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Abstract: Interception of extrasolar objects is one of the major current astrophysical objectives since
it allows gathering information on the formation and composition of other planetary systems. This
paper develops a tool to design optimal orbits for the interception of these bodies considering the
effects of different perturbation sources. The optimal trajectory is obtained by solving a Lambert’s
problem that gives the required initial impulse. A numerical integration of a perturbed orbital model
is calculated. This model considers the perturbations of the joint action of the gravitational potentials
of the Solar System planets and the solar radiation pressure. These effects cause a deviation in
the orbit that prevents the interception from taking place, so an iterative correction scheme of the
initial estimated impulse is presented, capable of modifying the orbit and achieving a successful
interception in a more realistic environment.

Keywords: interception; extrasolar bodies; Lambert’s problem; perturbations; orbit propagation

1. Introduction

The first object of interstellar origin discovered in the Solar System was the ’Oumua-
mua on October 2017 [1,2], detected by the Pan-STARRS1 telescope system at the Haleakala
Observatory, Hawaii. Its name, in the local language, could be translated as the first mes-
senger arriving from far away. Two years later, on August 2019, the amateur astronomer
Gennady Borisov spotted a second extrasolar visitor from the Crimean Peninsula, the
interstellar comet Borisov [3]. Although only two reported sightings of such interstellar
objects (ISO) (Eubanks et al. [4] or Rice and Laughlin [5]) have been documented, these
findings have been a complete revolution and have contributed to the opening of new
research areas. Despite their unknown provenance, they provide exceptional insights into
the behavior and composition of bodies in other planetary systems.

The population of such bodies has also been a subject of study in recent years. The
discovery of two of them in such a short interval of time suggests that more of these
objects could have been ejected from their respective planetary systems and could be
wandering through space. The Large Synoptic Survey Telescope (LSST) at the Vera C Rubin
Observatory in Cerro Pachón, Chile, is expected to progressively increase the detection rate
of such bodies, with similar characteristics to those of ’Oumuamua [5]. Future detections
could provide useful statistics for a better understanding of their originary planetary
systems, as well as the ejection process they undergo and their nature [6]. On the other
hand, the probability of future near-Earth trajectories of such objects also opens the door to
the design of interception missions to study them or mitigate the collision risk, if necessary.

Different types of observations can provide information about these interstellar
visitors [7–9], promoting the need to investigate them more closely. Although the ob-
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jectives of interception missions may vary from case to case, Moore et al. [10] proposed the
following three science goals, which could be accepted as common to any of these missions:

1. Determine whether the interstellar object was formed in an environment or system
with a similar chemical composition to that of the Solar System;

2. Determine whether it resembles in shape and physical behavior any of the known
classes of objects that populate the Solar System;

3. Determine whether it contains any prebiotic traces necessary for the existence of life.

With these premises, Moore et al. have developed a mission concept for intercepting
an interstellar object, with an emphasis on the scientific equipment that should be on board.
While the first two objectives listed above can be partially fulfilled by observations in
the vicinity of the ISO’s surface, the extraction of material from inside the body would
allow a more precise reconstruction of its origins, as well as being strictly necessary for the
detection of prebiotic material. They therefore propose the inclusion of a collision phase
using an impactor in the mission, capable of excavating material from the innermost layers
of the object, something that has already been done for the Solar System’s comet Tempel1
with the Deep Impact mission [11] and for the comet 67P/Churyumov-Gerasimenko
with the spacecraft Rosetta and Philae [12]. Other celestial bodies such as C/2016 U1
(NEOWISE) [13] are also objects of possible studies.

The mission strategies currently being investigated follow two distinct lines of study.
There are those aimed at pursuing and finally capturing (with or without collision) one
of the interstellar objects already sighted. These missions are of very long duration and
high energy cost, since both bodies are at a great distance from the Earth. This is the
framework of the Lyra Project, presented by Hein et al. [14] as part of the Initiative for
Interstellar Studies (I4IS), which aims to determine the feasibility of a future interception
of ’Oumuamua. The same team is also working on a similar mission project for the
interception of Borisov [15].

