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Abstract

Understanding a contaminant source may help in a better management and risk assess-

ment of a polluted aquifer. However, contaminant source information may not be available

when a pollutant is detected in a drinking well. The restart ensemble Kalman filter (restart

EnKF, also named r-EnKF) has been demonstrated in synthetic and laboratory experiments

as an efficient solution for the identification of a contaminant source. Recently, the ensemble

smoother with multiple data assimilation (ES-MDA) has been proposed as an alternative to

the r-EnKF as a more efficient solution given that the r-EnKF needs to restart the simu-

lation of the state equation from time zero after each data assimilation step. An analysis,

in a synthetic aquifer, of the accuracy of the ES-MDA for the simultaneous identification of

a contaminant source and the spatial distribution of hydraulic conductivity by assimilating

both piezometric head and concentration observations is carried out using the r-EnKF as

a benchmark. The conclusion is that the ES-MDA can outperform the r-EnKF, but the

expected speed advantage, associated with the possibility of assimilating all data at once,

does not exist. For the ES-MDA to reach the same level of accuracy as the r-EnKF, the
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number of multiple data assimilations must be large, and final computing time is similar for

both approaches. However, the ES-MDA can do much better than the r-EnKF if the number

of iterations increases even further, with the consequent increase of computational cost.

Keywords: Contaminant source identification; Data assimilation; Ensemble smoother with

multiple data assimilation; Restart ensemble Kalman filter

1. Introduction1

When a contaminant is released into the subsurface, it will jeopardize not only human2

health but also damage the local ecosphere, especially if the contaminant is hazardous. When3

contamination happens inadvertently or is purposely hidden, it may be difficult to trace it4

back from concentration observations taken downstream from the source. Yet, knowledge of5

the contaminant source is vital for groundwater contamination management, contamination6

control, contamination risk assessment and remediation.7

How to identify a contaminant source once contamination has been detected has attracted8

much attention in the last decades. It is an intricate problem that has been addressed9

using inverse modeling. According to their characteristics, the inverse modeling approaches10

for contaminant source identification could be classified into three categories: optimization11

approaches, probabilistic approaches, and deterministic approaches. The reader is referred to12

the reviews by Sun et al. (2006a); Atmadja and Bagtzoglou (2001b); Michalak and Kitanidis13

(2004); Bagtzoglou and Atmadja (2005) for further information.14

In the optimization approaches, the objective is to minimize an objective function that15

measures the differences between simulated concentrations and measurement observations16

and that is written in terms of the parameters defining the contaminant source. Some of17

the approaches used are least-squares regression and linear programming (Gorelick et al.,18

1983), maximization of correlation coefficients (Sidauruk et al., 1998), constrained robust19

least squares (CRLS) (Sun et al., 2006a), CRLS estimation combined with a branch-and-20
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bound global optimization (Sun et al., 2006b), evolutionary search algorithms (Mirghani21

et al., 2009), or hybrid simulation-optimization (Ayvaz, 2016).22

In the probabilistic approaches, the objective is, generally speaking, to maximize some23

posterior probability of the source parameters given the observations. Some approaches used24

for this purpose are minimum relative entropy (Woodbury and Ulrych, 1996; Woodbury et al.,25

1998; Cupola et al., 2015), the geostatistical approach (Sun, 2007; Gzyl et al., 2014; Butera26

et al., 2013), Markov chain Monte Carlo (Wang and Jin, 2013), or Bayesian approaches27

(Zeng et al., 2012; Zhang et al., 2015; Zanini and Woodbury, 2016).28

In the deterministic approaches, the main objective is to solve the advection-dispersion29

equation backward in time. Some of the approaches employ the marching-jury backward30

beam equation method (Atmadja and Bagtzoglou, 2001a; Bagtzoglou and Atmadja, 2003),31

Tikhonov regularization (Skaggs and Kabala, 1994; Neupauer et al., 2000), or a quasi-32

reversibility method together with minimum relative entropy (e.g., Skaggs and Kabala, 1995;33

Bagtzoglou and Atmadja, 2003; Neupauer et al., 2000).34

In addition to the approaches mentioned above, recently, the use of the restart ensem-35

ble Kalman filter (r-EnKF) (a probabilistic approach), was proposed by Xu and Gómez-36

Hernández (2016) to identify a contaminant source by assimilating concentration observa-37

tions. The good results obtained by the r-EnKF in standard inversion problems (e.g., Hen-38

dricks Franssen and Kinzelbach, 2009; Xu et al., 2013; Xu and Gómez-Hernández, 2015b)39

prompted its use for source identification, where it proved to achieve good results, too. Later,40

