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Abstract

The source location and the time history of a pollutant released in an aquifer

are very relevant information for the design of effective remediation strate-

gies. Usually, their identification requires solving an inverse problem when

the only available information about the groundwater contamination event

is a sparse set of concentration data collected in the aquifer at a few points

downstream from the source. Here, a novel approach is proposed to solve the

inverse problem: the use of the Ensemble Smoother with Multiple Data As-

similation (ES-MDA) in the context of source contamination identification.

This method is used for the simultaneous determination of the time history

and the source location of a pollutant release based on observed concentra-

tion data and a calibrated numerical model of groundwater flow and mass
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transport in the aquifer. The ES-MDA is demonstrated in two case studies.

The first one is based on an analytical solution of the flow and transport

equations, aimed at the estimation of the source location and the release his-

tory of a nonreactive pollutant spreading in a two-dimensional homogeneous

aquifer from a point source. For this case, different alternatives are consid-

ered for the spatial distribution of the observation points, the concentration

sampling frequency, the ensemble size and the use of covariance localization

and covariance inflation techniques in the formulation of the smoother. The

purpose of this case is to test the new approach, analyze its performance

and also to identify the conditions that render the problem ill-posed and,

therefore, without solution; also, in this case, a new spatiotemporal iterative

localization is presented. In the second case study, we use real data collected

in a laboratory sandbox that reproduces a vertical cross-section of an uncon-

fined aquifer with two-dimensional quasi-parallel flow between constant-head

boundaries. The results show that the location, time and number of obser-

vations, the ensemble size and the application of covariance localization and

covariance inflation techniques have an impact on the final solution. A well-

designed monitoring network and the application of covariance corrections

improve the performance of the ES-MDA and help avoiding ill-posedness

and equifinality. The application to laboratory data validates the poten-

tial of ES-MDA to simultaneously estimate the time history and the source

location of a pollutant released in groundwater in real cases.

Keywords: Inverse modeling, Ensemble Kalman filter method,

Groundwater contaminant source, Covariance localization, Stochastic

analysis
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1. Introduction1

Monitoring, protection and restoration of aquifers have received a lot of2

attention in the past decades, thanks to the growing interest in environmental3

issues and the importance of groundwater quality for water supply. The first4

steps in any remediation strategies of a polluted aquifer should be the iden-5

tification of the source location and the release history of the contaminant.6

They would allow to identify the cause of the contamination, to implement7

an effective remediation plan and to share the costs among the responsible8

parties.9

When groundwater contamination is first detected, the source location10

and the release history are usually unknown. Recovering these variables11

from sparse data of the spatial distribution of the pollutant concentration12

in the aquifer is a type of inverse problem. Inverse problems are inherently13

ill-posed, which means that the solution is generally non-unique and could14

be not stable to small perturbations of the data. Several deterministic and15

stochastic methods have been proposed to solve this problem. The first cat-16

egory includes Tikhonov regularization (Skaggs and Kabala, 1994); nonlin-17

ear optimization with embedding (Mahar and Datta, 1997); non-regularized18

nonlinear least squares (Alapati and Kabala, 2000); progressive genetic al-19

gorithms (Aral et al., 2001); constrained robust least squares (Sun et al.,20

2006) and heuristic harmony search algorithms (Ayvaz, 2010). The sec-21

ond category includes probability-based methods such as statistical pattern22

recognition (Datta et al., 1989); minimum relative entropy (Woodbury and23

Ulrych, 1996; Woodbury et al., 1998; Cupola et al., 2015); geostatistical ap-24

proaches (Snodgrass and Kitanidis, 1997; Michalak and Kitanidis, 2004a,b;25
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Neupauer et al., 2000; Butera and Tanda, 2003; Butera et al., 2006, 2012;26

Gzyl et al., 2014; Cupola et al., 2015); empirical Bayesian methods combined27

with Akaike’s Bayesian Information Criterion (Zanini and Woodbury, 2016);28

Bayesian global optimization (Pirot et al., 2019) and ensemble Kalman filter29

methods (Xu and Gómez-Hernández, 2016, 2018; Chen et al., 2018; Xu et al.,30

2020).31

However, only a few of the presented studies allow to simultaneously32

identify the source location and the release history of a groundwater contam-33

inant. The method proposed by Aral et al. (2001) used a progressive genetic34

algorithm to solve an iterative nonlinear optimization problem, in which the35

source location and release history were explicitly defined as continuous un-36

known variables and contaminant concentrations were used as observations.37

Sun et al. (2006) combined a constrained robust least squares estimator with38

a global optimization solver for iteratively identifying release histories and39

source locations on the basis of concentration measurements. Ayvaz (2010)40

used an optimization method based on the heuristic harmony search algo-41

rithm to identify locations and release histories for pollution sources, mini-42

mizing residuals between the simulated and measured contaminant concen-43

trations. All these methods are deterministic and do not allow to quantify44

the uncertainty of the results.45

Butera et al. (2012) applied a Bayesian geostatistical approach for the46

simultaneous identification of the release function and the source location47

based on concentration data. The methodology has then been tested by48

Cupola et al. (2015) on real data collected in a laboratory sandbox. The49

method requires a preliminary delineation of possible sources and some hy-50
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potheses about the structure of the unknown release function. The approach51

aims to recover the contaminant release history considering all the possible52

sources simultaneously and selecting the location where the highest amount53

of pollutant is estimated. The method adopts a transfer function approach54

for the solution of the forward problem (Butera et al., 2006).55

We propose a new procedure for the joint identification of the source56

location and the release history of a pollutant in an aquifer: the use of57

an Ensemble Smoother with Multiple Data Assimilation (ES-MDA) in the58

context of contaminant source identification. The ES-MDA, introduced by59

Emerick and Reynolds (2012, 2013a), has been mainly applied to reservoir60

history matching problems (Emerick and Reynolds, 2013b; Fokker et al.,61

2016; Zhao et al., 2016), but its popularity is growing also in hydrology62

(Lan et al., 2018; Li et al., 2018, 2019; Kang et al., 2019; Song et al., 2019;63