On the other hand, ESA, in partnership with JAXA, has been working since 2019 in
missions to intercept future interstellar objects, for example, the Comet Interceptor mission
planned for 2029 [16]. In the first step, it will head for the vicinity of the L2 Lagrange Point
of the Earth–Sun system. Thus, it will remain at that point until a long-period comet or an
ISO is detected, whereupon an impulse will be applied in order to change the probe’s orbit
and direct it towards the interception. The rendezvous would take place at an interval
close to its perihelion, requiring less energy capacity and significantly reducing the mission
duration. The ESA strategy is therefore to wait for further sightings and to prepare the
necessary structure so that the initiation of the trajectory takes place at the shortest interval
after detection. Moore et al. [10] propose to design missions strictly intended for the study
of ISOs, since they could not have a cometary nature. These missions could follow a similar
launch strategy as the Comet Interceptor.

The Lyra project is not the only one studying the feasibility of intercepting the first
interstellar visitors to the Solar System. Seligman and Laughlin [17] have investigated the
interception of extrasolar bodies that may appear in the future by means of a rapid response,
taking as an example the orbit of ’Oumuamua and assuming that it would have been de-
tected early enough to reach it before it escaped from the Solar System. Both studies use
Lambert’s problem formulation for the determination of the optimal interception trajecto-
ries. However, they do not introduce the orbital perturbations inherent to the interplanetary
journey of the vehicle. In [18], the authors modify Lambert-type trajectories for low Earth
orbits considering the perturbations due to Earth’s oblateness and atmospheric drag. In
this sense, our work adopts a similar approach with different methodology, taking into
account the effects of the most significative perturbations accelerations on the target body
and on the vehicle, such as solar radiation pressure (SRP) and gravitational perturbations
of the inner and large-mass planets. Moreover, following a similar strategy as the Comet
Interceptor [16], Lagrange points are considered as starting points for the interception
maneuver of the extrasolar object. The consideration of the aforementioned perturbations
allows for correcting the impulsive maneuver (both in magnitude and direction) by means
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of an algorithm, ensuring a highly accurate trajectory design. The study has been applied
to the possible interception of the first detected extrasolar object (’Oumuamua) and can be
used to estimate the maneuvers of future interceptions of other bodies.

This paper is organized as follows. Section 2 describes the methodology followed for
solving the interception problem, emphasizing on the perturbation model selected. The
algorithm implemented for the calculation of the optimal trajectory and the iterative scheme
developed for calculating the necessary corrections for the effect of the perturbations are
also shown. Section 3 presents the application of the developed model for interception the
’Oumuamua, assuming its early detection. The results are shown in the form of porkchops,
orbital trajectory plots and tables with the optimal impulses. Finally, Section 4 summarizes
the main conclusions drawn from the study carried out.

2. Methodology

This section presents the main characteristics of the mission for which the tool de-
scribed in this paper is designed.

Figure 1 schematically depicts the approach followed to determine the optimal inter-
ception trajectory. First, Keplerian propagation is performed to determine the unperturbed
orbit of the detected extrasolar body. An ephemeris of the body is then created to assess
whether it represents a real risk to Earth and to make the first assessments of the feasibility
of carrying out an interception mission. In a second phase, the Lambert’s problem is solved,
and a mapping or porkchop plot of the launch windows and their energy cost is repre-
sented. By analyzing these results, the optimal interception trajectory and the necessary
impulse to carry it out are determined. Since the Lambert’s problem addresses only ideal
trajectories, without considering perturbations, it is necessary to include a third step in the
process. In this third phase, both the extrasolar body and the interceptor are propagated
under perturbed conditions. This provides more realistic trajectories that allows calculating,
through an iterative process, the necessary modifications on the initial impulse to guarantee
the interception. These modifications are performed in both magnitude and direction.