Xu and Gómez-Hernández (2018) extended their work to jointly identify the source infor-41

mation and the underlying hydraulic conductivity field in a synthetic aquifer, and in a tank42

experiment (Chen et al., 2018). Their works have proven the capability of the r-EnKF for43

contaminant source identification.44

The ensemble smoother (ES), also a probabilistic approach, first proposed by Van Leeuwen45

and Evensen (1996), is an alternative that could alleviate the computational burden of the46
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EnKF, because it assimilates all data for all time steps at once. This avoids the restart of47

the simulation at every time step and makes the ES faster and easier to implement than the48

EnKF (Emerick and Reynolds, 2013a). However, the performance of the ES for the case of49

non-linear state equations is not good (e.g., Evensen and Van Leeuwen, 2000; Crestani et al.,50

2013), the main reason being the lack of multiple updatings inherent to the EnKF (the ES51

does only one update).52

A detailed explanation of why the EnKF outperforms the ES in dealing with non-linear53

problems can be found in the work by Evensen (2018). Here, a brief explanation is given.54

The updating step in both the EnKF and the ES are written in terms of covariances, which55

can only capture linear relationships. The EnKF recursively updates the parameters of56

interest by assimilating observation information in time and after each step the updates get57

closer to the reference solution. The ES makes a single update using all the data from all58

time steps. That is, the EnKF is equivalent to making many linear approximations to the59

state equation followed by incremental updates along the linear approximation, whereas the60

ES is equivalent to a single linear approximation to the state equation and a single large61

update along the linear approximation. Therefore, the EnKF is equivalent to a non-linear62

optimization based on local linear approximations, whereas the ES is a linear minimization,63

which may be very far from optimal if the state equation is highly nonlinear. Unless, iteration64

is also introduced into the ES. This is what Emerick and Reynolds (2013a) propose with65

their ensemble smoother with multiple data assimilation (ES-MDA). The basic idea is to66

assimilate all data from all time steps several times, progressively updating the parameters67

after each iteration.68

Several successful applications of the ES-MDA are reported in the reservoir history-69

matching literature (e.g., Emerick et al., 2013; Emerick and Reynolds, 2013b; Le et al., 2015,70

2016; Lee et al., 2013; Fokker et al., 2016). In these works, the reservoir state equations71

are nonlinear, and the ES-MDA results outperforms the EnKF for both synthetic and real72
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field problems. Recently, a few applications have been reported in the hydrogeology litera-73

ture (Li et al., 2018a,b) for the characterization of hydraulic conductivities by assimilating74

piezometric heads.75

In this paper, the ES-MDA is used, for the first time, to the best of our knowledge, to76

jointly identify a heterogeneous hydraulic conductivity field and contaminant source informa-77

tion on a synthetic aquifer. As a benchmark, the accuracy of the ES-MDA will be compared78

with the r-EnKF. Note that the main aim of this work is to evaluate the capabilities of the79

ES-MDA and to benchmark it against the r-EnKF for the joint identification of conductivity80

field and contaminant source information.81

The paper is organized as follows. First, we introduce the algorithmic description of the82

r-EnKF and the ES-MDA. Second, we test and compare the ES-MDA with the r-EnKF on83

a synthetic aquifer. And third, we discuss the results.84

2. Methodology85

2.1. Restart ensemble Kalman filter86

The EnKF was developed based on the Kalman filter proposed by Kalman et al. (1960)87

to better tackle nonlinear state-transfer equations. The main difference between the EnKF88

and the Kalman filter is on how the covariance matrices are calculated. In the original filter,89

the covariances were propagated in time using a linear state-transfer function (or a linear90

approximation in case the function is non-linear), while in the EnKF, the covariances are91

calculated from the states obtained after solving the state-transfer function on an ensemble92

of realizations (e.g., Evensen, 2003, 2009; Chen and Zhang, 2006; Xu et al., 2013; Xu and93

Gómez-Hernández, 2015a). Like the Kalman filter, the EnKF consists of two steps: forecast94

and analysis. The first one is to forecast the state variables from the state variables and95

the best estimate of the model parameters from the last time step. And the second one96

is to update the state variables and model parameters at the current time step based on97
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the deviations between forecasted and observed state variable values at selected observation98

points. However, as already discussed in Xu and Gómez-Hernández (2016), it is impossible99

to take into account the updated parameters in the forecast step when these parameters100

define the spatiotemporal position of a contaminant source, unless the forecast is restarted101

from time zero. This approach modifies the standard Kalman filter equations since there is102

no need to update the variable values at the analysis step: their values will be recomputed103

with the new estimates of the model parameters from times zero.104

For any given realization of the ensemble, let V f
t denote the forecasted state variables at105

time t, and Sa
t the best model parameter estimates after the analysis step at the same time.106

The forecast equation is107

V f
t = ψ(V0, S

a
t−1). (1)

where ψ represents the state-transfer function, and V0 represents the state variables at time108

zero. The update step modifies the parameter values from the previous time step (Sa
t−1) as109

a function of the discrepancy between forecasted and observed state variables at observation110

locations111

Sa
t = Sa

t−1 +Gf
t (Vo,t + et − V f

o,t) (2)

with112

Gf
t = Df

SV,t(D
f
V V,t +Rt)

