between classes, that 257 

variable is included in the model and the process is iterated (Hermosilla et al. 2012). As a 258 

result, the most relevant metrics selected were: the weighted mean expansion index 259 

(AWMurban), the variation of the weighted Euclidean distance (DEPurban), the disaggregation 260 

index (DIurban), and the change in the compactness degree (Curban), all referred to the urban 261 

cover. Starting from these metrics, the classification of urban growth patterns was performed 262 

by means of the unsupervised k-Means Clustering method. This is an iterative algorithm that 263 

divides the m observations (twenty scenarios) in n dimensions (four spatio-temporal metrics) 264 

into k groups (five growth patterns) until the within-group sum of squares is minimized 265 

(Hartigan and Wong 1979). Therefore, data were classified into five clusters that were 266 

interpreted and assigned a growth pattern class. The result was evaluated using the confusion 267 

matrix and its derived indices: the overall accuracy, and the omission and commission errors 268 

of the classification. These analyses were applied using the R statistical software (R Core 269 

Team 2019). 270 



Finally, in order to assess how the baseline urban form influences the classification of 271 

growth patterns, two outputs were compared: the classification error rates per urban form and 272 

the behaviour of metrics per urban form using graphs.  273 

Results 274 

Categorization of urban growth spatial patterns 275 

As a result of the LUC modelling we created twenty growth scenarios, whose distinctive 276 

features are shown in Figure 5. These scenarios recreate the behaviour of five growth patterns 277 

that may happen in a developing area, and how these patterns will progress on different urban 278 

areas with specific baseline urban forms. The spatio-temporal metrics were extracted from 279 

these scenarios.  280 



 

Figure 5. Scenarios with the simulated urban growth in red, following five spatial patterns 281 

(rows) from the four baseline urban forms (columns). The baseline urban covers are shown in 282 

dark grey and constraints in black, showing the areas restricted for development. 283 



Figure 6 shows the distribution of scenarios by means of the standardized values of the 284 

selected spatio-temporal metrics (AWMurban, DIurban, Curban, and DEPurban), where the baseline 285 

urban forms and growth patterns are represented with different shape and colour, respectively. 286 

The distances between growth pattern scenarios on the space represented by each pair of 287 

metrics are inversely related to their similarities. Observing the combination by pairs of 288 

metrics, Figure 6 suggests the contribution of metrics for the identification of growth patterns. 289 

DEPurban discriminates well the compact pattern and AWMurban the expansion, with some 290 

exception. The DIurban splits the dispersed pattern from the rest, even if sometimes it is mixed 291 

with other patterns. Finally, Curban helps to discriminate the road-based and disperse patterns 292 

from the rest but groups them together. The leapfrog pattern seems to be the most difficult to 293 

identify using this subset of metrics. 294 



 

Figure 6. The distribution of simulated growth scenarios according to the combination of the 295 

standardised values of AWMurban, DIurban, DEPurban, and Curban metrics. The colour represents 296 

the simulated growth pattern, while the symbol is the initial urban form. 297 

The classification of urban growth spatial patterns was conducted applying iterative 298 

cluster analyses, one for each combination of metrics from one to four. Overall accuracies in 299 

the identification of growth scenarios using a single metric ranged from 50% to 60% (with 300 

Curban and DEPurban ), they quantify the variation in compactness of the urban cover and its 301 

concentration degree. Combining two metrics we reached the highest accuracy in classifying 302 

the five growth patterns, with a value of 75%, using AWMurban and DEPurban. AWMurban 303 

enriches DEPurban with adjacency properties of new urban patches. The addition of the third 304 

and fourth metrics did not improve the classification results. 305 



Table 3 shows the classification errors of the clustering method for each scenario, 306 

using AWMurban and DEPurban. The omission error (OE) gives the proportion of 307 

underclassification of a pattern, while the commission error (CE) informs about the 308 

overclassification of a pattern. Accordingly, the expansion pattern is the one with higher 309 

accuracy, followed by the compact and dispersed that were underclassified in one case. The 310 

road-based scenario presents the lowest accuracy, followed by the leapfrog growth, which are 311 

intermixed, as seen in Figure 6 (upper-left). This response owes to the strong influence that 312 

the shape of the road network and the location of the new nuclei have on these patterns and 313 

both are related to the baseline form. 314 

The comparison of the centroids of the classified clusters against the actual patterns 315 

shows the highest difference in the growth adjacency (AWMurban) of the road-based pattern. 316 