Keplerian propagator of the  
body to be intercepted

Lambert's Problem resolution

Body and interceptor propagation  
under the effect of perturbations 

Iterative impulse correction

Unperturbed body trajectory

Porkchop plot with possible launch
windows
Required impulse to perform the
interception

Perturbed body trajectory
Perturbed interceptor trajectory
Position error at the end of propagation

Final perturbed trajectory of the interceptor
New impulse and final flight time

Figure 1. Scheme of the optimal interception trajectory calculation.

2.1. Description of the Mission

The designed tool aims to determine the optimal trajectory to intercept an object of
extrasolar origin given its position and velocity vectors at a given epoch. If there is a
risk of collision, the mission design will be different (see, for example, [19]), adapting the
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restrictions (time of flight, rendezvous, etc.) to the objective. In any case, the reaction
time and the starting point of the interceptor will limit the optimization of the time of
flight and the energy used. A maximum limit is established for the flight time and for the
characteristic velocity or energy cost, ∆v, in order to limit our investigation to realistic
scenarios. These restrictions are imposed in terms of the characteristic energy C3, defined
as the square of the hyperbolic excess velocity

C3 = v2
∞. (1)

In summary, the possible mission requirements to be imposed are:

• Maximum time of flight (TOF);
• Earliest launch date and latest intercept date;
• Maximum characteristic energy of launch and arrival;

which can be selected to modify the computational cost.
In addition, a Lagrange point has been taken as a starting point of the trajectory,

as in the case of the Comet Interceptor mission. Although the adaptability of the tool
allows to modify this starting point, Lagrange points are ideal for parking a spacecraft at
or near them, as for example GAIA telescope [20], thus minimizing the fuel expenditure
for maintaining the orbit and the cost to escape from the Earth sphere of influence [21,22].
Taking one of the Lagrange points or its vicinity as a starting point, the feasibility of the
interception can be studied without considering the propulsive effort and the necessary
maneuvers to place and maintain the interceptor at the equilibrium point. In this way, the
energy cost to be minimized in determining the optimal trajectory corresponds only to that
which must be applied to initiate the interception trajectory.

2.2. Cowell’s Propagation Method with Numerical Integration

There exist different methods to implement the effect of perturbations in orbital
propagation [23]. In our work, Cowell’s Method has been chosen, which is based on the
numerical integration of the equation of motion (2)

r̈ = − µ

r3 r + p, (2)

where µ is the gravitational parameter of the central body, r the position vector of the
orbiter with respect to the central body and p expresses all distribution forces that act over
the orbital dynamics.

The Cowell’s formulation involves the definition of a system of six first-order differen-
tial equations, which can be written as

X =



rX
rY
rZ
vX
vY
vZ

, Ẋ =



vX
vY
vZ

−(µ/r3)rX + pX
−(µ/r3)rY + pY
−(µ/r3)rZ + pZ

, (3)

being X the state vector and X(t0) =
[
rX0 rY0 rZ0 vX0 vY0 vZ0

]T the initial condi-
tion with respect to the inertial heliocentric reference system (O, X, Y, Z).

Different sources of perturbation can be added by superposition when defining the
perturbation acceleration vector p. In this paper, two main sources of perturbation are
considered: the third body (the inner planets, Jupiter and Saturn considered as point
masses) gravitational perturbation and the SRP. In the following subsections, the expres-
sions governing the perturbing sources considered are discussed in detail.
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2.2.1. Third Body Gravitational Perturbation

Both the intercepting body and the interceptor are subject to gravitational attraction
forces from the rest of the bodies in the Solar System. The perturbation acceleration caused
by each planet can be added by superposition to the dynamic expression of the propagated
body, in Equation (2). This perturbation is governed by the following expression [22]

p3B = µb

(
rb/s

r3
b/s

− rb

r3
b

)
, (4)

where µb is the gravitational parameter of the perturbing planet. It should be noted here
that the acceleration has two components: the first (b/s) is explicitly due to the attracting
effect of the planet on the vehicle or on the celestial body, and the second (b) is an indirect
term, related to the acceleration caused by the planet on the Sun. Although this last term
may seem negligible, keeping it for the orbital propagation is important when working in
a heliocentric reference system [24].