−1, (3)

where Vo,t + et is the vector of observed concentrations and piezometric heads (composed of113

the sum of the true head or concentration Vo,t plus an observation error et of zero mean and114

covariance Rt), G
f
t is the Kalman gain, Df

SV,t is the cross-covariance between parameters and115

forecasted state variables at observation locations, and Df
V V,t is the auto-covariance between116

the forecasted state variables at the observation locations.117

Consider that there are Nr realizations in the ensemble and each realization has been118

discretized into Ne elements. The state variable vector V contains piezometric heads H and119
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concentrations C at all aquifer model cells120

V =

⎡

⎢⎣
H

C

⎤

⎥⎦ . (4)

This vector contains Nr realizations of 2Ne variables.121

The model parameter vector S contains hydraulic log-conductivity lnK in all aquifer122

model cells and the contaminant source parameters, which are source location, X for the123

x-coordinate, and Y for the y-coordinate, initial release time T , release duration ∆T , and124

mass-loading rate M125

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lnK

X

Y

T

∆T

M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

This vector contains Nr realizations of (Ne + 5) variables.126

Then, if we define dt = Vo,t + et − V f
o,t and P f

V V,t = (Df
V V,t + Rt)−1, and the covariances127

are split into the auto- and cross- covariances of each parameter, the updating equation (2),128

applicable to each realization independently, can be written as129

Sa
t =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lnK

X

Y

T

∆T

M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Df
(lnK)C,t Df

(lnK)H,t

Df
XC,t Df

XH,t

Df
Y C,t Df

Y H,t

Df
TC,t Df

TH,t

Df
(∆T )C,t Df

(∆T )H,t

Df
MC,t Df

MH,t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
P f
CC,t P f

CC,t

P f
HC,t P f

HC,t

⎞

⎟⎠

⎛

⎜⎝
dC,t

dH,t

⎞

⎟⎠ (6)
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2.2. Ensemble smoother with multiple data assimilation130

The ES is, conceptually, the same as the r-EnKF but limited to one forecast step (for all131

the time steps for which observations are available) and a single update step (based on the132

discrepancies between observations and predictions at all time steps).133

The equations that describe the ES are almost the same as those for the r-EnKF above,134

with some differences. The forecast step is given by135

V f = ψ(V0, S0). (7)

where now V f contains the state forecasted at all time steps —computed from the initial136

state V0 and the initial ensemble of parameters S0. And the update step is given by137

Sa = S0 +Gf (Vo + e− V f
o ), (8)

with138

Gf = Df
SV (D

f
V V +R)−1, (9)

where Vo + e are all of the observations at observation locations, e are the observation139

errors, and V f
o are the forecasts at observation locations. The covariances appearing in Eq.140

(9), Df
SV and Df

V V are computed for all time steps; these covariance matrices include the141

cross-covariances between time steps, an aspect not accounted for in the r-EnKF that might142

render the ES superior to the r-EnKF. From a computational point of view, if there are No143

observations locations sampled Nt times, the sizes of the matrices involved in the r-EnKF are144

proportional to No, whereas in the ES they are proportional to the product No ·Nt. Hence,145

the sizes of the cross-covariances in the r-EnKF are (Ne+5)× 2No for D
f
SV,t, and 2No× 2No146

for Df
V V,t and Rt; whereas the size of the cross-covariance for the ES are (Ne+5)× (2No ·Nt)147

for Df
SV and (2No ·Nt)× (2No ·Nt) for D

f
V V and R.148
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As we stated before, the performance of the ES is not good when dealing with non-149

linear problems. The solution provided by Emerick and Reynolds (2013a) to improve the150

performance of the ES for non-linear state-transfer equations is to iterate, what is called151

multiple data assimilation (because the same data is assimilated multiple times) on the basis152

that each iteration of the ES is similar to a Gauss-Newton iteration (Reynolds et al., 2006;153

Gu and Oliver, 2007). Basically, Eq. (7) and Eq. (10) are iteratively applied using the154

latest updated parameters as the initial parameters for the next iteration. However, since155

all data are assimilated multiple times, there is a need to inflate the observation error for156

each assimilation step. For this purpose, a non-increasing sequence of error variance inflation157

coefficients {ai, i = 1, ..., Na} is used in the updating equations, with Na being the number158

of assimilation iterations, and satisfying that
Na∑
i=1

1
ai

= 1.159

The ES-MDA equations display the following differences. The forecast step is given by160

V f
i = ψ(V0, S

a
i ). (10)

where i is the iteration counter, and for each iteration the forecast uses the last updated161

parameters from the previous iteration. And the update equation is given by162

Sa
i = Sa

i−1 +Gf
i (Vo,i +

√
aiei − V f

o,i) (11)

with163

Gf
i = Df

SV,i(D
f
V V,i + aiRi)