This is because even if the road-based growth patterns are quite clustered by means of 317 

AWMurban and DEPurban  they are overlapped by the leapfrog growth (Figure 6). Consequently, 318 

only two scenarios were identified correctly, which displaces the centroid of the cluster to the 319 

left, however, as DEPurban centroids are quite similar for road-based and leapfrog patterns, the 320 

differences are least in this metric (Table 3). With regards to the rest, the centroids are quite 321 

similar (Error! Reference source not found.). 322 

Table 3. Classification of scenarios into five clusters (colour) using AWMurban and DEPurban. 323 

Omission (OE) and Commission Errors (CE) are shown per pattern. The Urban Form derived 324 

Error (UFE) is the error rate per baseline form. The centroids of the classified clusters are 325 

compared against the actual pattern centroids by means of the Euclidean distance in the space 326 

defined by AWM and DEPurban. 327 
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Cluster centroid Pattern centroid Euclidean 

distance 

 
OE CE AWMurb DEPurb AWMurb DEPurb 

EXPA     0 0.2 31.65 0.373 31.07 0.505 0.595 

COMP     0.3 0 25.16 -2.310 27.37 -1.772 2.275 

DISP     0.3 0 6.27 1.450 6.28 1.192 0.258 

ROAD     0.5 0.5 6.84 0.388 12.35 0.604 5.514 



LEAP     0.3 0.4 17.13 0.769 14.33 0.640 2.803 

UFE 0 0.4 0.2 0.4 

  

     

Influence of the urban form in growth spatial pattern categorization 328 

According to error rate per urban form (UFE) from Table 3, growth patterns derived from the 329 

monocentric form were successfully identified. When the sprawl form grew in a dispersed 330 

way the algorithm was unable to identify it, as DEPurban has a different behaviour against the 331 

other forms and was classified as road-based with lower mean value of DEPurban. This occurs 332 

because the sprawl form is highly dispersed and more dispersion does not substantially 333 

influence the concentration degree. Finally, the polycentric and linear forms add uncertainties 334 

in the proper identification of growth patterns (Table 3). 335 

When interpreted individually, the adjacency and concentration degrees of urban 336 

growth (AWMurban and DEPurban) present different responses depending on baseline forms 337 

(Figure 7). The expansion and compact growths have similar values of AWMurban, but 338 

different values of the changes of DEPurban. On the other hand, the leapfrog growth from the 339 

linear form had an unexpected value of AWMurban compared to the rest of the simulations, as 340 

also seen in Figure 6. This scenario has the particularity that the hilly areas are not urbanised 341 

along with the fact that the simulated leapfrog pattern projected randomly the new urban 342 

clusters – in the hilly areas – and, consequently, the adjacency of new urban elements to 343 

previous urban areas are much lower compared to the rest of scenarios. The polycentric form 344 

is characterized for being highly urbanized and compact. Therefore, it not only has higher 345 

values of AWMurban in all patterns, due to higher probabilities of growth adjacent to the urban 346 

elements, but also DEPurban of the compact pattern increases weakly, since there are not open 347 

lands within the nucleus, which influences the identification of patterns. Regarding sprawl 348 

form, as said above the already spread urban cover together with new isolated urban patches 349 

slightly increase the distance to the centroid. In fact, the changes in DEPurban in all patterns are 350 



quite low with the exception of the compact growth that has a strong impact in this form. 351 