Todaro et al., 2019; Bao et al., 2020). It is an iterative data assimilation64

method based on the Ensemble Kalman Filter (EnKF), initially proposed65

by Evensen (1994). In particular, the ES-MDA is a variant of the Ensemble66

Smoother (ES) proposed by van Leeuwen and Evensen (1996). Unlike the67

EnKF, which performs a sequential update one step at a time assimilating the68

data as they are collected, the ES and the ES-MDA simultaneously assimilate69

all the available observation data. Also, the ES-MDA iteratively assimilates70

the same data multiple times leading to better results for strongly nonlinear71

problems than the ES, which performs a single global update (Evensen, 2018).72

The main advantages of the ES-MDA are: i) its capability to be used73

with almost any forward model for the solution of inverse problems; ii) the74

possibility of being implemented with parallel computing, and iii) its ca-75
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pability to select a best estimate under different criteria and to assess its76

uncertainty, through the analysis of an ensemble of realizations. Compared77

with the Bayesian geostatistical approach (Butera et al., 2012), the ES-MDA78

does not require the explicit time-consuming calculation of sensitivity matri-79

ces to solve the inverse problem, since they are embedded in the covariance80

matrices of the ensemble. Moreover, it allows the simulation of groundwater81

flow and mass transport even in complex cases.82

As all the inverse approaches, also the proposed method computes the83

unknown parameters based on the knowledge of observed data. In this work,84

the parameters to identify are represented by the spatial coordinates of the85

contaminant source location and the time-discretized release history; the86

observations are sparse concentration data measured at different monitoring87

locations and times. Notice that, in general, piezometric head data will be88

available, which could also be assimilated and used in the solution of the89

inverse problem; it is not the case in the laboratory experiment described90

next, for which no piezometric head data were available.91

Two applications of the ES-MDA are presented. First, the ES-MDA is92

used to solve a synthetic case from the literature with the purpose of show-93

ing its capabilities and to obtain guidelines for its application to real cases.94

Second, the ES-MDA is used to validate the methodology on experimental95

data collected in a laboratory sandbox that mimics an unconfined aquifer.96

The synthetic case study allows to investigate in detail the inverse pro-97

cedure with a limited computational effort. In particular, we evaluated the98

impact of the observation sampling scheme and different algorithm settings99

in the context of ill-posedness of inverse problems. The ill-conditioning in-100
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creases as uncertainties about the model increase and as the quantity and101

quality of the observed data decrease. Therefore, it is important to design102

a monitoring network that makes a good compromise between valuable in-103

formation about the concentration evolution and the costs of monitoring104

actions, which would limit the number of monitoring points.105

The study also addresses the problem of undersampling present in106

ensemble-based methods; it occurs when the ensemble size is so small that107

it is not statistically representative of the variability of the unknowns. Al-108

though large ensembles mitigates this problem, the computational cost in-109

creases with the ensemble size; therefore, it is advantageous to solve the prob-110

lem with the smallest possible ensemble. Covariance localization has been111

developed to overcome this problem; it helps in removing long-range spuri-112

ous correlations and mitigates the ensemble rank deficiency, allowing the use113

of a small number of realizations. Localization can be achieved by different114

ways (Houtekamer and Mitchell, 1998; Hamill et al., 2001; Anderson, 2007b;115

Chen and Oliver, 2009). Covariance localization is generally based on the116

spatial distance between parameter locations and observations; in this study,117

parameters and observations are also time-dependent, furthermore the dis-118

tance between them is not fixed since the source position is unknown, what119

complicates the use of standard localization techniques. Todaro et al. (2019)120

proposed a temporal localization considering time lapses rather than spatial121

distances. A new localization approach is presented, which takes into account122

both spatial and temporal distances and iteratively updates the distance be-123

tween the unknown parameters and the observations. Covariance inflation124

is also considered to overcome undersampling problems (Anderson and An-125
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derson, 1999; Anderson, 2007a; Li et al., 2009; Liang et al., 2011; Wang and126

Bishop, 2003; Zheng, 2009); it modifies the original ES-MDA adjusting the127

ensemble spread to avoid smoother divergence.128

Hence, the presented study aims to provide an efficient methodology to129

solve the contaminant source identification problem. The manuscript is or-130

ganized as follows: first, the forward problem, its solution and the ES-MDA131

procedure are described. Then, the synthetic and the laboratory case study132

are presented and discussed. The manuscript ends with some conclusions.133

2. Methods134

2.1. Forward problem135

The forward problem is based on the groundwater flow and mass trans-136

port equations. In particular, we consider an incompressible fluid in satu-137

rated porous media and a non-reactive contaminant injected in the aquifer138

at a point subject to advection and dispersion (Bear, 1972; Bear and Ver-139

ruijt, 1987). Assuming a uniform porosity, initial condition C (x, 0) = 0, and140

boundary condition, C(∞, t) = 0, where C (x, t) [ML−3] is the solute concen-141

tration, the transport equation can be solved by the convolution integral142

C (x, t) =

! t

0

s (x0, τ) g (x, t− τ) dτ. (1)