−1, (12)

In Eq. (11) and Eq. (12), we can see how the observation variance is amplified by a164

factor ai and the observation error is amplified by
√
ai.165

If we define di = Vo,i+
√
aiei−V f

o,i and P f
V V,i = (Df

V V,i+ aiRi)−1, and the covariances are166

split into the auto- and cross- covariances of each parameter, the updating equation Eq.(8)167
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can be written as168

Sa
i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

lnK

X

Y

T

∆T

M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Df
(lnK)C,i Df

(lnK)H,i

Df
XC,i Df

XH,i

Df
Y C,i Df

Y H,i

Df
TC,i Df

TH,i

Df
(∆T )C,i Df

(∆T )H,i

Df
MC,i Df

MH,i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
P f
CC,i P f

CC,i

P f
HC,i P f

HC,i

⎞

⎟⎠

⎛

⎜⎝
dC,i

dH,i

⎞

⎟⎠ (13)

Please notice that, when Nr < 2No in r-EnKF, or Nr < 2No × Nt in ES-MDA, the169

low rank of the matrices prevent their inversion; then, the subspace inversion introduced by170

Evensen (2004) is used to solve for P f
V V,t or P

f
V V,i. The detailed explanation can be found in171

the works by Evensen (2004); Emerick and Reynolds (2013a).172

3. Application173

A synthetic confined aquifer is designed and constructed on a 1000 [L] by 1000 [L] by 50174

[L] prism discretized into 50 by 50 by 1 cells, where each cell is 20 [L] by 20 [L] by 50 [L].175

(Please note that no specific units are used throughout, only their dimensional analysis is176

given. Any set of consistent units will yield the same results.) The reference log-conductivity177

field is drawn from a multivariate Gaussian random function defined by the parameters in178

Table 1 using the GCOSIM3D software —a sequential Gaussian simulation program (Gómez-179

Hernández and Journel, 1993). The resulting reference log-conductivity field is shown in180

Figure 1.181
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Table 1: Parameters of the random functions used to generate the lnK realizations. Spherical variogram
with anisotropic spatial correlation defined by λmax and λmin, which are the ranges in the maximum and
minimum directions of continuity. The angle corresponds to the maximum continuity direction and it is
measured clockwise from the North direction

Mean Std. dev. Variogram λmax λmin Angle

lnK -1 1 Spherical 300 200 135

Reference

Easting

N
o

rt
h

in
g

.0 1000
.0

1000

-3

-2

-1

.0

1

Q=-20 L  T 3 -1

Q=-40 L  T 3 -1

No flow

No flow

C
o

n
st

an
t 

h
e

ad

(230, 610) 

Figure 1: Reference lnK and boundary conditions. The source location is marked with a dark dot. The
inner square indicates the suspect contaminant source.

The model boundaries, as indicated in Figure 1, are set as follows: north and south182

boundaries are impermeable; west boundary is a prescribed head condition with a constant183

value of 50 [L]; east boundary is a prescribed flow boundary divided into two equal-length184

segments: the north segment with a total prescribed flow extraction rate of 20 [L3T−1] and185

the south segment with a total extraction prescribed flow rate of 40 [L3T−1]. Figure 2 shows186

the location of the 25 observation wells (red triangles) and the two verification wells (blue187

diamonds).188

The initial concentration is zero [ML−3] and the initial head for the whole domain is 58 [L],189

except at the west constant boundary. Other groundwater flow and contaminant transport190
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1000

1000

N
o

rt
h

in
g

0
0 Easting

Distribution of wells

#1

#2

Figure 2: Location of wells. Red triangles mark observation wells; blue diamonds mark verification wells.
The black circle is the contaminant source location.

parameters are assumed known and set as homogeneous: porosity of 0.3 [−], longitudinal191

dispersivity of 2 [L], transverse to longitudinal dispersivity ratio of 0.1.192

We assume the contaminants are inert. Only advection and dispersion are considered193

as transport mechanisms. Both groundwater flow and contaminant transport are under194

transient conditions. The groundwater flow simulator MODFLOW (McDonald and Har-195

baugh, 1988) and the transport simulator MT3DMS (e.g., Zheng, 2010; Ma et al., 2012) are196

used as forward models to solve the groundwater flow and contaminant transport problems,197

respectively.198

The total simulation time is 10000 [T] and is discretized into 100 time steps with in-199

creasing size following a geometric series with ratio 1.01 (The first time step is 58.66 [T]).200

The observations of both piezometric head and concentration from the first 60 time steps201

(around 4790 [T]) are assimilated for the purpose of parameter identification, so the total202

number of observations is 2× 25× 60.203

The contaminant is released at location (X, Y ) = (230, 610) [L] with a mass-loading rate204

of 1000 [MT−1], starting at time 613 [T] (around the 10th time step) and ending at time205
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2867 [T] (around the 40th time step), with a release duration of 2254 [T].206