2.2.2. Solar Radiation Pressure Perturbation

The other source of perturbation considered in our model is the SRP perturbation. Its
influence on the orbit of a body depends on numerous factors, as its distance to the Sun, its
position at each instant relative to the planets of the Solar System, its geometry, the optical
properties of the different surfaces that form it and their orientation. Some accurate models
considering different geometries can be found in [25–27]. In this work, the cannonball
model [22,28] is considered since it has a low computational cost and the geometry of the
orbiter is not well determined. The expression that models the perturbing acceleration
caused by this effect is

pSR = −νPSRCR
A
m

û, (5)

where ν corresponds to the eclipse function; PSR is the nominal value of the pressure
exerted on the surface that depends on the solar flux; CR is the radiation pressure coefficient,
which takes a value between 1 and 2 depending on the reflectivity or absorptivity of the
surfaces; A

m is the area-to-mass ratio of the orbiter and û the unit vector in the direction
from the body to the Sun. The negative sign is justified by the latter definition, since the
acceleration is opposite to the vector û as the photons emitted by the Sun push the body in
a radial direction. The eclipse function ν allows eclipse situations to be considered in the
perturbation model. It takes values between 0 and 1, being ν = 0 for the umbra case and
ν = 1 when the body is totally irradiated [28,29].

2.3. Lambert’s Problem Resolution

Lambert’s problem determines the minimal energy conic orbit between two position
vectors and a given time of flight. Once the trajectory is calculated, an impulse ∆v is
applied to travel from the initial position to the final one [23]. This impulse is considered
instantaneous and not necessarily coplanar. In our case, the launch date and the intersection
date determine the initial and final positions. The difference between the initial velocity of
this trajectory and the velocity carried by the interceptor in its original orbit corresponds to
the impulse that must be applied to the vehicle to start its mission. The scheme followed
for solving the Lambert’s problem is shown in Figure 2. As the procedure is repeated for
all possible combinations of launch and arrival dates, a porkchop plot is obtained, from
which the optimal solution to the interception problem is extracted.
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 Input: 

Launch date
Interception date

 Configuration: 

Initial position (L1, L2)
Body ephemeris

Time of flight Initial and final 
position and velocity

Lambert's problem
Calculation of the

characteristic energy C3, 
 Δv = vlaunch - v1 

TOF
r1 
r2

v1 
v2

vlaunch 
varrival

 Output: 

C3 at launch
C3 at arrival
Δv needed 

Figure 2. Flowchart of the calculation of direct paths between the starting point and the object to be
intercepted, employing Lambert’s problem formulation (adapted from Ishimatsu [30]).

2.4. Iterative Correction of the Initial Impulse

Solutions to the Lambert’s problem define trajectories that reach a target position
starting from an initial position with a fixed time interval. However, once perturbations
are considered, the maneuver found by the simple Lambert’s problem does not allow
us to obtain interception. The magnitude and direction of the impulse must therefore
be readjusted until the approach of the launched vehicle becomes effective again. In
order to accomplish this, an iterative scheme has been proposed to gradually modify the
velocity impulse components until the relative distance of the two bodies is below a certain
threshold, which is a parameter that depends on the nature of the mission.