The term s (x0, t) [MT−1] is the the contaminant flux injected into the aquifer143

through the source located at x0 given by144

s (x0, t) = C0 (t) · q0 (x0, t) , (2)

where C0 (t) [ML−3] is the concentration of the released pollutant at time t145

and q0 (x0, t) [L
3T−1] is the injection flow rate. The term g (x, t− τ) is a146
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Kernel function that represents the response at location x and time t to a147

pulse injection at the source location x0 and time τ .148

Defining with D (x) [L2T−1] the hydrodynamic dispersion coefficient ten-149

sor and with v (x, t) [LT−1] the effective flow velocity, in two-dimensional150

cases, with uniform flow, vy = 0 and constant dispersion coefficients, the151

Kernel function can be determined analytically. With these assumptions,152

the solution of Eq. (1) is153

C (x, y, t) =

! t

0

s (x0, y0, τ)
1

4π
"

DxDy (t− τ)

· exp
#
−((x− x0)− vx (t− τ))2

4Dx (t− τ)
− (y − y0)

2

4Dy (t− τ)

$
dτ.

(3)

For complex cases in which the flow field is not uniform (for instance, non-154

isotropic and heterogeneous aquifers), the advection-dispersion equation can155

not be solved analytically and it is necessary to employ numerical methods.156

Here, for the second case study for which the analytical solution cannot be157

used, the flow equation is solved using the numerical model MODFLOW158

(Harbaugh, 2005), and the transport equation with MT3DMS (Zheng and159

Wang, 1999).160

2.2. Ensemble smoother with multiple data assimilation161

In this work, the iterative Ensemble Smoother with Multiple Data Assim-162

ilation method (ES-MDA) is used to solve a parameter estimation problem163

in which the unknown parameters are updated based on the available obser-164

vations. The ES-MDA procedure is extensively described by Emerick and165

Reynolds (2013a) and Evensen (2018); here, an overview of the method and166

the scheme to perform the spatiotemporal iterative localization are presented.167
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The vector of unknown parameters is defined as: X = (xs, ys, s1, s2, ..., sk)
T ,168

where xs is the x-coordinate of the source, ys is the y-coordinate and169

(s1, s2, ..., sk) is the discretized-in time release history; the number of param-170

eters to be estimated depends on the duration of the groundwater pollution171

event to be simulated and the time step selected for the discretization. The172

vector of observations (D) is composed of measured concentrations at differ-173

ent times and monitoring locations. A first fundamental assumption is that a174

reliable forward model is available since the relationship between parameters175

and observations must be known; in our case, the forward model is repre-176

sented by a calibrated groundwater flow and solute transport model, that is,177

the parameters of both models will not be subject of further identification.178

Having a calibrated flow and transport model is probably not a very realistic179

assumption but the purpose of the current paper is the testing of the ES-180

MDA for the identification of time-varying point contaminant sources. The181

simultaneous estimation of the parameters controlling the flow and transport182

equations is left for further investigation.183

The ES-MDA scheme can be summarized in the three following steps:184

1. Initialization step.185

An initial ensemble of parameters must be defined taking into account186

all the available prior information. Often, no data are available and187

the ensemble is generated using prior distributions based on expert188

knowledge. The release history is modeled as a continuous function189

of time and, for this reason, imposing some degree of continuity in190

the initial realizations will facilitate the identification process. This191

can be achieved with proper parameterization of the time functions to192
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be generated. The ensemble of the spatial coordinates of the source193

is generated using random values selected over a uniform distribution194

wide enough to bound the true location. After the initialization step,195

the number of iterations has to be decided and the next two steps are196

repeated as many times as iterations there are.197

2. Forecast step.198

Each realization j of the ensemble is used as input to the forward199

model and an ensemble of predictions (Y) at measurement locations200

over time is obtained. For the first iteration, Y is generated using201

the initial ensemble of parameters; then the ensemble of predictions is202

generated using the updated parameters from the last iteration,203

Yj,i = ψ (Xj,i) . (4)

The operator ψ (·) denotes the forward model and i is the iteration204

index.205

3. Update step.206

Parameters are updated for each realization of the ensemble j and207

iteration i according to the following equation208

Xj,i+1 = Xj,i +Ci
XY(C

i
YY + αiR)−1 (D+

√
αiεj −Yj,i) , (5)

where εj is the observation error, which is drawn from a Gaussian209

distribution of mean zero and covariance matrix R, N (0,R); αi is a210

coefficient that, at each iteration i, inflates the measurement error and211

its covariance matrix. The values of αi are chosen following a decreas-212

ing sequence; in this way, the magnitude of the updates for the first213

iterations, when the misfit between predictions and observation may be214
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too large, is small to reduce the magnitude of the initial updates; also,215

the coefficients αi must satisfy the following expression (Emerick and216

Reynolds, 2013a)217

N%

i=1

1

αi

= 1, (6)

where N is the total number of iterations. Ci
XY is the cross-covariance218

matrix between parameters and predictions and Ci
YYis the autocovari-219

ance matrix of predictions. They are computed from the ensemble at220

each iteration i as221

Ci
XY =

1

Ne − 1

Ne%

j=1

&
Xj,i −Xi

' &
Yj,i −Yi

'T
, (7)