Figure 3 shows three snapshots of piezometric head and solute concentration taken on the207

reference aquifer at the 10th simulation time step (beginning of contaminant injection), 40th208

time step (end of contaminant injection), and at 60th time step (end of assimilation period).209

This figure also shows the location where both piezometric heads and concentrations are210

sampled for the purpose of their assimilation in the different scenarios described next.211

-30

-10

10

30

50

t10: piezometric head
1000

1000
.0

.0 Easting

N
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t40: concentration
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g

Easting

Figure 3: Reference. Piezometric head (top row) and contaminant plume (bottom row) at the 10th (beginning
of solute injection), 40th (end of solute injection), and 60th (end of assimilation) time steps in the reference
aquifer. White triangles mark the observation wells.

Seven scenarios will be evaluated. The first one, used as a benchmark to evaluate the212

efficiency of the ES-MDA, is the r-EnKF, which has already proven its ability for the iden-213

tification of contaminant source parameters and hydraulic conductivity characterization; it214

will be referred to as S0. The second one is the ES in its original implementation, that is,215

without any iteration. Then, to evaluate the effect of the number of iterations, the ES-MDA216

is run for five different scenarios, the difference between them is the number of iterations217

(or data assimilations) performed; they will be labeled S2 to S6 with 2, 4, 6, 8 and 10 it-218

erations, respectively. Notice that the observation error inflation coefficients ai will, in all219
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cases, be equal to the number of iterations, following the recommendations by Emerick and220

Reynolds (2013a), who show that the use of decreasing inflation coefficients leads to only221

small improvements with respect to using the inflation coefficients equal to the number of222

iterations.223

As we stated before, the total number of cells of the log-conductivity field is 50× 50, and224

the number of source parameters is 5, so the total number of parameters to be identified is225

2505. An ensemble of 400 initial log-conductivity realizations is generated using the same226

random function model and parameters as for the reference log-conductivity field. The227

number of ensemble members was chosen after a previous analysis with ensemble sizes of228

200, 400 and 800 members. The difference in results between the ensemble sizes of 400 and229

800 were not large enough to grant the use of the largest ensemble. Notice that there are230

no conditioning log-conductivity data, thus the ensemble mean and ensemble variance of231

the initial log-conductivity realizations are homogeneous and equal to their marginal values.232

As already discussed by Xu et al. (2013) the use of the same random function parameters233

for the generation of the initial realizations as for the generation of the reference case is234

only a marginal advantage given that there are no conditioning conductivities. Indeed,235

Xu et al. (2013) demonstrate the effectiveness of the r-EnKF using a totally uninformative236

prior random function for the generation of the initial ensemble, with similar results as237

when the “true” random function is used. In addition, an ensemble of 400 5-tuplets for the238

source parameters is generated, each 5-tuplet contains five values drawn independently from239

the following uniform distributions: initial release time T ∈ U [550, 750], release duration240

∆T ∈ U [2100, 2300], mass-loading rate M ∈ U [900, 1100], and source location (X, Y ) ∈241

(U [100, 300]× U [500, 700]).242
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4. Results243

Before starting the analysis of the results, Table 2 shows the CPU consumption for all244

scenarios. Recall that in the r-EnKF (S0) there are 60 forecasting steps starting from time245

0, and 60 assimilation steps to update the parameters 60 times based on the observations246

at 25 wells; whereas, in the ES-MDA the number of model runs for the whole simulation247

period is equal to the number of assimilation steps, but at each assimilation step, there are248

1500 observations (25 observation locations times 60 time steps). For the current model and249

setup, the ES-MDA is cheaper to run than the r-EnKF up until data are assimilated four250

times. When ten iterations are performed, the ES-MDA costs two and half times that of the251

r-EnKF.252

Table 2: Definition of scenarios and CPU time consumption. The number in parenthesis refers to the number
of data assimilation steps used in the ES-MDA. (ES would be equivalent to ES-MDA(1))

Method Scenario CPU in s CPU in % of S0

r-EnKF S0 16366 100%

ES S1 4981 30%

ES-MDA(2) S2 9526 58%

ES-MDA(4) S3 17937 110%

ES-MDA(6) S4 27432 149%

ES-MDA(8) S5 34936 210%

ES-MDA(10) S6 42422 259%

The r-EnKF, the ES and the ES-MDA will be used to assimilate the piezometric head253

and concentration data at the 25 observation locations. This assimilation will result in an254

ensemble of updated parameters (for the spatial distribution of hydraulic conductivity and255

for the parameters defining the contaminant source) that are used to produce an ensemble256
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of piezometric heads and concentrations past the assimilation period (60th time step) for 40257

time steps more. The performance of the different scenarios will be evaluated by comparing258

the different final ensembles to their corresponding counterparts in the reference aquifer.259