The method presented in this paper performs a correction on the impulse applied
to the vehicle. This correction is proportional to the distance that separates both orbiters.
Prior to the execution of the algorithm, a series of distance steps (A, B,. . . ) and velocity
corrections (a, b,. . . ) are introduced. These values have been selected to progressively
reduce the order of magnitude of both variables, but their choice can be subject to a further
optimization process to minimize the number of iterations. As can be seen in the flow
chart (Figure 3), if the distance between both bodies is greater than a given value (i.e., the
radius of the capture orbit or the dimensions of the celestial body), the position difference
vector is stored and each of its components is analyzed independently. Positive differences
imply an increase in velocity while negative differences result on a decrease. Next, the
magnitude of each component is compared with the distance values previously introduced,
in decreasing order. Depending on the interval in which it is bounded, a correction value
will be added to that component of the impulse. Therefore, the further down the diagram
you go, the smaller the difference in position between the bodies and the smaller the
correction applied. Once the new impulse is obtained, the interceptor is propagated again,
repeating the procedure until the interception is effective.
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 Input: 

Minimum distance between interceptor and body
Variation on initial velocity, v. v0 = [0,0,0] km/s

Does interception  
take place?

No Position difference 
 vector, d

For each component i ∈ {x,y,z}

di > 0 NoYes

di < -Adi > A Yes Yes

vi = vi + a vi = vi - aNo No

di > B di < -B

No No

Yes Yes

vi = vi + b vi = vi - b

... ...

di > M di < -M

No No

Yes Yes

vi = vi + m vi = vi - m

vi = vi + n vi = vi - n

New initial propagation velocity, 
 vini = vini + vi 

Orbital propagation of the
interceptor

Yes

 Output: 

Magnitude and final direction of the
impulse required for the interception 
Final time of flight

 Configuration: 

A > B > ... > M
a > b > ... > m > n

Figure 3. Flowchart of the iterative scheme developed for the correction of the impulse applied on
the interceptor vehicle.

3. Results and Discussion

In order to test the tool, a realistic application case has been implemented: the inter-
ception of ’Oumuamua. An early detection of ’Oumuamua is assumed on 1 June 2017,
when it was approaching the perihelion of its orbit. The interception window extends until
December 2017. The integration time step has been set at 10 min, and it is assumed that an
interceptor vehicle is available at both Earth–Sun Lagrange points L1 and L2, waiting to be
launched. As for the sources of perturbation, the gravitational effects of all inner planets of
the Solar System plus Jupiter and Saturn, as well as the SRP, are considered. The values
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of the radiation pressure coefficient and the area-to-mass ratio of ’Oumuamua have been
obtained through a process of minimizing the errors between the state vector provided by
the propagator and the one from HORIZONS [31], as can be seen in Table 1, recalling that
it underwent non-gravitational accelerations whose origin has not yet been clarified. For
the interceptor these values are CR = 1.7 and A/m = 2 m2/kg, which are within the range
commonly used for spacecrafts [22,28].

Table 1. Initial conditions for the propagation of the ’Oumuamua, taking 1 June 2017 at 00:00 TDB
as the starting date [31] (Courtesy NASA/JPL-Caltech), the radiation pressure coefficient and the
area-to-mass ratio.

Position [km] Velocity [km/s] CR [-] A/m [m2/kg]

rX = −4.6286 × 107 vX = −3.7072 1.8 0.75
rY = −2.3523 × 108 vY = 20.2255
rZ = 3.0267 × 108 vZ = −30.9993

3.1. Keplerian Propagation of the ’Oumuamua

Firstly, a Keplerian propagation of the extrasolar object is performed, using the initial
conditions given in Table 1. This propagation is shown in Figure 4, where the passage
through the perihelion of ’Oumuamua has been captured.