222

Ci
YY =

1

Ne − 1

Ne%

j=1

&
Yj,i −Yi

' &
Yj,i −Yi

'T
, (8)

where Ne is the total number of ensemble realizations, Xi is the en-223

semble mean of the parameters and Yi is the ensemble mean of the224

predictions. When covariance localization is applied, Eq. (7) and (8)225

are modified as follows226

(Ci
XY = ρiXY ◦Ci

XY, (9)
227

(Ci
YY = ρYY ◦Ci

YY. (10)

where ◦ represents the elementwise multiplication and ρiXY and ρYY228

are correlation matrices based on spatial and temporal distances be-229

tween parameters and observations and between observations and ob-230

servations, respectively. The correlations in space (ρiXY,s, ρYY,s) and231
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time (ρXY,t, ρYY,t) are computed independently and then coupled via232

a Schur product233

ρiXY = ρiXY,s ◦ ρXY,t, (11)
234

ρYY = ρYY,s ◦ ρYY,t. (12)

We use the fifth-order correlation function introduced by Gaspari and235

Cohn (1999), which smoothly reduces the correlations between points236

for increasing distances and cuts off long-range correlations above a237

specific distance238

ρ =

)
********+

********,

−1
4

&
δ
b

'5
+ 1

2

&
δ
b

'4
+ 5

8

&
δ
b

'3 − 5
3

&
δ
b

'2
+ 1, 0 ≤ δ ≤ b,

1
12

&
δ
b

'5 − 1
2

&
δ
b

'4
+ 5

8

&
δ
b

'3
+ 5

3

&
δ
b

'2

−5
&
δ
b

'
+ 4− 2

3

&
δ
b

'−1
, b ≤ δ ≤ 2b,

0 δ ≥ 2b,

(13)

where δ represents the parameter-observation or observation-observation239

distances in space (δiXY,s, δY Y,s) or time (δXY,t, δY Y,t). The spatial dis-240

tances between parameters and observations are unknown since the241

coordinates of the source are to be estimated; therefore, δiXY,s must242

be updated at each iteration i considering the source located at the243

coordinates given by the ensemble means of x0 and y0. The coeffi-244

cient b characterizes the space (bs) or time (bt) distance at which the245

covariances become zero.246

At the end of each update step, linear relaxation and covariance infla-247

tion are used to prevent smoother divergence. Linear relaxation reduces248

the magnitude of the update at the end of an iteration. When linear249
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relaxation is used the expression of Eq. (5) is replaced with250

(Xj,i+1 = (1− w)Xj,i+1 + wXj,i, (14)

where w is a relaxation coefficient between 0 and 1. Covariance inflation251

is applied using the scheme proposed by Anderson and Anderson (1999)252

where the ensemble is linearly inflated around its mean by an inflation253

factor (r) slightly larger than 1254

(Xj,i+1 = r
&
Xj,i+1 −Xi+1

'
+Xi+1. (15)

In this work, the update step is performed in log-space in order to255

prevent the appearance of unphysical negative values. The vector of256

parameters is log transformed before the update step and back trans-257

formed into the parameter space before the forecast step.258

Then, the scheme is repeated from step 2, after setting Xj,i = Xj,i−1, until259

the last iteration.260

3. Case studies261

The proposed approach is demonstrated on two case studies. First, the262

ES-MDA is applied to an analytical case study with the aim to show the263

capabilities of the method to simultaneously identify a contaminant source264

location and its release history in an aquifer. In this case, the forward model265

requires a small computational time and the results can be compared with266

a reference solution. This also allows to investigate different configurations267

of the inverse algorithm, in order to determine the optimal setting to be268

used for real cases. The second application validates the methodology on269

experimental data collected in a laboratory sandbox experiment.270
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3.1. Analytical case271

The analytical case simulates a pollution event in an infinite homogeneous272

two-dimensional aquifer, with uniform flow, as result of the injection of a273

nonreactive contaminant at a point (Butera and Tanda, 2003). It is assumed274

that the water discharge q0 (x0, t) is of unit value and small enough such275

that it does not affect the uniform groundwater flow. Therefore, the release276

history s (x0, t), defined in Eq. (2), is equivalent to the concentration history277

C0 (t). All quantities are considered with unspecified but consistent units.278

The uniform velocity and the dispersion coefficients are assumed known:279

v = 1, Dx = 1 and Dy = 0.1. We use the same expression for the release280

function sr (x0, t) used elsewhere (Skaggs and Kabala, 1994; Woodbury and281

Ulrych, 1996; Snodgrass and Kitanidis, 1997; Butera and Tanda, 2003; Butera282

et al., 2012; Zanini and Woodbury, 2016) to define the reference solution283

sr (x0, t) = exp

-
−(t− 130)2

50

.
+ 0.3 exp

-
−(t− 150)2

200

.

+ 0.5 exp

-
−(t− 190)2

98

.
.

