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Abstract

In this paper, we propose a new iteration process which is faster than the
leading; S [J. Nonlinear Convex Anal. 8, no. 1 (2007), 61–79], Thakur
et al. [App. Math. Comp. 275 (2016), 147–155] and M [Filomat 32,
no. 1 (2018), 187–196] iterations for numerical reckoning fixed points.
Using this new iteration process, some fixed point convergence results
for generalized α-nonexpansive mappings in the setting of uniformly
convex Banach spaces are proved. At the end of paper, we offer a
numerical example to compare the rate of convergence of the proposed
iteration process with the leading iteration processes.
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1. Introduction

Throughout this paper, we will denote the set of natural numbers by N.
Let X be a Banach space and M be a nonempty subset of X. A mapping
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T : M →M is said to nonexpansive if

||Tx− Ty|| ≤ ||x− y||, for all x, y ∈M.

An element p ∈ M is said to be a fixed point of T if p = T (p). From now
on, we will denote the set of all fixed points of T by F (T ). A mapping
T : M → M is said to be a quasi-nonexpansive mapping if F (T ) 6= ∅ and
||T (x) − T (p)|| ≤ ||x − p|| for all x ∈ M and p ∈ F (T ). It is well-known that
F (T ) is nonempty in the case when X is uniformly convex, T is nonexpansive
and M is closed, bounded and convex; see [6, 7, 10]. A number of generaliza-
tions of nonexpansive mappings have been considered by some researchers in
recent years. Suzuki [17] introduced a new class of mappings known as Suzuki
generalized nonexpansive mappings which is a condition on mappings called
condition (C) and obtained some convergence and existence results for such
mappings. Note that, a mapping T : M →M is said to satisfy condition (C) if

1

2
||x− Tx|| ≤ ||x− y|| implies ||Tx− Ty|| ≤ ||x− y||,

for each x, y ∈M .
Aoyama and Kohsaka [4] introduced the class of α-nonexpansive mappings

in the framework of Banach spaces and obtained some fixed point results for
such mappings. A mapping T : M → M is said to be α-nonexpansive if there
exists a real number α ∈ [0, 1) such that for all x, y ∈M ,

||Tx− Ty||2 ≤ α||Tx− y||2 + α||x− Ty||2 + (1− 2α)||x− y||2.
Ariza-Puiz et al. [5] proved that the concept of α-nonexpansive is trivial for

α < 0. It is obvious that every nonexpansive mapping is 0-nonexpansive and
also every α-nonexpansive mapping with F (T ) 6= ∅ is a quasi-nonexpansive.
Note that, in general condition (C) and α-nonexpansive mappings are not con-
tinuous (see [17] and [14] ).

Recently, Pant and Shukla [14] introduced an interesting class of generalized
nonexpansive mappings in Banach spaces known as generalized α-nonexpansive
mappings which contains the class of Suzuki generalized nonexpansive map-
pings. A mapping T : M → M is said to generalized α-nonexpansive if there
exists a real number α ∈ [0, 1) such that for each x, y ∈M ,

1

2
||x−Tx|| ≤ ||x−y|| ⇒ ||Tx−Ty|| ≤ α||Tx−y||+α||Ty−x||+(1−2α)||x−y||.

Once the existence result of a fixed point for a mapping is established, an
algorithm to find the value of the fixed point is desirable. The famous Banach
contraction mapping principle uses Picard iteration xn+1 = Txn for approx-
imation of fixed point. Some other well-known iterations are the Mann [11],
Ishikawa [9], S [3], Picard-S [8], Noor [12], Abbas [1], Thakur et al. [19] and so
on. Speed of convergence plays an important role for an iteration process to be
preferred on another iteration process. Rhoades [15] mentioned that the Mann
iteration process for a decreasing function converges faster than the Ishikawa
iteration process and for an increasing function the Ishikawa iteration process
is better than the Mann iteration process.
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The well-known Mann [11] and Ishikawa [9] iteration schemes are respec-
tively defined as:

(1.1)

{
x1 ∈M,
xn+1 = (1− αn)xn + αnTxn, n ∈ N,

where αn ∈ (0, 1).