Figure 4. Unperturbed orbit of ’Oumuamua, in km, obtained by the tool (black). The orbits of Mercury (pink), Venus (light
blue), Earth (dark blue) and Mars (red) provided by HORIZONS [31] (Courtesy NASA/JPL-Caltech) for the window 1 June
2017–31 December 2017 are also represented.
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The closest approach to Earth occurred on 14 October 2017, at 16:50 TDB. The distance
between the Earth and the ’Oumuamua is approximately 2.406 × 107 km (≈0.16 AU). Data
from observations concluded that the closest passage occurred actually on 19 October, when
’Oumuamua passed at a distance of 0.16 AU. Note that, despite not taking perturbative
phenomena into account, the results obtained for the Keplerian simulation are very close
to the real ones. It does not differ significantly from the real trajectory, although it does
differ in the instant it occupies each position in the orbit.

3.2. Determination of the Launch Porkchop Map of the Interceptor

The Keplerian orbit obtained in the previous phase allows us to solve the launch
possibilities for intercepting ’Oumuamua, considering both Lagrange points L1 and L2 of
the Earth–Sun system as possible starting points.

Following the scheme in Figure 2 and after solving the factorial scheme for all possible
combinations of launch and arrival dates from the two starting orbits, the porkchop plots
for the obtained mission windows can be constructed. Figures 5 and 6 show that the
contour maps are very similar despite the starting point, L1 or L2. No maximum flight
time has been set, unlike Seligman and Laughlin [17], who set it at 90 days. Interception
is therefore allowed to take place once the celestial body has made its closest approach to
Earth. In addition, no parking orbit radius has been imposed for the arrival, as it is assumed
that the dimensions of the celestial body are imprecise [32–35]. So, the interception will be
considered fulfilled when the spacecraft goes 10 km near the target. Thus, the end point of
the interception orbit will correspond to this position of the ’Oumuamua, although the tool
allows the option of setting a distance at which to cease propagation, in order to initiate a
possible capture maneuver.

4

5

6

7

Figure 5. Porkchop plot of the launch windows for the ’Oumuamua interception starting from the
vicinity of L1 in the June–December 2017 interval. Both axis are measured in days and ∆v in km/s.

4

5

6

7

Figure 6. Porkchop plot of the launch windows for the ’Oumuamua interception starting from the
vicinity of L2 in the June–December 2017 interval. Both axes are measured in days and ∆v in km/s.
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The optimal trajectories that minimize the energy consumption of the maneuver for
each of the launch orbits are listed in Table 2. Based on the results obtained, a launch from
the Lagrange point L2 is the best option since both the necessary impulse and the flight
time are lower than those corresponding to the launch from L1. Moreover, the vehicle
departure is 9 days later.

Table 2. Characteristics of the optimal interception trajectories extracted from the analysis of the
porkchop plots obtained after solving the factorial scheme of Lambert’s problem.

Starting Point Launch Date TOF [days] ∆v [km/s]

L1 12 June 2017 126 3.9068
L2 21 June 2017 118 3.8036

Note that the impulse values obtained and presented in Table 2 are very similar to
those given in [17] and are energetically feasible.

3.3. Perturbed Propagation of the ’Oumuamua and the Interceptor Vehicle

A numerical integration is now carried out on the orbital model described in Section 2.2,
considering the aforementioned force distributions of the gravitational potentials of the
inner planets of the Solar System, the most massive planets (Jupiter and Saturn) and the SRP.
The Lagrange point L2 is taken as starting point for the interceptor vehicle (see Table 3) and
the initial conditions for the case of ’Oumuamua are those given in Table 1. Additionally,
the impulse obtained from the Lambert’s problem for the selected optimal trajectory is
added to the velocity. In Figure 7, the Keplerian and the perturbed solutions have been
plotted for both bodies.

Table 3. Initial conditions for the propagation of the interceptor, taking 21 June 2017 at 00:00 TDB as
the starting date [31] (Courtesy NASA/JPL-Caltech).

Position [km] Velocity [km/s] CR [-] A/m [m2/kg]

rX = −1.1000 × 106 vX = 31.7337 1.7 2
rY = −1.5355 × 108 vY = 2.5619
rZ = 6.3765 × 103 vZ = −1.4996

The representation in Figure 7 shows the trajectory traveled up to the instant at which
the distance between the two bodies is minimal. In the case of the Keplerian propagations,
this distance becomes zero (the interception occurs), thus verifying that the solution of
Lambert’s problem is correct. This ideal situation occurred on 17 October 2017.