(16)

The actual source location x0 is x0 = 50 and y0 = 20. The concentration284

history has a total duration of 300; it is discretized into 101 intervals with285

a time step of ∆t = 3 resulting in a total number of parameters to be esti-286

mated Np = 103 (the two spatial coordinates plus the 101 temporal solute287

fluxes). The reference release function, depicted in Fig. 1, is used to obtain288

the reference observations, which are computed by evaluating Eq. (3) using289

numerical integration.290

Different test cases are carried out to investigate the impact of the obser-291

vation sampling scheme, ensemble size, covariance localization and inflation292
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Figure 1: Analytical case: reference release history.

techniques. The test cases will be evaluated in terms of equifinality, that is,293

when different source functions are identified that are consistent with the ob-294

servations, and in terms of sensitivity to the initial ensemble values. For this295

purposes, for each test case, 100 experiments were performed to identify the296

source history changing only the random component of the initial ensemble297

and the observation measurement errors. At the end of each experiment, the298

performance of the method is evaluated using the following metrics:299

- The Nash-Sutcliffe efficiency criterion (NSE) to evaluate the agreement300

between the actual and estimated release history:301

NSE =

-
1−

/Np−2
i=1

&
X i − sr,i

'2
/Np−2

i=1 (sr,i − sr)
2

.
· 100, (17)

where Np− 2 is equal to 101, the number of intervals used to discretize302

s(t); sr,i represents the discretized source function and is the i-th actual303

amount of released contaminant, sr,i is the time average of the reference304

release history ( 1
Np−2

/Np−2
i=1 sr,d) and X i is the ensemble mean of the305

i-th estimated amount of released contaminant ( 1
Ne

/Ne

j=1 X
j
i , with Xj

i306
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the final estimate of parameter Xi in realization j). The closer to 100,307

the better.308

- The root mean square error (RMSE) between observations and model309

predictions:310

RMSE =

0/m
i=1

&
Di − Y i

'2

m
(18)

where Di is the i-th observed concentration and Y i is the ensemble311

mean of the i-th predicted concentration ( 1
Ne

/Ne

j=1 Y
j
i , with Y j

i the312

prediction of Yi in realization j). The closer to zero, the better.313

- The spatial distance between the true and estimated source location314

(L):315

L =

1
(xs − x0)

2 + (ys − y0)
2 (19)

where xs and ys are the ensemble means of the estimated spatial coor-316

dinates of the source and (x0, y0) is the true source location. The closer317

to zero, the better.318

These metrics are compared with reference threshold values to evaluate319

the performance of the method. We consider three cases: i) good perfor-320

mance when the reproduction of the observed concentrations is good, the321

identification of the source location is good and the identification of the re-322

lease function is good; ii) equifinality performance, when reproduction of323

the observed concentrations is good, but neither the source location nor the324

release function are well identified; iii) poor performance, otherwise:325

i) Good performance when326

RMSE < RMSEthr and NSE > NSEthr1 and L < Lthr327
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Table 1: Threshold values used to define test criteria.

RMSEthr 4σ

NSEthr1 70

NSEthr2 60

Lthr 5

ii) Equifinality performance when328

RMSE < RMSEthr and (NSE < NSEthr2 or L > Lthr)329

iii) Otherwise, fail.330

There is not a standard criterion for the definition of metric thresholds to as-331

sess goodness-of-fit (see e.g. Moriasi et al., 2007; Ritter and Muñoz-Carpena,332

2013). In this study, we consider the performance of the method to be good if333

NSE>0.7 and unsatisfactory if NSE<0.6. The fit between predictions and334

observations is considered to be good when the RMSE is less than the max-335

imum assumed error. Since the observation errors are normally distributed,336

the maximum error is defined as 4σ, where σ is its standard deviation. The337

selected threshold values (RMSEthr, NSEthr1, NSEthr2, Lthr) are summa-338

rized in Table 1. With these criteria, it is possible to define the percentage of339

successful tests, tests with multiple solutions and failed tests for each case,340

on the basis of the 100 experiments.341

3.1.1. Impact of the observation network geometry and sampling frequency342

The effect of the spatial distribution of the observation points is evaluated.343

For this case, a large ensemble was used to avoid the need of using localization344

or inflation techniques in the implementation of ES-MDA. The observation345
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network geometries used, displayed in Fig. 2, are:346

A. Concentrations collected at two monitoring points, located on the same347

line as the source (y = 20) at points (150, 20) and (200, 20), and 31348

sampling times from T = 0 up to T = 450 with a time step ∆t = 15.349

The total number of observations is m = 2 · 31 = 62.350

B. Concentrations collected at 21 monitoring points distributed on the351

same line of the source (y = 20) at uniform intervals between x = 90352

and x = 290; only one observation from each location at time T = 300.353

The total number of observations is m = 22 · 1 = 22.354

C. Concentrations collected at four monitoring points distributed on the355

same line of the source (y = 20) at x-coordinates 80, 115, 150 and356

185, and the same 31 sampling times of set A. The total number of357

observations is m = 4 · 31 = 124.358

D. Concentrations collected at four monitoring points vertically distributed359

on the line x = 150 and at y-coordinates 11, 16, 21 adn 26; the sam-360

pling times are the same as for sets A and C. The total number of361

observations is m = 4 · 31 = 124.362

A random observation error ε normally distributed with zero mean and363

variance 5·10−8 for all the performed tests is considered. The initial ensemble364

of parameters is composed of 1000 realizations. The realizations of the source365

coordinates are uniformly distributed random values selected in the range [5,366

80] for x and [10, 30] for y. The realizations of the release history are normal367
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Figure 2: Analytical case: location of the measurement points for sets A, B, C and D; the

red diamond is the actual source location.