(1.2)

 x1 ∈M,
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn, n ∈ N,

where αn, βn ∈ (0, 1).
In 2007, Agarwal et al. [3] introduced the following iteration process known

as S iteration:

(1.3)

 x1 ∈M,
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)Txn + αnTyn, n ∈ N,

where αn, βn ∈ (0, 1). They proved that the rate of convergence of iteration
process (1.3) is same to the Picard iteration xn+1 = Txn and faster than the
Mann [11] iteration process in the class of contraction mappings.

In 2016, Thakur et al. [19] introduced the following iteration scheme:

(1.4)


x1 ∈M,
zn = (1− βn)xn + βnTxn,
yn = T ((1− αn)xn + αnzn) ,
xn+1 = Tyn, n ∈ N,

where αn, βn ∈ (0, 1). With the help of a numerical example, they proved that
(1.4) is faster than the Picard, Mann [11], Ishikawa [9], S [3], Noor [12] and
Abbas [1] iteration processes in the class of Suzuki generalized nonexpansive
mappings.

Recently in 2018, Ullah and Arshad [20] used a new iteration process known
as M iteration:

(1.5)


x1 ∈M,
zn = (1− αn)xn + αnTxn,
yn = Tzn,
xn+1 = Tyn, n ∈ N,

where αn ∈ (0, 1). With the help of a numerical example, they proved that
(1.5) is faster than S [3], Picard-S [8] and Thakur et al. [19] iteration processes
for Suzuki generalized nonexpansive mappings.

Problem 1.1. Is it possible to develop an iteration process whose rate of con-
vergence is even faster than the iteration process (1.5) ?
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As an answer, we introduce the following new iteration called KF iteration
scheme:

(1.6)


x1 ∈M,
zn = T ((1− βn)xn + βnTxn),
yn = Tzn,
xn+1 = T ((1− αn)Txn + αnTyn), n ∈ N,

where αn, βn ∈ (0, 1).
With the help of numerical example, we compare the rate of convergence

of iteration (1.6) with the leading S (1.3), Thakur et al. (1.4) and M (1.5)
iteration.

2. Preliminaries

In this section, we give some preliminaries.
Let X be a Banach space and M be a nonempty closed convex subset of X.

Let {xn} be a bounded sequence in M . For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

||x− xn||.

The asymptotic radius of {xn} relative to M is given by

r(M, {xn}) = inf{r(x, {xn}) : x ∈M}.
The asymptotic center of {xn} relative to M is the set

A(M, {xn}) = {x ∈M : r(x, {xn}) = r(M, {xn})}.
It is well-known that in a uniformly convex Banach space setting, A(M,xn)
consists of exactly one point. Also, A(M,xn) is nonempty and convex when M
is weakly compact and convex (see, [18] and [2]). A Banach space X is said to
uniformly convex if for all ε > 0, there is a λ > 0 such that, for x, y ∈ X with
||x|| ≤ 1, ||y|| ≤ 1 and ||x − y|| ≤ ε, ||x + y|| ≤ 2(1 − λ) holds. Note that, a
Banach space X is said to have Opial’s property [13] if for each sequence {xn}
in X which weakly converges to x ∈ X and for every y ∈ X, it follows the
following

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||.

Examples of Banach spaces satisfying this condition are Hilbert spaces and all
lp spaces (1 < p <∞).

We now list some basic facts about generalized α-nonexpansive mappings,
which can be found in [14].

Proposition 2.1. Let X be a Banach space, M be a nonempty subset of X
and T : M →M be a mapping.

(i) If T is a Suzuki generalized nonexpansive mapping, then T is a gener-
alized α-nonexpansive mapping.

(ii) If T is a generalized α-nonexpansive mapping and has a fixed point,
then T is a quasi-nonexpansive mapping.
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(iii) If T is a generalized α-nonexpansive mapping. Then F (T ) is closed.
Moreover, if X is strictly convex and M is convex, then F (T ) is also
convex.