Figure 4 shows the ensemble mean and the ensemble variance of the updated log-conductivities260

for scenarios S0 to S3 and S6. (The corresponding maps for S4 and S5 for this and following261

figures are shown in the appendix.) The ensemble mean shows how the main patterns of262

variability of the reference are captured by the updated ensemble, and the ensemble variance263

shows the local variability of the updated log-conductivities. From a purely qualitative point264

of view it is clear that the r-EnKF does a good job in capturing the reference patterns with265

a small local uncertainty where the ensemble variance is close to zero, that the ES is able to266

extract patterns which are, overall, similar to the reference but still far from them and with267

a substantial local uncertainty, and that the ES-MDA gets better the more times data are268

assimilated, with scenario S6 —for which data are assimilated 10 times —giving the best269

results.270

The above analysis can be quantified by computing the average absolute bias (AAB) and271

the ensemble spread (ESp). The AAB is used to measure the average absolute deviation272

between the updated values and the reference ones. The ESp measures the precision of the273

ensemble of updated realizations by calculating the root square of the ensemble variance.274

Their expressions are the following275

AAB =
1

Ne

Ne∑

i=1

1

Nr

Nr∑

j=1

| lnKi,j − lnKi,ref |, (14)

276

ESp =

√√√√ 1

Ne

Ne∑

i=1

σ2
i , (15)

where Ne is the number of model elements, Nr is the number of realizations, lnKi,ref is277

the reference log-conductivity value at node i, lnKi,j is the log-conductivity at node i for278
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Figure 4: Scenarios S0-S3 and S6. Ensemble mean (left column) and ensemble variance (right column) of
updated log-conductivity realizations. 17



realization j and σi is the log-conductivity ensemble variance at node i.279

Figure 5 shows the AAB and ESp of lnK and of the parameters defining the contaminant280

source for all scenarios, computed before any data assimilation and after data have been281

assimilated over the first 60 time steps. The values, as expected, are the highest for the282

initial ensembles. They are drastically reduced for the r-EnKF except for ∆T and M . The283

smoother provides increasingly smaller values as the number of assimilation steps increases,284

with the best values for S6 after ten iterations. Specifically, the AAB and ESp of the updated285

lnK, and Y for scenarios S3-S6 is close to that of scenario S0, and the AAB and ESp of the286

updated T for scenario S6 is close to that of scenario S0; while, the AAB and ESp of the287

updated X, ∆T and M of scenarios S3-S6 is smaller than that of scenario S0. From these288

results we could conclude that, after four assimilation steps, the ES-MDA starts to perform289

better than the r-EnKF.290
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Figure 5: Scenarios S0-S6. Average absolute bias (AAB) and ensemble spread (ESp) of log-conductivity
(lnK), source location (X and Y ), initial release time (T ), release duration (∆T ), and mass-loading rate
(M) computed on the initial parameters and on the updated parameters for the different scenarios after 60
time steps.

Figure 6 shows the piezometric head distribution at the 60th time step computed with the291

final updated parameters for scenarios S0 to S3 and S6. The maps show, in the left column,292
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the piezometric head distributions for an individual ensemble member (realization #300), in293

the center column, the ensemble mean obtained as the local mean of the piezometric head294

at each node through the 400 realizations, and in the right column the ensemble variance.295

Please, notice that the middle column with the ensemble mean piezometric heads is not the296

solution of the state equations in the ensemble log-conductivity average of Fig. 4. An analysis297

of these maps shows the robustness of the r-EnKF (S0) that produces an ensemble mean298

map quite close to the reference one (upper right corner in Fig. 3) and with little variability299

everywhere. The smoother performs well when comparing the average ensemble with the300

reference map, but the uncertainties associated are quite large, especially in scenarios S1 and301

S2; there is a need to assimilate the data at least four times (S3) to get a variance reduction302

that approximates that of the r-EnKF.303

Figure 7 shows the concentration plume computed with the parameters updated using304

observations at 60 time steps. In the left column, the plume in realization #300, in the305

center, the ensemble mean of the 400 plumes computed in the 400 realizations with updated306

parameters, and in the right column the local concentration variance computed at each node307

through the ensemble of realizations. Please, notice that, as with piezometric heads, the308

middle column with the ensemble mean concentrations is not the solution of the state equa-309

tions in the ensemble log-conductivity average of Fig. 4. An analysis of these maps reaches310

the same conclusions as for the piezometric heads, the r-EnKF is quite robust producing an311

ensemble mean plume quite close to the reference (lower right corner in Fig. 3) and with312

lower variability. The smoother performs well only when the number of iterations is large313

(S3 and S6); for the cases of one, and two iterations (S1 and S2, respectively), the ensemble314

mean plume is quite spread, the local variance is large, and the plume in the single selected315

realization shown in the left column of the figure can be quite far from the reference one.316