When adding the effects of perturbations, the minimum distance between the two
bodies is 1.2817× 106 km (≈0.00857 AU), and it takes place on 16 October 2017 at 14:20 TDB.
Clearly, in this case the interception does not occur since the ’Oumuamua orbit is more
delayed than the Keplerian one and the interceptor trajectory is significantly displaced. So,
it is necessary to correct the impulse applied to the interceptor vehicle.

In this way, and following the scheme presented in Figure 3, the trajectory of the
vehicle is recalculated modifying the ∆v applied on its starting orbit. The iterative process
has been set to end when the vehicle approaches within 10 km of the ’Oumuamua. It has
been designed in such a way that the corrections made are variable depending on the
magnitude of the distance to be covered. Therefore, in the first iteration, corrections of
greater magnitude are made to achieve a considerably faster approach of the vehicle to its
target, but as the distances become smaller, the corrections made are smaller, and this is
reflected in Figures 8 and 9: the minimum distance between the orbits of the ’Oumuamua
and the interceptor after each iteration is shown in Figure 8 and the magnitude of the
velocity variation applied in each iteration over the initial propagation velocity is shown
in Figure 9. Note that the initial propagation velocity is the sum of the original velocity
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in the Lagrange point and the optimal impulse extracted from Lambert’s problem. It can
be seen that, although the distance between the two bodies continues decreasing with
each iteration, the variation of the modulus of the momentum stabilizes around 0.17 km/s
before reaching the 30th iteration. This is justified by the fact that although the modulus
seems invariant, there are still changes in the impulse components that mainly affect its
direction, which have a noticeable effect in reducing the distance between the two bodies,
as shown in Figure 8. Therefore, the iterative process must continue to ensure that the
interception takes place.

Figure 7. Trajectories of the ’Oumuamua (black) and the interceptor (orange) without perturbations (dashed line) and with
perturbations (solid line). All units are given in km.

Figure 8. Evolution of the minimum interceptor-’Oumuamua distance, in km, with the impulse
correction iterative process.
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Figure 9. Evolution of the magnitude of the ∆v, in km/s, relative to the initial velocity of propagation,
during the iterative process.

Figure 10 shows the evolution of the impulse applied on the initial conditions of
the vehicle, i.e., the modification made on the orbital velocity it carries over the L2 point.
The ideal solution of Lambert’s problem imposed an impulse of 3.8036 km/s, which
corresponds to the initial value of the plot. After gradually modifying the three components
of this impulse, it is concluded that an impulse of 3.8933 km/s is required. It should be
recalled that although the figure only shows the evolution of the modulus of this impulse,
its direction has also been corrected.

Figure 10. Evolution of the magnitude of the ∆v impulse, in km/s, applied on the vehicle at the
beginning of the propagation as the iterative process of correction progresses.

Finally, the evolution of the TOF is not a restrictive variable in this case, but it is useful
to know it and to check if, when considering the corrections made, the interception takes
place significantly earlier or later.

In fact, it can be checked that temporal changes are minimal. Initially, Lambert’s
problem estimated the interception of ’Oumuamua on 17 October 2017, but the closest
point between the two bodies prior to the impulse correction (see Figure 7) took place
on 16 October 2017 at 14:20 TDB, after a TOF of 117.6 days. Our tool, after correcting the
trajectory, sets up the interception to take place on the same day, 16 October 2017 at 23:30
TDB, increasing slightly the TOF to 117.98 days. The vector state of both bodies at this
instant can be seen in Table 4.