These irregular responses of metrics for the scenarios depending on the baseline forms are 352 

highlighting the notable influence that urban form has on the identification of spatial patterns. 353 

 

Figure 7. Values of the spatio-temporal metrics used in the cluster analysis. Metrics are 354 

grouped by growth pattern, and colours represent the baseline forms. 355 

Discussion 356 

The more well-informed and efficient decisions are made in urban planning and management 357 

practices, the better urbanization challenges will be addressed. It has been widely discussed 358 

that urban growth has diverse impacts on environmental, social, and economical aspects 359 

according to their spatial characteristics (e.g.: Williams et al. 2000, Oliveira 2016, Zhao et al. 360 

2016, Wei and Ewing 2018). Remote sensing and Geographic Information Science can 361 

provide data and methods that facilitate monitoring and evaluating the development of urban 362 

areas. In this direction, this paper proposes a methodology for the early identification of five 363 

different growth patterns in urban areas based on a meaningful subset of spatio-temporal 364 

metrics derived from LULC data. To the authors’ knowledge, it differs from other studies as it 365 



attempts to identify growth types/classes rather than degrees between compactness and 366 

dispersion (e.g.: Tian et al. 2011, Liu et al. 2010, Jiao 2015). 367 

There is a vast amount of spatial metrics for the quantitative analysis of urban 368 

landscapes (Reis et al. 2016). Since our aim was to identity growth spatial patterns, we 369 

focused on metrics that quantify aggregation, spatial relations, and their variations. In this 370 

context, extracting an exhaustive set of spatio-temporal metrics followed by a selection of the 371 

most relevant attending to these characteristics was revealed as efficient for this purpose. 372 

Some authors previously mentioned that spatio-temporal metrics are complementary 373 

when conscientiously selected, and their combined use enriches the study of urban areas and 374 

their dynamics (Arribas-Bel et al. 2011, Abrantes et al. 2019, Sapena and Ruiz 2019). From 375 

the four final metrics selected, AWMurban is particularly helpful to discriminate the expansion 376 

growth as it quantifies adjacencies, DIurban separates disperse growth as it measures distance to 377 

old urban patches, Curban detects road-base and disperse growths as they tend to be less 378 

compact in shape, and DEPurban identifies compact growth since it measures the concentration 379 

degree. However, we found that the use of only two spatio-temporal metrics is sufficient to 380 

accurately identify and discriminate the five growth spatial patterns analysed, which has a 381 

practical relevance for their use in monitoring urban growth. The change in the concentration 382 

degree of the urban cover (DEPurban) is the metric that individually better identifies patterns. It 383 

measures the area-weighted distances of the urban elements with respect to the urban centroid 384 

in two data and then quantifies its variation. Negative values mean more concentration, while 385 

positive values mean the fragmentation of the urban cover; higher values suggest 386 

fragmentation in the peri-urban area. When combined with the degree of adjacency of the 387 

urban growth (AWMurban), which quantifies urban densification and growth compactness 388 

(higher values mean denser and more compact areas), the identification of patterns improves. 389 

The complementarity of these two metrics allows describing the main properties for 390 



discrimination of urban growth spatial patterns. While the first accounts for the spatial 391 

distribution of the new urban elements from the urban centre, the second quantifies the level 392 

of aggregation of the new development. 393 

The use of graphs to represent the spatio-temporal metrics enhances the differences 394 

between monocentric, polycentric, sprawl and linear forms when analysing the same urban 395 

growth patterns. According to our analysis, the polycentric and linear initial urban forms are 396 

the ones adding more uncertainty into the categorization of growth patterns. Therefore, when 397 

applying spatio-temporal metrics for growth pattern classification, the influence of the urban 398 

form should be considered together with the widely known sensitiveness of spatio-temporal 399 

metrics to the size, scale and boundary effect (Uuemaa et al. 2009; Reis et al. 2016). In our 400 

study, the scale did not affect metrics, as data had the same resolution and the sizes of the 401 