Figure 8 shows the time evolution of piezometric heads and solute concentrations at the317

two verification wells (#1 and #2) computed using the initial ensembles of contaminant318
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Figure 6: Scenarios S0-S3 and S6. Piezometric heads as computed with the updated parameters at the end
of the 60th time step. From left to right, heads in realization #300; ensemble mean, and ensemble variance.20
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Figure 7: Scenarios S0-S3 and S6. Contaminant plume as computed with the updated parameters at the
end of the 60th time step. From left to right, Contaminant plume in realization #300; ensemble mean of all
contaminant plumes, and ensemble variance of all contaminant plumes.
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source parameters and log-conductivities. The spread of predicted values is quite large319

since no observation has been assimilated yet. Figure 9 and 10 show the time evolution of320

piezometric heads and solute concentrations computed with the updated source parameters321

and log-conductivity fields after the assimilation of the observations during the first 60 time322

steps, respectively. The spread of the curves after the assimilation is considerably reduced,323

especially for scenarios S0, S3 and S6. Although these two wells were not used during the324

assimilation, the reproduction of piezometric heads, even after the assimilation period ends325

is very good both for the r-EnKF (S0) and for the ES-MDA with four and ten iterations (S3326

and S6), with the former performing slightly better than the latter.327
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Figure 8: Time evolution of piezometric heads (top row) and solute concentrations (bottom row) at the two
verification wells #1, and #2 computed on the initial ensemble of source information parameters and lnK.
The red line corresponds to the the reference field. The black lines correspond to the 5 and 95 percentiles
of all realizations, and the green line corresponds to the median. The vertical dashed lines mark the end of
the assimilation period.

Up to here, regarding the characterization of the log-conductivity field and the repro-328

duction of the state variables, the r-EnKF seems to outperform the ES-MDA with four329
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Figure 9: Scenarios S0-S3 and S6. Time evolution of the piezometric heads at the two verification wells
#1, and #2 computed with the updated ensemble of source information parameters and lnK after the
assimilation of the observations of the first 60 time steps. The red line is the evolution of the piezometric
head in the reference. The black lines correspond to the 5 and 95 percentiles of all realizations, and the
green line corresponds to the median. The vertical dashed lines mark the end of the assimilation period.

23



#1 #2

S0

Time

C
o

n
c
e

n
tr

a
ti
o

n
0 2000 4000 6000 8000 10000

0

5

10

15

20 #1: S0

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #2: S0

S1

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #1: S1

Time
C

o
n

c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #2: S1

S2

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #1: S2

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #2: S2

S3

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #1: S

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #2: S

S6

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #1: S6

Time

C
o

n
c
e

n
tr

a
ti
o

n

0 2000 4000 6000 8000 10000

0

5

10

15

20 #2: S6

Figure 10: Scenarios S0-S3 and S6. Time evolution of the solute observations at the two verification wells #1,
and #2 computed with the updated ensemble of source information parameters and lnK after the assimilation
of the solute observations of the first 60 time steps. The red line is the evolution of the concentration in
the reference. The black lines correspond to the 5 and 95 percentiles of all realizations, and the green line
corresponds to the median. The vertical dashed lines mark the end of the assimilation period.
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iterations. The AAB(lnK) and ESp(lnK) are the smallest for S0 (r-EnKF), and the piezo-330

metric head and concentration predictions are also the best for S0. Only the ES-MDA with331

ten assimilation steps (S6) gives comparable results, although at a CPU cost 2.6 times larger332

than the r-EnKF.333

However, when we analyze the reproduction of the contaminant source parameters, we334

have already discussed Figure 5 showing that the ES-MDA is superior to the r-EnKF. This335

observation is complemented by the results shown in Figure 11, in which boxplots of the336

initial ensemble and the updated ensemble of the source parameters for the six scenarios are337

shown. Some observations that can be derived from this figure are: the r-EnKF (S0) produces338

good estimates for X, Y and T with a considerable reduction of uncertainty with respect339

to the initial ensemble, while the estimates for ∆T and M are somehow biased without a340

large reduction of uncertainty; the ES (S1) is not effective, the spreads of the ensemble is341

almost the same as for the initial ensemble prior to assimilation for all parameters; the ES-342

MDA starts to work well after four iterations, and gives the best results for ten iterations,343

outperforming the r-EnKF, particularly for parameters X, ∆T and M . The difficulty on344

estimating ∆T and M is due to the fact that several combinations of these two parameters345

can result in very similar sets of observations, making more difficult their identification with346

a reduction of uncertainty. The only way to solve this indetermination is the collection of347

additional observations. This is precisely the reason why the ES-MDA with ten iterations348

works better than the r-EnKF for these two parameters: the r-EnKF uses all observational349

data only once in a piecewise way, whereas the ES-MDA uses all observation data altogether350

ten times.351
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Figure 11: Scenarios S0-S6. Boxplots of the source location (X and Y ), initial release time (T ), release
duration (∆T ), and mass-loading rate (M) computed with the initial parameters and with the updated
parameters after 60 time steps. The dashed horizontal black line corresponds to the reference value.