functions described by the following expression:368

f (t) = ∆+ Γ · 1

σ
√
2π

e−
1
2(

t−µ
σ ), (20)

where t is the time, ∆ is a base amount of released concentration, Γ is369

the volume under the Gaussian function of mean µ and variance σ2. These370

coefficients are selected randomly from uniform distributions, ∆ ∈ U [1·10−10,371

1·10−3], Γ ∈ U [10, 40], µ ∈ U [89, 210] and σ ∈ U [6, 59]. The ES-MDA is run372

with 10 iterations and a decreasing series of α values following the sequence373

[113.33; 75.55; 50.37; 33.58; 22.39; 14,92; 9.95; 6.63; 4.42; 2.95].374

Table 2 summarizes the results of the four test cases, T denotes the per-375

centage of successful tests over the 100 synthetic experiments and E indicates376

the percentage of synthetic experiments in which equifinality is detected.377

The observation network geometry greatly impacts the final results. The378

synthetic experiments that give reliable solutions (NSE>70 and L<5) are379

less than 21% for observation sets A, B and C. Furthermore, equifinality380

occurs in large proportions for cases A and B, and to a lesser extent for case381
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Table 2: ES-MDA performance for observations sets A, B, C and D and ensemble size

Ne=1000. T indicates the percentage of successful tests and E the percentage of tests that

present equifinality.

A B C D

T:10% T:19% T:21% T:98%

E:53% E:34% E:12% E:0%

C. Only in case D, the ES-MDA is able to identify successfully the source382

location and the release function without equifinality.383

3.1.2. Impact of the ensemble size and application of localization and infla-384

tion techniques385

The test cases designed to investigate the impact of the ensemble size,386

covariance localization and inflation techniques make use of the observation387

set D. We tested five ensemble sizes Ne of 1000, 500, 250, 100 and 50 with388

and without covariance corrections. The number of iterations, α values,389

and distributions used to generate the initial ensembles are the same ones390

used in the previous section. Covariance localization is applied using the391

coefficients bs equal to 210 and bt equal to 300. The factor r used for the392

covariance inflation is equal to 1.01. The results obtained from each set of393

100 synthetic experiments are reported in Table 3. The ES-MDA performs394

better for increasing ensemble sizes and when covariance inflation and lo-395

calization techniques are applied. The percentage of successful tests is high396

for large ensembles, with even better numbers when covariance corrections397

are applied. The presence of equifinality is detected when the ensemble size398

reduces, but the corrections on the algorithm help to reduce it. The effects of399
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Table 3: ES-MDA performance for observation set D and ensemble sizes of 1000, 500, 250,

100 and 50, with and without corrections on the covariance calculation. T indicates the

percentage of succesful tests and E the percentage of tests that present equifinality.

Ne without corrections with corrections

1000
T:98% T:100%

E:0% E:0%

500
T:85% T:96%

E:8% E:0%

250
T:71% T:87%

E:19% E:4%

100
T:46% T:64%

E:43% E:14%

50
T:20% T:45%

E:60% E:29%

covariance and inflation techniques are more evident for small ensemble sizes;400

considering Ne equal to 100, the percentage of successful tests is 46% for the401

experiments without corrections and 64% for those with corrections; multiple402

solutions are detected for 43% of the experiments without corrections and for403

14% of those with corrections. The tests computed with the smaller ensemble404

size (Ne=50) lead to unsatisfactory results with a percentage of successful405

tests lower than 45% and a high probability of equifinality.406

For the sake of brevity, we show only the results of one of the tests per-407

formed with a small ensemble size of 100 realizations and with corrections in408

the computation of the covariance. Among the 100 synthetic experiments,409

we selected as the best estimate of the release function the median of the410
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Figure 3: Analytical case: actual and estimated release history with 95% uncertainty

interval resulting from a test performed with Ne = 100 and observation set D.

successful tests, and we use the set of successful tests to build uncertainty411

intervals about the median. In Fig. 3 the reference solution and the ensem-412

ble median with its 95% uncertainty interval are depicted. Figure 4 shows413

a comparison between observed and predicted concentrations at observation414

locations. The ES-MDA reproduces quite well the release history and the415

source location estimate is very close to the true one (x0=50, y0=20). The416

NSE is 80.46% and the ensemble means of x and y coordinates are, respec-417

tively, equal to 52.66 (±1.78, 95% uncertainty interval) and 20.00 (±0.06,418

95% uncertainty interval). The test leads to a good match between observa-419

tions and predictions with an RMSE at the last iteration equal to 3.3·10−4
420

and a narrow 95% uncertainty interval.421

3.2. Experimental case422

The second case study uses a laboratory experimental dataset following423

the work by Cupola et al. (2014). The experimental device is a sandbox that424
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Figure 4: Analytical case: observed and predicted concentrations with 95% uncertainty

interval.