urban areas were similar. Regarding the urban form, approaches to overcome its influence in 402 

the classification of growth patterns are still required for the correct identification of 403 

development trends. In this sense, the inclusion of the baseline urban form as a qualitative 404 

variable in the classification procedure would be worth to investigate in future research to 405 

improve the discrimination of growth patterns. 406 

Regarding growth patterns analysed, we made a synthesis of those described in the 407 

literature in order to assess if they can be identified by means of spatio-temporal metrics 408 

derived from LULC data and using clustering methods. However, categorization is always 409 

complex, and some growth patterns can be actually interpreted as combination of others 410 

(Camagni et al. 2002, Wilson et al. 2003, Clark et al. 2009). This is the case, for instance, of 411 

the leapfrog growth in its initial stages, which can also be considered a dispersed pattern as 412 

remote areas are being urbanized (Wilson et al. 2003), but in a longer term, these areas may 413 

trigger the transformation from monocentric to polycentric urban form (Salvati et al. 2016). 414 

This may be understood as a consolidation process with a compact growth pattern in the long 415 



term. Therefore, this complexity may derive in errors when identifying growth patterns, as 416 

their boundary is sometimes undefined, highly dependent on the phase of development and on 417 

the urban baseline form. To avoid this growth pattern mix usually present in the reality, and to 418 

overcome the problem of lack of long-term and high-resolution LULC databases, we created 419 

different scenarios by simulating urban growth using FUTURES model. The use of simulated 420 

scenarios also provide transferability to other geographical areas, despite their differences in 421 

morphology or growth types. 422 

The increasing availability of frequent and updated urban data, in particular those 423 

related to LULC, will open new opportunities in this field, requiring tools and methods, as 424 

well as interpretable indicators to efficiently characterize urban growth. Eventually, when 425 

databases and LULC data increase, new studies based on real development cases, instead of 426 

simulations, can be conducted. 427 

Overall, we validated the use of two spatio-temporal metrics that quantify the 428 

densification, compactness and concentration degrees of growth, for identifying growth 429 

spatial patterns in different urban areas. These metrics can be further used for monitoring 430 

urban growth patterns whenever temporal LULC is available, in order to validate city 431 

planning, infrastructures, social policies and territory management. As a future work, the 432 

identification of growth patterns in several cities worldwide using this pair of spatio-temporal 433 

metrics, will allow its relationship with their environmental, social and economic impacts; 434 

consequently, an empirical cause-effect relationship will be determined by means of statistical 435 

models, which will provide a better understanding of complex development processes in 436 

urban environments and their consequences. 437 

Conclusion 438 

The development of methodologies for the description and quantification of urban growth is 439 



useful to monitor urban areas, to diminish the consequences of fast developing and to improve 440 

planning and sustainability of urban systems. In the absence of long-term LULC data at high-441 

resolution, we simulated urban growth of different cities and scenarios to answer the question 442 

of whether spatio-temporal metrics derived from LULC maps are able to identify urban 443 

growth patterns, and to analyse the influence of different initial or baseline urban forms in this 444 

classification. As a result, two spatio-temporal metrics that quantify densification, 445 

compactness and concentration of growth, are sufficient to classify five growth spatial 446 

patterns (i.e. expansion, compact, dispersed, road-influenced and leapfrog) with an overall 447 

accuracy of 75%. The spatio-temporal metrics demonstrated its usefulness for the 448 

categorization of urban growth spatial patterns in diverse urban environments despite the 449 

notable influence of the urban form on the growth processes. The monocentric and sprawl 450 

forms eased the identification of patterns in comparison to the polycentric and linear forms 451 

that added uncertainties in the classification. Our results show the potential of spatio-temporal 452 

urban distribution metrics for monitoring dynamic urban areas. The early detection of 453 

development trends and thus, the ability of foresee their consequences, will be valuable for 454 

land use planning in urban and peri-urban areas. 455 
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