(iv) If T is a generalized α-nonexpansive mapping. Then for each x, y ∈M ,

||x− Ty|| ≤
(

3 + α

1− α

)
||x− Tx||+ ||x− y||.

(v) If X has Opial property, T is generalized α-nonexpansive, {xn} con-
verges weakly to a point v and limn→∞ ||Txn−xn|| = 0, then v ∈ F (T ).

Lemma 2.2 ([16]). Let X be a uniformly convex Banach space and 0 < p ≤
αn ≤ q < 1 for every n ∈ N. If {xn} and {yn} are two sequences in X such
that lim supn→∞ ||xn|| ≤ t, lim supn→∞ ||yn|| ≤ t and limn→∞ ||αnxn + (1 −
αn)yn|| = t for some t ≥ 0 then, limn→∞ ||xn − yn|| = 0.

3. Main Results

We open this section with the following important lemma.

Lemma 3.1. Let M be a nonempty closed convex subset of a Banach space X
and T : M →M be a generalized α-nonexpansive mapping with F (T ) 6= ∅. Let
{xn} be a sequence generated by (1.6), then limn→∞ ||xn − p|| exists for each
p ∈ F (T ).

Proof. Let p ∈ F (T ). By Proposition 2.1 part (ii), we have

||zn − p|| = ||T ((1− βn)xn + βnTxn)− p||
≤ ||(1− βn)xn + βnTxn − p||
≤ (1− βn)||xn − p||+ βn||Txn − p||
≤ (1− βn)||xn − p||+ βn||xn − p||
≤ ||xn − p||,

and

||yn − p|| = ||Tzn − p||
≤ ||zn − p||.

They imply that,

||xn+1 − p|| = ||T ((1− αn)Txn + αnTyn)− p||
≤ ||(1− αn)Txn + αnTyn − p||
≤ (1− αn)||Txn − p||+ αn||Tyn − p||
≤ (1− αn)||xn − p||+ αn||yn − p||
≤ (1− αn)||xn − p||+ αn||zn − p||
≤ (1− αn)||xn − p||+ αn||xn − p||
≤ ||xn − p||.
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Thus {||xn−p||} is bounded and nonincreasing, which implies that limn→∞ ||xn−
p|| exists for all p ∈ F (T ). �

The following theorem is necessary for the next results.

Theorem 3.2. Let M be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : M → M a generalized α-nonexpansive mapping.
Let {xn} be a sequence generated by (1.6). Then, F (T ) 6= ∅ if and only if {xn}
is bounded and limn→∞ ||Txn − xn|| = 0.

Proof. Suppose that F (T ) 6= ∅ and p ∈ F (T ). Then, by Lemma 3.1, limn→∞ ||xn−
p|| exists and {xn} is bounded. Put

(3.1) lim
n→∞

||xn − p|| = t.

In view of the proof of Lemma 3.1 together with (3.1), we have

(3.2) lim sup
n→∞

||zn − p|| ≤ lim sup
n→∞

||xn − p|| = t.

By Proposition 2.1 part (ii), we have

(3.3) lim sup
n→∞

||Txn − p|| ≤ lim sup
n→∞

||xn − p|| = t.

Again by the proof of Lemma 3.1, we have

||xn+1 − p|| ≤ (1− αn)||xn − p||+ αn||zn − p||.

It follows that,

||xn+1 − p|| − ||xn − p|| ≤
||xn+1 − p|| − ||xn − p||

αn
≤ ||zn − p|| − ||xn − p||.

So, we can get ||xn+1 − p|| ≤ ||zn − p|| and from (3.1), we have

(3.4) t ≤ lim inf
n→∞

||zn − p||.

From (3.2) and (3.4), we obtain

(3.5) t = lim
n→∞

||zn − p||.

From (3.1) and (3.5), we have

t = lim
n→∞

||zn − p||

= lim
n→∞

||T ((1− βn)xn + βnTxn)− p||

≤ lim
n→∞

||(1− βn)xn + βnTxn − p||

= lim
n→∞

||(1− βn)(xn − p) + βn(Txn − p)||

≤ lim
n→∞

(1− βn)||xn − p||+ lim
n→∞

βn||Txn − p||

≤ lim
n→∞

(1− βn)||xn − p||+ lim
n→∞

βn||xn − p||

≤ t.
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Hence,

(3.6) t = lim
n→∞

||(1− βn)(xn − p) + βn(Txn − p)||.