reproduces an unconfined aquifer characterized by two-dimensional flow in a425

vertical plane. The sandbox has external dimensions of 120 cm × 14 cm × 73426

cm and it is made of three parts along the longitudinal direction: upstream427

and downstream tanks and an internal chamber of 95 cm × 10 cm × 70 cm,428

which contains the porous media consisting of glass beads with diameter in429

the range between 0.75 mm and 1 mm. The flow is governed by constant430

upstream and downstream water levels equal to 59.9 cm and 53.6 cm above431

the horizontal bottom of the tank, respectively. Fluorescein sodium salt was432

used as tracer solution and it was injected at a variable mass rate through an433

injector located in the upstream part of the sandbox at coordinates x = 14.25434

cm and y = 32.75 cm, that extends through the entire thickness of the sand-435

box. The test had a duration of 2200 s; the injection started at time 310436
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s and ended at 1800 s; the concentration of the fluorescein sodium salt is437

constant and equal to 20 mg·l−1, while the flow rate changes over time. The438

resulting mass rate ranges from 0 to about 55 µg·l−1 and presents three peaks439

of different magnitude. The observed concentrations are recorded over the440

entire sandbox by taking pictures with a digital camera and then converting441

luminosity into concentration through image processing techniques (for more442

details see Citarella et al. (2015)). Modeling is performed in two dimensions,443

since no lateral movement orthogonal to the sandbox plane is expected. A444

comparison between the results obtained with a two-dimensional model and445

a three-dimensional one is reported by Uribe-Asarta (2019), showing no dif-446

ferences between the two models.447

The inverse methodology requires a calibrated numerical model able to448

describe as accurately as possible the forward process. Groundwater flow449

was modeled with MODFLOW 2005 (Harbaugh, 2005) and mass transport450

with MT3DMS (Zheng and Wang, 1999). The effect of the injection on the451

background flow is not negligible; therefore, a transient flow model is con-452

sidered. The numerical model was preliminaryly calibrated by an inverse453

procedure not reported here for brevity. After the calibration, and for the454

purposes of the source identification, this model is used throughout. Table455

4 summarizes the parameters of the flow and transport models and Figure456

5 shows the hydraulic conductivity field after the calibration process. The457

estimated field is slightly heterogeneous and conductivity is anisotropic, even458

though the sandbox was filled with glass beads of almost the same size with459

the intention of reproducing an isotropic homogeneous field. Our interpreta-460

tion of the lower conductivity values towards the bottom of the sandbox is461
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Table 4: Transport and hydraulic parameters of the numerical model.

Porosity 0.37

Average hydraulic conductivity (cm s−1) 0.673

Ratio of horizontal to vertical conductivity (Kh/Kv) 3.267

Specific storage coefficient (cm−1) 10−4

Longitudinal dispersivity (cm) 0.178

Transverse dispersivity (cm) 0.065

Figure 5: Hydraulic conductivity field. The red diamonds denotes the actual source loca-

tion. The white dots are the monitoring points.

that it is due to additional compaction during the filling process.462

Since the concentration of the contaminant is known, the estimation of463

the release history is limited to identifying the injected flow rate. The release464

duration is discretized into 72 intervals with a time step of ∆t = 3 s result-465

ing in a total number of parameters Np = 74, of which two are the spatial466

coordinates of the source. The initial ensemble of parameters is made up of467

81 realizations (Ne = 81); the spatial coordinates of the source are random468

values selected from uniform distributions x ∈ U [5, 30] cm, and y ∈ U [30, 34]469
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Figure 6: Experimental case: actual and estimated release history with 95% uncertainty

interval. Time 0 s represents the time at which injection starts.

cm. The initial realizations of the injected flow rate history follow expres-470

sion Eq. (20), with parameters selected randomly from the following uniform471

distributions, ∆ ∈ U [1 · 10−10, 1·10−1], Γ ∈ U [800, 1000], µ ∈ U [490, 1400]472

and σ ∈ U [60, 365]. The four monitoring points are vertically distributed on473

the line x = 54.75 cm and at y-coordinates 29.00, 32.75, 34.75 and 36.75 cm.474

For each monitoring point, the observed concentrations are recorded at 45475

sampling times from T = 0 s to T = 2200 s (total number of monitoring data476

is m = 180). The random measurement error ε is assumed normally dis-477

tributed with zero mean and variance 1·10−2 (mg·l−1)2. The ES-MDA with478

6 iterations and decreasing α=[63.0; 31.5; 15.8; 7.88 3.9; 2.0] is used for the479

inversion. Covariance localization and covariance inflation are applied using480

the coefficients bs=200, bt=2500 and r=1.01, and linear relaxation with the481

coefficient w=0.1.482

Figure 6 shows the results of the experimental case; the ensemble mean of483
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Figure 7: Experimental case: observed and predicted concentrations with 95% uncertainty

intervals. Time 0 s represents the time at which injection starts.

the release history with its 95% confidence interval and the true solution are484

depicted. The ES-MDA leads to a good agreement between the two curves485

with an NSE value equal to 98.34% and with a satisfactory representation of486

peak magnitudes and times. The ensemble means of the x and y coordinates487

of the source are, respectively, equal to 14.71 cm (±0.45 cm, 95% uncertainty488

interval) and 32.91 cm (±0.14 cm, 95% uncertainty interval); the distance489

between the true and estimated source location is less than 0.5 cm. In Fig.490

7, the experimental and predicted observations are compared. The retrieved491

source parameters reproduce quite well the observed concentrations with a492

narrow 95% uncertainty interval; the RMSE at the last iteration is equal to493

0.96 mg·l−1, which is comparable with the experimental observation errors.494
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4. Discussion and Conclusions495