5. Summary and Discussion352

The purpose of this paper is to analyze the ability of the ES-MDA for the identification of353

contaminant source parameters together with a spatially heterogeneous hydraulic conductiv-354

ity field in comparison with the r-EnKF. The results show that the ES-MDA has the ability355

to estimate hydraulic conductivity field and identify the contaminant source parameters —356

including source location, initial release time, release duration and mass-loading rate– with a357

proper number of iterations, besides, the results also indicate that these estimate parameters358

are good enough to provide good forecasts of solute concentrations and piezometric heads.359

It is also worth pointing out that this is the first time that the ES-MDA is applied for360

contaminant source identification.361

Furthermore, the comparison over all scenarios (including also the scenarios in the ap-362

pendix) between the r-EnKF and the ES-MDA, shows that the ES-MDA performs better363

than the r-EnKF, especially for the identification of contaminant source parameters when364

using enough number of iterations. For the specific test done here, the ES-MDA starts to365
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outperform the r-EnKF after four iterations, needing almost the same computer time as that366

for r-EnKF. The ES-MDA can perform even better using more iterations (and at a higher367

computational cost). Part of the reason of the better performance of ES-MDA than of r-368

EnKF is the fact that the number of observations is much larger for the ES-MDA, which is369

specially important for the proper identification of mass-loading and release duration. These370

two parameters are identified with large uncertainty by the r-EnKF.371

It hovers over the whole paper whether an analysis on a single synthetic test case on372

seven scenarios is sufficient to draw general conclusions about the comparison between the373

r-EnKF and the ES-MDA. The answer is no, but drawing general conclusions was not the374

purpose of this paper, its purpose was to test the newcomer ES-MDA against the r-EnKF in375

a setting in which the r-EnKF had already proven to be quite effective. Given our extensive376

experience with the application of the r-EnKF, we can forecast that a sensitivity study to377

the number of observations will show that there is a threshold number below which it will be378

impossible to identify the source; or that reducing the number of members of the ensemble379

will require the use of localization and covariance inflation techniques to reach similar results,380

with a threshold number of realizations below which identification will be impossible; or381

that including a more uncertain prior distribution for the parameters describing the source382

will have little impact to effectively identify the source beyond increasing the number of383

assimilation steps.384

While the just-mentioned sensitivity analyses are worth to carry out in a further study,385

there is an even more interesting issue that has not been addressed neither with the r-EnKF386

nor the ES-MDA, which is the analysis of more complex contamination events, such as387

non-punctual or multiple source ones. Addressing these events would require a thoughtful388

parameterization of the source.389
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Appendix A. Results of scenarios S4 and S5390

Results for scenarios S4 and S5 are displayed in Figures A.12 to A.15. The details are as391

follows: Figure A.12 shows the ensemble mean and ensemble variance of the updated lnK;392

Figure A.13 and A.14 show the 300th realization, ensemble mean and ensemble variance of393

piezometric heads and of the contaminant plume at the end of the 60th time step, respec-394

tively; Figure A.15 and A.16 show the time evolution of the piezometric heads and of solute395

concentrations at the two verification wells #1, and #2 computed with the updated source396

parameters and hydraulic conductivities.397
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Figure A.12: Scenarios S3-S4. Ensemble mean (left column) and ensemble variance (right column) of updated
log-conductivity realizations. (This figure complements Figure 4.)
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Figure A.13: Scenarios S4-S5. Piezometric heads computed with the updated parameters at the end of the
60th time step. From left to right, heads in realization #300; ensemble mean, and ensemble variance. (This
figure complements Figure 6.)
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Figure A.14: Scenarios S4-S5. Contaminant plume computed with the updated parameters at the end of the
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Figure A.15: Scenarios S4-S5. Time evolution of the piezometric heads at the two verification wells #1, and
#2 computed with the updated ensemble of source information parameters at the end of the 60th time step.
The red line is the evolution of the piezometric head in the reference. The black lines correspond to the 5
and 95 percentiles of all realizations, and the green line corresponds to the median. The vertical dashed lines
mark the end of the assimilation period. (This figure complements Figure 9.)
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Figure A.16: Scenarios S4-S5. Time evolution of the solute concentrations at the two verification wells #1,
and #2 computed with the updated ensemble of source information parameters at the end of the 60th time
step. The red line is the evolution of the solute concentration in the reference. The black lines correspond
to the 5 and 95 percentiles of all realizations, and the green line corresponds to the median. The vertical
dashed lines mark the end of the assimilation period. (This figure complements Figure 10.)
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Xu, T., Gómez-Hernández, J.J., 2015b. Probability fields revisited in the context of ensemble525

Kalman filtering. Journal of Hydrology 531, 40–52.526
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