Now from (3.1), (3.3) and (3.6) together with Lemma 2.2, we obtain

lim
n→∞

||Txn − xn|| = 0.

Conversely, we assume that {xn} is bounded and limn→∞ ||Txn−xn|| = 0. Let
p ∈ A(M, {xn}). By proposition 2.1 part (iv), we have

r(Tp, {xn}) = lim sup
n→∞

||xn − Tp||

≤
(

3 + α

1− α

)
lim sup
n→∞

||Txn − xn||+ lim sup
n→∞

||xn − p||

= lim sup
n→∞

||xn − p||

= r(p, {xn}).

Hence, we conclude that Tp ∈ A(M, {xn}. Since X is uniformly convex,
A(M, {xn}) consist of a unique element. Thus, we have p = T (p). �

First we prove our weak convergence result.

Theorem 3.3. Let X be a uniformly Banach space with Opial property, M
a nonempty closed convex subset of X and T : M → M be generalized α-
nonexpansive mapping with F (T ) 6= ∅. Then, {xn} generated by (1.6) con-
verges weakly to an element of F (T ).

Proof. By Theorem 3.2, {xn} is bounded and limn→∞ ||Txn − xn|| = 0. Since
X is uniformly convex, X is reflexive. So, a subsequence {xni} of {xn} exists
such that {xni

} converges weakly to some v1 ∈ M . By Proposition 2.1 part
(v), we have v1 ∈ F (T ). It is sufficient to show that {xn} converges weakly
to v1. In fact, if {xn} does not converges weakly to v1. Then, there exists a
subsequence {xnj} of {xn} and v2 ∈ M such that {xnj} converges weakly to
v2 and v2 6= v1. Again by Proposition 2.1 part (v), v2 ∈ F (T ). By Lemma 3.1
together with Opial property, we have

lim
n→∞

||xn − v1|| = lim
i→∞

||xni − v1||

< lim
i→∞

||xni
− v2||

= lim
n→∞

||xn − v2||

= lim
j→∞

||xnj
− v2||

< lim
j→∞

||xnj − v1||

= lim
n→∞

||xn − v1||.

This is a contradiction, so, v1 = v2. Thus, {xn} converges weakly to v1 ∈
F (T ). �
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We now prove our strong convergence result.

Theorem 3.4. Let M be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : M → M be a generalized α-nonexpansive map-
ping. If F (T ) 6= ∅ and lim infn→∞ dist(xn, F (T )) = 0 (where dist(x, F (T )) =
inf{||x− p|| : p ∈ F (T )}). Then, {xn} generated by (1.6) converges strongly to
an element of F (T ).

Proof. By Lemma 3.1, limn→∞ ||xn − p|| exists, for each p ∈ F (T ). So,
limn→∞ dist(xn, F (T )) exists, thus

lim
n→∞

dist(xn, F (T )) = 0.

Therefore, there exists a subsequence {xnk
} of {xn} and {vk} in FT such that

||xnk
− vk|| ≤ 1

2k for each k ∈ N. By the proof of Lemma 3.1, {xn} is nonin-
creasing, so

||xnk+1
− vk|| ≤ ||xnk

− vk|| ≤
1

2k
.

Therefore,

||vk+1 − vk|| ≤ ||vk+1 − xnk+1
||+ ||xnk+1

− vk||

≤ 1

2k+1
+

1

2k

≤ 1

2k−1
→ 0, as k →∞.

Hence, {vk} is a Cauchy sequence in F (T ) and so it converges to some p. Since,
by Proposition 2.1 part (iii), F (T ) is closed, we have p ∈ F (T ). By Lemma
3.1, limn→∞ ||xn − p|| exists, hence {xn} converges strongly to p ∈ F (T ). �

4. example

We compare rate of convergence of our new KF iteration (1.6) with leading
S (1.3), M (1.5) Thakur et al. (1.4) in slightly general setting using Exam-
ple 4.1, in which T is generalized α-nonexpansive but not Suzuki generalized
nonexpansive.