In this paper, a novel application of the Ensemble Smoother with Multiple496

Data Assimilation (ES-MDA) is proposed for the simultaneous identification497

of the source location and the release history of a groundwater contamination498

event from observed sparse concentration data collected downstream from the499

spill. The procedure is tested by means of an analytical case study and an500

experimental one.501

The analytical case serves to demonstrate the capability of the ES-MDA502

to solve this type of inverse problem and to analyze the impact of the different503

settings on the final identification. The impact of the observation network504

geometry and density, ensemble size, covariance and inflation techniques and505

also the effect of different sets of initial realizations are investigated. The aim506

was to find out a configuration that leads to a reliable solution and mitigates507

the ill-conditioned nature of inverse problems. Equifinality is analyzed in508

the analytical case, finding that there are some network geometries that509

may lead to acceptable results (in terms of reproduction of the observed510

concentrations) but with very different release functions.511

The effect of the observation network geometry and density is evalu-512

ated considering four sets of observed concentrations, a large ensemble size513

(Ne=1000) and the other factors being the same. The results show that loca-514

tion, time and number of observations significantly impact the final solution515

obtained by the ES-MDA; for the sets in which the observations are located516

in a line parallel to the main flow direction, the percentage of successful tests517

is low and equifinality is detected. Instead, for the set with the observations518

in a line orthogonal to the main flow direction, the number of successful tests519
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is 98% and the algorithm simultaneously estimates the release history and520

the source location. We find that placing the observation locations in a line521

orthogonal to the main flow directions is more informative than placing the522

observation locations along the same line. In the latter case, it is easy to523

think of multiple solutions that should lead to the same observations, for in-524

stance, by estimating the source location in the direction orthogonal to flow525

symmetrically with respect to the line of observations. This indicates the526

importance of a good design of the observation network, since if observations527

provide poor information, the ill-posed inverse problem is difficult to solve528

and the impact of random factors increases; it is also noteworthy that, in529

real cases, only a limited number of concentration measurements are avail-530

able given the field sampling costs; for this reason, an optimal design of new531

monitoring points has a great relevance.532

The observation set orthogonal to the flow direction is used to check the533

effect of the ensemble size and the application of covariance localization and534

covariance inflation techniques in the performance of the ES-MDA. In this535

paper, a new procedure to apply the covariance localization is presented. Co-536

variance localization was commonly performed taking into account the fixed537

spatial distance between observation-observation and parameter-observation538

only; here, the spatial and temporal distances are both considered and, fur-539

thermore, the parameter-observation spatial distance is iteratively updated540

since the location of the parameters is an unknown of the problem.541

The results show that the ES-MDA works better when large ensembles542

and the correction to the covariances are used, demonstrating the capability543

of the proposed spatiotemporal iterative localization to improve the ES-MDA544
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performance. The percentage of successful tests increases with the ensem-545

ble size and the covariance corrections and, at the same time, the chances546

that equifinality happens decrease. Covariance inflation and, in particular,547

covariance localization, overcome the undersampling problems noticed in the548

ensemble-based methods; and for this reason, their effects are more evident549

for small ensemble sizes. The tests performed with an ensemble size of 50550

realizations lead to unreasonable results with a low percentage of passed tests551

and a high percentage of tests with multiple solutions. We suggest to use, for552

this type of problems, ensemble sizes greater than the number of unknown553

parameters to identify.554

It is noteworthy to point out that another aspect to take into account is555

the impact on the solution of the errors on both the observations and the556

model structure. Small measurement errors can improve the ES-MDA results557

when the model is perfect and the observations are uncorrupted, as in the558

synthetic case study. However, overfitting problems and ensemble collapse559

can arise for real cases, which are always affected by uncertainty in the for-560

ward model and measurement noises. In these cases, the modeler should use561

an appropriate level of fit based on the quality of the available observation562

and the model. The effects of the errors on the ES-MDA performance will563

be investigated in future works.564

The experimental case study uses real data collected in a laboratory test.565

The experimental device is a sandbox that reproduces an unconfined aquifer566

under controlled conditions; it allows to validate the ES-MDA methodology567

in a real test case. The algorithm parameters, such as the monitoring network568

and the ensemble size, were chosen after the results of the analytical study.569
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For this case, the initial ensemble of source coordinates has been generated570

considering a limited suspect area, which guarantees that all the realizations571

of the ensemble are representative. This decision was taken based on prelim-572

inary tests performed with large suspect areas. Even if it is not mandatory573

that the initial ensemble contains the solution, a well designed ensemble helps574

to reach better results.575

The results prove the capability of ES-MDA to solve this type of inverse576

problem in a real cases, when the available observations are usually noisy.577

The method reproduces very well both the contaminant release history and578

the spatial coordinates of the source; the NSE is about 98% and the distance579

between the true and estimated source location is less than 0.5 cm.580

To the best of our knowledge, this is the first work that uses a stochas-581

tic method for the simultaneous identification of the source location and582

the release history. It allows to assess the estimation uncertainty and to583

directly estimate the spatial coordinates of the source, unlike, for example,584

the Bayesian geostatistical approach that only identifies the most probable585

location among a set of possible source points defined a priori.586

Another innovative aspect of this work is the use of the ES-MDA method587

for the estimation of time-dependent parameters. In hydrogeology, ensemble588

Kalman methods are usually applied for the investigation of groundwater589

field parameters that are time-independent such as porosity or hydraulic590

conductivity. In this study, the parameters to be estimated are identified591

performing a discretization in time of the release history of a contaminant592

into an aquifer, which is time dependent.593

In summary, the proposed procedure is a novelty method able to simulta-594
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neously recover the release history and the source location of a groundwater595

pollutant on the basis of sparse observed concentration data. A well-designed596

monitoring network and the application of covariance localization and covari-597

ance inflation techniques lead to satisfactory results and reduce the inherent598

equifinality encountered in parameter estimation problems.599
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