Results of the problem in terms of the interceptor velocities are presented in Table 5.
A comparison between the interceptor velocities obtained in the ideal case (Lambert) and
in the perturbed one shows that the variations can have considerable long-term effects on
the trajectory of the vehicle, thus making it possible to cover the distance separating it from
the celestial body to be intercepted. Discounting the velocity of the orbit followed by the
vehicle at point L2, the components of the energy impulse to be applied by means of the
propulsion methods available to the interceptor are determined. Finally, the modulus of
this impulse is collected, with both results differing by less than 0.1 km/s.
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Table 4. State vectors, in km and km/s, of ’Oumuamua and interceptor on 16 October 2017 at
23:30 TDB.

’Oumuamua Interceptor

rX [km] 1.5631 × 108 1.5631 × 108

rY [km] 7.6481 × 107 7.6481 × 107

rZ [km] −6.9684 × 106 −6.9684 × 106

vX [km/s] 43.7620 −7.6040
vY [km/s] 9.8435 27.3000
vZ [km/s] 14.4080 0.3591

Table 5. Comparison of the velocities obtained by solving Lambert’s problem and their value after
undergoing iterative correction for the interception to take place in a perturbed environment.

Lambert Solution Corrected Solution

vlaunch,x [km/s] 31.6445 31.7337
vlaunch,y [km/s] 2.5779 2.5619
vlaunch,z [km/s] −1.3561 −1.4996

∆vx [km/s] 2.0458 2.1351
∆vy [km/s] 2.9058 2.8898
∆vz [km/s] −1.3560 −1.4995

∆v [km/s] 3.8036 3.8933

In the same way that the results prior to the correction have been represented, the
trajectories followed by both bodies before the interception becomes effective are plotted in
Figure 11. The final orbit of the interceptor has been significantly modified towards the
ideal case. Meanwhile, the position of ’Oumuamua on its perturbed orbit has also changed.
A three-dimensional representation of the final trajectories can be seen in Figure 12.

Figure 11. Trajectories of the ’Oumuamua (black), interceptor with initial impulse (orange) and interceptor with corrected
impulse (purple) without perturbations (dashed line) and when adding the considered perturbations (solid line). All units
are given in km.
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Figure 12. Three dimensional representation of the trajectories, in km of the ’Oumuamua (black) and
the launched vehicle (purple) until the interception takes place. The orbits of Mercury (pink), Venus
(light blue), Earth (dark blue) and Mars (red) are also plotted [31] (Courtesy NASA/JPL-Caltech).

4. Conclusions

In this paper, a study of interception maneuvers towards extrasolar bodies has been
presented. Lambert’s problem has been solved to determine the interception trajectory
that minimizes the energy cost of the mission extending the model of Seligman and
Laughlin [17] by introducing different perturbations on both the extrasolar object and the
interceptor spacecraft. Moreover, the vehicle is located at one of the Lagrange points of
the Earth–Sun system at launch instead of in an Earth orbit. An iterative process has been
elaborated to correct the direction and magnitude of the impulse applied on the interceptor
to ensure the interception of the extrasolar body.

The application case for intercepting the interstellar object ’Oumuamua in case of early
detection has tested the study and yielded promising results. The resolution of Lambert’s
problem has given similar results to those provided by Seligman and Laughlin [17]. In this
case, the required ∆v is 3.8036 km/s with a launch from point L2 on 21 June 2017, and a
mission time of 118 days.

The introduction of perturbations caused the solution extracted from Lambert’s prob-
lem to be no longer valid, with the minimum distance between the two bodies being
1.2817 × 106 km (≈0.00857 AU). However, after applying the iterative process of correction
of the impulse, it has been ensured that the interception is once again effective, with the
magnitude of the final ∆v being 3.8933 km/s, slightly higher than before, and the flight
time practically identical, delaying the arrival of the vehicle to the target by a few hours.

The resolution of this case shows the ability of the presented tool to determine and
correct the optimal trajectory of interception to bodies of extrasolar origin starting from the
vicinity of the Lagrange points L1 or L2.
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