Example 4.1. Let M = [0,∞) with absolute valued norm. Define a mapping
T : M →M by

Tx =

{
0 if x ∈

[
0, 1

5000

)
x
2 if x ∈

[
1

5000 ,∞
)
.

Choose x = 1
8000 and y = 1

5000 . We see that, 1
2 |x − Tx| < |x − y| but

|Tx − Ty| > |x − y|. Thus, T does not satisfy condition (C) and so T is
not Suzuki generalized nonexpansive. On the other hand, T is a generalized
α-nonexpansive mapping. In fact, for α = 1

3 , we have:

Case I: When x, y ∈
[
0, 1

5000

)
, then clearly

1

3
|Tx− y|+ 1

3
|x− Ty|+ 1

3
|x− y| ≥ 0 = |Tx− Ty|.
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Case II: When x ∈
[

1
5000 ,∞

)
and y ∈

[
0, 1

5000

)
, we have

1

3
|Tx− y|+ 1

3
|x− Ty|+ 1

3
|x− y| =

1

3

∣∣∣x
2
− y
∣∣∣+

1

3
|x− 0|+ 1

3
|x− y|

≥ 1

3

∣∣∣(x
2
− y
)
− (x− y)

∣∣∣+
1

3
|x|

=
1

3

∣∣∣x
2

∣∣∣+
1

3
|x|

≥ 1

3

∣∣∣x
2

+ x
∣∣∣

=
1

2
|x|

= |Tx− Ty|.

Case III: When x, y ∈ [ 1
5000 ,∞), we have

1

3
|Tx− y|+ 1

3
|x− Ty|+ 1

3
|x− y| =

1

3

∣∣∣x
2
− y
∣∣∣+

1

3

∣∣∣x− y

2

∣∣∣+
1

3
|x− y|

≥ 1

3

∣∣∣(x
2
− y
)

+
(
x− y

2

)∣∣∣+
1

3
|x− y|

=
1

2
|x− y|+ 1

3
|x− y|

≥ 1

2
|x− y|

= |Tx− Ty|.

Hence, T is a generalized α-nonexpansive mapping with F (T ) = {0}. Take
αn = 0.70 and βn = 0.65. The iterative values for x1 = 10 are given in Table
1. Figure 1 shows the convergence behaviors of different iterative schemes.
Clearly the new KF iteration process is moving fast to the fixed point of T as
compared to other iteration processes.
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Table 1. Sequences generated by KF (1.6), M (1.5), Thakur
et al. (1.4) and S (1.3) iteration schemes for mapping T of
Example 4.1.

KF (1.6) M (1.5) Thakur et al. (1.4) S (1.3)

x1 10 10 10 10
x2 1.0453120000 1.62500000000 1.9312500000 3.8625000000
x3 0.1092678222 0.26406250000 0.3729726562 1.4918906250
x4 0.0114219020 0.04291015625 0.0720303442 0.5762427539
x5 0.0011939456 0.00697290039 0.0139108602 0.2225737636
x6 0.0001248046 0.00113309631 0.0026865348 0.0859691162
x7 0 0.00018412815 0.0005188370 0.0332055711
x8 0 0 0.0001002004 0.0128256518
x9 0 0 0 0.0049539080
x10 0 0 0 0.0019134469
x11 0 0 0 0.0007390688
x12 0 0 0 0.0002854653

O

O
O O O O

O

O

O

O O O O O

O

O

O

O O O O O O

O

O

O

O
O O O O O O O O O

O

0 2 4 6 8 10 12 14

0

1

2

3

4

5

Number of iteration

V
a
lu
e
o
f
x
n

KF

M

Thakur et al.

S

Figure 1. Convergence behaviors of KF, M, Thakur et al.
and S iteration processes to the fixed point of the mapping
defined in Example 4.1 where x1 = 10.
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